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This Supplement describes the construction of the state space models estimated
in our paper, and a framework for identification. In addition, we provide details
about our particle learning filter and particle smoothing algorithms.

S1. SSMs implied by different model variants

This section builds the SSMs that are estimated in Section 4 of the paper. Table 1 of the
paper gives an overview of the different SSMs and introduces M0, M1, M2, and M3 for
each SSM. The SSMs differ by restrictions placed on time-variation in the AR1 inflation
gap persistence parameter and sticky-information (SI) weight.

Our baseline SSM is denoted M0. It has a constant AR1 inflation gap persistence
parameter, θ, while the SI weight, λt , is time-varying. By letting λt = λ, we turn M0 into
M1 that has λ and θ. However, constructing a recursive state space is more difficult when
θ becomes time-varying, θt , as in the SSMs M2 and M3.

S1.1 A Stock and Watson UC model of inflation

We reproduce our version of the SW-UC model of inflation here

πt = τt + π̃t � (A.1)

π̃t = εt + σζ�πζπ�t� ζπ�t ∼ N (0�1)� (A.2)

τt+1 = τt + ςη�t+1ηt� ηt ∼ N (0�1)� (A.3)

εt+1 = θεt + ςυ�t+1υt� υt ∼ N (0�1)� |θ|< 1� (A.4)

ln ς2
�t+1 = ln ς2

�t + σξ�t+1� ξ�t+1 ∼ N (0�1)�  = η�υ� (A.5)
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where inflation is the sum of trend, τt and gap π̃t , which again is the sum of a persistent
component, εt , and a serially uncorrelated irregular component, ζπ�t . Furthermore, ςη�t ,
and ςυ�t denote stochastic volatility in the innovation ηt of τt , and stochastic volatility in
the innovation υt of εt .

Consider a SW-UC model lacking persistence in gap inflation, θ = 0 (as well as
ζπ�t = 0), and constant volatility, ση = ςη�t and συ = ςυ�t . The result is a fixed coeffi-
cient SW-UC model with an invertible IMA(1�1) reduced form, (1 − L)πt = (1 − �L)et ,
where L is the lag operator, πt−1 = Lπt , et is the one-step ahead forecast error et ≡
πt − E{πt+1|πt}, and the MA1 coefficient satisfies � ∈ (0�1).1 The IMA(1�1) yields a ra-
tional expectations (RE) inflation forecast updating equation, E{πt+1|πt} = (1 −�)πt +
�E{πt |πt−1}, where πt = [πt� � � � �π1] and K ≡ 1−� is the Kalman gain of trend inflation,
τt|t = τt−1|t−1 +Ket .

Stock and Watson (2007), Grassi and Proietti (2010), and Shephard (2015) noted
stochastic volatility in the SW-UC model gives the MA1 coefficient a local time-varying
parameter interpretation, �t . By iterating the RE updating equation E{πt+1|πt� ςtη� ς

t
υ} =

(1 −�t)πt +�tE{πt |πt−1� ςt−1
η � ςt−1

υ } backwards, we have an exponentially weighted MA
updating recursion or smoother, E{πt+1|πt� ςtη� ς

t
υ} = ∑∞

j=0 μt�t−jπt−j , that is a forecast-
ing tool traced to Muth (1960), where the discount μt�t = 1 − �t at j = 0 or μt�t−j =
μt�t

∏j−1
=0 �t− for j ≥ 1. The exponentially weighted MA smoother yields a term struc-

ture of RE inflation forecasts in which μt�t−j adjusts to changes in πt , ςtη, and ςtυ. When
θ �= 0, the RE term structure becomes an input into computing SI inflation forecasts.

S1.2 The sticky-information prediction mechanism of inflation

This section revisits the SI prediction mechanism of inflation, which consists of

πSPF
t�t+h = Ftπt+h + σζ�hζh�t� ζh�t ∼ N (0�1)� (A.6)

Ftπt+h = λtFt−1πt+h + (1 − λt)Etπt+h� h= 1� � � � �H� (A.7)

λt+1 = λt + σκκt� κt ∼ N (0�1) s.t. λt+1 ∈ (0�1)� (A.8)

where h belongs to the set of positive integers, h ∈ Z
+, and λt+1 follows a bounded ran-

dom walk with shocks drawn from a truncated normal that guarantees λt+1 ∈ (0�1).2

The SI law of motion (A.7) implies a exponentially weighted MA smoother. Repeated
lagging and substitution of (A.7) produces the SI-exponentially weighted MA smoother

Ftπt+h =
∞∑
j=0

Λt�t−jEt−jπt+h� (A.9)

1Stock and Watson (2007), Grassi and Proietti (2010), and Shephard (2015) computed � by equating the
first two autocovariances of the IMA(1�1) and the fixed coefficient SW-UC model: (1 + �2)σ2

e = σ2
η + 2σ2

ε

and −�σ2
e = −σ2

ε . For ση�σε > 0, and q = σ2
η/σ

2
ε , the MA coefficient of the invertible IMA(1�1) represen-

tation is given by � = 1 + 0�5(q− √
q2 + 4q).

2The innovations to λt+1 are drawn from κt ∼ T N (0�1;−λt/σκ� (1 − λt)/σκ). T N (μ�σ2;x�x) denotes a
truncated normal with support between x and x, and mean and variance parameters μ and σ2.
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where the time-varying discount Λt�t−j is 1 − λt for j = 0 and Λt�t−j = Λt�t
∏j−1

=0 λt−

otherwise. The SI-exponentially weighted MA smoother (A.9) nests the RE inflation
forecast, limλt−→0 Ftπt+h = Etπt+h, and the pure SI inflation forecast, limλt−→1 Ftπt+h =∑∞

j=1 Λt�t−jEt−jπt+h = Ft−1πt+h. The former limit equates Ftπt+h to Etπt+h, as λt falls to
zero. As λt moves to its upper bound, Ft−1πt+h becomes the SI inflation forecast because
the weight on Etπt+h decreases while increasing on its lags.

S1.3 The benchmark SSM, M0

This section builds M0 by combining our SW-UC model of inflation, the SI law of motion
of inflation forecasts, and the term structure of average SPF inflation predictions. Our
SW-UC model is employed to construct a term structure of RE inflation forecasts. This
term structure has a two factor representation driven by τt and εt . We conjecture and
verify state equations for SI trend and gap inflation, Ftτt and Ftεt , that are consistent
with the SI law of motion of inflation forecasts. An implication is the SI states, Ftτt and
Ftεt , are the factors of the term structure of SI inflation forecasts. The SI states eliminate
Ftπt+h in the term structure equation (A.6) of πSPF

t�t+h. As a result, M0 has seven state
variables that we group into Xt = [τt εt]′, FtXt = [Ftτt Ftεt]′, and Vt = [ςη�t ςυ�t λt]′.

As already discussed, constructing M0 is a multistep process. Start by rewriting the
observation equations (A.1) and (A.2) of the SW-UC model

πt = δXXt + σζ�πζπ�t� (A.10)

where δX = [1 1]. Stack the random walk (A.3) of τt+1 on top of equation (A.4), which is
the AR(1) of εt+1, to create the state equations of our SW-UC model

Xt+1 =ΘΘΘXt +ΥΥΥ t+1Wt � (A.11)

where ΘΘΘ = [ 1 0
0 θ

]
, ΥΥΥ t+1 = [ ςη�t+1 0

0 ςυ�t+1

]
, Wt = [ηt

υt

]
, and the stochastic volatilities, ln ς2

η�t+1

and ln ς2
υ�t+1, are random walks as described by equation (A.5).

The term structure of RE inflation forecasts is built using the observation equation
(A.10) and state equations (A.11). Iterate the state equations (A.11) h-steps ahead, pass
Et{·} through, and substitute to find EtXt+h =ΘΘΘhXt , where Et{·} conditions on πππt , ςη�t ,
and ςυ�t . Push the observation equation (A.10) h-steps ahead, apply Et{·}, and substitute
for EtXt+h, to produce the RE term structure of inflation forecasts Etπt+h = δXΘΘΘhXt .

Next, the SI law of motion (A.7) suggests the law of motion of SI-states is FtXt+1 =
λtFt−1Xt+1 + (1 − λt)EtXt+1. The SI-exponentially weighted MA smoother (A.9) is con-
sistent with the law of motion of FtXt+1. Iterate the latter law of motion backwards and
substitute ΘΘΘh+jXt−j for Et−jXt+h to obtain the exponentially weighted MA smoother of
the SI-states, FtXt+h = ΘΘΘh

∑∞
j=0 Λt�t−jΘΘΘ

jXt−j . When h = 0, the exponentially weighted
MA smoother of the SI-states is

FtXt =
∞∑
j=0

Λt�t−jΘΘΘ
jXt−j� (A.12)
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Pull Xt out of the infinite sum of (A.12) to find FtXt = (1 − λt)Xt + ∑∞
j=1 Λt�t−jΘΘΘ

jXt−j .
Changing the indexes j = i + 1 and  = s + 1 converts the infinite sum of the previous
expression to λtΘΘΘ

∑∞
i=0 Λt−1�t−i−1ΘΘΘ

iXt−i−1. Since this infinite sum equals Ft−1Xt−1, sub-
stitute λtΘΘΘFt−1Xt−1 in the previous expression for FtXt to see that its law of motion is
FtXt = (1 − λt)Xt + λtΘΘΘFt−1Xt−1. Finally, lead the law of motion of FtXt forward one pe-
riod and substitute for Xt+1 using the SW-UC model’s state equations (A.11) to find

Ft+1Xt+1 = λt+1ΘΘΘFtXt + (1 − λt+1)ΘΘΘXt + (1 − λt+1)ΥΥΥ t+1Wt � (A.13)

which is the system of SI-state equations. The state equations of M0 are formed by stack-
ing the state equations (A.11) of Xt+1 on top of the SI state equations (A.13)

St+1 =AAAt+1St +BBBt+1Wt � (A.14)

where St = [ Xt

FtXt

]
, AAAt+1 = [ ΘΘΘ 02×2

(1−λt+1)ΘΘΘ λt+1ΘΘΘ

]
, BBBt+1 = [ ΥΥΥ t+1

(1−λt+1)ΥΥΥ t+1

]
, and ln ς2

η�t+1, ln ς2
υ�t+1,

and λt+1 evolve as the random walks (A.5) and (A.8). Drift in the SI weight and the
stochastic volatilities create nonlinearities in the state equations (A.14). However, St+1
has linear dynamics conditional on a realization of Vt+1.

We construct the observation system of M0 using the observation equation (A.10) of
our SW-UC model, SPF measurement equation (A.6), and RE and SI term structures of
inflation forecasts. The former term structure replaces Et−jπt+h with δXΘΘΘhXt−j in the
sticky inflation forecast-exponentially weighted MA smoother (A.9) to yield Ftπt+h =
δXΘΘΘh

∑∞
j=0 Λt�t−jΘΘΘ

jXt−j . Up to δXΘΘΘh, Ftπt+h equals the exponentially weighted MA
smoother (A.12) of the SI-states. The result is the term structure of SI inflation forecasts,
Ftπt+h = δXΘΘΘhFtXt . It eliminates Ftπt+h from the SPF term structure equation (A.6),
πSPF
t�t+h = δXΘΘΘhFtXt +σζ�hζh�t , which shows the SI-states are factors of the term structure

of average SPF inflation predictions. Put these SPF term structure equations beneath the
observation equation (A.10) of our SW-UC model to produce the system of observation
equations of M0

Yt = CCCSt +DDDUt � (A.15)

where

Yt =

⎡⎢⎢⎢⎢⎣
πt

πSPF
t�t+1
���

πSPF
t�t+H

⎤⎥⎥⎥⎥⎦ � CCC =

⎡⎢⎢⎢⎢⎣
δX 01×2

01×2 δXΘΘΘ
���

���

01×2 δXΘΘΘH

⎤⎥⎥⎥⎥⎦ � DDD =

⎡⎢⎢⎢⎢⎣
σζ�π 0 � � � 0

0 σζ�1 � � � 0

0 0
� � � 0

0 0 � � � σζ�H

⎤⎥⎥⎥⎥⎦ �

Ut = [ζπ�t ζ1�t � � � ζH�t]′� and ΩΩΩU =DDDDDD′�

The SSM maps Ftπt+h, as it appears in the observation equations (A.15), into a linear
combination of SI trend and gap.

S1.4 SSM when θt is time-varying

Time-variation in θt induces a nonlinearity in the AR(1) dynamics of the process for
gap inflation, which also affects the process for inflation and the state equation of the
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SW-UC model of realized inflation. In this case, the process for gap inflation becomes

εt+1 = θt+1εt + ςυ�t+1υt� υt ∼ N (0�1)� (A.16)

θt+1 = θt + σφφt+1� φt+1 ∼ N (0�1) s.t. θt+1 ∈ (−1�1)� (A.17)

where equation (A.16) replaces equation (1.3) of the paper, equation (A.17) is added to
the SW-UC model, and Et conditions on date t information that includes θt . As with
the process for λt+1 in (A.8), shocks θt+1 in (A.17) are drawn from a truncated normal
distribution, whose bounds dynamically adjust to ensure |θt+1| < 1 at all times.

Optimal forecasts of the inflation gap then involve higher moments of the process for
θt , which breaks the parsimonious structure of the term structure of RE forecasts and the
term structure of SI forecasts on which the SSM with constant θ rest. Instead, as common
in the literature on RE forecasts generated from time-varying VARs, we approximate in-
flation gap forecasts by assuming the time-varying coefficient θt remains (locally) fixed
at its current value (and thus ignoring any future variations in this parameter) when
forming expectations; see, for example, Justiniano and Primiceri (2008) and Cogley and
Sbordone (2008).3 This approach can be motivated with the anticipated utility model
(AUM) of Kreps (1998); see also Cogley and Sargent (2008).4 As a result, RE forecasts are
approximated by Etεt+h ≈ θht εt , and Etπt+h = δX EtXt+h where EtXt+h ≈ Θh

t Xt .5

Regardless of whether θt is constant or not, SI forecasts are a distributed lag poly-
nomial of current and past RE forecasts Ftπt+h = ∑∞

j=0 Λt�t−jEt−jπt+h with Λt�t = 1 − λt

and Λt�t−j = (1 − λt−j)
∏j−1

k=0 λt−k, ∀j > 0. As shown in the previous section, when the in-
flation gap persistence parameter θ is constant, the following relationships hold for SI
inflation forecasts and SI nowcasts of trend and gap inflation

Ftπt+h = δX FtΘ
hFtXt � (A.18)

FtXt = (1 − λt)Xt + λtΘFt−1Xt−1� (A.19)

where (A.18) led to the measurement equation (A.15) for SPF forecasts and (A.19) in-
formed the derivation of the transition equation (A.14) for the SI states.

Extending the AUM arguments to the case of θt , we approximate the evolution of SI
forecasts by evaluating the constant-θ equations (A.18) and (A.19) at date t using Θt in
place of Θ

Ftπt+h ≈ δXΘh
t FtXt � (A.20)

FtXt ≈ (1 − λt)Xt + λtΘtFt−1Xt−1� (A.21)

3Note that since θt and υt are independent, the exact solution to the optimal forecasting problem in-

volves solving Etεt+h = Et (
∏h

i=1 θt+i)εt , ∀h > 0. The AUM assumption then amounts to ignoring Jensen-
inequality terms and replacing Et (

∏h
i=1 θt+i) by

∏h
i=1(Etθt+i) = θht .

4Cogley and Sargent (2008) contended the AUM assumptions result in decision making that is consistent
with Bayesian forecasting. Kreps (1998) argued agents engaging in AUM-like behavior are acting rationally
when seeing through to the true model is costly.

5Similar to the constant-θ case, we have Θt = [ 1 0
0 θt

]
.
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Thus, for θt , we build a state space that approximates the true evolution of RE and SI
forecasts with two layers of AUM arguments. First, AUM is applied to form RE forecasts
at date t as if θt were to remain constant at its current value. Similarly, the system of
recursive SI forecasting equations is evaluated as if θt is held fixed at its current value for
updating SI forecasts in the transition equation (A.21) along with projecting forward the
SI forecasts using FtXt+h = Θh

t FtXt .
We obtain a similar SSM as in the constant-θ cases, but replace Θ with Θt

St+1 = At+1St +Bt+1Wt � (A.22)

where At+1 = [ Θt+1 02×2
(1−λt+1)Θt+1 λt+1Θt+1

]
and Bt+1 = [ Υ t+1

(1−λt+1)Υ t+1

]
. As in the constant-θ case

of the paper, the state equations (A.22) show that shocks to λt alter only the transition
and impulse dynamics of FtXt . In contrast, changes in θt shift the transition dynamics of
all elements of St . The same state space equations apply to M3, where θt is time-varying
and λ is constant, by replacing λt above with λ.

We complete the SSM by constructing its observation equations. First, replace
Ftπt+h in the SPF measurement equation (A.6) with the SI term structure of inflation
forecasts (A.20) for h = 1� � � � �H. The observation equation (A.1) for inflation of the SW-
UC model is identical to the baseline model of the paper, and we obtain

Yt = CtSt +DUt � with Ct =

⎡⎢⎢⎢⎢⎣
δX 01×2

01×2 δXΘt
���

���

01×2 δXΘH
t

⎤⎥⎥⎥⎥⎦ �

and Yt , D, Ut , and ΩU as defined before.

S2. Identification

This section complements our discussion in Section 2.4 of the paper regarding the iden-
tification of parameters and latent states within our SSMs. However, the discussion be-
low gives gives a fuller analysis compared with the intuition about the link between spe-
cific observable variables and the estimation of several parameters and states found in
the paper. The analysis of this section is limited to the case where time variation in the
nonlinear state variables is shut down. Since this imposes linearity on the SSMs, our
analysis is grounded in (local) identification of linear SSMs. We especially rely on the
framework of Komunjer and Ng (2011). They cast their analysis of identification around
UC representations of DSGE models. Their work also applies to UC models in which
the mapping from parameters to UC coefficients is not subject to the cross-equation re-
strictions emanating from a DSGE model. For ease of comparison with their paper, this
section represents our SSMs in a notation similar to theirs.

S2.1 Komunjer–Ng framework

The identification analysis of Komunjer and Ng (KN) rests on the assumption that mea-
surement and state variables are stationary. We extend their framework to models like
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ours, where state and measurement dynamics include unit root processes. Throughout,
our discussion of the KN framework is limited to their “nonsingular” case, in which there
are more shocks than observables. This is true in our model.

Consider the following class of UC models studied by KN:

Xt+1 =A(Ψ)Xt +B(Ψ)εt+1 and Y t+1 =C(Ψ)Xt +D(Ψ)εt+1� (A.23)

where Xt and Y t are state and measurement vectors, respectively, and A(Ψ), B(Ψ),
C(Ψ), D(Ψ), are state space matrices expressed as functions of the underlying parame-
ters Ψ . The pair of equations in (A.23) corresponds to equations (1a) and (1b) in KN. As
in KN or the work of Fernández-Villaverde, Rubio-Ramírez, Sargent, and Watson (2007),
this SSM has the “ABCD” form. For ease of notation, we will drop the dependency of
state space objects (i.e., A, B, C, D) on Ψ unless needed.

The shocks εt+1 are mean zero and serially uncorrelated. Without loss of generality,
normalize the variances of the elements of εt+1, Var(εt+1) = I.6 The coefficient matrices
are treated as continuously differentiable in Ψ . We also rely on KN assuming that DD′ is
positive definite.7 In addition (A�C) are assumed to be detectable under their assump-
tion 5-NS, while A is a stable matrix with all eigenvalues strictly inside the unit circle.
The latter condition is sufficient to ensure controllability of the system. Our UC models,
although having a unit root in inflation, still satisfy the weaker condition of unit-circle
controllability, which together with detectability assures the existence of a steady state
Kalman filter; see Section S2.2 below. After summarizing the identification conditions
established by KN, we extend their framework to handle the case of unit roots.

First, build the innovations representation of the SSM of equations (A.23)

Xt+1|t+1 =AXt|t +Kat+1 and Y t+1 = CXt|t + at+1� (A.24)

by defining expectations and innovations as Xt|t ≡ E(Xt |Y t ), Y t|t−1 ≡ E(Y t |Y t−1) and
at ≡ Y t − Y t|t−1, which recreates equations (9a) and (9b) of KN, where Yt = {Yi}ti=1 and
K is the Kalman gain to be derived next. Denote the posterior variance of the states as
Σ ≡ Var(Xt |Y t ) and the covariance matrix of at by Σa ≡ Var(at ) = Var(Y t |Y t−1). Apply
standard steady-state Kalman filtering formulas to find

Σa =CΣC′ +DD′�

K= (
AΣC′ +BD′)Σ−1

a �

Σ =BB′ +AΣA′ − (
AΣC′ +BD′)(CΣC′ +DD′)−1(

AΣC′ +BD′)′
� (A.25)

Importantly, provided that (A�C) are detectable and the system is unit-circle control-
lable, a stabilizing solution to the Riccati equation, which is a solution where A − KC

6KN assume Var(εt) is positive definite with Choleski factor Lε, where Var(εt+1) = LεL
′
ε. Models with a

nonnormalized Var(εt+1) can be normalized by post-multiplying B and D with Lε. The covariance matrix
of the shocks can be counted as part of Ψ and their identification can be assessed as well.

7See their assumption 4-NS together with our normalization of Var(εt ) = I , which is without loss of
generality, because KN’s assumption 1 requires Var(εt) to be positive definite.
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is a stable matrix, exists and is unique; see Section S2.2 below. Notice K, Σ, Σa and the
sequence of innovations of at depend on the Ψ through their dependence on A, B, C, D.

Conditions for identification are given by KN’s Proposition 1-NS.8 Two parameter
vectors Ψ0 and Ψ1 are said to be observationally equivalent if and only if there exists a
full-rank Nx ×Nx matrix T such that

A(Ψ1) = TA(Ψ0)T
−1� C(Ψ1) =C(Ψ0)T

−1� (A.26)

K(Ψ1) = TK(Ψ0)� Σa(Ψ1)= Σa(Ψ0)� (A.27)

When the above conditions hold, Ψ0 and Ψ1 generate identical innovation representa-
tions and thus identical spectral density functions for the vector of observables Y t .

Based on the innovations representation given by (A.24), and for given state space
matrices A, C and K, and a prior for the initial state, X0|0, a sequence of innovations in
the observables, aT , can be generated from a sequence of data YT using

at+1 = Y t+1 −CXt|t and Xt+1|t+1 = (A−KC)Xt|t +KY t+1� (A.28)

Assume for two different parameter vectors Ψ1 and Ψ0, that a nonsingular T exists so that
(A.26) and (A.27) hold. In this case, both parametrizations are observationally equiva-
lent because they lead to the same sequence of innovations aT with identical variance
Σa(Ψ1)= Σa(Ψ1). Also, KN show both parametrizations imply the same spectral density
for the observables Y t .

The analysis of KN is focused on identification via the spectral density of Yt . Hence,
their identification analysis rests on the second moments of Yt without specific distri-
butional assumptions. Since our framework is different, we assume that the shocks, εt ,
and the priors for the initial values of the states, X0, are normally distributed.9 With
Gaussian shocks and priors innovations in the observables are also normally distributed,
at ∼N(0�Σa). Hence, for a given sequence of data, YT , we obtain the log likelihood as a
function of the parameter vector via the usual prediction error decomposition

logL
(
Ψ |YT ;X0|0�Σ0�0

) = −1
2

T∑
t=1

(
Ny · log (2π)+ log |Σa| + atΣ

−1
a a′

t

)
�

with at a function of Ψ as shown in (A.28). Throughout, we assume that evaluations of
the likelihood are conducted for a given prior mean and variance of the initial states,
X0|0 and Σ0�0, that are consistent with the steady state solution of the Kalman filter.

S2.2 Some concepts from control theory

This section reviews concepts from control theory, notably detectability and unit-circle
controllability and their relevance for the existence of a steady-state Kalman filter. Read-
ers familiar with this material may also skip this section without loss of continuity.

8Depending on the number of shocks and observables, KN consider both singular and nonsingular cases.
In our applications, we always have Ny ≤Nε, and thus belong to the nonsingular category.

9The analysis could also be in terms of the quasi-likelihood of a SSM with non-Gaussian shocks.
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Formal conditions for the existence of a time-invariant Kalman filter have been
stated, among others, by Anderson and Moore (1979), Harvey (1989), Kailath, Sayed, and
Hassibi (2000), and Hansen and Sargent (2007). Necessary and sufficient conditions for
the existence of a unique and stabilizing solution that is also positive semidefinite de-
pend on the “detectability” and “unit-circle controllability” of certain matrices in our
state space. We restate those concepts next.

Definition (Detectability). A pair of matrices (A�C) is detectable when no right eigen-
vector of A that is associated with an unstable eigenvalue is orthogonal to the row space
of C. That is, there is no nonzero column vector v such that Av = vλ and |λ| ≥ 1 with
Cv = 0.

Detectability alone is already sufficient for the existence of some solution to the Ric-
cati equation such that A − KC is stable; see Table E.1 in Kailath, Sayed, and Hassibi
(2000). Evidently, detectability is assured when A is a stable matrix, regardless of C.

Definition (Unit-Circle Controllability). The pair (A�B) is unit-circle controllable
when no left-eigenvector of A associated with an eigenvalue on the unit circle is or-
thogonal to the column space of B. That is, there is no nonzero row vector v such that
vA = vλ with |λ| = 1 and vB= 0.

In order to consider the role of unit-circle controllability for the existence of a stabi-
lizing solution to the Riccati equation, it is useful to define the following two matrices10

AG ≡A−BD′(DD′)−1
C and BG ≡B

(
I −D′(DD′)−1

D
)︸ ︷︷ ︸

MD

�

The concepts of detectability and unit-circle controllability provide sufficient conditions
for existence and uniqueness of a stabilizing solution to the Kalman filtering problem.

Theorem 1 (Stabilizing Solution to Riccati Equations). Provided DD′ has full rank,
a stabilizing, positive semidefinite solution to the Riccati equation (A.25) exists when
(AG�BG) is unit-circle controllable and (A�C) is detectable. The steady state Kalman gain
is such that A−KC is a stable matrix. Moreover, the stabilizing solution is unique.11

Proof. See Theorem E.5.1 of Kailath, Sayed, and Hassibi (2000); related results are also
presented in Anderson, McGrattan, Hansen, and Sargent (1996), or Chapter 4 of Ander-
son and Moore (1979).

As we argue next for the case of C = GA and D = GB, a sufficient condition for
unit-circle controllability of (AG�BG) is B has full rank. Coupled with detectability of
(A�C), full rank of B ensures existence of the steady state Kalman filter. Given C = GA

10These transformation are designed to handle correlation between the shocks to signal and state equa-
tions that arise when BD′ �= 0.

11There may be other, nonstabilizing positive semidefinite solutions.
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and D = GB, the previous expressions for AG and BG become AG = (I − PG)A and
BG = (I − PG)B, where PG ≡ BG′(GBB′G′)−1G ⇒ PG = PGPG. Hence, PG is a nonsym-
metric, idempotent projection matrix, where GPG =G.12 In addition, when C=GA and
D= GB, unit-circle controllability of (AG�BG) is equivalent to unit-circle controllability
of (A(I−PG)�B). Define ṽ ≡ v(I−PG) and note left-eigenvectors of AG associated with
eigenvalues on the unit circle cannot be orthogonal to PG. Otherwise, vAG = 0. Hence,
for |λ| = 1, vAG = vλ, vBG �= 0 and v �= 0 are equivalent to ṽA(I − PG) = ṽλ, ṽ �= 0, and
ṽB �= 0. A sufficient condition for these equivalences is B has full rank.

S2.3 Extension of KN to observables with unit root dynamics

The analysis of KN is based on identification via the spectral density of Y t which entails
the requirement that Y t is stationary. In addition, KN also require the state vector Xt to
be stationary. However, our UC models typically have a unit root in the state dynamics
which is inherited by the observables as well.

We add the assumption that the shock vector has a standard normal distribution, but
relax the original KN assumption that A(Ψ) is a stable matrix. Also, our notion of obser-
vational equivalence is in terms of whether two different parameter vector, Ψ1 and Ψ2,
generate different log likelihoods for a given sequence of data YT . Given a positive def-
inite solution exists to the Riccati equations (A.25), the KN conditions (A.26) and (A.27)
remain necessary and sufficient to establish whether two different parametrizations, Ψ1
and Ψ2, yield the same likelihoods, logL(Ψ1|YT ) = logL(Ψ0|YT ).

The KN assumption of a stable state transition matrix A, coupled with a positive
definite Var(εt ) and (A�C) detectable (see KN assumptions 1 and 5-NS), is sufficient to
ensure existence of a positive-definite solution Σ to the Riccati equations (A.25).13 How-
ever, existence of a solution to the Riccati equations can also be guaranteed by requiring
simply that (A�B) is unit-circle controllable while maintaining detectability of (A�C)
and strict positive-definiteness of DD′; see our Appendix for further details. As long as
only parametrizations are considered for which DD′ has full rank, (A�C) is detectable,
and (A�B) is unit-circle controllable, the KN conditions (A.26) and (A.27) continue to
characterize observationally equivalent parametrizations. Below, we will establish that
in the class of UC models considered in our paper, these conditions can only hold when
the two parameter vectors are identical, Ψ1 = Ψ2.

As in KN, our discussion has been based on Kalman filtering recursions that use
steady-state values for the Kalman gain. This is consistent with a prior distribution over
X0 that is identical to the ergodic distribution of Xt . However, when allowing for unit-
root (or other nonstationary) dynamics in the state vector, such an ergodic distribution
does not exist (at least not for the nonstationary elements of the state vector). Given the
conditions of detectability and unit-circle controllability discussed above hold, a steady
state solution to the Riccati equation, and thus also for the Kalman gain, continue to ex-
ist. As noted above, to avoid consideration of initial heteroscedasticity in the posterior
variances, we assume the Kalman filter is initialized with a prior variance matrix, Σ0|0
that is consistent with the filter’s steady state solution.

12The eigenvalues of an idempotent matrix are either zero or one. In this case, |PG| = 0.
13Recall that we use the standardization Var(εt ) = I , which is positive definite.
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S2.4 KN applied to the univariate Stock–Watson UC model

Before considering our SSM for the joint dynamics of inflation and SI forecasts, this sec-
tion illustrates the use of the KN framework to establish identification in SW-UC models
for inflation with or without persistence in the inflation gap. First, consider the original
SW-UC model with a univariate measurement equation, but without the irregular gap
component that was introduced in equation (A.6). This model maps into the KN frame-
work as Xt = [τt εt]′, Y t = πt , A = [ 1 0

0 θ

]
, B = [ ςη 0

0 ςυ

]
, C = [1 θ], and D = [ςη ςυ], where

Ψ = [θ ς2
η ς2

υ]′, C= GA, and G= [1 1].14

For now, restrict attention to the case θ �= 0, |A| �= 0. Also, maintain the assumption
that θ lies inside the unit circle. We will return to the case of θ = 0 in our discussion of the
UC model with an irregular gap component that is serially uncorrelated. It is straightfor-
ward to show the only nonsingular choice for T for which the KN conditions apply is the
2×2 identity matrix. The upshot is two observationally equivalent parameter vectors, Ψ1

and Ψ0, have to agree on the value for the scalar parameter θ to ensure A(Ψ1) = A(Ψ0)

and C(Ψ1) = C(Ψ0). Given these equalities, henceforth, we refer to these matrices as A

and C.15

With T = I, the KN conditions imply that both parameter vectors should generate
the same covariance between innovations in observables and latent states as well as the
same variance for projections of the latent states onto the observables. To see this, de-
note Cov (Xt �Y t |Y t−1) by ΣXY and Var(Xt|t |Y t−1) by Σ̂. Furthermore, note K=ΣYXΣ−1

a

and Σ̂ = KΣaK
′. If Ψ1 and Ψ2 are to satisfy the KN conditions, which include Σa(Ψ1) =

Σa(Ψ1); it follows ΣXY (Ψ1) =ΣXY (Ψ0) and Σ̂(Ψ1)= Σ̂(Ψ0) are true.
Taking differences between the Riccati equations (A.25) generated by both pa-

rameter vectors, we obtain � ≡ Σ(Ψ1) − Σ(Ψ0) = A�A′ + B(θ1)B(θ1)
′ − B(θ0)B(θ0)

′.
Since A along with B1 and B0 are diagonal, � must be diagonal � = [�11 0

0 �22

]
, where

�11 = �11 + σ2
η�1 − σ2

η�0 and �22 = θ2�22 + σ2
υ�1 − σ2

υ�0.16 Given G = [1 1], Y t = GXt

and ΣXY = (Σ + Σ̂)G′. Hence, ΣXY (Ψ1) = ΣXY (Ψ0) and Σ̂(Ψ1) = Σ̂(Ψ0), which yields
�G′ = [�11 �22]′ = 0, σ2

η�1 = σ2
η�0, and σ2

υ�1 = σ2
υ�0. We conclude Ψ1 =Ψ0.

S2.4.1 Stock–Watson UC model with irregular gap component Before studying the case
θ = 0, we consider an augmented UC model with θ �= 0 and irregular gap component,
ζt , in inflation. The measurement equation is πt = τt + εt + ζt , where ζt ∼ N(0� ς2

ζ). We
are able to maintain the definitions of the state space matrices A, B and C used in the
previous section while amending the definition of D to D = [ςη ςυ ςζ]. As before, the
conclusions are that only cases with T = I need to be considered and the values of θ

14The conditions for existence of a steady state Kalman filter, detectability and unit-circle controllability
as defined in Section S2.2, are met. (A�C) are detectable and B has full rank.

15The specific structure of A and C in this UC model requires T = I . Let 1 denote a vector of ones. To-
gether with C = 1A, the KN conditions stated in (A.26) require 1(A(Ψ1)T −A(Ψ0)) = 0 ⇔ 1(T − I)A(Ψ0) =
0 because A is nonsingular. As a result, the only nonsingular choice of T for (A.26) to hold is T = I . Alterna-
tively, note A(Ψ1)= TA(Ψ0)T

−1. This requires T to be diagonal. The reason is A is diagonal, which requires
the AR parameter θ1 = θ0 to be identical under both parametrizations. As a result, C(Ψ1) = C(Ψ0)T

−1 re-
stricts the diagonal elements of T to unit values.

16Note that �11 = �11 + σ2
η�1 − σ2

η�0 already requires σ2
η�1 = σ2

η�0.
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must be identical under both candidate parametrizations. Although Y t = GXt + ζt , we
still conclude �G′ = 0, and thus σ2

η�1 = σ2
η�0 and σ2

υ�1 = σ2
υ�0.17

The only remaining parameter to be identified is ς2
ζ . The KN conditions require

Σa(Ψ1)= Σa(Ψ0), Σ̂(Ψ1) = Σ̂(Ψ0), and GΣ(Ψ1) =GΣ(Ψ0). Since, Σa = G(Σ+ Σ̂)G′ + ς2
ζ ,

it follows Ψ1 and Ψ0 must have the same element for ς2
ζ . The original UC model of Stock

and Watson (2007), which had i.i.d. gap inflation, is nested by this more general case.

S2.5 Identification in a constant-parameter version of our SSMs

This section considers identification in a constant-parameter version of our SSMs,
which we will call the “SI-UC” model. This constant-parameter corresponds to the SSM
M1, where the AR(1) coefficients θ and the SI parameter λ were constant, with the
added restrictions that the variances of shocks to trend and gap inflation are also con-
stant. The only remaining latent variables are the linear states of the model, which are
the RE and SI versions of trend and gap inflation.

For simplicity, we restrict attention to the case where a survey forecast at an arbitrary
horizon h is observed in addition to realized inflation. Noisy observations of forecasts at
a single horizon are already sufficient to identify the additional parameters of the SI-UC
model compared with the SW-UC model. Adding forecasts at other horizons to the mea-
surement vector adds only the measurement variances associated with those additional
measurements to the parameter vector, which are easily identified.

Before establishing the algebraic arguments in details, we note the inflation process
is unaffected by the survey data block of the model. This suggests identification of pa-
rameters of the inflation process should work as in the UC model. The only additional
parameters to be identified by the measurement equations for surveys are the SI weight,
λ, and the measurement error associated with each survey.

The SI-UC model has the following measurement, state, and shock vectors Y t =
[πt Ftπt+h + ζht ]′, Xt = [τt εt Ftτt Ftεt]′, and εt = [ηt υt ζ

π
t ζht ]′. Assuming constant AR1

inflation gap persistence and SI weight parameters and shock variances, the ABCD state
space matrices are

A =

⎡⎢⎢⎢⎣
1 0 0 0
0 θ 0 0

1 − λ 0 λ 0
0 (1 − λ)θ 0 λθ

⎤⎥⎥⎥⎦ � B=

⎡⎢⎢⎢⎣
ςη 0 0 0
0 ςυ 0 0

(1 − λ)ςη 0 0 0
0 (1 − λ)ςυ 0 0

⎤⎥⎥⎥⎦ �

C = [ 1 θ 0 0
0 0 1 θh+1

]
, and D = [ ςη ςυ ςζ�π 0

(1−λ)ςη (1−λ)ςυ 0 ςζ�h

]
.18 The parameter vector is Ψ =

[θ λ ς2
η ς2

υ ς2
ζ�π ς2

ζ�h]′.
17It is easy to verify the conditions for existence of a steady state Kalman filter are met. Augment the

state vector by the irregular gap component, which does not add unit roots to the transition matrix A. The
rewritten model is Y t = GXt , where B has full rank, which ensures that the existence conditions are met, as
reviewed in Section S2.2.

18As before, verifying that conditions for the existence of a steady state Kalman filter are met is straight-
forward, since the model has the form Y t = GXt with a B matrix that has full rank.
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As before, we seek to establish that the KN conditions (A.26) and (A.27) are satisfied
only if two candidate parametrizations coincide, Ψ1 = Ψ0. The analysis is facilitated by
noting (A.26) implies the KN conditions can only hold for T = I. For (A.26) to hold, both
candidate parametrizations must have the same values for λ and θ. To establish the KN
conditions hold only if T = 1, the state space matrices A and C involved in the first two
KN conditions given by (A.26), are A = [ Θ 0

(1−λ)Θ λΘ

]
, Θ= [ 1 0

0 θ

]
, C = [GΘ 0

0 λGΘh+1

]
, and G=

[1 1]. Next, partition T into four 2 × 2 matrices

T =
[
T11 T12

T21 T22

]
� (A.29)

The result is the first two KN conditions, given in (A.26), must be[
Θ(Ψ1)T11 Θ(Ψ1)T12

Θ(Ψ1)
(
(1 − λ1)T11 + λ1T21

)
Θ(Ψ1)

(
(1 − λ1)T12 + λ1T22

)]

=
[(

T11 + (1 − λ0)T12
)
Θ(Ψ0) λ0T12Θ(Ψ0)(

T21 + (1 − λ0)T22
)
Θ(Ψ0) λ0T22Θ(Ψ0)

]
� (A.30)

and [
GΘ(Ψ1)T11 GΘ(Ψ1)T12

λ1GΘ(Ψ1)
h+1T21 λ1GΘ(Ψ1)

h+1T22

]
=

[
GΘ(Ψ0) 0

0 λ0GΘ(Ψ0)
h+1

]
� (A.31)

where λ0 and λ1 denote the entries for λ contained in Ψ0 and Ψ0, respectively. Notice Θ

is the 2 × 2 transition matrix of the SW-UC model whose identification has been estab-
lished above. For the SW-UC model, the KN conditions require Θ(Ψ1)T11 = T11Θ(Ψ0)

and GΘ(Ψ1)T11 = GΘ(Ψ0) for some invertible square matrix T11. This led us to con-
clude that T11 = I and Θ(Ψ1) =Θ(Ψ0).

Next, we show these results extend to the SI-UC model with T11 being the top-left
partition of T as defined in (A.29). First, the top-left partitions of (A.30) and (A.31) require
T12 = 0. To see this, note these two conditions combined require GΘ(Ψ1)T12 = 0 and
GT12 = 0. Recall T12 is a 2 × 2 matrix and note that GΘ(Ψ1) and G are two non-collinear
row vectors such that the null-space of T12 must have a full rank of two. As a result, we
must have T12 = 0 for the top-left partitions of (A.30) and (A.31) to hold.

Given T12 = 0, the top-right partitions of (A.30) and (A.31) reduce to results known
for the SW-UC model. These are T11 = I, Θ(Ψ1) =Θ(Ψ0), and thus θ1 = θ0. These results
reflect the block-triangular structure of the SI-UC model in which the inflation process is
identical to the SW-UC model and unaffected by the SI forecasting block. With T11 = I,
T12 = 0 and Θ(Ψ1) = Θ(Ψ0) = Θ, the bottom-right partitions of (A.30) and (A.31) can
only hold if T22 = I and λ1 = λ0.19 The bottom-left partitions of (A.30) and (A.31) set
T12 = 0. Having established that T = 1 and θ1 = θ0, follow the steps used above for the

19Notice that with T12 = 0, T can only be nonsingular if T22 is nonsingular which rules out T22 = 0.
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SW-UC model to show the rest of the KN conditions impose equality on the remaining
variance parameters contained in Ψ1 and Ψ0, which gives Ψ1 = Ψ0.20

S3. Econometric methods

This section gives details about the sequential Monte Carlo (SMC) methods sketched in
Section 3 of the paper. We employ a particle learning filter to jointly estimate the pa-
rameters of the state vector Tt , which consists of linear state variables, St , and nonlinear
states Vt , and the parameters Ψ of our SSMs. In addition to filtered estimates, we also
produce smoothed estimates of Tt as described below.

Our particle learning filter builds on procedures described by Carvalho et al. (2010)
and Lopes and Tsay (2011). Carvalho et al. (2010) developed a particle learning filter to
estimate Ψ that combines Rao–Blackwellization of St with filtering of Vt assigned to a
simulation estimator. We implement a particle learning filter using Algorithm 7 of Lopes
and Tsay (2011) augmented by their Algorithm 2 that employs the auxiliary particle fil-
tering of Pitt and Shephard (1999, 2001).

Particle learning and Rao–Blackwellization engage sufficient statistics to track con-
ditional distributions. Considering Ψ , the sufficient statistics for the ith particle are de-
noted �(i)

t with further details provided below. Most of the SSM parameters are charac-
terized by IG conjugate priors and the corresponding sufficient statistics are shape and
scale parameters of the IG priors and resulting posteriors. Rao–Blackwellization em-
ploys Kalman filtering operations to track the normal posteriors of St conditional on Ψ

and Vt , where the sufficient statistics are the mean vector S(i)
t|t = E(St |Y t �V t�(i)�Ψ (i)) and

the covariance matrix Σ
(i)
t|t = Var(St |Y t �V t�(i)�Ψ (i)).21

S3.1 Particle filter for the baseline model, M0

This section applies our particle learning filter algorithm to the baseline SSM, M0,
with time-varying SI weight, λt , but constant θ, has seven state variables. These
states are grouped into Vt = [ςη�t ςυ�t λt]′, St = [τt εt Ftτt Ftεt]′. The parameter vec-
tor of M0 consists of the variances of shocks to the nonlinear states, variance of the
irregular inflation gap component, the measurement error variances, and θ, Ψ0 =
[σ2

η σ2
υ σ2

κ σ2
ζ�π σ2

ζ�1 σ
2
ζ�2 � � � σ2

ζ�H θ]′.
S3.1.1 Initialization of particle filter For M particles indexed by i, and t = 0,

1. set sufficient statistics �(i)
0 using each parameter’s prior described in Section 4 of

the paper. For θ, the prior is a truncated normal, as described in Table 3 of the
paper, and sufficient statistics are mean and variance. The remaining elements of
Ψ0 have IG priors characterized by shape and scale parameters α and β with prior
values listed in Table 2 of the paper.

20The SI-UC measurement equation is written Y t = ḠXt + ζ t , where Ḡ = [ 1 1 0 0
0 0 1 θh

]
and ζt = [ ζπ�t ζh�t ]′

contains the irregular inflation gap component and the measurement error in the survey observation.
21Kalman filtering recursions for S(i)

t|t and Σ
(i)
t|t are given by (A.32) and (A.33) below.
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2. Draw initial values for the parameters Ψ(i)
0 ∼ p(Ψ |�(i)

0 ),

3. initial values for the nonlinear states, V(i)
0 , from priors described in Table 4 of the

paper,

4. and S(i)
0|0 and Σ

(i)
0|0 from the normal priors for the linear states described in Table 4

of the paper.22

5. Thus, the initial swarm of particles consists of {V(i)
0 ��(i)

0 �Ψ (i)
0 �S(i)

0|0�Σ
(i)
0|0}Mi=1 and are

weighted by W (i)
0 = 1/M , where it is understood that the zero subscript on Ψ0 refers

to M0 and not to date t = 0.

S3.1.2 Particle filter iterations Given {V(i)
t−1��

(i)
t−1�Ψ

(i)
0 �S(i)

t−1|t−1�Σ
(i)
t−1|t−1W

(i)
t }Mi=1, at ev-

ery date t = 1� � � � �T ,

1. adapt the i = 1� � � � �M particles of date t − 1 to Yt by

(a) computing the log likelihood, ̂(i)t ≡ log (p(Yt |S(i)
t−1|t−1�Σ

(i)
t−1|t−1� V̂

(i)
t �Ψ

(i)
0 )), as

described below in the Kalman filter’s prediction step of Section S3.1.3,

(b) calculating the auxiliary particle weights W (i)
t−1|t = w(i)

t−1|t/
∑M

i=1 w
(i)
t−1|t , where

w(i)
t−1|t = exp{̂(i)t } ·W (i)

t−1,

(c) and resampling the date t − 1 particles and sufficient statistics, V(i)
t−1, �(i)

t−1,

Ψ(i), S(i)
t−1|t−1, and Σ

(i)
t−1|t−1 using systematic resampling from the p.d.f. given

by {W (i)
t−1|t}Mi=1 and for use below, also resample the log likelihoods {̂(i)t }Mi=1,

(d) where the proposal V̂(i)
t = V(i)

t−1 is the median of the density p(Vt |V (i)
t−1), V(i)

t−1.

2. For every particle i = 1� � � � �M ,

(a) propagate the nonlinear states by drawing V(i)
t ∼ p(Vt |V(i)

t−1�Ψ
(i)
0 ),

(b) update the sufficient statistics forSt , S(i)
t|t = E(St |Yt �S(i)

t−1|t−1�Σ
(i)
t−1|t−1�V

(i)
t �Ψ (i)

0 )

and Σ
(i)
t|t = Var(St |Yt �S(i)

t−1|t−1�Σ
(i)
t−1|t−1�V

(i)
t �Ψ (i)

0 ), using the Kalman filtering
steps outlined in Section S3.1.3 below,

(c) record the log likelihood, (i)t , implied by the Kalman filter’s prediction step as
discussed in Section S3.1.3 below,

(d) draw S(i)
t ∼ N (St |S(i)

t|t �Σ
(i)
t|t ) to be used for updating sufficient statistics of Ψ in

the next steps, as well as for reporting results about the posterior of St|t ,

(e) update the sufficient statistics of θ by drawing εt as well as its lagged value by
augmenting St to include εt−1, so that draws of ε(i)t−1 are found in S(i)

t ,

(f ) update the sufficient statistics �
(i)
t = G(�(i)

t−1�V
(i)
t �V(i)

t−1�S
(i)
t �Yt ) with details

provided in Section S3.1.4 below,

22The priors of ε0 and F0ε0 depend on the initial draws for V(i)
0 and Ψ(i)

0 , i = 1� � � � �M .
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3. compute W (i)
t = w(i)

t /
∑M

i=1 w
(i)
t , where w(i)

t = exp{(i)t }/exp{̂(i)t }, and ̂(i)t is resam-
pled log likelihood of the auxiliary adaptation step described in step 1c above,

4. record date t moments of interest, for example, Vt|t = E(Vt |Y t) = ∑M
i=1 W

(i)
t V(i)

t and
St|t = E(St |Y t) = ∑M

i=1 W
(i)
t S(i)

t|t , and

5. generate posterior quantiles of St by simulating from a mixture of normals implied
by {w(i)

t }Mi=1 and {St|t �Σ(i)
t|t }Mi=1 using the marginal data density (MDD) estimator of

Pitt, dos Santos Silva, Giordani, and Kohn (2012), p(Yt |Y t−1) = (M−1 ∑M
i=1 w

(i)
t ) ·

(
∑M

j=1 w
(j)
t−1|t).

We employ the MDD estimator to sample from the posterior distribution of St because
Rao–Blackwellization lowers Monte Carlo error by averaging over S(i)

t|t compared with

S(i)
t .

S3.1.3 Details of the Kalman filtering steps The Kalman filtering steps referred to in
Section S3.1.2 above are as follows:

S(i)
t|t−1 = A(i)

t S(i)
t−1|t−1� (A.32)

Σ
(i)
t|t−1 = A(i)

t Σ
(i)
t−1|t−1

(
A(i)

t

)′ +B(i)
t

(
B(i)

t

)′
� (A.33)

Ω
(i)
t|t−1 = C(i)

t Σ
(i)
t|t−1

(
C(i)
t

)′ +Ω
(i)
U �

Ỹ(i)
t = Yt − C(i)

t S(i)
t|t−1�

K(i)
t = Σ

(i)
t|t−1

(
C(i)
t

)′(
Ω

(i)
t|t−1

)−1
�

S(i)
t|t = A(i)

t S(i)
t|t−1 +K(i)

t Ỹ(i)
t �

Σ
(i)
t|t = Σ

(i)
t|t−1 −Σ

(i)
t|t−1

(
C(i)
t

)′(
Ω

(i)
t|t−1

)−1C(i)
t Σ

(i)
t|t−1�

(i)t = −1
2
[
ln

∣∣Ω(i)
t|t−1

∣∣ + (
Ỹ(i)
t

)′(
Ω

(i)
t|t−1

)−1Ỹ(i)
t

]
�

where A(i)
t , B(i)

t , C(i)
t , and Ω

(i)
U are the state space matrices defined in Section S1 above,

evaluated at values for the nonlinear states given by V(i)
t and parameter values Ψ(i)

0 .23

S3.1.4 Details of updating the sufficient statistics for the parameters In M0, variances
have IG conjugate priors and θ has a conjugate normal prior. This section argues con-
jugacy is preserved when the support of θ is on the unit circle.

Variance parameters Index the variance parameters by  = η�υ�κ�ζπ�ζ1� ζ2� � � � � ζH. As
described in Section 3 of the paper, each variance parameter σ2

 has a conjugate IG prior

23There are missing observations in the SPF inflation data the Kalman filter handles using standard

methods. When observations are missing, the corresponding rows of C(i)
t , Yt , and Ỹ(i)

t are set to zero and
pseudo-inverses and pseudo-determinants of Ω(i)

t|t−1 are computed. For numerical stability, this is achieved
using a Kalman filter in square root form as described in Lindsten, Bunch, Särkkä, Schön, and Godsill (2016)
using fast-array methods developed by Kailath, Sayed, and Hassibi (2000).
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that is characterized by sufficient statistics α(i)
t� and β(i)

t�, which represent the number of

prior observations and the associated sum of squares. Updating the sufficient statistics

at a given date t increases the number of observations by one, α(i)
t� = α(i)

t−1� + 1, and

adds the most recent, squared observation to the scale parameter β(i)
t� = β(i)

t−1� + (�(i)
t�)

2,

where �
(i)
t� denotes the innovation of the corresponding th parameter of particle i at

date t. For  = η or σ2
η, �(i)

t�η = ln (ς(i)η�t)
2 − ln (ς(i)η�t−1)

2. Alternatively, in case of the vari-

ance of the irregular inflation gap, let �(i)
t�ζπ

= hπ(Yt − C(i)
t S(i)

t ), where hπ is a selection

vector that isolates the first element of Yt , which is πt , and similarly for the variances

of the survey measurement errors.24 Regarding the innovation variance of shocks to λt ,

 = κ, treating the IG prior as a conjugate prior holds only as an approximation be-

cause it neglects the rejection of shocks �t�κ = σκκt that push λt outside the zero-one

interval.25 The quality of this approximation depends, of course, on the frequency with

which draws of �t�κ yield λt outside its bounds, which is low for most of our particles.26

Our Online Supplementary Appendix has robustness results to an alternative specifica-

tion for the dynamics of λt that avoids the need for sampling from a limited support.

Constant AR1 inflation gap persistence parameter For a constant-θ, sufficient statistics

of the T N prior are its mean, mθ�0, and variance, Vθ�0. The prior is θ ∼ T N (mθ�0� Vθ�0|θ ∈
(−1�1)), where mθ�0 = 0 and Vθ�0 = 1. Suppose the support of θ was not truncated. In this

case, the prior would be conjugate normal yielding a posterior that is also normal with

mean and variance

m(i)
θ�t = m

(i)
θ�t−1 + V

(i)
θ�t−1x

(i)
t y

(i)
t

1 + V (i)
θ�t−1

(
x(i)t

)2 � V
(i)
θ�t = V

(i)
θ�t−1

1 + V (i)
θ�t−1

(
x(i)t

)2 � (A.34)

where

x(i)t = ε
(i)
t−1

ς
(i)
υ�t

and y(i)t = ε(i)t

ς
(i)
υ�t

� (A.35)

given ε(i)t , ε(i)t−1, and ς(i)υ�t .
27 The recursion starts with m(i)

θ�0 = mθ�0, and V (i)
θ�0 = Vθ�0.28

In our case of a truncated normal prior, conjugacy is preserved and sufficient statis-

tics are updated using (A.34). Let the prior of the ith particle for θ at date t be given by

24Recall S(i)
t is drawn from N (St |S(i)

t|t �Σ
(i)
t|t ) as in step 2.d) of the algorithm of Section S3.1.2.

25A similar caveat applies for M2 and M3 when θt is time-varying, but bounded inside the unit circle.
26We evaluate the probability of λt /∈ (0�1), given draws for λt−1 from our smoother and full-sample

estimate σ̂2
κ = 0�008 for M2. In M0, σ̂2

κ = 0�005 is smaller yielding lower probabilities of hitting the bounds.
For 50% (90%) of all draws, the rejection probabilities < 4% (20%) with only a few exceptions.

27Draws of ε(i)t and ε(i)t−1 are generated as described in step 2.d of Section S3.1.2.
28The updating formulas in (A.34), reflect the standard case of a Bayesian regression with normal priors

and known residual variance as described, for example, by Hamilton (1994, Chapter 12).



18 Mertens and Nason Supplementary Material

T N (m(i)
θ�t−1� V

(i)
θ�t−1|θ ∈ (−1�1)), its density function is

f
(
θ|m(i)

θ�t−1� V
(i)
θ�t−1

) = φ

(θ−m(i)
θ�t−1√

V (i)
θ�t−1

)
· 1(−1 < θ< 0)

�

(1 −m(i)
θ�t−1√

V (i)
θ�t−1

)
−�

(−1 −m(i)
θ�t−1√

V (i)
θ�t−1

) · 1√
V (i)
θ�t−1

∝ φ

(θ−m
(i)
θ�t−1√

V
(i)
θ�t−1

)
· 1(−1 < θ< 0)�

where φ(·) and �(·) are the standard normal p.d.f. and c.d.f. and 1(·) is an indicator
function. Since the likelihood of observing y(i)t is f (y

(i)
t |θ�x(i)t ) = φ(y

(i)
t − θx

(i)
t ), the

posterior of θ retains the kernel of a truncated normal f (θ|y(i)t � x
(i)
t �m

(i)
θ�t−1� V

(i)
θ�t−1) ∝

f (y(i)t |θ�x(i)t ) · f (θ|m(i)
θ�t−1� V

(i)
θ�t−1) ∝ φ(

θ−m
(i)
θ�t√

V
(i)
θ�t

) · 1(−1 < θ < 0), where m(i)
θ�t and V (i)

θ�t are

given in (A.34).29

S3.2 Particle filter for other model variants

In M0, the AR1 inflation gap persistence parameter, θ, is constant and the SI weight λt
is time-varying. Our particle learning filter algorithm is easily adapted to M2 and M3
that have θt . In these SSMs, θt is part of Vt . Its innovation variance, σ2

φ, is added to Ψ .

Inference is analogous to the case of λt , as described above for M0.30

The particle learning filter when λ is a constant parameter When λ is a constant param-
eter, as in M1 and M3, it becomes part of Ψ . The particle learning algorithm estimates
of λ restrict it to the (0�1) interval. We chose a Beta prior, λ ∼ Beta(αλ

0 �β
λ
0), which is

conjugate and ensures λ ∈ (0�1). With αλ
0 = 1 and βλ

0 = 1, our prior matches a uniform
distribution over the range of admissible values for λ.

In general, the Beta parameters αλ and βλ can be any positive real number. However,
intuition about our updating procedure is made clear by limiting αλ and βλ to positive
integers. In this case, the Beta distribution reflects Bayesian updating about the proba-
bility parameter of a Bernoulli experiment, denoted λ, after seeing a sequence of inde-
pendent Bernoulli draws. Specifically, after observing S Bernoulli draws of success and
N draws of failure, the Beta prior would be updated to λ|S�N∼ Beta(αλ

0 +S�βλ
0 +N) with

posterior mean equal to (αλ
0 + S)/(αλ

0 + S+βλ
0 + N).

We appeal to the Mankiw and Reis (2002) SI mechanism to update λ in the particle
learning filter. Mankiw and Reis model λ to measure the fraction of forecasters that do
not update. This is equivalent to observing a fraction of S/(S+ N) “successful” draws in
a sequence of S+ N Bernoulli trials. At every date t, observations of a particle draw for
λ(i), are treated as observing that a fraction λ(i) of forecasters had not updated its fore-
cast, while a fraction 1 − λ(i) had. For particle i at time t with a prior Beta(αλ�(i)

t−1 �βλ�(i)
t−1 ),

29Given the definitions in (A.35), f (θ|ε(i)t � ε
(i)
t−1� ς

(i)
υ�t �m

(i)
θ�t−1� V

(i)
θ�t−1) = f (θ|y(i)t � x

(i)
t �m

(i)
θ�t−1� V

(i)
θ�t−1).

30The bounds on the support of θt ∈ (−1�1) is enforced using a procedure similar to λt in M0.
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and given a parameter draw λ(i) at t, we update the sufficient statistics for the particle
learning path of λ using αλ�(i)

t = αλ�(i)
t−1 + λ(i) and βλ�(i)

t = βλ�(i)
t−1 + 1 − λ(i).

In contrast to the above example of a sequence of Bernoulli draws, this update as-
signs the time t observation of λ(i) only with the weight of a single Bernoulli draw instead
of S+ N draws. This causes the particle learning filter to take only limited signal at ev-
ery date t. In principle, we could also scale up the relevance of each update by using
αλ�(i)
t = αλ�(i)

t−1 +λ(i) · (S+N) and βλ�(i)
t = αλ�(i)

t−1 + (1−λ(i)) · (S+N) for some value of S+N,
but this alternative had little effect on estimated values in practice.

S3.3 A Rao–Blackwellized particle smoother

This section describes how we utilize the particle smoothing methods developed by
Lindsten et al. (2016), henceforth LBSSG, to generate “smoothed” estimates of linear
and nonlinear states. Smoothed estimates reflect posteriors that condition on the full
data sample, such as p(St |YT ) and p(Vt |YT ), while integrating out parameter uncer-
tainty.

The goal is to simulate trajectories of Tt drawn from p(T T |YT ). The first step fac-
tors the smoothing density p(T T |YT ) = ∫

Ψ p(T T |YT �Ψ)p(Ψ |YT )dΨ . There are well-
known methods for simulating smoothed estimates of Tt , given Ψ . Godsill, Doucet,
and West (2004) proposed a forward-filtering-backward-simulation (FFBS) smoother to
draw from p(T T |YT �Ψ) for a SSM that is not Rao–Blackwellized (and where Tt is not
necessarily partitioned into St and Vt ). LBSSG adapt the FFBS particle smoother to the
case when Tt is partitioned into St and Vt , and St has been Rao–Blackwellized in the
particle filter.

The FFBS smoother of LBSSG depends on a known Ψ . We wrap the methods of LB-
SSG into a problem of joint inference over St , Vt , and Ψ as follows: Parameter values are
drawn from date T particle swarm of the particle learning filter. Conditional on each
draw of Ψ , we apply the LBSSG smoother conditional to obtain draws of the smoothed
states. In the final step, we integrate over the parameter draws:

p
(
VT �ST |YT

) =
∫
Ψ
p

(
VT �ST |YT �Ψ

)
p

(
Ψ |YT

)
dΨ�

In sum, the FFBS particle smoothing algorithm consists of the following steps.

1. Run the particle learning filter, as described in Sections S3.1 and S3.2, to produce
the full-sample particle learning swarm {Ψ(i)�W (i)

T }Mi=1.

2. From t = 1� � � � �T , generate smoothed trajectories of {S̃(k)
t � Ṽ(k)

t }Kk=1 by iterating

(a) conditional on draws of Ψ̃ (k) from {Ψ(i)�W (i)
T }Mi=1 with probability W (k)

T , em-
ploy a Rao–Blackwellized auxiliary particle filter to generate the forward-
filtering swarm {S(n)

t|t �Σ
(n)
t|t �V

(n)
t|t }Nn=1 with weights {Ŵ (n)

t }Nn=1,

(b) simulate {Ṽ(k)
t }Tt=1 backwards from T − 1 by drawing from p(V t+1:T |YT �Ψ(k)),

where V t+1:T are the nonlinear states from date t + 1 to T ,
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(c) and the final forward filtering step operates the Kalman filter forward to pro-

duce S̃(k)
t and Σ̃

(k)
t|t conditional on Ṽ(k)

t , Y t , and Ψ̃ (k).

In step 2(b), p(V t+1:T |YT �Ψ(k)) approximates the true density of smoothed Vt , which is
discussed in the paper and by LBSSG. Although draws from p(V t+1:T |YT �Ψ(k)) do not
depend on S̃(k)

t , it is an input into computing the probabilities of drawing Ṽ t+1:T . Our
results rest on running the particle learning filter on M = 100,000 particles and the FFBS
smoother relies on K = 1,000 simulated trajectories, given N = 10,000 particles.
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