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This note consists of four appendices. In Appendix A, we give the mathematical
proofs of Theorems 2.1 and 2.2. We also provide details on the best response of a
Bayesian decision maker and the result of coincidence of equilibrium strategies and be-
havioral strategies when the payoff graph has multiple disjoint complete subgraphs. In
Appendix B, we explain how estimation of the asymptotic covariance matrix is moti-
vated. Appendix C gives the proof of local identification (Theorem 3.1) and the asymp-
totic results (Theorem 3.2). Appendix D gives the proofs of the results on the conver-
gence of behavioral strategies to equilibrium strategies from game Γ∞ in Section 2.4.1.
The replication files to this paper (Canen, Schwartz, and Song (2020)) contain additional
results: information sharing over time, inference for the model with first-order sophisti-
cated agents, model selection between games Γ0 and Γ1, testing for information sharing
on unobservables, and empirical results based on the first-order sophisticated agents.

Appendix A: Best responses

A.1 Proofs of Theorems 2.1–2.2

Lemma A.1. Suppose that β0 ∈ (−1�1). Then, for any i ∈N such that nP(i) ≥ 1,

nP(i)−β2
0λi ≥

nP(i)
(
nP(i)+ |β0|

)(
1 − |β0|

)
nP(i)

(
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) + |β0|
�

and

0 ≤w[0]
ii ≤ 1 + β2

0

1 −β2
0

� and
∣∣w[0]

ij

∣∣ ≤ |β0|
nP(i)

(
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)(
1 + β2

0
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� (A.1)
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Proof. First, note that for any j ∈ NP(i),

cij ≤ nP(i)− 1
nP(i)

� (A.2)

Hence

λij ≤ nP(i)

nP(i)− |β0|
(
nP(i)− 1

) = nP(i)

nP(i)
(
1 − |β0|

) + |β0|
� (A.3)

Therefore,

λi ≤ nP(i)

nP(i)
(
1 − |β0|

) + |β0|
� (A.4)

Now, we find that

nP(i)−β2
0λi ≥ nP(i)− β2

0nP(i)

nP(i)
(
1 − |β0|

) + |β0|

= nP(i)
(
nP(i)+ |β0|

)(
1 − |β0|

)
nP(i)

(
1 − |β0|

) + |β0|
�

This gives the desired lower bound for nP(i)−β2
0λi.

Let us turn to w[0]
ii . Since λij ≥ 0, we have w[0]

ii ≥ 0 by the previous bound. As for its
upper bound, from (A.4), we have

w[0]
ii ≤ 1 + β2

0(
nP(i)+ |β0|

)(
1 − |β0|

) ≤ 1 + β2
0

1 −β2
0

�

because nP(i) ≥ 1. Finally, as for w[0]
ij , it suffices to note that by (A.2),

0 ≤ λij ≤ 1
1 − |β0| �

Proof of Theorem 2.1. The case of nP(i) = 0 is trivial. Let us assume that nP(i) ≥ 1.
From the optimization of agent i,

s[0]
i (Ii�0)= τi +β0

(
1

nP(i)

∑
k∈NP(i)

∑
j∈NP(k)

wi
kjτj

)
+ηi� (A.5)

Reorganizing the terms, we have

s[0]
i (Ii�0) =

(
1 + β0

nP(i)

∑
k∈NP(i)

wi
ki

)
τi

+β0
∑

j∈NI(i)

1
nP(i)

∑
k∈NP(i)

wi
kj1

{
j ∈ NP(k)

}
τj +ηi� (A.6)
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By setting the coefficient of τj to be wij , we obtain

wii = 1 + β0

nP(i)

∑
k∈NP(i)

wi
ki� (A.7)

and for all j ∈ NI(i),

wij = β0

nP(i)

∑
k∈NP(i)

wi
kj1

{
j ∈ NP(k)

}

= β0

nP(i)

∑
k∈NP(i)

wi
kj1

{
j ∈ NP(k)

} +β0
wi
jj1

{
j ∈NP(i)

}
nP(i)

� (A.8)

where the last term corresponds to the case j = k ∈ NP(i). We now apply our behavioral
assumptions to (A.7) and (A.8). First, we apply the behavioral assumption to (A.7) to
write

wii = 1 + β0

nP(i)

∑
k∈NP(i)

wi
ki1

{
i ∈NP(k)

}

= 1 + β0

nP(i)

∑
k∈NP(i)

wik1
{
i ∈NP(k)

}

= 1 + β0

nP(i)

∑
k∈NP(i)

wik� (A.9)

where the last line follows by the undirectedness of GP . Turning to (A.8), we have

wij = wij
β0

nP(i)

∑
k∈NP(i)

1
{
j ∈NP(k)

} +β0
wii1

{
j ∈NP(i)

}
nP(i)

= wijβ0cij +β0
wii1

{
j ∈NP(i)

}
nP(i)

� (A.10)

Rearranging (A.10) for wij , we obtain

wij = β0wii
λij1

{
j ∈ NP(i)

}
nP(i)

� (A.11)

We first solve for wii. By plugging (A.9) into (A.11) and averaging over NP(i) we obtain

1
nP(i)

∑
j∈Np(i)

wij = β0

(
1 + β0

nP(i)

∑
k∈NP(i)

wik

)
λi

nP(i)
�

which, after rearranging terms, becomes

1
nP(i)

∑
j∈Np(i)

wij = β0λi

nP(i)−β2
0λi

� (A.12)
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Hence, by plugging (A.12) into (A.9), we obtain

wii = 1 + β2
0λi

nP(i)−β2
0λi

�

(Note that nP(i)−β0λi > 0 by Lemma A.1.) By plugging this back into (A.11), we have

wij = β0wiiλij1
{
j ∈ NP(i)

}
nP(i)

� (A.13)

Thus relevant j’s that appear in the best responses are only those j’s such that j ∈ NP(i).
Taking w[0]

ii = wii and w[0]
ij = wij , we obtain the desired result.

Proof of Theorem 2.2. We prove the result by induction. We begin by showing the
result holds for m = 1. Suppose each agent is the first-order sophisticated type (m = 1),
that is, each i ∈N believes that each k �= i is a simple type (m= 0) and chooses strategies
according to

sik(Ii�0)=
∑

j∈NP(k)

τjw
[0]
kj +ηk�

The best responses of the first-order sophisticated types are linear because the payoff
is quadratic in the player’s own actions, and they believe simple types play according to
linear strategies. Hence the best response of the first-order sophisticated type takes the
form

s[1]
i (Ii�1) =τi + β0

nP(i)

∑
k∈NP(i)

( ∑
j∈NP(k)

τjw
[0]
kj

)
+ηi

=
(

1 + β0

nP(i)

∑
k∈NP(i)

w[0]
ki

)
τi + β0

nP(i)

∑
j∈NI(i)

∑
k∈NP(i)

τjw
[0]
kj 1

{
j ∈ NP(k)

} +ηi�

By setting the coefficient of τj to w[1]
ij , we obtain the weights

w[1]
ii = 1 + β0

nP(i)

∑
k∈NP(i)

w[0]
ki � (A.14)

and for each j ∈ NI(i)

w[1]
ij = β0

nP(i)

∑
k∈NP(i)

w[0]
kj 1

{
j ∈ NP(k)

}

= β0

nP(i)

∑
k∈NP(i)

w[0]
kj 1

{
j ∈NP(k)

} +β0
w[0]
jj 1

{
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}
nP(i)

� (A.15)

Therefore, the weights for j ∈ NI(i) involve agents up to NP�2(i). Since

s[1]
i = τiw

[1]
ii +

∑
j∈NP�2(i)

w[1]
ij τj +ηi�
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with the weights for w[1]
ii and w[1]

ij given in (A.14) and (A.15), we have shown that the
result holds for m= 1. Now suppose that for some m, the best responses are given by

s[m]
i (Ii�m)= w[m]

ii τi +
∑

j∈NP�m+1(i)

w[m]
ij τj +ηi�

where w[m]
ii and w[m]

ij are as defined in the statement of the result. From the optimization
problem of m+ 1 types, we can write the best response for these types as

s[m+1]
i (Ii�1) = τi +β0

(
1

nP(i)

∑
k∈NP(i)

∑
j∈NP�m+1(k)

τjw
[m]
kj

)
+ηi

=
(

1 + β0

nP(i)

∑
k∈NP(i)

w[m]
ki

)
τi

+ β0

nP(i)
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j∈NI(i)
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k∈NP(i)

τjw
[m]
kj 1

{
j ∈ NP�m+1(k)

} +ηi�

Note that this expression involves only those j ∈ NI(i) up to NP�m+2(i). Hence we con-
clude that

s[m+1]
i (Ii�m) =w[m+1]

ii τi +
∑

j∈NP�m+2(i)

w[m+1]
ij τj +ηi�

with

w[m+1]
ii = 1 + β0

nP(i)

∑
k∈NP(i)

w[m]
ki

and

w[m+1]
ij = β0

nP(i)

∑
k∈NP(i)

w[m]
kj 1

{
j ∈ NP�m+1(k)

}

as required. Therefore, we have shown that the result holds for all m≥ 1 by mathematical
induction.

A.2 The best response of a Bayesian decision maker

In this section, we elaborate on the points made in Section 2.3.3, and prove the claim
that under the prior Qi satisfying Conditions (a)–(c), the best response of the Bayesian
decision maker coincides with quadratic utility with that of a simple type player with
belief projection.

To see this, consider the following problem of Bayesian decision maker i:

sup
yi∈Yi

EQi

[
ui

(
yi� s−i(Ii�0;W−i)� τ�ηi

)|Wi =wi�Ii�0
]
�
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The solution yi takes the following form:

si(Ii�0;wi) = τi + β0

nP(i)

∑
k∈NP(i)

EQi

[ ∑
j∈NI(k)

W ′
kjτj

∣∣∣Wi = wi�Ii�0
]
� (A.16)

By condition (c), we write

1
nP(i)

∑
k∈NP(i)

EQi

[ ∑
j∈NI(k)

W ′
kjτj

∣∣∣Wi =wi�Ii�0
]

= 1
nP(i)

∑
k∈NP(i)

∑
j∈NP(k)

EQi

[
W ′

kj|Wi = wi�Ii�0
]
τj�

We plug this back into (A.16). Using restrictions (a) and (b), we can rewrite

si(Ii�0;wi) =w′
ih(τi)+ηi� (A.17)

for some function h of τi. We equate this to

si(Ii�0;wi) =w′
iτi +ηi�

as si(Ii�0;wi) is a linear strategy, and find out the weight vector wi. However, this is pre-
cisely how the best response in Theorem 2.1 was derived. Indeed, By restrictions (a) and
(b), the right-hand side of (A.6) coincides with that of (A.17).

A.3 The coincidence of the equilibrium strategies and the behavioral strategies in the
case of complete payoff subgraphs

Here, we show that the equilibrium strategies and the behavioral strategies coincide
when the payoff graphs GP have disjoint multiple subgraphs and each subgraph is a
complete graph as in Section 2.3.1. For this, it suffices to derive the Bayesian–Nash Equi-
librium (BNE) as in (2.9). Suppose that y(i) is the nP(i)+1 dimensional column vector of
actions that are realized from the BNE of the game. Let η(i) and τ(i) be an nP(i)+ 1 di-
mensional column vector whose entries are ηj and τj , respectively, for j ∈ NP(i). Then,
from the first-order condition of the expected payoff, we find that

y(i) = y∗(i)+ η(i)� (A.18)

where y∗(i) is a vector that satisfies

y∗(i) = β0A(i)y∗(i)+ τ(i)�

with

A(i) = 1
nP(i)

(
1(i)1(i)′ − InP(i)+1

)
�

Hence

y∗(i) = (
InP(i)+1 −β0A(i)

)−1
τ(i)� (A.19)
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where 1(i) is the nP(i)+1 dimensional column vector of ones and InP(i)+1 is the nP(i)+1
dimensional identity matrix. Using the Woodbury formula (see Hager (1989)), we obtain
that

(
InP(i)+1 −β0A(i)

)−1 = (
1 +β0/nP(i)

)−1
InP(i)+1

+ 1(
1 +β0/nP(i)

)2 −β0
(
1 +β0/nP(i)

)(
nP(i)+ 1

)
/nP(i)

· β01(i)1(i)′

nP(i)
�

Hence plugging this back to (A.19), we obtain that the entry y∗
i of y∗(i) that corresponds

to agent i takes the following form:

y∗
i =

(
1 + β0

nP(i)

)−1
τi

+
(

1 + β0

nP(i)

)−1 β0nP(i)

nP(i)(1 −β0)
· τ(i) · nP(i)+ 1

nP(i)
�

where

τ(i) = 1(i)′τ(i)
nP(i)+ 1

�

By rearranging the terms, we obtain that

y∗
i =

(
1 + β2

0(
nP(i)+β0

)
(1 −β0)

)
τi

+ β0(
nP(i)+β0

)
(1 −β0)

∑
j∈NP(i)

τj�

Thus (A.18) coincides with (2.9).

Appendix B: Estimation of the asymptotic covariance matrix

We now explain our proposal to estimate the asymptotic covariance matrix, given in
equation (3.16) for the model with agents of simple type.

We first explain our proposal to estimate Λ consistently for the case of β0 �= 0. Then
we later show how the estimator works even for the case of β0 = 0. We first write

vi =Ri(ε)+ηi� (B.1)

where

Ri(ε) =w[0]
ii εi +

β0w
[0]
ii

nP(i)

∑
j∈NP(i)

λijεj�
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Define for i� j ∈N ,

eij = E
[
Ri(ε)Rj(ε)|F

]
/σ2

ε� (B.2)

where σ2
ε = Var(ε2

i |F) denotes the variance of εi. It is not hard to see that for all i ∈N ,

eii =
(
w[0]
ii

)2 + β2
0
(
w[0]
ii

)2

n2
P(i)

∑
j∈NP(i)

λ2
ij� (B.3)

and for i �= j such that NP(i)∩NP(j) �= ∅, eij = β0qε�ij , where

qε�ij =w[0]
ii w

[0]
jj

(
λji1

{
i ∈NP(j)

}
nP(j)

+ λij1
{
j ∈NP(i)

}
nP(i)

+ β0

nP(i)nP(j)

∑
k∈NP(i)∩NP(j)

λikλjk

)
�

Thus, we write

1
n∗

∑
i∈N∗

E
[
v2
i |F

] = aεσ
2
ε + σ2

η� and

1
n∗

∑
i∈N∗

∑
j∈NP(i)∩N∗

E[vivj|F] = β0bεσ
2
ε�

(B.4)

where σ2
η denotes the variance of ηi,

aε = 1
n∗

∑
i∈N∗

eii� and bε = 1
n∗

∑
i∈N∗

∑
j∈NP(i)∩N∗

qε�ij�

(Note that since not all agents in NP(i) are in N∗ for all i ∈N∗, the set NP(i)∩N∗ does not
necessarily coincide with NP(i).) When β0 �= 0, the solution takes the following form:

σ2
ε = 1

n∗β0bε

∑
i∈N∗

∑
j∈NP(i)∩N∗

E[vivj|F] and

σ2
η = 1

n∗
∑
i∈N∗

E
[
v2
i |F

] − aε

n∗β0bε

∑
i∈N∗

∑
j∈NP(i)∩N∗

E[vivj|F]�
(B.5)

In other words, when β0 �= 0, that is, when there is strategic interaction among the play-
ers, we can “identify” σ2

ε and σ2
η by using the variances and covariances of residuals vi’s.

The intuition is as follows. Since the source of cross-sectional dependence of vi’s is due
to the presence of εi’s, we can identify first σ2

ε using covariance between vi and vj for
linked pairs i, j, and then identify σ2

η by subtracting from the variance of vi the contri-
bution from εi.

In order to obtain a consistent estimator of Λ which does not require that β0 �= 0, we
derive its alternative expression. Let us first write

Λ =Λ1 +Λ2� (B.6)
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where

Λ1 = 1
n∗

∑
i∈N∗

E
[
v2
i |F

]
ϕ̃iϕ̃

′
i� and

Λ2 = 1
n∗

∑
i∈N∗

∑
j∈N∗

−i

E[vivj|F]ϕ̃iϕ̃
′
j�

where N∗
−i =N∗\{i}. Using (B.1) and (B.5), we can rewrite

Λ2 = 1
n∗

∑
i∈N∗

∑
j∈N∗

−i:NP(i)∩NP(j)�=∅
eijσ

2
εϕ̃iϕ̃

′
j

= β0

n∗
∑
i∈N∗

∑
j∈N∗

−i:NP(i)∩NP(j)�=∅
qε�ijσ

2
εϕ̃iϕ̃

′
j

= sε

n∗
∑
i∈N∗

∑
j∈N∗

−i:NP(i)∩NP(j)�=∅
qε�ijϕ̃iϕ̃

′
j�

where

sε =

∑
i∈N∗

∑
j∈NP(i)∩N∗

E[vivj|F]
∑
i∈N∗

∑
j∈NP(i)∩N∗

qε�ij
�

Now, it is clear that with this expression for Λ2, the definition of Λ is well-defined

regardless of whether β0 = 0 or β0 �= 0. We can then find the estimator of Λ, Λ̂, by using

the empirical analogues to the above, as shown in the main text.

Appendix C: Local identification and estimation

C.1 Preliminary results for local identification

In this section, we give computations of derivatives that are used for the proof of local

identification. Define

vi(β�ρ) = Yi − qi(β)

(
Xi + β

nP(i)

∑
j∈NP(i)

λij(β)Xj

)′
ρ� (C.1)

where

qi(β) = nP(i)

nP(i)−β2λi
� λij(β) = 1

1 −βcij
� and λi(β) = 1

nP(i)

∑
j∈NP(i)

λij(β)�
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The relevant derivatives of (C.1) are given by

∂vi(β�ρ)

∂β
= −qi(β)

1
nP(i)

∑
j∈NP(i)

λ2
ij(β)X

′
jρ

− q′
i(β)

(
X ′

i + β

nP(i)

∑
j∈NP(i)

λij(β)X
′
j

)
ρ� (C.2)

∂2vi(β�ρ)

∂β2 = −2qi(β)
nP(i)

∑
j∈NP(i)

λ3
ij(β)cijX

′
jρ− 2q′

i(β)

nP(i)

∑
j∈NP(i)

λ2
ij(β)X

′
jρ

− q′′
i (β)

(
X ′

i + β

nP(i)

∑
j∈NP(i)

λij(β)X
′
j

)
ρ� (C.3)

∂3vi(β�ρ)

∂β3 = −6qi(β)
nP(i)

∑
j∈NP(i)

λ4
ij(β)c

2
ijX

′
jρ

− 6q′
i(β)

nP(i)

∑
j∈NP(i)

λ3
ij(β)cijX

′
jρ

− 3q′′
i (β)

nP(i)

∑
j∈NP(i)

λ2
ij(β)X

′
jρ

− q′′′
i (β)

(
X ′

i + β

nP(i)

∑
j∈NP(i)

λij(β)X
′
j

)
ρ� (C.4)

and

∂3vi(β�ρ)

∂β2 ∂ρ
=

(
∂3vi(β�ρ)

∂β2 ∂ρ1
� � � � �

∂3vi(β�ρ)

∂β2 ∂ρd

)′
� (C.5)

where for each s = 1� � � � � d, we have

∂3vi(β�ρ)

∂β2 ∂ρs
= −2qi(β)

nP(i)

∑
j∈NP(i)

λ3
ij(β)cijXj�s − 2q′

i(β)

nP(i)

∑
j∈NP(i)

λ2
ij(β)Xj�s

− q′′
i (β)

(
Xi�s + β

nP(i)

∑
j∈NP(i)

λij(β)Xj�s

)
�

We will focus on showing (C.2), (C.3), and (C.4), since (C.5) follows immediately from
(C.3). We provide expressions for q′

i(β), q′′
i (β), and q′′′

i (β) in Section C.1.4 later.
For the derivations, we will repeatedly make use of the following result.

Lemma C.1. For any integer m ≥ 1,

∂λmij

∂β
= mλm+1

ij cij� (C.6)
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Proof. First, observe that

∂λij

∂β
= ∂

∂β
(1 −βcij)

−1 = (−1)(1 −βcij)
−2(−cij)

= cij

(1 −βcij)
2 = λ2

ijcij�

Then we note that equation (C.6) with m implies that equation (C.6) also holds for m+1:

∂λm+1
ij

∂β
= ∂λijλ

m
ij

∂β

= λij
∂λmij

∂β
+ λmij

∂λij

∂β
= λij

(
mλm+1

ij cij
) + λmij λ

2
ijcij = (m+ 1)λm+2

ij cij�

It follows from the claim above that for each integer m≥ 1:

∂λ̄mij

∂β
= 1

nP(i)

∑
j∈NP(i)

mλm+1
ij cij� (C.7)

Below we give derivatives of various functions. The derivations are found in the repli-
cation file (Canen, Schwartz, and Song (2020)).

C.1.1 First derivative, ∂vi(β�ρ)/∂β

∂vi(β�ρ)

∂β
= − qi(β)

1
nP(i)

∑
j∈NP(i)

λ2
ij(β)X

′
jρ− q′

i(β)

(
X ′

i + β

nP(i)

∑
j∈NP(i)

λij(β)X
′
j

)
ρ�

C.1.2 Second derivative, ∂2vi(β�ρ)/∂β
2

∂2vi(β�ρ)

∂β2 = −qi(β)
2

nP(i)

∑
j∈NP(i)

λ3
ij(β)cijX

′
jρ− q′

i(β)
2

nP(i)

∑
j∈NP(i)

λ2
ij(β)X

′
jρ

− q′′
i (β)

(
X ′

i + β

nP(i)

∑
j∈NP(i)

λij(β)X
′
j

)
ρ�

C.1.3 Third derivative, ∂3vi(β�ρ)/∂β
3

∂3vi(β�ρ)

∂β3 = −qi(β)
6

nP(i)

∑
j∈NP(i)

λ4
ij(β)c

2
ijX

′
jρ− q′

i(β)
6

nP(i)

∑
j∈NP(i)

λ3
ij(β)cijX

′
jρ

− q′′
i (β)

3
nP(i)

∑
j∈NP(i)

λ2
ij(β)X

′
jρ− q′′′

i (β)

(
X ′

i + β

nP(i)

∑
j∈NP(i)

λij(β)X
′
j

)
ρ�

C.1.4 Expressions for derivatives of qi(β)

q′
i(β) = β

nP(i)
q2
i (β)

(
2λi +βλ

′
i

)
� (C.8)



12 Canen, Schwartz, and Song Supplementary Material

q′′
i (β) = β

nP(i)
qi(β)

2(3λ′
i +βλ

′′
i

) + qi(β)

nP(i)

(
2λi +βλ

′
i

)(
qi(β)+ 2βq′

i(β)
)
� and (C.9)

q′′′
i (β) = β

nP(i)
qi(β)

2(4λ′′
i +βλ

′′′
i

) + qi(β)

nP(i)

(
6λi + 2βλ′′

i

)(
qi(β)+ 2βq′

i(β)
)

+ 2
(
2λi +βλ

′
i

)
nP(i)

(
qi(β)q

′
i(β)+βqi(β)q

′′
i (β)+ q′

i(β)
(
qi(β)+βq′

i(β)
))
� (C.10)

where we have from (C.7) that:

λ
′
i(β) = 1

nP(i)

∑
j∈NP(i)

cijλ
2
ij (C.11)

λ
′′
i (β) = 2

nP(i)

∑
j∈NP(i)

c2
ijλ

3
ij� and λ

′′′
i (β) = 6

nP(i)

∑
j∈NP(i)

c3
ijλ

4
ij � (C.12)

C.2 Proof of Theorem 3.1

Let us recall our notation first. Let θ = [β�ρ′]′ and θ0 = [β0�ρ
′
0]′. As in Theorem 3.1, we

assume that ϕi does not depend on θ. Let λij(β) = 1/(1 −βcij), and

λi(β) = 1
nP(i)

∑
j∈NP(i)

λij(β)�

Let

Zi(β) =
(

1 + β2λi(β)

nP(i)−β2λi(β)

)(
Xi + β

nP(i)

∑
j∈NP(i)

λij(β)Xj

)
�

Then we define

vi(θ)= Yi −Zi(β)
′ρ�

We let

Gn(θ) ≡ 1
n

n∑
i=1

E
[
vi(θ)ϕi|GP

]
and

Ĝn(θ) ≡ 1
n

n∑
i=1

vi(θ)ϕi�

We also let for m= 1� � � � �M

Gn�m(θ) ≡ 1
n

n∑
i=1

E
[
vi(θ)ϕi�m|GP

]
�

where we recall that ϕi�m is the mth entry of ϕi.
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Lemma C.2. Suppose that Assumption 3.2(ii) holds and that there exists ε > 0 such that
Θ = B(θ0;ε). Then there exists a constant C > 0 such that for each m = 1� � � � �M and for
all n ≥ 2,

1
n

∑
i∈N

E
[

sup
θ∈Θ

∥∥∥∥∂vi(θ)∂θ

∥∥∥∥
2
ϕ2
i�m

∣∣∣GP

]
≤ C�

and for all k1�k2�k3 = 1� � � � � d,

1
n

∑
i∈N

E
[

sup
θ∈Θ

∣∣∣∣ ∂3vi(θ)

∂θk1 ∂θk2 ∂θk2

∣∣∣∣|ϕi�m|
∣∣∣GP

]
≤ C�

Proof. By the assumption that β ∈ [−1 + ν�1 − ν] for some ν > 0, whenever β is such
that (β�ρ) ∈Θ, and that Θ is compact, and 0 ≤ cij ≤ 1, we have

1
2 − ν

≤ λij(β) ≤ 1
ν
�

for all β ∈ [−1 + ν�1 − ν] such that (β�ρ) ∈Θ. Hence the results immediately follow from
Assumption 3.2(ii) and the derivatives that we computed previously.

Proof of Theorem 3.1. Fix a small ε > 0 and take Θ = B(θ0� ε). Note that ‖Ĝn(θ)‖ is
continuous in θ ∈Θ for every realization of the payoff graph GP and every realization of
(Yi�Xi�1�Xi�2)i∈N . Since Θ is compact, the minimizer of ‖Ĝn(θ)‖ over Θ exists in Θ. Let
us take

θ̂ ∈ argmin
θ∈Θ

∥∥Ĝn(θ)
∥∥�

It suffices to show that θ̂ is consistent for θ0. For this, we prove the following two claims:

Claim 1. There exists δ̄ > 0 such that for any δ ∈ (0� δ̄], there exists εδ > 0 such that for all
n ≥ 1,

inf
θ∈Θ:‖θ−θ0‖>δ

∥∥Gn(θ)
∥∥ > εδ�

Claim 2. supθ∈Θ ‖Ĝn(θ)−Gn(θ)‖ = oP(1).

Then the consistency of θ̂ over Θ = B(θ0� ε) follows as in the proof of Corollary 3.2 of
Pakes and Pollard (1989).

Let us first prove Claim 1. By β ∈ [−1+ν�1−ν] with (β�ρ) ∈Θ and 0 ≤ cij ≤ 1, Gn(θ) is
infinite times differentiable over θ ∈ Θ. For each m = 1� � � � �M and θ�θ0 ∈ Θ, there exists
a point θ∗

m on the line segment between θ and θ0 such that

G2
n�m(θ) = ∂G2

n�m(θ0)

∂θ′ (θ− θ0)+ 1
2
(θ− θ0)

′ ∂
2G2

n�m

(
θ∗
m

)
∂θ∂θ′ (θ− θ0)

= 1
2
(θ− θ0)

′ ∂
2G2

n�m

(
θ∗
m

)
∂θ∂θ′ (θ− θ0)�
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because Gn�m(θ0) = 0. As for the last term, by Lemma C.2, there exists a constant C1 > 0
such that for all n ≥ 2,

1
2
(θ− θ0)

′ ∂
2G2

n�m

(
θ∗)

∂θ∂θ′ (θ− θ0)

≥ 1
2
(θ− θ0)

′ ∂
2G2

n�m(θ0)

∂θ∂θ′ (θ− θ0)−C1‖θ− θ0‖3�

Note that (again, from Gn�m(θ0) = 0)

∂2G2
n�m(θ0)

∂θ∂θ′ = 2

(
1
n

n∑
i=1

Hi�m(θ0)

)(
1
n

n∑
i=1

Hi�m(θ0)

)′
�

Hence

∥∥Gn(θ)
∥∥2 = Gn(θ)

′Gn(θ) =
M∑

m=1

G2
n�m(θ)

≥
M∑

m=1

(θ− θ0)
′
(

1
n

n∑
i=1

Hi�m(θ0)

)(
1
n

n∑
i=1

Hi�m(θ0)

)′
(θ− θ0)−C1M‖θ− θ0‖3�

By Assumption 3.2(iii), with the constant c > 0 there, we obtain that for all n ≥ 1,

∥∥Gn(θ)
∥∥ ≥ c‖θ− θ0‖2 −C1‖θ− θ0‖3�

We can find C2 > 0 and δ̄ > 0 such that for all 0 < δ ≤ δ̄, cδ2 − C1δ
3 > C2δ

2. Thus, we

obtain Claim 1.

Let us turn to the proof of Claim 2. Let G∗
P = (N�E∗

P) be a graph on N such that

ij ∈ E∗
P if and only if NP(i) ∩NP(j) �= ∅. Then the maximum degree of G∗

P is bounded by

maxi∈N n2
P(i). Note that vi(θ)ϕi is a function of Yi and Xj ’s, and that Yi’s have G∗

P as a

conditional dependency graph given F .1 Since F involves the σ-field of X = (Xi)i∈N ,

vi(θ)ϕi has G∗
P as a conditional dependency graph given F . For the proof, we use

Lemma 3.4 of Lee and Song (2019). We first show that there exists C > 0 such that for

all n ≥ 1 and all θ� θ̃ ∈Θ,

√√√√ 1
n

∑
i∈N

E
[(
vi(θ)− vi(θ̃)

)2
ϕ2
i�m|GP

]
≤C‖θ− θ̃‖� (C.13)

1Random variables (Wi)i∈N having G∗
P as a conditional dependency graph given F means that for any

set A ⊂ N , (Wi)i∈A and (Wi)i∈N\NP(A) are conditionally independent given F , where NP(A) is the union of

NP(j) over j ∈ A.
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By Assumption 3.2(ii) and Lemma C.2, there exist constants C1�C2 > 0 such that for all
m= 1� � � � �M , and for all n ≥ 1,

1
n

∑
i∈N

E
[

sup
θ∈Θ

∥∥∥∥∂vi(θ)∂θ

∥∥∥∥
2
ϕ2
i�m

∣∣∣GP

]
≤ C1� and

1
n

∑
i∈N

E
[
sup
θ∈Θ

v2
i (θ)ϕ

2
i�m

∣∣∣GP

]
≤ C2�

(C.14)

The first statement of (C.14) immediately yields (C.13) by the first-order Taylor expan-
sion. Combining this with the second statement of (C.14), and noting that Θ is compact
in a finite dimensional Euclidean space, we find from Lemma 3.4 of Lee and Song (2019)
that there exists C > 0 such that for all n≥ 1,

E

[
sup
θ∈Θ

∣∣∣∣∣ 1
n

n∑
i=1

(
vi(θ)ϕi�m − E

[
vi(θ)ϕi�m|GP

])∣∣∣∣∣
∣∣∣GP

]
≤ C

(
1 + max

i∈N
n2
P(i)

)
/
√
n�

By Assumption 3.2(iv), we obtain Claim 2, which completes the proof.

C.3 Proof of Theorem 3.2

Throughout the proofs, we use the notation C1 and C2 to represent a constant which
does not depend on n or n∗. Without loss of generality, we also assume that N∗ is F-
measurable. This loses no generality because due to Condition A of the sampling process
in the paper, the same proof goes through if we redefine F to be the σ-field generated
by both F and N∗.

We introduce auxiliary lemmas which are used for proving Theorem 3.2.

Lemma C.3. For any array of numbers {aij}i�j∈N and a sequence {bi}i∈N of numbers, we
have for any subsets A�B ⊂ N and for any undirected graph G = (N�E),

∑
i∈B

∑
j∈N(i)∩A

aijbj =
∑
i∈A

( ∑
j∈N(i)∩B

aji

)
bi�

where N(i)= {i ∈N : ij ∈E}.

Proof. Since the graph G is undirected, that is, 1{j ∈ N(i)} = 1{i ∈ N(j)}, we write the
left-hand side sum as∑

i∈B

∑
j∈A

1
{
j ∈N(i)

}
aijbj =

∑
j∈A

∑
i∈B

1
{
i ∈N(j)

}
aijbj�

Interchanging the index notation i and j gives the desired result.

Lemma C.4. Suppose that the conditions of Theorem 3.2 hold. Then

Λ−1/2 1√
n∗

∑
i∈N∗

ϕ̃ivi →d N(0� IM)�
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Proof. Choose any vector b ∈ RM such that ‖b‖ = 1 and let ϕ̃i�b = b′ϕ̃i. Recall that

vi =w[0]
ii εi +

∑
j∈NP(i)

w[0]
ij εj +ηi�

Define

ai = w[0]
ii ϕ̃i�b1

{
i ∈N∗} +

∑
j∈NP(i)∩N∗

ϕ̃j�bw
[0]
ji �

Then, from (A.1),

|ai| ≤
(

1 + β2
0

1 −β2
0

)(
|ϕ̃i�b|1

{
i ∈N∗} + |β0|

∑
j∈NP(i)∩N∗

|ϕ̃j�b|
nP(j)

(
1 − |β0|

))
�

Using Lemma C.3, we can write

1√
n∗

∑
i∈N∗

ϕ̃i�bvi =
∑
i∈N◦

ξi� (C.15)

where we recall N◦ = ⋃
i∈N∗ NP(i), and

ξi =
(
aiεi + ϕ̃i�bηi1

{
i ∈ N∗})/√n∗�

By the Berry–Esseen lemma for independent random variables (see, e.g., Shorack (2000,
p. 259)),

sup
t∈R

∣∣∣∣P
{ ∑
i∈N◦

ξi
σξ�i

≤ t
∣∣∣F}

−�(t)

∣∣∣∣ ≤
9E

[ ∑
i∈N◦

|ξi|3
∣∣∣F]

(∑
i∈N◦

σ2
ξ�i

)3/2 � (C.16)

where σ2
ξ�i = Var(ξi|F). It suffices to show that the last bound vanishes in probability as

n∗ → ∞. First, observe that

∑
i∈N◦

σ2
ξ�i =

1
n∗

∑
i∈N◦

(
a2
i σ

2
ε + ϕ̃2

i�bσ
2
η1

{
i ∈ N∗}) ≥ σ2

η

n∗
∑
i∈N∗

ϕ̃2
i�b = σ2

η > 0�

because 1
n∗

∑
i∈N∗ ϕ̃2

i�b = 1. Observe that

E
[ ∑
i∈N◦

|ξi|3
∣∣∣F]

≤
4 max

i∈N
E
[|εi|3|F]

(
n∗)3/2

∑
i∈N◦

|ϕ̃i�b|3|ai|3

+
4 max

i∈N
E
[|ηi|3|F

]
(
n∗)3/2

∑
i∈N◦

|ϕ̃i�b|3

≤
C1 max

i∈N
E
[|εi|3|F]

(
n∗)3/2

∑
i∈N◦

|ai|3 +
C1n

◦ max
i∈N

E
[|ηi|3|F

]
(
n∗)3/2 � (C.17)



Supplementary Material Estimating local interactions among many agents 17

for some constant C1 > 0, by Assumption 3.4. Now, using the fact that |ϕ̃i�b| ≤ C, for some
constant C > 0, we bound the leading term as (for some constants C2�C3 > 0)

C2

n∗
∑
i∈N◦

|ai|3 ≤ C

(
1 + β2

0

1 −β2
0

)3 1
n∗

∑
i∈N◦

(
|ϕ̃i�b|1

{
i ∈N∗} + |β0|

∑
j∈NP(i)∩N∗

|ϕ̃j�b|
nP(j)

(
1 − |β0|

))3

≤ C3(
1 − |β0|

)3

(
1 + β2

0

1 −β2
0

)3
�

by Assumption 3.5. Therefore, for some constant C2 > 0,

E
[ ∑
i∈N◦

|ξi|3
∣∣∣F]

≤ C2√
n∗(1 − |β0|

)6 max
i∈N∗ E

[|εi|3|F] + C2n
◦(

n∗)3/2 max
i∈N∗ E

[|ηi|3|F
]
�

Thus we conclude that the bound in (C.16) is OP((n
∗)−1/2 +n◦(n∗)−3/2), where n◦ = |N◦|.

However, for some constant C > 0,

n◦ ≤
∑
i∈N∗

∣∣NP(i)
∣∣ ≤ Cn∗�

by Assumption 3.5. Hence we obtain the desired result.

Lemma C.5. Suppose that the conditions of Theorem 3.2 hold. Then

E
[‖Sϕ̃v‖2|F] =O

((
n∗)−1)

� and E
[‖SZ∗v‖2|F] =O

((
n∗)−1)

�

where

Z∗
i =

∑
j∈NP(i)∩N∗

Zj�Sϕ̃v = 1
n∗

∑
i∈N∗

ϕ̃ivi� and SZ∗v = 1
n∗

∑
i∈N∗

Z∗
i vi�

Proof. Recall the definitions of eij and eii in (B.2) and (B.3). First, observe that

eii ≤
(

1 + β2
0

1 −β2
0

)2(
1 + β2

0(
1 − |β0|

)2

)
� and

|eij| ≤ 2 + |β0|(
1 − |β0|

)2

(
1 + β2

0

1 −β2
0

)2
�

(C.18)

Note that

E
[‖Sϕ̃v‖2|F] ≤ σ2

ε(
n∗)2

∑
i∈N∗

∑
j∈N∗

−i:NP(i)∩NP(j)�=∅
|eij|‖ϕ̃i‖‖ϕ̃j‖

+ 1(
n∗)2

∑
i∈N∗

(|eii|σ2
ε + σ2

η

)‖ϕ̃i‖2�

However, since ‖ϕ̃i‖ ≤ C by Assumption 3.4, we use (C.18) to obtain that E[‖Sϕ̃v‖2|F] =
O((n∗)−1).
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Let us turn to the second bound. Observe that by Assumption 3.4, we have some
C > 0 such that for all i ∈ N∗, ‖Z∗

i ‖ ≤ C. Following the same proof as before, we obtain
the desired result for E[‖SZ∗v‖2|F] as well.

Lemma C.6. Suppose that the conditions of Theorem 3.2 hold. Then the following holds:

(i) 1
n∗

∑
i∈N∗(ṽ2

i − v2
i )ϕ̃iϕ̃

′
i = OP(1/

√
n∗).

(ii) 1
n∗

∑
i∈N∗

∑
j∈NP(i)∩N∗(ṽiṽj − vivj)ϕ̃iϕ̃

′
j =OP(1/n∗).

(iii) 1
n∗

∑
i∈N∗(v2

i − E[v2
i |F])ϕ̃iϕ̃

′
i =OP(1/

√
n∗).

(iv) 1
n∗

∑
i∈N∗

∑
j∈NP(i)∩N∗(vivj − E[vivj|F])ϕ̃iϕ̃

′
j = OP(1/

√
n∗).

Proof. (i) First, write ṽ − v = −Z(ρ̃− ρ0), where ρ̃− ρ0 = [SZϕ̃S
′
Zϕ̃]−1SZϕ̃Sϕ̃v. Hence∥∥∥∥ 1

n∗
∑
i∈N∗

(ṽi − vi)
2ϕ̃iϕ̃

′
i

∥∥∥∥ ≤ C1

n∗
∑
i∈N∗

(ṽi − vi)
2�

for some constant C1 > 0. As for the last term, note that

1
n∗

∑
i∈N∗

E
[
(ṽi − vi)

2|F]

= 1
n∗ tr

(
S′
Zϕ̃

[
SZϕ̃S

′
Zϕ̃

]−1
SZZ

[
SZϕ̃S

′
Zϕ̃

]−1
SZϕ̃Λ

) =OP

(
1
n∗

)
� (C.19)

by the definition of Λ in (3.5) and by Lemma C.5. However, we need to deal with

∣∣∣∣ 1
n∗

∑
i∈N∗

(
ṽ2
i − v2

i

)∣∣∣∣ ≤
√√√√ 1

n∗
∑
i∈N∗

(ṽi − vi)2

√√√√ 1
n∗

∑
i∈N∗

(ṽi + vi)2� (C.20)

Note that

1
n∗

∑
i∈N∗

(ṽi + vi)
2 ≤ 2

n∗
∑
i∈N∗

(ṽi − vi)
2 + 8

n∗
∑
i∈N∗

v2
i

= OP

(
1
n∗

)
+ 8

n∗
∑
i∈N∗

v2
i �

by (C.19). As for the last term,

1
n∗

∑
i∈N∗

E
[
v2
i |F

] ≤ 2
n∗

∑
i∈N∗

E
[
R2
i (ε)|F

] + 2
n∗

∑
i∈N∗

E
[
η2
i |F

]
�

The last term is bounded by 2σ2
η, and the first term on the right-hand side is bounded by

2σ2
ε

n∗
∑
i∈N∗

eii ≤ C�

by (C.18). Combining this with (C.19) and (C.20), we obtain the desired result.
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(ii) Let us first write

1
n∗

∑
i∈N∗

∑
j∈NP(i)∩N∗

(ṽiṽj − vivj)

= 1
n∗

∑
i∈N∗

∑
j∈NP(i)∩N∗

(ṽi − vi)(ṽj − vj)

+ 1
n∗

∑
i∈N∗

∑
j∈NP(i)∩N∗

(ṽi − vi)vj

+ 1
n∗

∑
i∈N∗

∑
j∈NP(i)∩N∗

vi(ṽj − vj)= An�1 +An�2 +An�3� say.

As for the leading term, by Cauchy–Schwarz inequality,

|An�1| =
√√√√ 1

n∗
∑
i∈N∗

(ṽi − vi)2

√√√√ 1
n∗

∑
i∈N∗

( ∑
j∈NP(i)∩N∗

(ṽj − vj)

)2
�

Note that

1
n∗

∑
i∈N∗

E
[( ∑

j∈NP(i)∩N∗
(ṽj − vj)

)2∣∣∣F]

≤ 1
n∗

∑
i∈N∗

∣∣NP(i)∩N∗∣∣ ∑
j∈NP(i)∩N∗

E
[
(ṽj − vj)

2|F]

= 1
n∗

∑
i∈N∗

( ∑
j∈NP(i)∩N∗

∣∣NP(j)∩N∗∣∣)E
[
(ṽi − vi)

2|F]
�

where the inequality above uses Jensen’s inequality and the equality above uses
Lemma C.3. Hence the last term is bounded by

max
i∈N∗

∣∣NP(i)∩N∗∣∣2

n∗
∑
i∈N∗

E
[
(ṽi − vi)

2|F] ≤OP

(
1
n∗

)
�

by (C.19). Thus we conclude that

|An�1| =OP

(
1
n∗

)
�

Now, let us turn to An�2. Observe that

An�2 = − 1
n∗

∑
i∈N∗

Z′
i

∑
j∈NP(i)∩N∗

vj(ρ̃− ρ0)

= −
(

1
n∗

∑
i∈N∗

Z∗′
i vi

)
(ρ̃− ρ0) = −SZ∗v(ρ̃− ρ0)
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using Lemma C.3. From the proof of (i), we obtain that

ρ̃− ρ0 = OP

(
1√
n∗

)
�

Hence combined with Lemma C.5, we have

|An�2| =OP

(
1
n∗

)
�

Since by Lemma C.3, An�2 =An�3, the proof of (ii) is complete.
(iii) Note that

Var
(

1
n∗

∑
i∈N∗

R2
i (ε)

∣∣∣F)
≤ 2(

n∗)2

∑
i∈N∗

Var
((
w[0]
ii

)2
ε2
i |F

)

+ 2(
n∗)2

∑
i∈N∗

Var
((

β0w
[0]
ii

nP(i)

∑
j∈NP(i)

λijεj

)2∣∣∣F)
�

The leading term is OP((n
∗)−1). The last term is bounded by

2(
n∗)2

∑
i∈N∗

β4
0
(
w[0]
ii

)4

nP(i)

∑
j∈NP(i)

λ4
ijE

[
ε4
j |F

] = OP

((
n∗)−1)

�

Since vi =Ri(ε)+ηi and εi’s and ηi’s are independent, we obtain the desired rate.
(iv) For simplicity of notation, define

Vij = (
vivj − E[vivj|F])ϕ̃iϕ̃

′
j�

Then we write

E
[(

1
n∗

∑
i∈N∗

∑
j∈NP(i)∩N∗

Vij

)2∣∣∣F]

= 1(
n∗)2

∑
i1∈N∗

∑
j1∈NP(i)∩N∗

∑
i2∈N∗

∑
j2∈NP(i)∩N∗

E[Vi1j1Vi2j2 |F]�

The last expection is zero, whenever (i2� j2) is away from (i1� j1) by more than two edges.
Hence we can bound the last term by (using Assumption 3.5))

C1

n∗ max
i∈N

E
[
v2
i |F

] ≤ C2

n∗

for some constants C1, C2 which do not depend on n.

Lemma C.7. Suppose that the conditions of Theorem 3.2 hold. Then

Λ̂−Λ =OP

(
1√
n∗

)
�
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Proof. We write

Λ̂1 −Λ1 = 1
n∗

∑
i∈N∗

(
ṽ2
i − E

[
v2
i |F

])
ϕ̃iϕ̃

′
i and

Λ̂2 −Λ2 = ŝε − sε

n∗
∑
i∈N∗

∑
j∈NP(i)∩N∗

qε�ijϕ̃iϕ̃
′
j�

By Assumption 3.3 and Lemma C.6(ii)(iv), we have

ŝε − sε =OP

(
1/

√
n∗)�

The desired result follows from this and applying Lemma C.6(i) and (iii) to Λ̂1 −Λ1.

Lemma C.8. Suppose that the conditions of Theorem 3.2 hold. Then the following holds:

(i) 1
n∗

∑
i∈N∗(v̂2

i − v2
i )ϕ̃iϕ̃

′
i = OP(1/

√
n∗).

(ii) 1
n∗

∑
i∈N∗

∑
j∈NP(i)∩N∗(v̂iv̂j − vivj)ϕ̃iϕ̃

′
j = OP(1/n∗).

Proof. First, write v̂− v = −Z(ρ̂− ρ0), where

ρ̂− ρ0 = [
SZϕ̃Λ̂

−1S′
Zϕ̃

]−1
SZϕ̃Λ̂

−1Sϕ̃v� (C.21)

Following the same arguments as in the proof of Lemma C.6(i) and (ii) and Lemma C.7,
we obtain the desired result.

Proof of Theorem 3.2. Let us consider the first statement. We write

1√
n∗ Λ̂

−1/2ϕ̃′v̂ = 1√
n∗ Λ̂

−1/2ϕ̃′(v̂ − v)+ 1√
n∗ Λ̂

−1/2ϕ̃′v

= − 1√
n∗ Λ̂

−1/2ϕ̃′Z(ρ̂− ρ0)+ 1√
n∗ Λ̂

−1/2ϕ̃′v = √
n∗(I − P)Λ̂−1/2Sϕ̃v�

using (C.21), where

P = Λ̂−1/2S′
Zϕ̃

[
SZϕ̃Λ̂

−1S′
Zϕ̃

]−1
SZϕ̃Λ̂

−1/2�

Note that P is a projection matrix from RM onto the range space of Λ̂−1/2S′
Zϕ̃. Hence

combining Lemmas C.4 and C.7. We obtain the desired result. The second result follows
from Lemma C.4 and equation (C.21).

Appendix D: Convergence of behavioral strategies to equilibrium

strategies

Proof of Theorem 2.3. Our proof is in two steps. First, we show the convergence of
the behavioral strategies to the equilibrium strategies in a game without private infor-
mation (without ηi). In the second step, we use this first result and show it also holds
when we extend the game to allow for ηi.
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Let us first consider the game without private information (i.e., ηi = 0 for all i ∈ N).
We denote the behavioral strategies in this complete information game by s̃[m]

i , and the
equilibrium strategies as s̃BNE

i . This notation will allow us to differentiate these strategies
from the case with incomplete information. From Theorem 2.2, without ηi’s, we have
that:

s̃[m+1]
i (Ii�m+1) =

(
β0

nP(i)

∑
k∈NP(i)

w[m]
ki + 1

)
τi

+ β0

nP(i)

∑
k∈NP(i)

∑
j∈NP�m+2(i)

w[m]
kj 1

{
j ∈ NP�m(k)

}

=
(

β0

nP(i)

∑
k∈NP(i)

w[m]
ki + 1

)
τi

+ β0

nP(i)

∑
k∈NP(i)

( ∑
j∈NP�m+1(k)\{i}

w[m]
kj τj +w[m]

kk τk

)

= τi + β0

nP(i)

∑
k∈NP(i)

s[m]
k (Ik�m)� (D.1)

Thus we find that for any m�m′ > 0,

∣∣s̃[m+1]
i (Ii�m+1)− s̃[m

′+1]
i (Ii�m′+1)

∣∣
≤ |β0| 1

nP(i)

∑
k∈NP(i)

∣∣s̃[m]
k (Ik�m)− s̃[m

′]
k (Ik�m′)

∣∣� (D.2)

Let F be the collection of all the I-measurable Rn-valued maps f = (fi)i∈N such
that E[f 2

i ] < ∞ for each i ∈ N . We endow F with a pseudo metric: for f = (fi)i∈N and
g = (gi)i∈N ,

‖f − g‖2 = max
1≤i≤n

√
E
[
(fi − gi)2

]
� (D.3)

As usual, we view (F �‖ · ‖2) as a collection of equivalence classes on which d(f�g) ≡
‖f − g‖2 is a metric. Since√√√√ 1

n

∑
i∈N

E
[
(fi − gi)2

] ≤ ‖f − g‖2 ≤
√∑

i∈N
E
[
(fi − gi)2

]
� (D.4)

the metric space (F �‖ · ‖2) is complete, a property inherited from the completeness of
an L2 space.

Each strategy profile s̃(Im)[m](ω) from game Γm belongs to (F �‖ · ‖2). Consider a
sequence of best response strategy profiles {s̃[m](Im)}∞m=1. Certainly by (D.2) and the fact
that |β0| < 1, the sequence {s̃[m](Im)}∞m=1 is Cauchy in (F�‖ · ‖2), and has a limit, say,
s̃∞(I) in F by its completeness. Now, for the first step of the proof, it remains to show
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that s̃∞(I) is identical to s̃BNE(I) almost everywhere, where s̃BNE(I) is defined as a fixed
point to

s̃BNE
i (I) = τi +β0

1
nP(i)

∑
k∈NP(i)

s̃BNE
k (I)� (D.5)

To see this, let us view s̃[m+1](Im+1) as an n-dimensional column vector of
s̃[m+1]
i (Ii�m+1), i ∈ N and A an n × n matrix whose (i� j)-th entry is given by 1{j ∈
NP(i)}/nP(i). Then we can rewrite (D.1) as

s̃[m](Im) = τ +β0As̃[m−1](Im−1)�

where τ = (τi)i∈N . This implies that

s̃∞(I)− (
τ +β0As̃∞(I)

) = s̃∞(I)− s̃[m](Im)+β0A
(
s̃[m−1](Im−1)− s̃∞(I)

)
�

Thus we have∥∥s̃∞(I)− (
τ +β0As̃∞(I)

)∥∥
2

≤ ∥∥s̃∞(I)− s̃[m](Im)
∥∥

2 + |β0|‖A‖∥∥s̃[m−1](Im−1)− s̃∞(I)
∥∥

2�

where ‖A‖ = √
tr(A′A). Note that ‖A‖ < ∞ and does not depend on m. Hence by send-

ing m→ ∞, we have ∥∥s̃∞(I)− (
τ +β0As̃∞(I)

)∥∥
2 = 0� (D.6)

Since |β0| < 1 and A is row normalized, the matrix I − β0A is invertible and the row
sums of (I − β0A)−1 are uniformly bounded (e.g., see Lee (2002, p. 257)). Therefore, if
we define

s̃∗(I) = (I −β0A)−1τ�

we have ‖s̃∗(I)‖2 < ∞ by (2.11). On the other hand, it is not hard to see that s̃∗(I) is
almost everywhere identical to the equilibrium strategy profile s̃BNE(I). Also, by (D.6),
s̃∗(I) is almost everywhere identical to s̃∞(I). The first part of the proof follows by (D.4)
and the fact that

E
[
max
i∈N

(fi − gi)
2
]

≤
∑
i∈N

E
[
(fi − gi)

2]�
As a result, we have the convergence of behavioral strategies to equilibrium strate-

gies in the complete information analogue to our incomplete information game.
To complete our proof, we note that the actual behavioral strategies with incomplete

information (with potentially nonzero ηi’s) are given by

s[m]
i = s̃[m]

i +ηi� (D.7)

This follows immediately from using equation (2.3), Theorem 2.2 and Assumption 3.1.
Analogously, the equilibrium strategies from game Γ∞ are given by

sBNE
i = s̃BNE

i +ηi� (D.8)
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As a result, convergence of s̃[m]
i to s̃BNE

i implies convergence of s[m]
i to sBNE

i , which
completes the proof.
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