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In various economic environments, people observe other people with whom they
strategically interact. We can model such information-sharing relations as an in-
formation network, and the strategic interactions as a game on the network. When
any two agents in the network are connected either directly or indirectly in a large
network, empirical modeling using an equilibrium approach can be cumbersome,
since the testable implications from an equilibrium generally involve all the play-
ers of the game, whereas a researcher’s data set may contain only a fraction of
these players in practice. This paper develops a tractable empirical model of lin-
ear interactions where each agent, after observing part of his neighbors’ types,
not knowing the full information network, uses best responses that are linear in
his and other players’ types that he observes, based on simple beliefs about the
other players’ strategies. We provide conditions on information networks and be-
liefs such that the best responses take an explicit form with multiple intuitive fea-
tures. Furthermore, the best responses reveal how local payoff interdependence
among agents is translated into local stochastic dependence of their actions, al-
lowing the econometrician to perform asymptotic inference without having to ob-
serve all the players in the game or having to know the precise sampling process.
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1. INTRODUCTION

Interactions between agents—for example, through personal or business relations—
generally lead to their actions being correlated. In fact, such correlated behaviors form
the basis for identifying and estimating peer effects, neighborhood effects, or more gen-
erally, social interactions in the literature. (See Blume, Brock, Durlauf, and Ioannides
(2010) and Durlauf and Ioannides (2010) for a review of this literature.)

Empirical modeling becomes nontrivial when one takes seriously the fact that peo-
ple are often connected directly or indirectly on a large complex network, and observe
some of their neighbors’ types. Such strategic environments may be highly heteroge-
neous across agents, with each agent occupying a nearly “unique” position in the net-
work. Information sharing potentially creates a complex form of cross-sectional depen-
dence among the observed actions of agents, yet the econometrician typically observes
only a fraction of the agents on the network, and rarely observes the entire network
which governs the cross-sectional dependence structure.

The main contribution of this paper is to develop a tractable empirical model of
linear interactions among agents with the following three major features. First, assuming
a large game on a complex, exogenous network, our empirical model does not require
the agents to observe the full network. Instead, we assume that each agent observes only
a local network around herself and only part of the type information of those who are
local to her.!

Second, our model explains strategic interdependence among agents through corre-
lated observed behaviors. In this model, the cross-sectional local dependence structure
among the observed actions reflects the network of strategic interdependence among
the agents. Most importantly, unlike most incomplete information game models in the
literature, our set-up allows for information sharing on unobservables, that is, each agent
is allowed to observe his neighbors’ payoff-relevant signals that are not observed by the
econometrician.

Third, the econometrician does not need to observe the whole set of players in the
game for inference. It suffices that he observe many (potentially) nonrandom samples
oflocal interactions. The inference procedure that this paper proposes is asymptotically
valid independently of the actual sampling process, as long as the sampling process sat-
isfies certain weak conditions. Accommodating a wide range of sampling processes is
useful because random sampling is rarely used for the collection of network data, and a
precise formulation of the actual sampling process is often difficult in practice.

A standard approach for studying social interactions is to model them as a game,
and use the game’s equilibrium strategies to derive predictions and testable implica-
tions. Such an approach is cumbersome in our set-up. Since a particular realization of
any agent’s type affects all the other agents’ equilibrium actions through a chain of in-
formation sharing, each agent needs to form a “correct” belief about the entire infor-
mation graph. Apart from such an assumption being highly unrealistic, it also implies

1For example, a recent paper by Breza, Chandrasekhar, and Tahbaz-Salehi (2018) documents that peo-
ple in a social network may lack substantial knowledge of the network and that such informational assump-
tions may have significant implications for the predictions of network models. Models assuming that agents
possess only local knowledge have drawn interest in the literature on Bayesian learning on networks. For
example, see a recent contribution by Li and Tan (2020) and references therein.
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that predictions from an equilibrium that generate testable implications usually involve
all the players in the game, when it is often the case that only a fraction of the players
are observed in practice. Thus, an empirical analysis which regards the players in the
researcher’s sample as coincident with the actual set of players in the game may suf-
fer from a lack of external validity when the target population is a large game involving
many more players than those present in the actual sample.

Instead, this paper adopts an approach of behavioral modeling, where it is assumed
that each agent, not knowing fully the information sharing relations, optimizes accord-
ing to simple beliefs about the other players’ strategies. The crucial part of our behav-
ioral assumption is a primitive form of belief projection which says that each agent,
not knowing the full set of information-sharing relations, projects his own beliefs about
other players onto his payoff neighbors. More specifically, if agent i gives more weight to
agent j than to agent k, agent i believes that each of his payoff neighbors s does the same
in comparing agents j and k. Here, the “weights” represent the strategic importance of
other players, and belief projection can be viewed as a rule-of-thumb for an agent who
needs to form expectations of the actions of the players, not knowing who they observe.
When the strategic importance of one player to another is based primarily on “vertical”
characteristics such as skills or assets, the assumption of belief projection does not seem
unrealistic.?

Our belief projection approach yields an explicit form of the best response which has
intuitive features. For example, the best response is such that each agent i gives more
weight to those agents with a higher local centrality to him, where the local centrality
of agent j to agent i is said to be high if and only if a high fraction of agents whose ac-
tions affect agent i’s payoff have their payoffs affected by agent j’s action. Also, the best
response is such that each agent responds to a change in his own type more sensitively
when there are stronger strategic interactions, due to what we call the reflection effect.
The reflection effect of player i captures the way that player i’s type affects his own action
through his payoff neighbors whose payoffs are affected by player i’s types and actions.

The best responses reveal an explicit form of local dependence among the observed
actions from which we can derive minimal conditions for feasible asymptotic infer-
ence. It turns out that the econometrician does not need to observe all the players in
the game, nor does he need to know the precise sampling process. Furthermore, the
best response from the belief assumption provides a testable implication for informa-
tion sharing on unobservables in data. In fact, the cross-sectional correlation of residu-
als indicates information sharing on unobservables. (See the end of the replication file

2Belief projection in our paper can be viewed as connected, though loosely, to interpersonal projec-
tion studied in behavioral economics. A related behavioral concept is projection bias of Loewenstein,
O’Donohue, and Rabin (2003) which refers to the tendency of a person projecting his own current taste
to his future taste. See also Van Boven, Loewenstein, and Dunning (2003) who reported experimental re-
sults on the interpersonal projection of tastes onto other agents. Since an agent’s belief formation is often
tied to their information, belief projection is closely related to information projection in Madardsz (2012),
who focuses on the tendency of a person to project his information to other agents’. The main difference
here is that our focus is to formulate the assumption in a way that is useful for inference using observational
data on the actions of agents who interact on a network.
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(Canen, Schwartz, and Song (2020)) for details on the testing procedure based on the
cross-sectional correlation of residuals.)

It is instructive to compare the predictions from our behavioral model to those from
an equilibrium model. When the payoff graph is comprised of multiple disjoint sub-
graphs that are complete, the behavioral strategies and equilibrium strategies coincide.
Moreover, for a game on a general payoff graph, we show that as the rationality of agents
deepens and their information expands, the behavioral strategies converge to the equi-
librium strategies of an incomplete information game where each agent observes all the
sharable types of every other agent.

We provide conditions under which the parameters are locally identified, but pro-
pose asymptotic inference in a general setting that does not require such conditions.
We also investigate the finite sample properties of our asymptotic inference through
Monte Carlo simulations using various payoff graphs. The results show reasonable per-
formance of the inference procedures. In particular, the size and the power of the test for
the strategic interaction parameter are good in finite samples. We apply our methods to
an empirical application which studies the decision of state presence by municipalities,
revisiting Acemoglu, Garcia-Jimeno, and Robinson (2015). We consider an incomplete
information game model which permits information sharing on unobservables. The fact
that our best responses explicitly reveal the local dependence structure means that it is
unnecessary to separately correct for spatial correlation following, for example, the pro-
cedure of Conley (1999).

The literature on social interactions often looks for evidence of interactions through
correlated behaviors. For example, linear interactions models investigate correlation be-
tween the outcome of an agent i and the average outcome over agent i’s neighbors. See,
for example, Manski (1993), De Giorgi, Pellizzari, and Redaelli (2010), Bramoullé, Djeb-
bari, and Fortin (2009), and Blume, Brock, Durlauf, and Ioannides (2015) for identifica-
tion analysis in linear interactions models, and see Calvé-Armengol, Pattacchini, and
Zenou (2009) for an application to the study of peer effects. Goldsmith-Pinkham and
Imbens (2013) considered nonlinear interactions on a social network and discusses en-
dogenous network formation. Such models often assume that the researcher observes
many independent samples of such interactions, where each independent sample con-
stitutes a game containing the entire set of the players in the game.

In the context of a complete information game, a linear interaction model on a large
social network can generally be estimated without assuming independent samples. The
outcome equations in such a setting frequently take the form of spatial autoregressive
models, which have been actively studied in the spatial econometrics literature (Anselin
(1988)). Arecent study by Johnsson and Moon (2016) considers a model of linear interac-
tions on a large social network which allows for endogenous network formation. Devel-
oping inference on a large game model with nonlinear interactions is more challenging.
See Menzel (2016), Xu (2015), Song (2014), Xu and Lee (2015), and Yang and Lee (2016)
for a large game model of nonlinear interactions. This large game approach is suitable
when the data set does not have many independent samples of interactions. One of the
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major issues in the large game approach is that the econometrician often observes only
a subset of the agents from the original game of interest.3

Our empirical approach is based on a large game model which is close to models of
linear interactions in the sense that it attempts to explain strategic interactions through
the correlated behavior of neighbors. In our set-up, the cross-sectional dependence of
the observed actions is not merely a nuisance that complicates asymptotic inference;
it provides the very information that reveals the nature of strategic interdependence
among agents. Such correlated behavior also arises in equilibrium in models of com-
plete information games or games with types that are either privately or commonly ob-
servable. (See Bramoullé, Djebbari, and Fortin (2009) and Blume et al. (2015).) However,
as emphasized before, such an approach can be cumbersome in our context of a large
game primarily because the testable implications from the model typically involve the
entire set of players, when in many applications the econometrician observes only a
small subset of the game’s players. After finishing the first draft of paper, we learned of
a recent paper by Eraslan and Tang (2017) who model the interactions as a Bayesian
game on a large network with private link information. They do not require the agents
to observe the full network, and show identification of the model primitives adopting a
Bayesian—Nash equilibrium as a solution concept. One of the major differences of our
paper from theirs is that our paper permits information sharing on unobservables, so
that the actions of neighboring agents are potentially correlated even after controlling
for observables.

A departure from the equilibrium approach in econometrics is not new in the liter-
ature. Aradillas-Lopez and Tamer (2008) studied implications of various rationality as-
sumptions for identification of the parameters in a game. Unlike their approach, our fo-
cus is on a large game where many agents interact with each other on a single complex
network, and, instead of considering all the beliefs which rationalize observed choices,
we consider a particular set of beliefs that satisfy a simple rule and yield an explicit form
of best responses. (See also Goldfarb and Xiao (2011) and Hwang (2017) for empirical
research adopting behavioral modeling for interacting agents.)

This paper is organized as follows. In Section 2, we introduce an incomplete infor-
mation game of interactions with information sharing. This section derives the crucial
result of best responses under simple belief rules. We also show the convergence of be-
havioral strategies to equilibrium strategies as the rationality of agents becomes higher
and their information sets expand. Section 3 focuses on econometric inference. It ex-
plains the data set-up and a method for constructing confidence intervals. Section 4 in-
vestigates the finite sample properties of our inference procedure through a Monte Carlo
study. Section 5 presents an empirical application on state capacity among municipal-
ities. Section 6 concludes. Due to the space constraints, the technical proofs of the re-
sults are found in the Online Supplemental Material (Canen, Schwartz, and Song (2020)).
Further materials including extensions to a model of information sharing among many

3Song (2014), Xu (2015), Johnsson and Moon (2016), Xu and Lee (2015), and Yang and Lee (2016) assumed
that all the players in the large game are observed by the researcher. In contrast, Menzel (2016) allowed for
observing i.i.d. samples from the many players, but assumes that each agent’s payoff involves all the other
agents’ actions exchangeably.
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agents over time, testing for information sharing on unobservables, and a model selec-
tion procedure for choosing among different behavioral models, are found in the repli-
cation file (Canen, Schwartz, and Song (2020)).

2. STRATEGIC INTERACTIONS WITH INFORMATION SHARING
2.1 A model of interactions with information sharing

Strategic interactions among a large number of information-sharing agents can be mod-
eled as an incomplete information game. Let N be the set of a finite yet large number of
players. Each player i € N is endowed with his type vector (7;, ;), where 7; is a private
type and 7; a sharable type.* As we will elaborate later, information »; is kept private to
player i whereas 7; is observed by his neighbors in a network which we define below.

To capture strategic interactions among players, let us introduce an undirected
graph Gp = (N, Ep), where Ep denotes the set of edges ij, i, j € N with i # j, and each
edge ij € Ep represents that the action of player i affects player j’s payoff.> We denote
Np(j) to be the Gp-neighborhood of player j, that is, the collection of players whose
actions affect the payoff of player ;:

Np()={ieN :ij e Ep),

and let np(j) = [Np(j)|. We define Np(j) = Np(j) U {j} and let Tip(j) = [N p(j)].
Player i choosing action y; € ) with the other players choosing y_; = (y;)»; obtains
payoft:

_ 1
ui(Yi Y—i> 7 i) = Yi(7i + Boy; +ni) — 5%’2, (2.1)

where 7 = (7;);en, and
1

~ np(i)

> s

kENp(i)

Vi

if Np(i) # @, and y; = 0 otherwise. Thus the payoff depends on other players’ actions and
types only through those of his Gp-neighbors. We call Gp the payoff graph.

The parameter By measures the payoff externality among agents. As for By, we make
the following assumption.

AssumPTION 2.1. —1 < By < 1.

This assumption is commonly used to characterize a pure strategy equilibrium in
the social interactions literature. (See, e.g., Bramoullé, Djebbari, and Fortin (2009) and
Blume et al. (2015) for examples of its use.) When By > 0, the game is called a game of
strategic complements and, when By < 0, a game of strategic substitutes.

4Later in a section devoted to econometric inference, we specify the sharable type 7; to be a linear index
of (X7, &;)’, where X; is a covariate vector observed by the econometrician and &; (together with the private
type 7;) is not observed. Thus our framework permits information sharing on unobservables in the sense
that “neighbors” of an agent i observe &;.

5A graph G = (N, E) is undirected if ij € E whenever ji € E forall i, j € N.
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Let us introduce information sharing relations in the form of a directed graph (or
anetwork) Gy = (N, Ey) on N so that each ij in E; represents the edge from player i to
player j, where the presence of edge ij joining players i and j indicates that ; is observed
by player j. Hence the presence of an edge ij between agents i and j represents informa-
tion flow from i to j. This paper calls graph G the information graph. For each j € N,
define

Ni(j)={ie N :ij € Ef},

that is, the set of G;-neighbors observed by player j.6 Also let N;(i) = N;(i) U {i}, and
np(i) = [N(@)].

In this paper, we do not assume that each agent knows the whole information graph
G and the payoff graph Gp. To be precise about each agent’s information set, let us
introduce some notation. For each i € N, we set Np 1(i) = Np(i) and N 1(i) = N (i),
and for m > 2, define recursively

Newm= | Nema1(p), and Npn()= |J Nim-10).
JeNp(i) JeN1()

Thus N p_, (i) denotes the set of players which consist of player i and those players who
are connected to player i through at most m edges in Gp, and similarly with N ,,(i).
Also, define Np (i) = Np (i) \ {i} and Ny (i) = N, (2) \ {i}. B

For each player i € N, let us introduce a local payoff graph Gp (i) = (Np (D),
Ep m(i)), where for k1, k; € Np,m(i), kiks € Ep ,(i) if and only if k1k; € Ep. Define for
m>17

Lim-1=(Gpmp1(), N1m(D), TN iy» M) (2.2)

where ™, = (Tj) JEN ()" We use Z; ,,, to represent the information set of agent i. For
example, when agent i has T as his information set, it means that agent i knows the
payoff subgraph Gp, among the agents N p (i), the set of agents whose types he ob-
serves (i.e., N;(i)), and his own private signal 7;. As for the payoff graph and information
graph, we make the following assumption.

ASSUMPTION 2.2. Foreachie N andm > 1,
Npmi1()) CNpm(D).

This assumption requires for example that an agent with information Z; o observes
their Gp neighbors and their payoff relevant neighbors. The assumption on G; only
requires what each set Wl,m(i) should at least include but not what it should exclude.
Hence all the results of this paper carry through even if we have NI, m(i) =N forallie N,
as in a complete information game. In other words, the incomplete information feature
of our game is permitted but not required for our framework.

6More precisely, the neighbors in N;(j) are called in-neighbors and n;(j) = |N;(j)| in-degree. Throughout
this paper, we simply use the term neighbors and degrees, unless specified otherwise.

"The graph Gp,, (i) is an induced subgraph of G p induced by the vertex set N p_»,(i). Note also that while
Np (i) € Np (i), this does not imply that a player who knows the set N p »(i) knows what the set Np 1 (i)
is. Our information set assumption requires them to know the local graph Gp ,, (i) rather than just Np’m (i).
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2.2 Predictions from rationality

Each player chooses a strategy that maximizes his expected payoff according to his be-
liefs. Given player i’s strategy, information set Z;, and his beliefs on the strategy of other
players s* ;= (sf( )keN\(i}, the (interim) expected payoff of player i is defined as

Ui(si» ' ;3 i) = B[ui(si(Zo), s ;,(Z_), 7, m3) I T4],

where ' ;(Z_;) = (s}, (Zx)ken(ip I-i = (T )k and 7 = (7;)jen. A best response sER of
player i corresponding to the strategies s* ; of the other players as expected by player
i is such that for any strategy s;,

Ui(s;Ts Si_i§Ii) z Ui(SbSi_,';Ii), a.e.

The quadratic payoff function and the information structure of the game implies that if
player i has information set Z; and believes that each of her Gp-neighbors, say, &, plays
a strategy sf{ (Zi), her best response is given by

Bo

SPN(T;) = Ti + i)

> E[sp(ZoIL] + mi (2.3)
kENp(i)

This implies that the best responses will be linear in types 7; as long as the conditional
expectation is.

In order to generate predictions, one needs to deal with the beliefs (i.e., sf{ (Zy)) in
the conditional expectation. There are three approaches. The first approach is an equi-
librium approach, where we take the predicted strategies as a set of best response strate-
gies sBNE such that for any strategy s;,

i

U; (SI-BNE, SE';‘E; L‘) > Ui(S,', sBNE. L‘), a.e. (2.4)

—1

Hence in equilibrium strategies, each player believes that the other players’ strategies
coincide with the best response strategies by the agents in equilibrium. The second ap-
proach, rationalizability, considers all strategies that are rationalizable given some be-
lief. The third approach is a behavioral approach where one considers a set of simple
behavioral assumptions on the beliefs and focuses on the best responses to these be-
liefs.

There are pros and cons with each of the three approaches. The equilibrium ap-
proach requires that the beliefs of all the players be “correct” in equilibrium. However,
since each player i generally does not know who each of his Gp-neighbors observes,
a Bayesian player in an incomplete information game with rational expectations would
need to know the distribution of the entire information graph Gy (or atleast have a com-
mon prior on the information graph commonly agreed upon by all the players) to form a
“correct” belief given his information. Given that the players are only partially observed
and Gy is rarely observed with precision, producing a testable implication from such an
equilibrium model appears far from a trivial task.

The rationalizability approach can be used to relax this rational expectations as-
sumption by eliminating the requirement that the beliefs be correct. Such an approach
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considers all the predictions that are rationalizable given some beliefs. However, the set
of predictions from rationalizability can potentially be large and may fail to produce
sharp predictions useful in practice.

This paper takes the approach of behavioral modeling. We adopt a set of simple be-
havioral assumptions on players’ beliefs which can be incorrect from the viewpoint of
a person with full knowledge of the distribution of the information graph, yet useful as
a rule-of-thumb for an agent in a complex decision-making environment such as the
one in our model. As we shall see later, this approach can give a sharp prediction that is
intuitive and analytically tractable. Furthermore, the best responses from this approach
coincide with equilibrium strategies for a special class of payoff graphs, and converge to
equilibrium strategies for any payoff graph as the rationality of agents becomes deeper
and their information set expands.

2.3 Belief projection and best responses

2.3.1 A game with complete payoff subgraphs Let us consider first a special case where
the payoff graph Gp = (N, Ep) is such that N is partitioned into subsets Ny, ..., Np,
and foralli,j e N withi# j, ij € Ep ifand only if i, j € N, for some g =1, ..., Q. In this
game, there are multiple strategically disjoint subgames and agents in each subgame
observe all other players’ sharable types 7;’s in the subgame, but do not observe their
private types 7;.2 In this case, there exists a unique Bayesian-Nash equilibrium where
the equilibrium strategies take the explicit form of a linear strategy: for each player i,

i)=Y Tjwi+mi,
JjeNp(i)
and w;; are weights such that for all ;, j, k, £ in the same cluster,
wik =wj;, and wg,=w;;, wheneveri#jandk#¢. (2.5)

Thus the equilibrium is within-cluster symmetric in the sense that the equilibrium strat-
egy is the same across all the agents in the same cluster. However, this symmetric equi-
librium does not extend to a general payoff graph Gp.

2.3.2 Belief projection Our approach uses a weaker version of the symmetry restric-
tions (2.5) to specify initial beliefs, so that a best response function exists uniquely for
any payoff graph configuration.® More specifically, we introduce the following symmetry
restrictions on the belief formation.

DErFINITION 2.1. We say that a player { with information set Z; o does BP (Belief projec-
tion), if she believes that each of her Gp-neighbors, say, k, plays a linear strategy as

i Te0) = Y Tjwl+ M (2.6)
JjeNp(k)

8Each subgame is a special case of the Bayesian game in Blume et al. (2015).
9A best response function satisfying the symmetry restrictions in (2.5) may not exist for a general payoff
graph Gp.
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for some nonnegative weights wf( i in (2.6) that satisfy the following conditions:

(BP-a) w}, =w;; and w}'q. = wj; for j # i, k;

(BP-b) wfﬂ. = Wik.-

Condition (2.6) assumes that player i believes that player £ responds only to the
types of those players j € Np(k). This is a rule-of-thumb for player i to form expecta-
tions about player k while not observing Ny (k).

In forming beliefs about other players’ strategies, not knowing who they observe, BP
assumes that each player projects his own beliefs about himself and other players onto
his Gp neighbors, as epitomized by Conditions (BP-a)-(BP-b). The ranking of weights
w;; over j represents the relative strategic importance of player j to player i.

More specifically, Condition (BP-a) says that each player i believes that the weight his
Gp-neighbor k attaches to himself or player j € Np(k) is the same as the weight player
i attaches to himself or the same player j. Thus player i’s belief on his Gp neighbor k’s
weight to player j is formed in reference to his own weight to player j. In other words,
without any information on how his G p-neighbors rank other players, each player sim-
ply takes himself as a benchmark to form beliefs about his Gp neighbors’ ranking of
other players. This assumption does not seem unreasonable if the weights w;; are based
on the vertical characteristics such as skills or assets of agent j. Condition (BP-b) im-
poses a symmetry restriction that player i believes that player k gives the same weight
to player i as the weight player i gives to player k.10

2.3.3 Belief projection as a prior specification for a Bayesian decision maker The best
response of a player with quadratic utility and beliefs as in Definition 2.1 can be viewed
as arising from a decision maker with Bayesian rationality with a prior that satisfies
certain symmetry restrictions. More specifically, let W = (W ;)i jen be a weight ma-
trix such that W ; is the weight player k attaches to player j. Each player i believes that
other players k play a linear strategy, say, si (Zy,0; wk), Wk = (wg;) jen, of the form in (2.6)
of Definition 2.1. (We are simply making explicit the dependence of the strategy on wy in
our notation.) Suppose that each agent i is given information set Z; o and a prior Q; over
(Z;j0)jen and W in the game. We assume that W and (Z; o) jen are independent under
Q;.!! Then the decision maker with Bayesian rationality proceeds as follows.

(Step 1) A mediator (or Nature) suggests a weight vector w; to each player i.
(Step 2) Player i forms a posterior mean of his payoff given w; and Z; .

(Step 3) Unless there is an action that gives a strictly better posterior mean of his pay-
off than the action s;(Z; o; w;), the player accepts w; and chooses the latter action.

101t is important to note that we do not impose BP directly on the strategies of the players as predicted
outcomes of the game. Instead, BP is used as an initial input for each player to form best response strate-
gies with limited information on networks. It is these best response strategies that constitute the predicted
outcomes from the game.

This independence simply reflects that the strategies as a function of signals are distinct from the sig-
nals themselves.
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Thus, the best response of this Bayesian decision maker is given by s;(Z; o; w;) such
that

Eo,[wi(yi, s—i(Z_i0: W=); i,0) IWi = wy, Zi 0]
<Eo,[ui(si(Zi0; Wi), s—i(T_i0: W=i); Zi,0) Wi = w;, o], forallyjed,

where Ep, denotes the conditional expectation under Q;.

Now, the belief projection of a player corresponds to a set of restrictions on the prior
Q;, where we specify Q; as a Gaussian prior (centered at zero) over the weight matrix W
such that the following restrictions hold foralli =1, ...,nand k € Np(i):

(@) Eg,[Wik|Wi]1=W;; and Eg,[W};|W;]= W, forall j € Np(k).
(b) Eg,[WkilWil = Wi.
(©) Eg,[WijIWl=0forall j ¢ Np(k).

Then itis not hard to see that the best response of this Bayesian player is the same as
that of a simple type agent who behaves according to the belief projection assumption.
(See the Online Supplemental Material for details.) The restriction (a) says that player
i projects his weight W;; and W;; to Wy, and Wj;. To see the meaning of this restriction,
suppose that

Varg, (Wi ) = Varg,(W;;),

and that Eg,[Wix|W;] = Eo,[Wkr|W;i]. Then the first statement of (a) requires that Wy
and Wj; are perfectly positively correlated under Q;. The perfect correlation seems the
only reasonable specification in this setting because if W, and W;; are not perfectly cor-
related, it yields the odd implication that player i believes Wy to be less than W;; for all
k € Np(i) in absolute value. A similar observation can be made for the second statement
of (a). The restriction (b) imposes that the weight that agent & is expected to attach to i
is the same as the weight that agent i gives to the agent k. The restriction (c) means that
player i does not consider the weight of player k attaches to player j when j is outside
of Np(k), because player i may not even know who j is, and from player i’s perspective,
player j can be any player in the large population outside of N p(k).

2.3.4 Bestresponses Let us first define the type of players and games for which we de-
rive best responses.

DerINITION 2.2. (i) Player i € N is said to be of simple type if she has information set
Zi0, and does BP. Let Ij denote the game populated by » players who are of simple type
and have payoff functions in (2.1) and payoff graph Gp.

(ii) For each m > 1, player i € N is said to be of the mth order sophisticated type, if
she has information set Z; ,, and believes that the other players play the best response
strategies from I;,,_;. Let I},, denote the game populated by » players who are of the mth
order sophisticated type and have payoff functions in (2.1) and payoff graph Gp.
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The higher-order sophisticated type agents are analogous to agents in level-k mod-
els in behavioral economics. (See Chapter 5 of Camerer (2003) for a review.!2) In exper-
iments, a level-0 player chooses an action without considering strategic interactions,
making them much simpler than our simple types. Our simple-type player already con-
siders strategic interdependence and forms a best response. On the other hand, the
level-k models allows the agents to be of different orders of rationality within the same
game. In our set-up centered on observational data, identification of the unknown pro-
portion of each rationality type appears far from trivial. Hence in this paper, we consider
a game where all the agents have the same order of sophistication.'3

Unlike in level-k models, the difference between the simple type and the first-order
sophisticated type lies not only on their degree of rationality but also on their informa-
tion set. In particular, the information requirements are stronger for more sophisticated
agents. For example, the first-order sophisticated type knows who belongs to NP,3(i),
whereas a simple-type does not need to.

Below we give a unique explicit form of best responses from game I. First, define
foralli, j e N with i # j,

1 — 1
)\ij ———— and A\;= - E Aija
1_— ..
Bocij np(i) jeNp (i)

where
o |Np(i) N Np())|
v np(i) .

The theorem below gives the explicit form of the best response in this game.

(2.7)

THEOREM 2.1. Suppose that Assumptions 2.1-2.2 hold and for each i € N, and any k # i,
E[n|Z; o] = 0. Then each player i’s best response s°% from game I takes the form s?% = sl[.o]
with
sl[.o](I,-,o) = wl[?]n + Z w[[.j(.)]fj + i,
JENPp(D)
where, ifnp(i) > 1,

o~
0 gy Podi
72— . 25
np(i) — BgAi

i
[0] :80 ij w[O]

Yo npG)

and

Jori#j,
and ifnp(i) = 0, wl)' = 1 and wg)] =0.

12Note that level-k models in behavioral economics are different from k-rationalizability models of Bern-
heim (1984) and Pearce (1984) which are studied by Aradillas-Lopez and Tamer (2008) in the context of
econometrics.

13See Gillen (2010) and An (2017) for an application of level-k models to observational data from first-
price auctions. One of the major distinctions between our model and their level-k models is that we focus
on a set-up of a single large game populated by many players occupying strategically heterogenous posi-
tions, whereas their research centers on a set-up where the econometrician observes the same game played
by a fixed number of agents many times.
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It is worth noting that the unique best response in Theorem 2.1 always exists regard-
less of the configurations of the payoff graph Gp. (Indeed, we always have np (i) — B%Xi >
0 aslongas By € (—1,1). See Lemma A.1 in the Online Supplemental Material.) Further-
more, the best responses have several intuitive features. First, note that the behavioral
strategies sl[.O] (Z;0) maintain strategic interactions to be local around each player’s Gp-
neighbors, regardless of the magnitude of By, so that a player can have a strong inter-
action with his G p-neighbors without being influenced by a change in the type of a far-
away player.!4

Second, the best response captures the network externality in an intuitive way. The
quantity ¢;; measures the proportion of player i’s G p-neighbors whose payoffs are influ-
enced by the type and action of player ;. Hence if ¢;; < cj, player k is “strategically more
important” to player i than player ;. Note that A; is an increasing function of ¢; with its
slope increasing in 8. We take A;; to represent the strategic local centrality of player j to
player i. Then we have

0] 'Y
i L) L By ‘_ and

ot np(i) — BoAi

N . (2.8)
25100 (7. v A

i o) _ Po f’(l fBO ’2_), for j e Np(i),

aTj np(i) np(i) — ByAi

both of which measure the response of actions of agent i to a change in the observed
type change of his own and his G p-neighbors. The second quantity captures the network
externality in the strategic interactions.

The network externality for agent i from a particular agent j decreases in np(i) and
increases in By. More importantly, the network externality from one player to another is
heterogeneous, depending on each player’s “importance” to others in the payoff graph.
This is seen from the network externality (2.8) being an increasing function of agent j’s
local centrality to agent i, that is, A;;, when the game is that of strategic complements
(i.e., Bop > 0). In other words, the larger the fraction of agent i’s Gp-neighbors whose
payoff is affected by agent j’s action, the higher the network externality of agent i from
agent j’s type change becomes.

It is interesting to note that the network externality for agent i with respect to his
own type 7; is greater than 1. We call the additive term in (2.8),

BEA;
np(i) — BAA;

the reflection effect which captures the way player i’s type affects his own action through
his Gp neighbors whose payoffs are affected by player i’s types and actions. The reflec-
tion effect arises because each agent, in decision making, considers the fact that his type
affects other Gp-neighbors’ decision making. When there is no payoff externality (i.e.,

14This prediction is in contrast with that from the equilibrium strategies of a complete information ver-
sion of the game. According to the equilibrium strategies, the influence of one player can reach a far-away
player when By is high; see Section 2.4.
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Bo = 0), the reflection effect is zero. However, when there is a strong strategic interac-
tions or when a majority of player i’s Gp-neighbors have a small Gp-neighborhood (i.e.,
for a majority of j € Np(i), Np(j)’s in the definition of ¢;; in (2.7) have few elements), the
reflection effect is large.

When Gp consists of disconnected complete subgraphs as in (2.3.1), the best re-
sponses sl[m coincide with Bayesian—Nash equilibrium strategies. More specifically, let
sBNE(Z; o) be the Bayesian-Nash equilibrium strategies which satisfy (2.4). Then we can

show that

B
ST ) = PO S e (2.9)
P jeNp(i
where
2
wBNE =1 1 Py and
" (np (i) + Bo)(1 = Bo)
BNE _ Po fori #j.

Vi = (np(i) + Bo)(1 — Bo)’

In this case with disconnected complete subgraphs, np(i)’s are all equal for i’s in the
same cluster, and ¢;; = (np(i) — 1)/np(i), yielding

N — np(i)
Y7 np(i) — Bo(np(i) — 1)

Using this, it is not hard to check that

, foralljeNp(i).

0] _

[0] _ . BNE
w ij =w

BNE
i = Wi '

and w i

(See the Online Supplemental Material for the derivations.)
The following theorem shows that each I, yields a unique, explicit form of best re-
sponses.

THEOREM 2.2. Suppose that Assumptions 2.1-2.2 hold and for each i € N and k # i,
E[nk|Zim] = 0 for m > 1. Then each player i’s best response s?% from game I, takes the
form sBR = s\ with

STy =wiri+ Y wifn

4 14
jGNP,erl (l)

where

[m] _ ﬂ [m—1]
w; =1+ e Z wy; and
keNp(i)

uf = PO S e N o).
e N
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As compared to game [, game [ predicts outcomes with broader network exter-
nality. Indeed, when m =1,

" )_<1+nﬁ(1) 2 wg)”

keNp(i)

t 2 (p() > {JENP(")})THW 2.10)

JENp (i) keNp(i)

For example, the types of neighbors whose actions do not affect player i’s payoff can
affect his best response. More specifically, note that for j € Np »(i) \ Np(i),

(1]~
dsi (L) _ 30. Z {]ENP(k)}wk]

a7 np(i) keNn (i)

The externality from player j to player i is strong when player j has a high local centrality
Akj to alarge fraction of player i’s Gp-neighbors k.

2.4 Comparing equilibrium strategies and behavioral strategies

2.4.1 Convergence of behavioral strategies to equilibrium strategies We show that as the
information set expands and the order of sophistication becomes higher, the behavioral
strategies converge to the equilibrium strategies from a game where all players observe
all other players’ sharable types. Let I, be the game where players have the same pay-
off function and the same payoff graph as in I except that the information set for each
player i is given by Z; oo = (Gp, 7, 1;). Thus each player i knows the whole payoff graph
Gp, all sharable types, 7 = (7;);en, and private information 7;. (This information struc-
ture is similar to Blume et al. (2015).) Let sBN€ = (sBNE), .y be the Bayesian-Nash equilib-
rium strategy profile from the game .

Below, we give a theorem which shows that the sequence of behavioral strategies sl[
converges to the equilibrium strategies s?NF as m — oo.

m]

THEOREM 2.3. Suppose that the conditions of Theorem 2.1 hold and that

maxE[||7;]1%] < cc. (2.11)
ieN

Then, as m — oo,

E[max( (T m) — SBVE(T00))) ] 0.
ieN

Theorem 2.3 shows that as the order of sophistication deepens, the best response
strategies from the behavioral model become closer to the equilibrium strategies. It is
not hard to check that sl[.m] Zim) = sl[m] (Zi ), that is, the best response remains the same
if we expand the information set Z; ,, to Z; . Therefore, the convergence in Theorem 2.3
can be viewed as the convergence of the best responses s (I, o) to equilibrium strate-
gies s®NE(Z; ) while the information set is fixed to be I,,oo



932 Canen, Schwartz, and Song Quantitative Economics 11 (2020)

2.4.2 Comparison in terms of network externality 'We compare the behavioral strate-
gies and equilibrium strategies in terms of network externality which measures how
sensitively an agent’s action responds to a change in her neighbor’s types. We also com-
pare how this network externality changes as the network grows. Let Y; be the observed
outcome of player i as predicted from either of the two game models. For simplicity, we
remove 7;’s from the models so that the game I, now becomes a complete information
game.

The complete information game gives the following prediction for action Y; of
agent i:

Z Y+,

”P(l) NG

where Y; denotes the action of player i in equilibrium. Then the reduced form for Y;’s
can be written as

y=I—-BoA) s, 2.12)
where y = (Yy,...,Y,), 7=(71,..., ™), and A4 is a row-normalized adjacency matrix
of the payoff graph Gp, that is, the (i, j)-th entry of A4 is 1/np(i) if j € Np(i) and zero
otherwise. Thus when B is close to one (i.e., the local interaction becomes strong), the

equilibrium outcome can exhibit extensive cross-sectional dependence.
On the other hand, our behavioral model predicts the following:

Bii )( BoAij )
Vi=(1+ ——— (=
( +np(i)—[j%)\i it 2 np(i) !

JeNp(D)

which comes from Theorem 2.1 without 7;’s. When we compare this with (2.12), it is
clear that the cross-sectional dependence structure of our behavioral model is different
from that from the complete information equilibrium model. In the case of the com-
plete information equilibrium model, it is possible that two actions Y; and Y; between
two agents i and j can be correlated even if i and j are very far from each other in graph
G p. However, the cross-sectional dependence structure of the actions from the behav-
ioral model closely follows the graph Gp: Y; and Y; can be correlated only if their Gp
neighbors overlap.

For comparison purposes, for a given strategy s;(Z;) for an agent i with information
set Z;, we introduce the average network externality (ANE):

_Z 3 ‘931(1) 2.13)

JEN ieN:i#]

The ANE measures the average impact of a change in the neighbors’ type on the actions
of the player. The ANE from equilibrium strategies of the complete information game is
i Y ien Lieninld — BoA)~11;j, where [(I — BoA)~11;; denotes the (i, j)-th entry of the
matrix (I — BgA) L.

We consider the average of the ANE’s over simulated payoff graphs. For the payoff
graph Gp, we considered two different models for random graph generation. The first
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TaBLE 1. The characteristics of the payoff graphs.

Erdés-Rényi Barabdsi-Albert
Network A Network B Network C Network A Network B Network C
n 164.9 783.4 3116.8 236.1 1521.0 4773.8
dmx 11.14 12.74 14.12 70.00 124.4 135.4
day 2.046 2.307 3.198 1.563 2.057 2.568

Note: This table gives average characteristics of the payoff graphs, G p, used in the simulation study, where the average was
over 50 simulations. day and dmx denote the average and maximum degrees of the payoff graphs.

kind of random graphs are Erdés-Rényi (ER) random graph with the probability equal to
5/n and the second kind of random graphs are Barabdsi-Albert (BA) random graph such
that beginning with an Erdds-Rényi random graph of size 20 with each link forming with
equal probability 1/19 and grows by including each new node with two links formed with
the existing nodes with probability proportional to the degree of the nodes.

For each random graph, we first generate a random graph of size 10,000, and then
construct three subgraphs A4, B, C such that network A4 is a subgraph of network B and
the network B is a subgraph of network C. We generate these subgraphs as follows. First,
we take a subgraph A to be one that consists of agents within distance & from agent i = 1.
Then network B is constructed to be one that consists of the neighbors of the agents in
network 4 and network C is constructed to be one that consists of the neighbors of
the agents in network B. For an ER random graph, we took k =3 and for a BA random
graph, we took k = 2. We repeated the process 50 times to construct an average behavior
of network externality as we increase the network. Table 1 shows the average network
sizes and degree characteristics as we move from Networks A, B to C.

The ANEs from the equilibrium strategies from game I, and the behavioral strate-
gies from games I}, as m becomes higher are shown in Figures 1 and 2.!° First, as m
becomes larger, the ANEs from I, and those from I}, get closer, as predicted by Theo-
rem 2.3. Furthermore, the ANEs from the behavioral model are similar to that from the
equilibrium model especially when B is between —0.5 and 0.5. Finally, the network ex-
ternalities from the games with simple type players are somewhat sensitive to the size of
the networks when B is very high or very low. This sensitivity is reduced substantially
when we consider the game with first-order sophisticated agents. Finally, network exter-
nality tends to be much higher for equilibrium models than the behavioral models when
Bo is high. Hence using our behavioral approach as a proxy for an equilibrium approach
makes sense only when strategic interdependence is not too high.

3. ECONOMETRIC INFERENCE
3.1 General overview

3.1.1 Partial observation of interactions A large network data set is often obtained
through a nonrandom sampling process (see, e.g., Kolaczyk (2009)). The actual sampling

15We provide conditions for the local identification of 8 in Section 3.1.3 below.
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Ficure 1. The average network externality comparison between equilibrium and behavioral
models: Erd6s—-Rényi graphs.

process of network data is often unknown to the researcher. Our approach of empirical
modeling can be useful in a situation where only a fraction of the players are observed
through a certain nonrandom sampling scheme that is not precisely known to the re-
searcher. In this section, we make explicit the data requirements for the econometrician
and propose inference procedures. We mainly focus on the game where all the players in
the game are of simple type. The inference for games with agents of first-order sophisti-
cated type is found in the replication file of Canen, Schwartz, and Song (2020).

Suppose that the original game of interactions consists of a large number of agents
whose set we denote by N. Let the set of players be on a payoff graph Gp and an informa-
tion graph Gy, facing the strategic environment as described in the preceding section.
Denote the best response as an observed dependent variable Y;: fori e N,

Yi=s"U(T0),
where the sharable type 7; is specified as
i =X[po+ &, (3.1

and X; is a d-dimensional vector of covariates pertaining to agent i observed by the
econometrician, py € R? is a coefficient vector, and ¢; is unobserved heterogeneity.
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FiGure 2. The average network externality comparison between equilibrium and behavioral
models: Barabdsi—Albert graphs.

The covariate X; can contain Gp-neighborhood averages of individual covariates. Let
us make the following additional assumption on this original large game. Let us first
define

F=0X,Gp,Gp)VC,

that is, the o-field generated by X = (X;);en, Gp, Gy and C is a given common shock
which is to be explained below.

AssumptTiON 3.1. (i) g;'sand n;’s are conditionally i.i.d. across i’s given F.
(i) {&;}}_, and {n;}!_, are conditionally independent given F.
(iii) Foreachie N, E[g;|F]1=0andE[7n;|F]=0.

Condition (i) excludes preexisting cross-sectional dependence of unobserved het-
erogeneity in the payoffs once conditioned in F. This condition implies that conditional
on F, the cross-sectional dependence of observed actions is due solely to the informa-
tion sharing among the agents. Condition (ii) requires that conditional on F, the un-
observed payoff heterogeneities observed by other players and those that are private
are independent. Condition (iii) excludes endogenous formation of Gp or Gy, because
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the condition requires that the unobserved type components ¢; and 7; be condition-
ally mean independent of these graphs, given X = (X;);cny and C. However, the condi-
tion does not exclude the possibility that Gp and G; are exogenously formed based on
(X, C). For example, suppose that ij € Ep if and only if

fij(Xi, Xj,a;,aj, u;) >0,

where a; represents degree heterogeneity, u;;’s errors, and f;; a given nonstochastic func-
tion. In this set-up, the econometrician does not observe a;’s or u;;’s. This nests the
dyadic regression model of Graham (2017) as a special case. Condition (iii) accommo-
dates such a set-up, as long as {a;}_; and {Mij}ff j—1 are conditionally independent of
{ei}’_, and {n;}]_, given X. One simply has to take C to contain a;’s and u;;’s.

The econometrician observes only a subset N* C N of agents and part of Gp through
a potentially stochastic sampling process of unknown form. We assume for simplicity
that n* = |N*| is nonstochastic. This assumption is satisfied, for example, if one collects
the data for agents with predetermined sample size n*. We assume that though being
a small fraction of N, the set N* is still a large set justifying our asymptotic framework
that sends »n* to infinity. Most importantly, constituting only a small fraction of N, the
observed sample N* of agents induces a payoff subgraph which one has no reason to
view as “approximating” or “similar to” the original payoff graph G p. Let us make precise
the data requirements.

ConbpitionN A. The stochastic elements of the sampling process are conditionally inde-
pendent of {(7;, n;)'}icn given F.

ConbiTIOoN B. Foreachi e N*, the econometrician observes Np(i) and (Y;, X;), and for
each j e Np(i), the econometrician observes |[Np(i) N Np(j)|, np(j) and X;.

Conpition C. Either of the following two conditions is satisfied:

(@) Fori, je N*suchthati# j, Np(i) N Np(j) =0.

(b) For each agent i € N*, and for any agent j € N* such that Np(i) N Np(j) # @, the
econometrician observes Y;, [INp(j) N Np(k)|, np(k) and X} for all k € Np(j).

Before we discuss the conditions, it is worth noting that these conditions are trivially
satisfied when we observe the full payoff graph Gp and N* = N. Condition A is satis-
fied, for example, if the sampling process is based on observed characteristics X and
some characteristics of the strategic environment that is commonly observed by all the
players. This condition is violated if the sampling is based on the outcomes Y;’s or un-
observed payoff-relevant signals such as ¢; or n;. Condition B essentially requires that in
the data set, we observe (Y;, X;) of many agents i, and for each Gp-neighbor j of agent
i, observe the number of the agents who are common Gp-neighbors of i and j and the
size of Gp-neighborhood of j along with the observed characteristics X ;.16 As for a Gp-

16Note that this condition is violated when the neighborhoods are top-coded in practice. For example,
the maximum number of friends in the survey for a peer effects study can be set to be lower than the actual
number of friends for many students. The impact of this top-coding upon the inference procedure is an
interesting question on its own which deserves exploration in a separate paper.
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neighbor j of agent i € N*, this condition does not require that the agent j’s action Y; or
the full set of his Gp-neighbors are observed. Condition C(a) is typically satisfied when
an initial sample of agents is randomly selected from a much larger set of agents so that
no two agents have overlapping G p-neighbors in the sample, and then their Gp neigh-
bors are selected for each agent in the sample to constitute N*.!” In practice for use in
inference, one can take the set N* to include only those agents that satisfy Conditions
A—C as long as N* thereof is still large and the selection is based only on (X, Gp). One
can simply use only those agents whose G p-neighborhoods are not overlapping, as long
as there are many such agents in the data.

3.1.2 Moment conditions In order to introduce inference procedures for 8y and other
payoff parameters, let us define fori e N,

27,
Z,‘:(l-l-L)(Xi"‘ﬂ Z /\inj)- 3.2)

np(i) — BEA; np(D) S

(Note that Z; relies on B although it is suppressed from notation for simplicity as we do
frequently below for other quantities.) By Theorem 2.1 and (3.1), we can write

Y =Zpo+vi, (3.3)

where

- B . _Bo o _
v = (1 + 7> (s, + e > /\l,a,> + ;.

. o~
nP(l) _BO)\i jeNp(i)

Note that the observed actions Y; are cross-sectionally dependent (conditional on F)
due to information sharing on unobservables &;.

Suppose that ¢; is M x 1 vector of instrumental variables (which potentially depend
on Bg) with M > d such that foralli e N,

Elv;p;] =0. (3.4)

Note that the orthogonality condition above holds for any ¢; as long as for each i e N,
¢; is F-measurable, that is, once F is realized, there is no extra randomness in ¢;. This
is the case, for example, when ¢; is a function of X = (X;),cny and Gp.

While the asymptotic validity of our inference procedure admits a wide range of
choices for ¢;’s, one needs to choose them with care to obtain sharp inference on the
payoff parameters. Especially, it is important to consider instrumental variables which
involve the characteristics of G p-neighbors to obtain sharp inference on payoff external-
ity parameter By. This is because the cross-sectional dependence of observations carries
substantial information for strategic interdependence among agents.

17This random selection does not need to be a random sampling from the population of agents. Note
that the random sampling is extremely hard to implement in practice in this situation, because one needs
to use the equal probability for selecting each agent into the collection N*, but this equal probability will
be feasible only when one has at least the catalog of the entire population N.
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3.1.3 Local identification It is not hard to see that under regularity conditions (such
as those preventing multicollinearity in Z;), pg is identified up to By.'® However, the
moment function in (3.4) is nonlinear in B, and hence even local identification of B is
not guaranteed unless we impose further assumptions. Here we provide conditions for
local identification, but for inference we propose later, we pursue asymptotically valid
inference allowing the parameters to be only partially identified.

Let 6 = [B, p']" and write v;(0) = Y; — Z/(B)p, where Z;(B) is the same as Z; except
that By is replaced by B. Let @ be the parameter space for 6.

AssumPTION 3.2. (i) Foralli=1,...,n, ¢; does not depend on 0 € O, and the parameter
space O is compact, and B € [—1 + v, 1 —v] for all B such that [B, p'] € O, for some small
v>0.

(i) There exists C > 0 such that foralln > 1,

—ZE[II Xinl*+ () > ||X-,1||4]Gp}+%ZE[||¢,-||“|GP]<C
i=1

JENp(i)

(iii) There exists c > 0 such that the minimum eigenvalue of the matrix

Z( ZH, m<0o>> <% ;‘Hi,mwo))

m=1

is bounded from below by c for all n > 2, where

T fovorsaB
Ht,m(e) =E |:|:( _Zi(ﬁ) >§Dz,m:| ‘GP:| >

and ¢; p, is the mth entry of ¢;.

(iv) max;en n%)(i)/\/ﬁ — 0,asn— oo.

Assumption 3.2(i) in regards to ¢; simplifies the identification arguments and is sat-
isfied when the “instruments” ¢; consist only of observed variables. Assumption 3.2(ii) is
amoment condition for the covariates. Assumption 3.2(iii) is a nontrivial condition and
is violated if the parameter space for pg includes zero, because we have dv;(8,0)/JB8 = 0.
Thus this assumption requires the researcher to know that the true parameter p is away
from zero. Assumption 3.2(iv) is a mild condition that requires that the payoff graph Gp
is not overly dense.

Under this assumption, in combination with the conditions of Theorem 2.1, we can
show that 6y is locally identified (i.e., consistently estimable over a neighborhood of 6y.)

18A standard identification analysis centers on a “representative probability” from which we observei.i.d.
draws. A parameter is identified if it is uniquely determined under each representative probability. However,
in our set-up, there is no such probability, as all observations exhibit heterogeneity and local dependence
along a large, complex network. Here, “identification” simply means “consistent estimability” and “local
identification” means “consistent estimability around a neighborhood of the true parameter.”
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THEOREM 3.1. Suppose that Assumption 3.2 and the conditions of Theorem 2.1 hold.
Then there exists ¢ > 0 such that if ® = B(6y; €), 6y is consistently estimable, where
B(6y; ¢) is the s-neighborhood of 6y and B(6y; ¢) is its closure.

Since consistent estimability of 6, requires that py be away from zero, it is expected
that as pg gets close to zero, By is only “weakly (locally) identified.” As a researcher is
rarely a priori certain that pg is away from zero, we pursue inference that does not re-
quire this.

3.1.4 Estimation and inference We first estimate py assuming knowledge of 3. Define
See=¢'@/n*, and ¢=¢S,)?,

where ¢ is an n* x M matrix whose i-th row is given by ¢’, i € N*. Define

1 ~ o~
A= p E E E[vivj| Flei¢;, (3.5)
ieN* jeN*

where ¢; represents the transpose of the ith row of , and let A be a consistent estimator
of A. (We will explain how we construct this estimator in Section 3.1.7 below.) Define

Sz¢=Z/(ﬁ/n*, and S¢y=§5/y/fl*,

where Z is an n* x d matrix whose ith row is given by Z’ and y is an n* x 1 vector whose
ith entry is given by Y;, i € N*. Then we estimate

R a -1 a
P = [SZ@,A 1S/Z¢:| Szgz,A 1S¢y. (3.6)

Using this estimator, we construct a vector of residuals v = [9;];e N+, Where
=Y —Zp. 3.7

Finally, we form a profiled test statistic as follows:

T(Bo)=—"—7F> (3.8)
making it explicit that the test statistic depends on By. Later we show that
T(BO) —d X?\/[fda as n* — 00,

where )(]2\,[_ ; denotes the x? distribution with degree of freedom M — d. Let Clﬁ_a be the
(1 — «)100% confidence set for By defined as

P ={Be(-1,1):T(B) <cia},

where T'(B) is computed as T'(B¢) with By replaced by B8 and the critical value ¢;_,, is the
(1 — a)-quantile of x3, .
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Let us now construct a confidence set for py. First, we establish that under regularity

conditions
VT2 — pg) =4 N(O, 1),
as n* — oo, where
A 1ar -1
=[SzsA7'S,:] -
(See Section 3.2 below for conditions and formal results.) Using this estimator p, we can
construct a (1 — «)100% confidence interval for a’pg for any nonzero vector a. For this,
define
52(a)=dVa.

Let z1_(q/4) be the (1 — (a/4))-percentile of N (0, 1). Define for a vector a with the same
dimension as p,

Z1—(ay4)0 (@) dpt Zl—(a/4)a'(a)i|'

noo Vn

Then the confidence set for a'p is given by!®

p_a(a) = U Cf_(a/z)(ﬁa a).

B
BeCT_ (a2

Cl_ a2y (B0, @) = [a’ﬁ -

Notice that since B8 runs in (—1, 1) and the estimator p has an explicit form, the confi-
dence interval is not computationally costly to construct in general.

Often the eventual parameter of interest is one that captures how strongly the
agents’s decisions are interdependent through the network For this, we can use the av-
erage network externality (ANE) introduced in (2.13). Let s (I, 0) be the best response
of agent / having information set Z;. Then the ANE with respect to X; , (where X; , rep-
resents the rth entry of X;) is given by 60;(By, po,-), where

[0]
(I a8 (Zio)
61(Bo, po,r) = Z Z .
ieN* jeNp(i)
:80)\11 B%XZ
=% Z Z (i) . o~ | PO.rs
ZEN*]ENP(l) np n'P(l) - BOAi

and po, denotes the rth entry of pj. See (2.8). Thus the confidence interval for
61(Bo, po,,) can be constructed from the confidence interval for 8y and py as follows:

Clly={01(B,pr): BeCl ), andp, eCl” o}, (3.9

9Instead of the Bonferroni approach here, one could consider a profiling approach where one uses
T(p) =supg T(B, p) as the test statistic, where T(B, p) is the test statistic constructed using p in place of p.
The profiling approach is cumbersome to use here because one needs to simulate the limiting distribution
of T'(p) for each p, which can be computationally complex when the dimension of p is large. Instead, this
paper’s Bonferroni approach is simple to use because B takes values from (-1, 1).
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where Cf_a P and Cf:a ” denote the (1 — a/2)100% confidence intervals for By and po ,,

respectively.

3.1.5 Downweighting players with high degree centrality When there are players who
are linked to many other players in Gp, the graph Gp tends to be denser, and it becomes
difficult to obtain good variance estimators that perform stably in finite samples. (In
particular, obtaining an estimator of A in (3.5) which performs well in finite samples
can be difficult.) To remedy this situation, this paper proposes a downweighting of those
players with high degree centrality in Gp. More specifically, in choosing an instrument
vector ¢;, we may consider the following:

1
¢ei(X) = —=gi(X), (3.10)

vnp(i)

where g;(X) is a function of X . This choice of ¢; downweights players i who have a large
Gp-neighborhood. Thus we rely less on the variations of the characteristics of those
players who have many neighbors in Gp.

Downweighting agents too heavily may hurt the power of inference because the ac-
tions of agents with high centrality contain information about the parameter of interest
through the moment restrictions. On the other hand, downweighting them too lightly
may hurt the finite sample stability of inference due to strong cross-sectional depen-
dence they cause to the observations. Since a model with agents of higher-order sophis-
ticated type results in observations with more extensive cross-sectional dependence, the
role of downweighting can be important for finite sample stability of inference in such a
model.

3.1.6 Comparison with linear-in-means models Let us compare our model with a
linear-in-means model used in the literature, which is specified as follows:

YiZX,{71')’O+Y;,250+BOM?(?i)+Ui, (3.11)

where u¢(Y;) denotes the player i's expectation of Y;, and

_ 1
Y Y and Xip=1" Y X
JjeNp(i) PR jeNp(i

= 1
Y

)

The literature assumes rational expectations by equating ,uf(?i) to E[Y;|Z;], and then
proceeds to identification analysis of parameters vy, 6y and 3. For actual inference, one
needs to use an estimated version of E[Y;|Z;]. One standard way in the literature is to
replace it by Y; so that we have

_ _
Yi=X[ 170+ X280+ BoYi+ i,

where 7; is an error term defined as ¥; = Bo(E[Y;|Z;] — Y;) + v;. The complexity arises



942 Canen, Schwartz, and Song Quantitative Economics 11 (2020)

due to the presence of Y; which is an endogenous variable that is involved in the error
term 9,.2°

As for dealing with endogeneity, there are two kinds of instrumental variables pro-
posed in the literature. The first kind is a peers-of-peers type instrumental variable
which is based on the observed characteristics of the neighbors of the neighbors. This
strategy was proposed by Kelejian and Robinson (1993), Bramoullé, Djebbari, and Fortin
(2009) and De Giorgi, Pellizzari, and Redaelli (2010). The second kind of an instrumental
variable is based on observed characteristics excluded from the group characteristics as
instrumental variables. (See Brock and Durlauf (2001) and Durlauf and Tanaka (2008).)
However, finding such an instrumental variable in practice is not always a straightfor-
ward task in empirical research.

Our approach of empirical modeling is different in several aspects. Our modeling
uses behavioral assumptions instead of rational expectations, and produces a reduced
form for observed actions Y; from using best responses. This reduced form gives a rich
set of testable implications and makes explicit the source of cross-sectional dependence
in relation to the payoff graph. Our inference approach permits any nontrivial func-
tions of F to serve as instrumental variables. Furthermore, one does not need to observe
many independent interactions for inference.

3.1.7 Estimation of asymptotic covariance matrix One needs to find estimators A and
V' to perform inference. First, let us find an expression for their population versions.
After some algebra, it is not hard to see that the population version (conditional on F)
of V is given by

V=[Sz5A7"8,,] 7" (3.12)

For estimation, it suffices to estimate A defined in (3.5). For this, we need to incor-
porate the cross-sectional dependence of the residuals v; properly. From the definition
of v;, it turns out that v; and v; can be correlated if i and j are connected indirectly
through two edges in Gp. One may construct an estimator of A that is similar to the HAC
(Heteroskedasticity and Autocorrelation Consistent) estimator, simply by imposing the
dependence structure and replacing v; by v;. However, this standard method can lead
to conservative inference with unstable finite sample properties, especially when each
player has many players connected through two edges. Instead, this paper proposes an
alternative estimator of A as follows. (See the Online Supplemental Material for more
explanations for this estimator.)

Fixing a value for B, we first obtain a first-step estimator of p as follows:

- -1

pP= [SZ‘,E /Z(Z’] Sz¢S¢y. (3.13)
(Compare this with (3.6).) Using this estimator, we construct a vector of residuals v =
[Vilien+, Where

=Y — Z)p. (3.14)

20A similar observation applies in the case of a complete information version of the model, where one
directly uses Y; in place of u{ (Y;) in (3.11). Still due to simultaneity of the equations, Y; necessarily involve
error terms v; not only of agent i’s own but other agents’ as well.
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Then we define

n 1 =2~ ~
A= P Z U;@;@;, and
ieN*
o K .
Ay = n—i > > Qe,ij i %

IEN* JeN* :Np())NNp(j)#9

where
2 2. iy
5, = ieN* jeNp(i))NN* ’ (3.15)
2 D 4y
ieN* jeNp(i)NN*
and
qg,-.:wLOJwLQJ<Aji1{i€NP(j)}+Aij1{j€N”(")}+ Po > A“‘”)'
j i Wjj np(j) np(i) np(H)np(j) !

keNp(HNNp())

(Note that the quantity g ;; can be evaluated once B is fixed.) We construct an estimator
of A as follows:?!

A= /il + /12.
Using A, we take the estimator for the covariance matrix I to be??
A ~ _1 _1
V =[SzsA Slz&] . (3.16)
3.2 Asymptotic theory
In this section, we present the assumptions and formal results of asymptotic inference.

We introduce some technical conditions.

AssumpTION 3.3. There exists ¢ > 0 such that for all n* > 1, Apin(See) > ¢,
Amin(S26S7%5) = ¢ Amin(SzgA ™S 2) = ¢, Amin(A) = ¢, 0 > 0, and

1 1
F Z Z /\ij >C,
ieN*

np (D) JeNp(DHNN*

where Ayin (A) for a symmetric matrix A denotes the minimum eigenvalue of A.

2lUnder Condition C(a) for sample N*, we have A, = 0 because the second sum in the expression for A,
is empty. Hence in this case, we can simply set Ay =0.

22Tn finite samples, I is not guaranteed to be positive definite. We can modify the estimator by using
spectral decomposition similarly as in Cameron, Gelbach, and Miller (2011). More specifically, we first take
a spectral decomposition V = BAB’, where A is a diagonal matrix of eigenvalues a ; of V. We replace each
a; by the maximum between a; and some small number ¢ > 0 in A to construct 121*. Then the modified
version V = BA,B is positive definite. For ¢ > 0, one may take ¢ = 0.005. In our simulation studies, this
modification does not make much difference after all.
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AssuMPTION 3.4. There exists a constant C > 0 such that for all n* > 1,

max || X; | + max||¢;[| < C
ieN° ieN°
and E[&}|F]+ E[n#|F] < C, where n° = N°| and

N°= [ Np(@).

ieN*

Assumption 3.3 is used to ensure that the asymptotic distribution is nondegener-
ate. This regularity condition is reasonable, because an asymptotic scheme that gives a
degenerate distribution would not be adequate for approximating a finite sample, non-
degenerate distribution of an estimator. Assumption 3.4 can be weakened at the expense
of added complexity in the conditions and the proofs.

We introduce an assumption which requires the payoff graph to have a bounded
degree over i in the observed sample N*.

AssumpPTION 3.5. There exists C > 0 such that for all n* > 1,

maX|Np(i)| <C.
ieN*

We may relax the assumption to a weaker, yet more complex condition at the ex-
pense of longer proofs, but in our view, this relaxation does not give additional insights.
When N* is large, one can remove very high-degree nodes to obtain stable inference. As
such removal is solely based on the payoff graph Gp, the removal does not lead to any
violation of the conditions in the paper.

The following theorem establishes the asymptotic validity of inference based on the
best responses in Theorem 2.1, without using Assumption 3.2, that is, without requiring
local identification of 6.

THEOREM 3.2. Suppose that the conditions of Theorem 2.1 and Assumptions 3.1-3.5
hold. Then

T(Bo) »axi g and VY0¥ (p—pg) —a N, 1),

as n* — oo.

The theorem yields that the confidence sets for B¢ and pg that we proposed earlier
are asymptotically valid. The proof is found in the Online Supplemental Material. At the
center of the asymptotic derivation is noting first that v;’s have a conditional depenency
graph in the sense that two sets (vj) ;e 4 and (v;)ep with Gp neighborhoods of 4 and B
nonoverlapping are conditionally independent given F) and then applying the central
limit theorem for a sum of random variables that has a sparse conditional dependency
graph. For the proof, we use a version of such a central limit theorem in Penrose (2003).
The sparsity of such a graph is ensured by the bounded degree assumption (3.5). (Note
that we can relax this assumption by letting the maximum degree increase slowly with
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n, but as mentioned before, this relaxation does not add additional insights only length-
ening the mathematical proofs.) The local dependence structure coming from the con-
ditional dependency graph affects our inference through the estimated variance via the
way A is constructed. If the payoff graph Gp is not sparse enough, the asymptotic ap-
proximation in Theorem 3.2 may perform poorly in finite samples.

4. AMONTE CARLO SIMULATION STUDY
4.1 Simulation design

In this section, we investigate the finite sample properties of the asymptotic inference
across various configurations of the payoff graph, Gp. (We present Monte Carlo sim-
ulation results for the game with the first-order sophisticated types in the replication
file (Canen, Schwartz, and Song (2020).) The payoff graphs are generated according to
two models of random graph formation, which we call Specifications 1 and 2. Specifica-
tion 1 uses the Barabdsi-Albert model of preferential attachment, with m representing
the number of edges each new node forms with existing nodes. The number m is chosen
from {1, 2, 3}. Specification 2 is the Erd6s—Rényi random graph with probability p = A/n,
where A is also chosen from {1, 2, 3}.23 In Table 2, we report degree characteristics of the
payoff graphs used in the simulation study.
For the simulations, we set the following:

i =Xipo + &,

where pg = (2,4,1,3,4) and X; = (X;1, X;2), and

— 1
Xin=- A > X
PR jenp(iy

We generate Y; from the best response function in Theorem 2.1 (or as in (3.3)). We set
and a to be a column of ones so that a’py = 14. The variables ¢ and 7 are drawn i.i.d. from
N (0, 1). The first column of X;; is a column of ones, while remaining columns of X
are drawn independently from N (1, 1). The columns of X;, are drawn independently
from N(3, 1).

For instruments, we use downweighting (3.10) as follows:

1
0i(X) = —=gi(X),

vnp(i)
where
=, 2 2 3 v
g§i(X)=[Zi1, X1, X2 X:a] s
23Note that in Specification 1, the Barabdsi-Albert graph is generated with an Erdés-Rényi seed graph,

where the number of nodes in the seed is set to equal the smallest integer above 5./a. All graphs in the
simulation study are undirected.



946 Canen, Schwartz, and Song Quantitative Economics 11 (2020)

TaBLE 2. The average and maximum degrees of graphs in the simulations.

Specification 1 Specification 2
n m=1 m=2 m=3 A=1 A=2 A=3
500 dmx 17 21 30 5 8 11
day 1.7600 3.2980 4.8340 0.9520 1.9360 2.9600
1000 dmx 18 29 34 6 7 9
day 1.8460 3.5240 5.2050 0.9960 1.9620 3.0020
5000 dmx 32 78 70 7 10 11
day 1.9308 3.7884 5.6466 0.9904 2.0032 3.0228

Note: This table gives characteristics of the payoff graphs, Gp, used in the simulation study. day and dmx represent the
average and maximum degrees of the networks respectively; that is, day = - Z;eN np (i) and dmyx = max;epn np(i).

where we define

Zi D NX
np(l) JeNt)

While the instruments X?, X: i X, ;.2 capture the nonlinear impact of X;’s, the instru-

ment Zi,l captures the cross-sectlonal dependence along the payoff graph. The use of
this instrumental variable is crucial in obtaining a sharp inference for 8. Note that since
we have already concentrated out pg in forming the moment conditions, we cannot use
linear combinations of X, ; and X, as our instrumental variables. The nominal size in
all the experiments is set at & = 0.05. The Monte Carlo simulation number is set to 5000.

4.2 Results

The finite sample performance of the asymptotic inference is shown in Tables 3 and 4.
Overall, the simulation results illustrate good power and size properties for the asymp-
totic inference on By and a’py.

As for the size properties, the coverage probabilities of confidence intervals for B,
are close to 95% nominal level, as shown in Table 3. The size properties are already good
with n = 500, and thus, show little improvement as n increase to 5000. The coverage
probabilities of confidence intervals for a’py (as shown in Table 4) are a little conser-
vative. This conservativeness is expected, given the fact that the interval is constructed
using a Bonferroni approach. The conservativeness is alleviated as we increase the sam-
ple size.

As for the power properties, we consider the average length of the confidence inter-
vals. The confidence intervals for By are very short, with average length around 0.1-0.2
when n = 500 and 0-0.03 when n = 5000. As for a'pg, the average length of the confi-
dence intervals is around 2-17 when n = 500 and 0.4-2.5 when n = 5000. Since a’py = 14,
the average length shows good power properties of the inference.
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TaBLE 3. The empirical coverage probability and average length of confidence intervals for g
at 95% nominal level.

Specification 1 Specification 2
Bo m=1 m=2 m=3 A=1 A=2 A=3
Coverage Probability
n = 3500 0.9642 0.9580 0.9648 0.9686 0.9638 0.9622
-0.5 n=1000 0.9638 0.9634 0.9574 0.9650 0.9644 0.9604
n=5000 0.9596 0.9560 0.9530 0.9704 0.9608 0.9596
n=>500 0.9540 0.9536 0.9612 0.9608 0.9546 0.9568
-0.3 n=1000 0.9566 0.9568 0.9566 0.9564 0.9578 0.9548
n=5000 0.9534 0.9548 0.9542 0.9636 0.9568 0.9546
n=>500 0.9504 0.9464 0.9554 0.9474 0.9478 0.9490
0 n=1000 0.9486 0.9508 0.9514 0.9498 0.9510 0.9526
n = 35000 0.9440 0.9490 0.9546 0.9516 0.9482 0.9478
n=>500 0.9548 0.9512 0.9584 0.9562 0.9552 0.9556
0.3 n=1000 0.9600 0.9558 0.9524 0.9598 0.9592 0.9590
n = 15000 0.9524 0.9536 0.9574 0.9604 0.9544 0.9522
n=>500 0.9648 0.9574 0.9618 0.9640 0.9610 0.9620
0.5 n=1000 0.9630 0.9604 0.9534 0.9710 0.9648 0.9634
n = 15000 0.9564 0.9598 0.9612 0.9700 0.9632 0.9584
Average Length of CI
n=>500 0.0834 0.1307 0.1947 0.1089 0.0751 0.0750
-0.5 n=1000 0.0490 0.0794 0.1038 0.0630 0.0438 0.0463
n =5000 0.0053 0.0203 0.0303 0.0108 0.0026 0.0024
n=>500 0.0799 0.1216 0.1639 0.1083 0.0865 0.0910
-0.3 n=1000 0.0464 0.0758 0.0990 0.0639 0.0519 0.0577
n=5000 0.0034 0.0187 0.0296 0.0116 0.0060 0.0075
n=>500 0.0785 0.1212 0.1572 0.1070 0.0970 0.1087
0 n=1000 0.0452 0.0753 0.0996 0.0638 0.0597 0.0700
n=>5000 0.0024 0.0182 0.0298 0.0113 0.0106 0.0155
n=>500 0.0713 0.1062 0.1384 0.0983 0.0685 0.0676
0.3 n=1000 0.0404 0.0640 0.0872 0.0562 0.0389 0.0412
n = 35000 0.0017 0.0155 0.0262 0.0076 0.0015 0.0013
n=>500 0.0495 0.0738 0.1085 0.0666 0.0289 0.0240
0.5 n=1000 0.0252 0.0337 0.0657 0.0328 0.0089 0.0079
n = 15000 0.0001 0.0055 0.0147 0.0004 0.0000 0.0000

Note: The first-half of the table reports the empirical coverage probability of the asymptotic confidence interval for gy and
the second-half reports its average length. The simulated rejection probability at the true parameter is close to the nominal
size of @ = 0.05 and the average lengths decrease with n. The simulation number is R = 5000.
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TaBLE 4. The empirical coverage probability and average length of confidence intervals for a’p
at 95% nominal level.

Specification 1 Specification 2
Bo m=1 m=2 m=3 A=1 A=2 A=3
Coverage Probability
n =500 0.9848 0.9802 0.9860 0.9862 0.9834 0.9740
-0.5 n=1000 0.9616 0.9610 0.9680 0.9682 0.9670 0.9596
n=15000 0.9596 0.9548 0.9606 0.9706 0.9668 0.9614
n = 3500 0.9802 0.9772 0.9858 0.9832 0.9826 0.9794
-0.3 n=1000 0.9620 0.9756 0.9796 0.9772 0.9682 0.9692
n =5000 0.9544 0.9510 0.9562 0.9588 0.9568 0.9556
n =500 0.9740 0.9754 0.9868 0.9828 0.9792 0.9786
0 n=1000 0.9668 0.9770 0.9798 0.9746 0.9738 0.9756
n =5000 0.9430 0.9500 0.9524 0.9546 0.9496 0.9494
n=>500 0.9804 0.9804 0.9866 0.9810 0.9778 0.9788
0.3 n=1000 0.9698 0.9794 0.9812 0.9816 0.9718 0.9758
n=>5000 0.9476 0.9524 0.9546 0.9572 0.9536 0.9498
n =500 0.9824 0.9828 0.9858 0.9810 0.9722 0.9720
0.5 n=1000 0.9724 0.9786 0.9826 0.9810 0.9596 0.9594
n = 35000 0.9552 0.9536 0.9596 0.9626 0.9596 0.9542
Average Length of CI
n=>500 5.4643 10.2562 17.4488 7.0549 5.6285 6.0639
-0.5 n=1000 3.3501 5.9311 8.1165 4.2270 3.4243 3.8800
n=15000 0.7489 1.8254 2.4970 1.1165 0.6337 0.6588
n=>500 4.2511 6.8326 9.5995 5.6856 4.9154 5.4091
-0.3 n=1000 2.5915 4.3335 5.6775 3.4711 3.0685 3.5331
n =5000 0.5297 1.3514 1.9123 0.9505 0.7346 0.8560
n = 1500 3.5812 5.3587 6.8508 4.7774 4.3760 4.8399
0 n=1000 2.1797 3.4445 4.4160 2.9651 2.7944 3.2136
n =5000 0.4238 1.0993 1.5392 0.8365 0.7964 0.9882
n=>500 3.3664 4.5527 5.7822 4.4438 3.2458 3.1962
0.3 n=1000 2.0559 2.8904 3.6607 2.6872 2.0100 2.1074
n =5000 0.4072 0.9592 1.2989 0.6961 0.4399 0.4713
n =500 3.0230 4.1201 5.8780 3.7624 2.1350 1.9826
0.5 n=1000 1.7684 2.1613 3.4957 2.1027 1.1718 1.2075
n = 35000 0.3576 0.6764 1.0002 0.3995 0.3723 0.4081

Note: The true @’pg is equal to 14. The first-half of the table reports the empirical coverage probability of the asymptotic
confidence interval and the second-half its average length for a’p(. The empirical coverage probability of the confidence in-
terval for a’p) is generally conservative which is expected from the use of the Bonferroni approach. Nevertheless, the length of
the confidence interval is reasonably small. The simulation number, R, is 5000.
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5. EMPIRICAL APPLICATION: STATE PRESENCE ACROSS MUNICIPALITIES
5.1 Motivation and background

State capacity (i.e., the capacity of a country to provide public goods, basic services,
and the rule of law) can be limited for various reasons. (See, e.g., Besley and Persson
(2009) and Gennaioli and Voth (2015)).24 A “weak state” may arise due to political cor-
ruption and clientelism, and result in spending inadequately on public goods (Ace-
moglu (2005)), accommodating armed opponents of the government (Powell (2013)),
and war (McBride, Milante, and Skaperdas (2011)). Empirical evidence has shown how
these weak states can persist from precolonial times, with higher state capacities appar-
ently related to current level prosperity at the ethnic and national levels (Gennaioli and
Rainer (2007) and Michalopoulos and Papaioannou (2013)).

Our empirical application is based on a recent study by Acemoglu, Garcia-Jimeno,
and Robinson (2015) who investigate the local choices of state capacity in Colombia,
using a model of a complete information game on an exogenously formed network. In
their set-up, municipalities choose a level of spending on public goods and state pres-
ence (as measured by either the number of state employees or state agencies). Network
externalities in a municipality’s choice exist because municipalities that are adjacent to
one another can benefit from their neighbors’ choices of public goods provisions, such
as increased security, infrastructure, and bureaucratic connections. Thus, a municipal-
ity’s choice of state capacity can be thought of as a strategic decision on a geographic
network.

It is not obvious that public good provision in one municipality leads to higher
spending on public goods in neighboring municipalities. Some neighbors may free-
ride and underinvest in state presence if they anticipate others will invest highly. Rent-
seeking by municipal politicians would also limit the provision of public goods. On the
other hand, economies of scale could lend to complementarities in state presence across
neighboring municipalities.

In our study, we extend the model in Acemoglu, Garcia-Jimeno, and Robinson (2015)
to an incomplete information game where information may be shared across munic-
ipalities. In particular, we do not assume that all municipalities know and observe all
characteristics and decisions of the others. It seems reasonable that the decisions made
across the country may not be observed or well known by those municipalities that are
geographically remote.

5.2 Empirical set-up

Let y; denote the state capacity in municipality i (as measured by the log number of pub-
lic employees in municipality /) and Gp denote the geographic network, where an edge
is defined on two municipalities that are geographically adjacent.?’> We assume that Gp
is exogenously formed. The degree distribution of G p is shown in Figure 3. We study the

24See also an early work by Brett and Pinkse (2000) for an empirical study on the spatial effects on mu-
nicipal governments’ decisions on business property tax rates.
25This corresponds to the case in of §; = 8, =0 in Acemoglu, Garcfa-Jimeno, and Robinson (2015).
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optimal choice of y;, where y; leads to a larger prosperity p;. Prosperity in municipality i
is modeled as

pi= (/3)71‘+x/1,,-7+ 7]i+3i+9lp))’ia (6.1)

lD is a district specific dummy variable, ¢; and 7; are our sharable and non-

sharable private information, and y; = ﬁ > jeNp(i ¥j- The term x; ; represents mu-
nicipality characteristics. These include geographic characteristics, such as land quality,
altitude, latitude, rainfall; and municipal characteristics, such as distance to highways,
distance to royal roads and Colonial State Presence.?%

The welfare of a municipality is given by

where s

_ 1
ui(yi, Y—i> 7> ni) = pi(Yi, ¥i> 7, Mi) — Ey,-z, (5.2)

where the second term refers to the cost of higher state presence, and the first term is
the prosperity p;.
We can rewrite the welfare of the municipality by substituting (5.1) into (5.2):

_ 1
ui (i, y—i» 7, mi) = (Byi + Xy y+miteit G,D)yi - Eyiz- (56.3)

We assume that municipalities (or the mayor in charge), wishes to maximize welfare by
choosing state presence, given their beliefs about the types of the other municipalities.

26Note that p; is only a function of terms that are multiplied by y;. This is a simplification from their
specification. We do so because we will focus on the best response equation. The best response equation,
derived from the first-order condition to this problem, would not include any term that is not a function of
y; itself.
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In our specification, we allow for incomplete information. This is reflected in the
terms ¢;, n;, which will be present in the best response function. The municipality, when
choosing state presence y;, will be able to observe ¢; of its neighbors and will use its
beliefs over the types of the others to generate its best response. The best response will
follow the results from Theorem 2.1.

5.3 Model specification

We closely follow Table 3 in Acemoglu, Garcia-Jimeno, and Robinson (2015) for the
choice of specifications and variables. First, we will consider the model with simple
types.?”

Throughout the specifications, we include longitude, latitude, surface area, eleva-
tion, annual rainfall, department fixed effects and a department capital dummy (all in
X1). We further consider the effect of variables distance to current highways, land qual-
ity, and presence of rivers in the municipality.

For the choice of instruments, we consider two separate types of instruments. The
first is the sum of neighbor values (across Gp) of the historical variables (denoted as
C;).?8 The historical variables used are Total Crown Employees (also called Colonial
State Officials), Distance to Royal Roads, Colonial State Agencies, and Historical Pop-
ulation, as well as Colonial State Presence Index squared and Distance to Royal Roads
squared. Using the latter two additionally sharpens inference. We also use the variable
Zi=np(i)~! > JeNp () Ajj X1 as part of the instrumental variables, which was shown to
perform well in the Monte Carlo Simulations in Section 4. This variable captures cross
sectional dependence as a crucial source of variation for inference on the strategic inter-
actions. We use downweighting of our instruments as explained in a preceding section
and rescale instruments by multiplying them by S;(},/ 2,

5.4 Results

The results across a range of specifications are presented in Table 5. In these results, we
see that the effect is statistically different than 0 and stable across specifications. It indi-
cates that there is complementarity in the provision of public goods and state presence
(B> 0).

27In the replication file of this paper, we consider the empirical application with first-order sophisticated
types (game I7), as well as the model selection test between simple types and first-order sophisticated
types. Since the simple type model is not rejected in the data and it is more parsimonious, we present it
in the main text. The results for the first-order sophisticated case are more or less similar except that the
confidence intervals of 3¢ are wider. At 5%, the model selection procedure did not reject either of the sets
of the moment conditions from the simple type and the first-order sophisticated players.

Z8For this, we assume the exclusion restriction in Acemoglu, Garcfa-Jimeno, and Robinson (2015),
namely that historical variables only affect prosperity in the same municipality. This means that although
one’s historical variables (Total Crown Employees, Distance to Royal Roads, Colonial State Agencies and
Historical Population, as well as functions thereof) can affect the same municipality’s prosperity, it can
only affect those of the neighbors by impacting the choice of state capacity in the first, which then impacts
the choice of the state capacity in the neighbors.
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TaBLE 5. State presence and networks effects across Colombian municipalities.

Outcome: The Number of State Employees

Baseline  Distance to Highway Land Quality Rivers
(8] 2 3 )]
Bo [0.16,0.31] [0.16,0.32] [0.17,0.39] [0.07,0.38]
dy;/d(Colonial State Officials) [-0.060,0.003] [—0.048,—0.001] [—0.051,0.003] [—0.034, 0.009]

Average dy;/d(Colonial State Agencies) [—1.323, 4.051] [—1.249, 2.793] [—0.972, 3.545] [—4.186, 2.719]
Average dy;/d(distance to Royal Roads) [—0.010, 0.011] [—0.009, 0.011] [—0.008, 0.018] [—0.010, 0.013)
n 1018 1018 1003 1003

Note: Confidence sets for B are presented in the table, obtained from inverting the test statistic 7(3) from Section 3 for
first-order sophisticated types, with confidence level of 95%. The critical values in the first row come from the asymptotic
statistic. Downweighting is used. The average marginal effects for historical variables upon state capacity are also shown. The
marginal effect of Colonial State Officials is equal to its y coefficient. The marginal effect for Distance to Royal Roads for mu-
nicipality i equals yrgyal Roads + 2 * YRoyal Roads? (Royal Roads);, where yRoyal Roads 18 the v coefficient of its linear term, and

YRoyal Roads? is the coefficient of its quadratic term, as this variable enters X as a quadratic form. The analogous expression

holds for the variable Colonial State Agencies. We show the average marginal effect for these two variables. We then present
the confidence set for these marginal effects, computed by the inference procedure on o’y developed in Section 3. All specifi-
cations include controls of latitude, longitude, surface area, elevation, rainfall, as well as Department and Department capital
dummies. Instruments are constructed from payoff neighbors’ sum of the G p neighbors values of the historical variables To-
tal Crown Employees, Colonial State Agencies, Colonial State Agencies squared, population in 1843, distance to Royal Roads,
distance to Royal Roads squared, together with the non-linear function Z; = np(i)~! ZjENp(f) AjjXj 1. Column (2) includes

distance to current highway in X, Column (3) expands the specification of Column (2) by also including controls for land
quality (share in each quality level). Column (4) controls for rivers in the municipality and land quality, in addition to those
controls from Column (1). One can see that the results are very stable across specifications.

Let us compare our results to those in Acemoglu, Garcia-Jimeno, and Robinson
(2015). There, the authors report the average marginal effects over their weighted graph.
The (weighted) average degree is 0.0329, so our results can be compared in an approxi-
mation, by considering 0.0329 3.

In general, our estimates have the same sign and significance as those of Acemoglu,
Garcia-Jimeno, and Robinson (2015). Our estimates are in the range of [0.002, 0.013], af-
ter reweighting as mentioned before, somewhat comparable to theirs of [0.016, 0.022] (in
the case of the outcome of the number of public employees, in Table 3 in their paper).
Hence, we find similar qualitative effects, although a smaller magnitude. Recall that our
confidence set is built without assuming that 3 is consistently estimable.

In Figure 4, we show the results of our estimated network externalities for the es-
timates from Table 5, for the importance of being a department capital. The average
network externality (ANE) is computed as

1 BoVdc ( BEX; )
il 1 ,
N 2 np (D — Bocp) \

. 27
ieN jeNp(i) np(i) — BjAi

where 9, is the estimated parameter of the X variable department capital. The param-
eter is defined in Section 3.1.4, and captures the average effect of a neighbor being a
department capital. We construct a confidence interval as in (3.9).



Quantitative Economics 11 (2020) Estimating local interactions among many agents 953

(3] o ~
T T 1

IS

N
T

Average Network Externality
- w

—_T

0.2 0.25 0.3 0.35

o

FIGURE 4. Average network externality from being a department capital.

The figure shows that there is a strong and increasing network externality from be-
ing a department capital over the range of the confidence set of 8. This indicates that
the effect of being a capital has spillovers on other municipalities: since 8 > 0, and one
expects that department capitals have more state presence and resources, being a de-
partment capital yields increasing returns the stronger the complementarity.

6. CONCLUSION

This paper proposes a new approach of empirical modeling for interactions among
many agents when the agents observe the types of their neighbors in a single large net-
work. The main challenge arises from the fact that the information sharing relations
are typically connected among a large number of players whereas the econometrician
observes only a fraction of those agents. Using a behavioral model of belief formation,
this paper produces an explicit form of best responses from which an asymptotic in-
ference procedure for the payoff parameters is developed. As we showed in our paper,
this explicit form gives a reduced form for the observed actions, and exhibits various
intuitive features. For example, the best responses show that network externality is het-
erogeneous across agents depending on the relations of their payoff neighbors.

The main advantage of our paper’s approach is two-fold. First, the empirical model-
ing according to our approach accommodates a wide range of sampling processes. Such
a feature is crucial because the econometrician rarely has precise knowledge about the
actual sampling process through which data are generated. Second, the model can be
used when only a fraction of the players are observed from a large connected network
of agents. This can be quite useful as the econometrician typically does not observe the
entire set of agents who interact with each other.

An interesting extension from this research is to consider the situation where the
network formation is endogenous, that is, the randomness of Gp is correlated with the
unobserved payoff heterogeneities of agents even after conditioning on the covariates.
It is not trivial to extend our framework to this situation, because we need to explicitly
consider the randomness of Gp in relation to other variables instead of conditioning our
inference on Gp as we do in this paper. Such consideration should be properly made in
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the construction of moment conditions and the proposal of appropriate instrumental
variables. We relegate this extension to future research.
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