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Inference in nonparametric/semiparametric moment equality
models with shape restrictions

Yu Zhu
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This paper studies the inference problem of an infinite-dimensional parameter
with a shape restriction. This parameter is identified by arbitrarily many uncondi-
tional moment equalities. The shape restriction leads to a convex restriction set.
I propose a test of the shape restriction, which controls size uniformly and applies
to both point-identified and partially identified models. The test can be inverted
to construct confidence sets after imposing the shape restriction. Monte Carlo ex-
periments show the finite-sample properties of this method. In an empirical illus-
tration, I apply the method to ascending auctions held by the US Forest Service
and show that imposing shape restrictions can significantly improve inference.

Keywords. Nonparametric/semiparametric models, partial identification, shape
restrictions, unconditional moments.
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1. Introduction

Economic theories often imply shape restrictions. For example, utility functions are
weakly concave in consumption, and demand functions are weakly decreasing in price.
These shape restrictions can be useful in empirical studies in two ways. First, they can
be used to test competing theories. Second, they provide information that can improve
inference on underlying unknown parameters. The latter is especially relevant if the un-
known parameters contain functions and a researcher, concerned with misspecifica-
tion, is unwilling to impose parametric assumptions. In such a case, imposing shape
restrictions can lead to significantly smaller confidence sets.

This paper studies an inference problem in which an infinite-dimensional unknown
parameter is point-identified or partially identified by unconditional moment equali-
ties. A researcher would like to test whether the unknown parameter satisfies a shape
restriction and/or to construct confidence sets after imposing the shape restriction. The
unconditional moments may be nonlinear and their sample analog may be discontin-
uous. The number of the unconditional moments can be finite, countably infinite, or
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a continuum. The shape restriction may involve a large number of inequalities and
the parameters that satisfy the shape restriction form a convex set. Many commonly
used shape restrictions such as non-negativity, monotonicity, concavity, first-order and
second-order stochastic dominance satisfy these requirements.

This framework has many applications, and it accommodates conditional and/or
unconditional moment equality and/or inequality models. In particular, it accommo-
dates indirect inference in structural estimation. For example, in labor economics, a
researcher may want to test whether an individual’s reservation wage is decreasing in
spells of unemployment (Gutknecht (2016)). In the inference problem of the shape-
invariant Engel curve studied in Blundell, Chen, and Kristensen (2007), one may want to
test, for example, whether the Engel curve of food is weakly decreasing. Or one may want
to impose that the Engel curve is weakly decreasing and construct its confidence set. In
first-price auctions, Zhu and Grundl (2014) show that under a weak exclusion condition,
inference of bidders’ risk aversion is equivalent to testing a first-order stochastic dom-
inance relation. In ascending auctions, one may want to infer valuation distributions
with a first-order stochastic dominance restriction that arises from asymmetry in bid-
ders. In these examples, the unknown parameters are identified either by conditional
moments (the first two examples), or by a continuum of unconditional moments ob-
tained from indirect inference methods (the last two examples).

In this paper, I propose a test for shape restrictions. It can be inverted to construct
confidence sets. The test statistic is obtained by minimizing the integrated squared sam-
ple moments subject to the shape restriction. The challenge is that the null distribution
of the test statistic depends on a minimization problem taken over an unknown local
parameter space, which in turn depends on the identified set of the unknown parame-
ter. A naive estimator of this local parameter space obtained by plugging in an estimator
of the identified set may overestimate its size and lead to underestimation of the crit-
ical value. To obtain the critical value, I propose a bootstrap procedure that estimates
the local parameter space via rescaled sample moments. This method effectively takes
a convex combination of 0 and each element in the local parameter space to form an
estimator. This estimator is a subset of the original local parameter space if the latter
is convex and contains 0, which is in turn guaranteed by the convexity of the restric-
tion set. As a result, convexity of the restriction set ensures that the bootstrap statistic
does not over-estimate the size of the local parameter space and validates the test. This
method is related to the moment inequality literature where the parameter of interest
is finite-dimensional, such as Andrews and Soares (2010), Pakes, Porter, Ho, and Ishii
(2015), Andrews and Shi (2013), and, in particular, Gandhi, Lu, and Shi (2013), but the
insight is different.

My test applies to both point-identified models and partially identified models,
which is a desirable feature because, in many cases, moment conditions only partially
identify the unknown parameters.1 One limitation of the paper is that the theory does

1For example, Canay, Santos, and Shaikh (2013) showed that in the nonparametric IV regression, the
completeness assumption, which is sufficient and necessary for point identification, is not testable. In
second-price auction models with incomplete data, the underlying parameter of interest is only partially
identified. Finally, in moment inequality models, partial identification arises naturally.
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not apply to problems with weak identification. To allow for weak identification is im-
portant but more challenging.

In an empirical illustration, I apply my method to infer the marginal valuation distri-
butions of bidders in ascending auctions of timber held by the US Forest Service (USFS).
In these auctions, bidders are asymmetric: big firms and firms with manufacturing ca-
pacity tend to value timber more than small firms and firms without manufacturing ca-
pacity. The valuations of all bidders in an auction are correlated. Because of the auction
format, bids other than the transaction price may not correctly reflect bidders’ valua-
tions. Partial identification prevails in this setup. Therefore, it fits my method perfectly.
Adapting the indirect inference method developed in Bierens and Song (2012) to ascend-
ing auctions, I match the model-predicted joint distribution of the transaction price and
the winner’s identity with the data. This leads to a continuum of unconditional moments
that identify the unknown parameter. The key insight is that the asymmetry in bidders
implies that the valuation distribution of big firms first-order stochastically dominates
(FOSD) that of the small firms. Results show that imposing the FOSD restriction greatly
tightens the confidence set and helps to exclude the valuation distribution obtained by
incorrectly assuming that bidders are symmetric and have independent valuations. To
the best of my knowledge, the inference procedure is new in ascending auctions.

This paper contributes to the growing literature on inference with shape restrictions.
It is closely related to Chernozhukov, Newey, and Santos (2015) (CNS hereafter), which
provides a general treatment of inference problems with shape restrictions and partial
identification. Different from their method, I use a bootstrap statistic that relies on the
convexity of the restriction set. As a result, in partially identified models, my test can be
faster to compute. Also, unlike CNS, my test can be applied to indirect inference prob-
lems with a continuum of moments.

Other recent work in this area includes Chetverikov (2019), Chetverikov and Wilhelm
(2017), Fang and Seo (2019), Freyberger and Horowitz (2015), Freyberger and Reeves
(2018), Gutknecht (2016), and Horowitz and Lee (2017). All of these papers focus on
nonparametric regression or nonparametric IV regression models, except Fang and Seo
(2019) and Freyberger and Reeves (2018), which consider general setups but require
point identification. This paper also generalizes Hong (2017) and Santos (2012) by al-
lowing for shape restrictions defined by inequalities.

This paper also contributes to the growing literature on semiparametric/
nonparametric conditional moment models. Recent work includes Newey, Powell, and
Vella (1999), Newey and Powell (2003), Ai and Chen (2003), Hall and Horowitz (2005),
Blundell, Chen, and Kristensen (2007), Darolles, Fan, Florens, and Renault (2011), Chen,
Chernozhukov, Lee, and Newey (2014), Chen and Pouzo (2009, 2012, 2015) and Tao
(2014).

The paper is organized as follows. Section 2 introduces the econometric framework.
Section 3 provides a detailed guide on how to conduct the test and how to obtain con-
fidence sets. Section 4 provides a heuristic illustration of the method. Section 5 lays out
the theory. Readers who are less interested in the technical details can skip this section.
Section 6 presents Monte Carlo experiments to evaluate the finite-sample performance
of the method. Section 7 applies the method to ascending auctions using timber auc-
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tions. Section 8 concludes. Technical proofs are collected in the Online Supplemental
Material (Zhu (2020)).

2. Setup and examples

The parameter of interest θF is infinite-dimensional and lives in a known parameter
space Θ. Denote W as a DW -dimensional random vector, which takes values in W ⊆
R
DW and has a distribution F . The unknown parameter θF satisfies moment conditions:

EFρt(W �θF)= 0 ∀t ∈ T�

where ρt(·� ·) : RDW ×Θ→ R is a real function indexed by t, and T is an index set. EF is
the expectation taken under the distribution F . The cardinality of T can be finite, count-
ably infinite, or a continuum. The moment function ρt may depend on θ only through its
value atW , that is, ρt(W �θ)= ρt(W �θ(W )). Or it may depend on the value of some com-
plicated functional applied to θ. The latter often arises in indirect inference of structural
models. For an example in first-price auctions, see Bierens and Song (2012).

Even in simple models nested in this framework, partial identification may arise and
it is not possible to test partial identification uniformly.2 It is therefore desirable to have
an approach robust to partial identification. To this end, define the identified set ΘF as
the collection of all θs which satisfy the moment conditions under F , that is,

ΘF = {
θ ∈Θ : EFρt(W �θ)= 0�∀t ∈ T

}
�

Notice thatΘF is allowed to be a singleton, in which case θF is point-identified.
A researcher may want to test whether θF satisfies some shape restriction or to im-

pose the shape restriction and draw an inference on φ(θF), where φ : Θ → R
Dφ is a

linear functional and Dφ is a positive integer. This paper focuses on the case where the
shape restriction is defined by a large number of inequalities. In other words, the shape
restriction defines a restriction set

R= {
θ : l(θ)= al�∀l ∈L�ψ(θ)≥ 0�∀ψ ∈Ψ}

�

where L is a collection of linear functionals, al ∈ R is a number associated with the lin-
ear functional l, and Ψ is a collection of functionals. Both L and Ψ can have finitely or
infinitely many elements and R is a convex set. The latter is guaranteed if Ψ contains
only convex functionals. To accommodate partial identification, the testing problem is

H0 :ΘF ∩R �= ∅�
H1 :ΘF ∩R= ∅�

This problem is a generalization of Hong (2017) and Santos (2012), who focus on R de-
fined by equalities of linear operators. A key difference is that if R is defined by inequal-
ities, it has boundary points. Therefore, the inference procedure must account for the
possibility that θF is close to or at the boundary of R. The formulation of R covers two

2See Santos (2012) for an example of partial identification in the non-parametric IV case and Canay,
Santos, and Shaikh (2013) for an impossibility result on the testability of identification.
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inference problems: testing the shape restriction and constructing confidence sets of
linear functionals with the shape restriction.

Example 2.1 (Nonparametric IV Regression). Consider the model

Y = θF(X)+ ε�
where EF [ε|X] �= 0. LetZ be a set of instruments and EF [ε|Z] = 0. Here,X andZ areDX-
and DZ-dimensional real random vectors. The goal is to test whether θF(x) is weakly
increasing in the first element of x, where x is a DX-dimensional vector and its kth ele-
ment is denoted by xk. Many economic applications fit into this problem. One example
is to test whether an individual’s reservation wage is decreasing in spells of unemploy-
ment, for example, Gutknecht (2016). Assume that θF lies inΘ, which is the space of dif-
ferentiable functions. The identified set is defined by the conditional moment equality

ΘF = {
θ ∈Θ : EF

[
Y − θ(X)|Z] = 0

}
�

In general,ΘF might not be a singleton. The restriction set is R= {θ : ∂θ(x)/∂x1 ≥ 0�∀x}.
It is convex and defined by a continuum of linear functionals: ψxθ= ∂θ(x)/∂x1, ∀x. Fol-
lowing Bierens (1990) and Stinchcombe and White (1998), the conditional moment is
equivalent to a continuum of unconditional moments with a set of weight functions
w(·� t):

ΘF = {
θ ∈Θ : EF

[
Y − θ(X)]w(Z� t)= 0�∀t ∈ T

}
�

where T ⊂ R
DZ has a positive Lebesgue measure. Therefore, W = (X�Y�Z) and

ρt(W �θ)= [Y −θ(X)]w(Z� t). One may also want to impose monotonicity to infer θF(x)
for some x. Then the linear functional φ(θ) = θ(x). Shape restrictions can greatly help
inference in this model. Chetverikov and Wilhelm (2017) showed that monotonicity can
improve rates of convergence. If the model is partially identified, shape restrictions can
also dramatically reduce the identified set. In extreme cases, moment conditions alone
may not provide any information. But with shape restrictions, point identification can
be achieved. Section S.1 in the Online Supplemental Material provides such an example.
Also notice that the same testing problem but with conditional quantile restrictions also
fits into my framework.

Example 2.2 (Shape-Invariant Engel Curve). Blundell, Chen, and Kristensen (2007)
study semi-nonparametric estimation of the shape-invariant Engel curve. In this esti-
mation problem, a researcher observes W = (Y1�Y2�X�Z) from a household, where Y1
is the fraction of expenditure on a particular good, say food; Y2 is the total expenditure;
X is a vector of household characteristics; and Z is the total income. He is interested in
estimating

Y1 = h(Y2 −Xβ)+ ε�
where h is the shape-invariant Engel curve and is specified nonparametrically. The to-
tal expenditure Y2 may be endogenous while the total income Z serves as an instru-
ment, that is, EF(ε|Y2�X) �= 0 while EF(ε|Z�X)= 0. In this case, θ= (β�h) and one can
transform the conditional moments into a continuum of unconditional moments as in
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the previous example. The researcher may want to test whether the fraction of expen-
diture on a particular good is decreasing in total expenditure, or may want to conduct
an inference on h imposing this decreasing assumption. For example, in an advanced
economy like the UK, it is natural to think that the fraction of expenditure on food de-
creases as total expenditure increases. Assuming that h is differentiable, the restriction
set is R= {θ : h′(x)≤ 0�∀x}, which is a convex set.

Example 2.3 (Asymmetric Ascending Auctions). In an ascending auction, bidders cry
out their bids in ascending order until only one bidder remains. The remaining bidder
wins the good and pays the last bid. The auction outcome is equivalent to a sealed bid
second-price auction, where the bidder with the highest valuation wins the good and
the transaction price is the second highest bid. Consider the model where bidders are
asymmetric and have correlated private valuations. Bidders are divided into strong bid-
ders and weak bidders. Let Fs(v) be the marginal valuation distribution of strong bidders
and Fw(v) be the marginal valuation distribution of weak bidders. Strong bidders are
more likely to have higher valuations for the auctioned object than weak bidders, that
is, Fs(v)≤ Fw(v) for every v ∈ R. Correlation among bidders’ valuations is modeled by a
Gaussian Copula function. For simplicity, I focus only on auctions with one strong and
one weak bidder. Let 2(·� ·� r) be a 2-dimensional normal distribution function with
mean 0, variance 1, and correlation r. And let be a standard normal distribution func-
tion. Then in an auction, the joint distribution of valuations is C(Fs(·)�Fw(·)� r), where
C(x1�x2� r)=2(

−1(x1)�
−1(x2)� r). The primitive of this model is θ= (Fs�Fw� r).

For each auction, a researcher observes the transaction price Y , which is equal to
the second highest valuation. He also observes a variable X , which takes value 1 if the
winner is a strong bidder, and takes value 0 if otherwise. He is interested in constructing
a conference band for Fs and wants to impose the shape restriction Fs(v) ≤ Fw(v) for
every v ∈R to improve inference.

One can fit this inference problem into my framework using the indirect inference
method. The idea is that, at the true parameter, the joint distribution of the transac-
tion price and the winner’s type predicted by the model should be close to its empirical
counterpart. Following Bierens and Song (2012), one can use characteristic functions to
match these two distributions. Then model restrictions reduce to ∀t ∈ T,

0 = EF sin(tY)1(X = 1)−E
[
sin(tỸ )1(X̃ = 1)|θ]�

0 = EF sin(tY)1(X = 0)−E
[
sin(tỸ )1(X̃ = 0)|θ]�

0 = EF cos(tY)1(X = 1)−E
[
cos(tỸ )1(X̃ = 1)|θ]�

0 = EF cos(tY)1(X = 0)−E
[
cos(tỸ )1(X̃ = 0)|θ]�

where T is an interval on the real line that contains 0; X̃ and Ỹ are the winner’s type
and the transaction price generated by the model under parameter θ.3 The restriction

3Unlike in Aradillas-López, Gandhi, and Quint (2013) and Coey, Larsen, Sweeney, and Waisman (2017),
variation in the number of bidders is not used in this example, and the focus is on the marginal valuation
distribution.
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set is R = {θ : Fs(v) ≤ Fw(v) for all v ∈R}, which is a convex set. It is well known that in
this setup, Fs is only partially identified. See Aradillas-López, Gandhi, and Quint (2013),
Coey et al. (2017), Komarova (2013). In Section 7, I apply this method to USFS timber
auctions.

There are many other applications that fit into my framework. They include the in-
ference of risk aversion in first-price auctions considered in Zhu and Grundl (2014) and
Examples 2.2–2.4 in CNS. In particular, my framework also allows for conditional mo-
ment inequalities following the strategy used in Examples 2.3 and 2.4 in CNS.

3. Inference procedure

The researcher observes an independently identically distributed (i.i.d.) random sample
{Wi}ni=1 from F . Denote the probability measure that induces F by PF .4

The test statistic

Let μ be a probability measure on T such that EFρt(Wi�θ)= 0 for all t ∈ T if and only if

QF(θ)=
∫

T

[
EFρt(Wi�θ)

]2
dμ(t)= 0�

Throughout the paper, I assume that such μ exists. If T contains finitely many or count-
ably infinitely many elements, it is easy to find such a μ. If T is a closed rectangular in
an Euclidean space and EFρt(Wi�θ) is continuous in t, μ can be the uniform probability
measure on T.

Ideally, one can compute the infimum (inf) of the criterion QF(θ) on the restriction
set R and reject the null hypothesis if it is not 0. Because QF(θ) is unknown, replace it
with its sample analog

Qn(θ)=
∫

T

[
1
n

n∑
i=1

ρt(Wi�θ)

]2

dμ(t)�

The test statistic for the restriction set R is

Tn(R)= inf
θ∈Θn∩R

nQn(θ)� (1)

where {Θn}∞n=1 is a sequence of increasing sieve spaces that approximateΘwell enough.
Here inf is used to allow for potentially discontinuous Qn(θ), which arises in, for exam-
ple, IV quantile regression models. Also define

Θ̂n(R)= arg inf
θ∈Θn∩R

nQn(θ)�

4Formally, {Wi}ni=1 is the first n coordinate of {Wi}∞i=1, which is the identity mapping on the infinite prod-
uct probability space (W∞�S∞�P∞

F ). Here, S∞ is the product σ-algebra and P
∞
F is the product measure.

This paper relies heavily on convergence of empirical processes. It is understood that if an empirical pro-
cess is not measurable, convergence is under the outer probability on (W∞�S∞�P∞

F ).
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A formal definition of arg inf is given in Appendix A. At this point, one may regard Qn
as continuous and Θ̂n(R) as the set of minimizers. Reject the null hypothesis if Tn(R)
exceeds some critical value. Although Tn(R) is based on a CvM-type criterion function,
other criterion functions may also be used. One possibility is the Kolmogorov–Smirnov
(KS) criterion, which is used in Hong (2017) and Santos (2012). Theories developed in
this paper carry naturally over to the case with the KS criterion. This paper focuses on
CvM because it is easier to compute.5

Bootstrap critical value

This paper develops a bootstrap method to obtain the critical value. Define

Gn�F(θ� t)= n−1/2
n∑
i=1

[
ρt(Wi�θ)−EFρt(Wi�θ)

]
�

Let {W ∗
i }ni=1 be a sequence of i.i.d. draws from the empirical distribution and

G
∗
n(θ� t)= n−1/2

n∑
i=1

[
ρt
(
W ∗
i � θ

)− 1
n

n∑
i=1

ρt(Wi�θ)

]
�

The bootstrap statistic is defined as

T ∗
n (R)= inf

(γn�λn)∈In
nQ∗

n

(
θ∗
n(γn�λn�R)�γn�0

)
� (2)

where

nQ∗
n(θ�γn�λn) =

∫
T

[
G

∗
n(θ� t)+ n−1/2γn

n∑
i=1

ρt(Wi�θ)

]2

dμ(t)+ λnQn(θ)�

θ∗
n(γn�λn�R) ∈ Θ̂∗

n(γn�λn�R)= arg inf
θ∈Θn∩R

nQ∗
n(θ�γn�λn)�

In ⊆ In = {
(γ�λ) ∈ R

2|nγ2 + λ= κn�λ≥ 0�γ ≥ 0
}
�

If Θ̂∗
n(γn�λn�R) contains more than one point, one can assign any of them to θ∗

n(γn�

λn�R).6 Here, In can be any nonempty subset of Īn, and κn is a tuning parameter which
diverges at a rate slower than n. One may set κn = n/ lnn. Reject the null hypothesis
if Tn(R) > C∗

n(1 − α + η�R) + η, where η is an arbitrarily small positive number and
C∗
n(1 − α+ η�R) is the (1 − α+ η)th quantile of the distribution of T ∗

n (R) evaluated at

5If ρt is linear in θ, one only needs to solve a quadratic programming problem for many shape restrictions
if the criterion function is of the CvM-type. But a KS-type criterion function requires solving a complicated
nonlinear optimization problem. In general, the CvM-type criterion tends to have fewer local optimums.
This computational difference matters especially because I use a bootstrap method to obtain critical values.

6Any point in Θ̂∗
n(γn�λn�R) delivers size control, but different points may lead to power differences. In

practice, it suffices to obtain an approximate minimum of nQ∗
n(θ�γn�λn) and then drop the penalty term.

I thank the referee for pointing this out.
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the empirical distribution. One can set η to a small positive number such as 10−8. Under
certain conditions discussed later, it can be set to 0.

Under a proper κn, any nonempty In ⊆ In leads to a valid critical value. A natural
question is how to pick In. This paper recommends using In = Īn for computationally
simple problems and a two-point set In = {(0�κn)� (√κn/n�0)} for computationally in-
tensive problems. This is because different values of γn and λn have different strengths
and weaknesses. On the one hand,

√
nγnEFρt(Wi�θ) leads to a better approximation of

the local parameter space if γn is larger. For example, if (γn�λn) = (0�κn), the method
uses 0 as a conservative estimate of the local parameter space. The resulting critical
value controls size but is conservative asymptotically. If (γn�λn) = (

√
κn/n�0), the test

has the correct size asymptotically in many cases.7 On the other hand, estimation er-
ror |n−1/2γn

∑n
i=1 ρt(Wi�θ)− √

nγnEFρt(Wi�θ)| is increasing in γn, which can worsen the
finite-sample performance. Because of this trade-off, it is desirable to have multiple el-
ements in In to combine the advantages of different values of (γn�λn). Naturally, In = In
yields the smallest critical value. But simulations suggest that it is important to include
(0�κn) and (

√
κn/n�0). Beyond that, adding more elements does not significantly im-

prove performance. If (0�κn) ∈ In, the resulting critical value remains bounded under
any fixed alternative.8 It is also worth noting that computing the infimum in (2) is a one-
dimensional optimization problem if In = In, while computing θ∗

n(γn�λn�R) involves an
optimization problem which has the same dimension asΘn∩R. In total, computing one
bootstrap statistic involves an optimization problem that, at most, has a dimension of 1
plus the dimension of Θn ∩R. It reduces further if In = {(0�κn)� (√κn/n�0)}. This is very
convenient for computationally intensive problems. In contrast, the bootstrap statistic
proposed in CNS needs to compute an optimization problem which has a dimension
twice that of Θn ∩R if partial identification is a concern. The computational gain of my
method is nonnegligible if the dimension ofΘn∩R is high and the moments are difficult
to evaluate.

Confidence sets

To construct a confidence set for φ(θF) after imposing some restriction S, let Ra�φ�S =
{θ ∈ S : φ(θ) = a} and K be the parameter space of φ(θF). A confidence set with 1 − α

confidence level is

Cn(1 − α)= {
a ∈K : Tn(Ra�φ�S)≤ C∗

n(1 − α+η�Ra�φ�S)+η}�
A step-by-step guide

To construct a test of significance level α:

7My test is asymptotically nonsimilar, that is, the test does not have the same size uniformly. This is,
however, not deficient, as pointed out by Andrews (2012), who shows that asymptotically similar tests have
very poor power if there are inequality constraints. If there are no inequality constraints, the test can achieve
the exact size asymptotically.

8In contrast, the bootstrap methods considered in Santos (2012), Hong (2017), and Gandhi, Lu, and Shi
(2013) all lead to diverging critical values under fixed alternatives.
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(a) Compute the test statistic Tn(R) according to equation (1).

(b) Draw an i.i.d. sample {W ∗
i }ni=1 from the empirical distribution Fn and form

G
∗
n(θ� t).

(c) Compute the bootstrap statistic using equation (2). I find κn = n/ lnn works well
in simulations, but theory may rule out this choice in some problems.9 I recommend
In = Īn if computation is not a concern and In = {(0�κn)� (√κn/n�0)} in computationally
intensive problems.

(d) Repeat (b)–(c) B times and collect all the bootstrap statistics from each repetition.

(e) Use η plus the (1 − α+ η)th quantile of all the bootstrap statistics as the critical
value. Reject the null hypothesis if Tn(R) exceeds this critical value. One may set η to be
a very small number, say 10−8.

4. A heuristic illustration

This section heuristically illustrates how the method works and why convexity is crucial
using the nonparametric IV setup as in Example 2.1. I focus on the bootstrap statistic
with λn = 0, that is, In = {(√κn/n�0)}. To abstract from the complications of sieve ap-
proximation and partial identification, I further assume that Θn = Θ and θF is point-
identified.

By the definition of the test statistic,

Tn(R)= min
θ∈Θ∩R

∫
T

[
1√
n

n∑
i=1

ρt(Wi�θ)

]2

dμ(t)

= min
θ∈Θ∩R

∫
T

{
Gn�F(θ� t)+ √

n
[
EFρt(Wi�θ)−EFρt(Wi�θF)

]}2
dμ(t)�

Under the null, the minimizer obtained from calculating Tn(R) is close to θF for suffi-
ciently large n under appropriate assumptions. If Gn�F(θ� t) is continuous in θ, its value
at this minimizer is close to Gn�F(θF� t). Then use the definition of ρt in Example 2.1 and
the change of variable �= √

n(θ− θF) to obtain

Tn(R)= min
�∈Vn(θF )

∫
T

{
Gn�F(θF� t)−EFw(Zi� t)�(Xi)

}2
dμ(t)+ oPF (1)� (3)

where oPF (1) is a term that converges to 0 in probability and

Vn(θF)= {� : θF +�/√n ∈Θ∩R}�

Here, −EFw(Z� t)�(X) is essentially the directional derivative of EFρt(Wi�θ) at θF in the
direction�. All the directions that need to be evaluated are determined by Vn(θF), which
is the true local parameter space (LPS).

9Although very desirable, it is difficult to develop a data-driven method to choose κn. I instead use sim-
ulations to provide guidance on κn.
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To estimate the null distribution of Tn(R), the main challenge lies in estimating
Vn(θF) because it is, roughly speaking, discontinuous in θF . To see this, consider the
case where R is the set of nonnegative functions. If θF = 0, Vn(θF) converges to a space
that contains only nonnegative functions. If θF is strictly positive but arbitrarily close
to 0, Vn(θF) converges to a space that contains all functions. Due to this discontinuity,
naively plugging an estimated θF into Vn(θF) can significantly overestimate the size of
Vn(θF), and hence lead to overrejection.

This paper observes that directional derivatives can be approximated by differences
between moment conditions evaluated at θF+� and those evaluated at θF . Although the
true value of θF is unknown, EFρt(Wi�θF) is known to be 0. This implies that these differ-
ences do not depend on θF . If γn → 0,

√
nγnn

∑
i ρt(Wi�θ) converges to

√
nγnEFρt(Wi�θ)

and

T ∗
n (R)= min

θ∈Θ∩R

∫
T

{
G

∗
n(θ� t)+ √

nγn
1
n

∑
i

ρt(Wi�θ)

}2
dμ(t)

= min
θ∈Θ∩R

∫
T

{
G

∗
n(θ� t)+ √

nγnEFρt(Wi�θ)
}2
dμ(t)+ oPF (1)�

If
√
nγn → ∞ sufficiently fast, the minimizer obtained from calculating T ∗

n (R) is close to
θF .10 Then, similar to equation (3) but with �= √

nγn(θ− θF),

T ∗
n (R)= min

�∈Vγnn (θF )

∫
T

{
G

∗
n(θF� t)−EFw(Zi� t)�(Xi)

}2
dμ(t)+ oPF (1)� (4)

where my estimated LPS is

Vγnn (θF)=
{
� : θF + �√

nγn
∈Θ∩R

}
�

Because G
∗
n(θF� t) approximates the distribution of Gn�F(θF� t), T ∗

n (R) leads to a valid
critical value if Vγnn (θF)⊆ Vn(θF). This is guaranteed if bothΘ and R are convex because
θF ∈Θ∩R and

θF + �√
n

= (1 − γn)θF + γn
(
θF + �√

nγn

)
�

If there is partial identification and ρt is not linear, a similar argument based on the first-
order expansion of the moment conditions goes through.

Figure 1 illustrates how the rescaled moments approximate the true LPS and why
convexity is important. In all graphs, Vn(θF)/

√
n and Vγnn (θF)/

√
n are defined as the col-

lection of all elements in Vn(θF) and Vγnn (θF) divided by
√
n. Loosely, I will also refer to

Vn(θF)/
√
n and Vγnn (θF)/

√
n as the true LPS and the estimated LPS in the rest of this sec-

tion. Figure 1(a) is constructed under R = {θ : θ(x) ≥ 0 for all x}, which is convex. And

10The parameter λn is introduced to make sure that the minimizers are close to θF even if
√
nγn is small.

This allows me to combine bootstrap statistics with different γn. For example, if γn = 0 and there is no λn,
the minimizers can be far away from θF . As a result, size control may fail. See also the discussion following
Theorem S.3 in the Online Supplemental Material.
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Figure 1. Rescaled moments and convexity. Panel (a) depicts the true LPS and the estimated
LPS using my method under R = {θ : θ(x) ≥ 0 for all x}. Panel (b) depicts the true LPS and my
LPS under R = {θ : θ(x) ≥ 0 for all x or θ(x) ≤ −0�5 for all x}. Panel (c) depicts the true LPS and
the estimated LPS in CNS under R= {θ : θ(x)≥ 0 for all x}.

θF is the black solid line that lies above the x-axis, and hence lies in R. The true LPS
and the estimated LPS are the areas above their boundaries, respectively. Both spaces
are convex because if two functions lie above one of the two boundaries, their convex
combinations also lie above that boundary. The estimated LPS is obtained by shrinking
the true LPS toward 0 by a factor of γn. In other words, it is obtained by taking a convex
combination of 0 and each element in the true LPS. The light gray area is shared by the
true LPS and the estimated LPS, while the medium gray area is in the true LPS but not
in the estimated LPS. Because of the convexity, the estimated LPS is contained in the
true LPS. This implies that Tn(R) is obtained by a minimization problem over a larger
set compared to T ∗

n (R). Therefore, the distribution of Tn(R) is first-order stochastically
dominated by that of T ∗

n (R) asymptotically, which validates the bootstrap critical value.
Notice that the medium gray area is smaller if γn is larger, which means that a large γn
yields a better approximation of the true LPS for any given n. It is also worth noting that
even though γn converges to 0, the limit of Vγnn (θF) can be the same as that of Vn(θF) as
n→ ∞.

Figure 1(b) is constructed under R = {θ : θ(x) ≥ 0 for all x or θ(x) ≤ −0�5 for all x},
which is not convex. Now the true LPS has two boundary lines: one passes through
the origin and the other lies below the x-axis. It consists of functions that lie above the
higher boundary and functions that lie below the lower boundary. Obviously, it is not
convex. Again, the estimated LPS is obtained by shrinking the true LPS toward 0. As in
Figure 1(a), the light gray region is shared by both the true LPS and the estimated LPS,
and the medium gray region lies in the true LPS but not in the estimated LPS. But there is
now a dark gray area, which lies in the estimated LPS but not in the true LPS. Therefore,
Tn(R) is no longer obtained by a minimization problem over a larger region compared
to T ∗

n (R). Hence, the size control may not hold. Such differences can matter asymptot-
ically and one can construct examples where uniform size control fails due to lack of
convexity.
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Lastly, it is useful to compare my method with CNS. The light gray region in Fig-
ure 1(c) corresponds to the estimator of LPS in CNS underR= {θ : θ(x)≥ 0 for all x}. It is
obtained by shifting the boundary of Vn(θ̂F)/

√
n toward 0, where θ̂F is a constrained es-

timator of θF . The size of the shift at a point x is the minimum of a tuning parameter and
the distance from θ̂F (x) to the boundary of the restriction set. This method differs from
mine in two ways. First, because the rescaled moments exploit the fact that the moments
are 0 at θF , my estimated LPS is not explicitly based on an estimator of θF . Second, my
method shrinks the true LPS toward 0 by a factor of γn. Compared to Figure 1(a), the
medium gray region in Figure 1(c), which is the set of function values that are in the true
LPS but not in the LPS of CNS, is wider around the origin but gets narrower away from
the origin. This highlights the difference between the two methods.

5. Asymptotic theory

This section provides a theoretic justification of my test. To simplify the presentation,
the main assumptions and related technical discussions are collected in Appendix B.
Intuitively, these assumptions have the following important implications. First, they rule
out weak identification. Second,Θn∩R should be a suitable approximation forΘ∩R. In
particular, the approximation error needs to be sufficiently small. Third, if the moment
conditions are nonlinear, the rate of convergence of Θ̂n(R) needs to be sufficiently fast.
If this rate is faster, κn is allowed to diverge at a slower rate. If this convergence rate is too
slow, a valid choice for κn may not exist.

In the rest of the paper, I assume that Θ is a convex space. The theoretic results of
this paper focus on the following class of distribution functions.

Definition 5.1. Let F be a collection of distribution functions F such that

(i) The moment function ρt(·� θ) is measurable for all (θ� t) ∈Θ× T.

(ii) There exists a measurable function F such that |ρt(·� θ)| ≤ F(·) for all (θ� t) ∈Θ×T,
and supF∈F EFF(Wi)2 <∞.

(iii) The set of functions � = {ρt(·� θ) : (θ� t) ∈ Θ × T} is Donsker and pre-Gaussian
uniformly in F ∈ F .

Part (i) in Definition 5.1 is a mild condition and is automatically satisfied if ρt(Wi�θ)

is continuous in Wi for all (θ� t) ∈Θ× T. Part (ii) requires that there is an envelope func-
tion for ρt(·� θ). And the envelope function has a uniformly bounded second moment.
Part (iii) is the key to the uniform convergence rates and the validity of the test. Under
the null hypothesis, the test statistic can be expressed as a continuous function applied
to Gn�F , and the bootstrap statistic can be expressed as the same function applied to G

∗
n.

Part (iii) then allows me to invoke a result in Linton, Song, and Whang (2010) to estab-
lish uniform size control. This condition can be satisfied after regularizing the parameter
space, following Newey and Powell (2003) and Santos (2012). Section S.2 in the Online
Supplemental Material provides low-level conditions that guarantee part (iii).
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Definition 5.2. Let J = {(F�R) : F ∈ F�R ∈ R�andΘF ∩ R �= ∅}, where R is a set of
nonempty, convex sets.

The set J consists of pairs of the distribution function and restriction set that satisfy
the null hypothesis. I now introduce the main result of this paper, which shows that the
proposed test controls size uniformly on J .

Theorem 5.1. Under Assumptions B.1–B.5, for any nonempty In ⊆ Īn and η> 0:

(i) lim supn→∞ sup(F�R)∈J PF(Tn(R) > C
∗
n(1 − α + η�R) + η) ≤ α. If in addition As-

sumption B.7 holds, this inequality holds with η= 0.

(ii) If F ∈ F ,ΘF ∩R= ∅, then PF almost surely, Tn(R) > C∗
n(1−α+η�R)+η as n→ ∞.

Theorem 5.1 establishes the validity of the test. Here, η appears for technical rea-
sons. Under Assumption B.7, which consists of an anticoncentration condition and a
condition that handles the degenerate case, η can then be set to 0.

Now I briefly discuss the assumptions. Assumption B.1 requires that Θ ∩ R is com-
pact, and that EFρt(W �θ) is continuous in θ. It guarantees that the test statistic diverges
to infinity under a fixed alternative, which ensures the second claim of Theorem 5.1. As-
sumption B.2 requires that the sieve spaces approximate Θ well such that the approxi-
mation bias can be ignored. Assumption B.3 is necessary to obtain the convergence rates
of Θ̂n(R) and Θ̂∗

n(γn�λn�R). These rates are important for size control. Assumption B.4
serves two roles. First, combined with Definition 5.1(iii), it implies that Gn�F and G

∗
n are

asymptotically equi-continuous in θ. This allows us to replace θ by θF in equations (3)
and (4). Second, it guarantees that the moment conditions can be approximated by their
linear expansions. Therefore, the heuristic argument in Section 4 based on linearity can
be extended to nonlinear moments. Lastly, Assumption B.5 puts restrictions on κn. It im-
plicitly rules out some slow convergence rate including the severely ill-posed problems.

Remark 5.1. Assumptions B.4(i), (ii), and the convexity of Θ and R are needed to use a
general In. If In = {(0�κn)}, my test remains valid without these assumptions. Then As-
sumption B.5 can also be relaxed, that is, κn can be chosen to be any diverging sequence
that does not diverge too fast. In addition, one does not need restrictions on the rates
of convergence of Θ̂n(R). However, the resulting test can be very conservative. As illus-
trated in Section 4, a lower γn yields a potentially more conservative approximation. If
In = {(0�κn)}, γn is set to be 0, which is the smallest value.

Remark 5.2. An immediate consequence of Theorem 5.1 is the validity of Cn(1 − α). To
see this, just notice that one can set R = {Ra�φ�S : a ∈K} and

lim inf
n→∞ inf

F∈F :θF∈S
PF

(
φ(θF) ∈ Cn(1 − α))

≥ lim inf
n→∞ inf

F∈F :θF∈S
PF

(
Tn(Rφ(θF )�φ�S)≤ C∗

n(1 − α+η�Rφ(θF)�φ�S)+η)
≥ lim inf

n→∞ inf
(F�R)∈J

PF

(
Tn(R)≤ C∗

n(1 − α+η�R)+η) ≥ 1 − α�
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Corollary 5.1. Under Assumptions B.1–B.6,

lim inf
n→∞ inf

F∈F :θF∈S
PF

(
φ(θF) ∈ Cn(1 − α)) ≥ 1 − α�

Remark 5.3. To make the bootstrap procedure even faster, one might also consider
bootstrapping

Ṫ ∗
n (R)= inf

θ∈Θn∩R∩Θ̂εn(R)

∫
T

[
G

∗
n(θ� t)+ γn√

n

n∑
i=1

ρt(Wi�θ)

]2

dμ(t)�

where ε > 0 is a constant and Θ̂εn(R) is the ε-neighborhood of Θ̂n(R). One can prove that
this bootstrap is valid following the same method used in this paper.

Remark 5.4. In general, Theorem 5.1(i) holds with weak inequality. But if the shape re-
striction does not involve inequality constraints, it can be shown that the test achieves
the exact size asymptotically. In addition, my test cannot be ranked with CNS in terms
of power as neither dominates the other. This can be seen by comparing Figures 1(a)
and 1(c). There are functions that lie in the light gray region in Figure 1(a) but not in the
light gray region in Figure 1(c) and vice versa. I also provide an example on the power
comparison in the Online Supplemental Material.

6. Monte Carlo experiments

This section considers three data generating processes (DGPs). The first two DGPs fol-
low Example 2.1, where critical values are relatively easy to calculate. This allows me
to investigate extensively how the performance of the test depends on the parameter
space, In, κn, and the approximation of the integration. The last DGP follows Exam-
ple 2.3, where critical values are more difficult to calculate. I use it to illustrate how the
test works in an environment that is close to my empirical application and to provide
some guidance on the choice of κn.

6.1 Monotonicity in nonparametric IV regression

Now consider Example 2.1 with the following two DGPs.

DGP I This DGP is considered in Santos (2012). Generate a latent i.i.d. sample by⎛
⎜⎝X

∗
Z∗
ε∗

⎞
⎟⎠ ∼N

⎛
⎜⎝0�

⎡
⎢⎣ 1 0�5 0�3

0�5 1 0
0�3 0 1

⎤
⎥⎦
⎞
⎟⎠ �

ConstructX , Z, ε by setting

X = 2
(

(
X∗/3

)− 0�5
)
� Z = 2

(

(
Z∗/3

)− 0�5
)
� ε= ε∗�

where  is the distribution function of a standard normal random variable.
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Figure 2. Regression functions.

DGP II Z ∼ Uniform[0�1] and X = Z + U where U ∼ Uniform[−1�1] and is inde-
pendent of Z. In addition, ε = U + 0�1ε∗ where ε∗ ∼ N(0�1) and is independent of
(U�X�Z). Newey, Powell, and Vella (1999) show that θF is point-identified up to a con-
stant with the additional moment condition EF(U |Z) = 0. I use only the moment con-
dition EF(ε|Z)= 0. Then the model is in general partially identified but can be point-
identified with shape restrictions in some cases. For more details, see Section S.1 in the
Online Supplemental Material.

For both DGPs, I consider θF = fi, i = 1�2�3�4 where f1(X) = 0, f2(X) = X −
4ϕ(X − 1), f3(X) = X(1 − X), and f4(X) = X − 8 × ϕ(X − 1�15). Here, ϕ is the stan-
dard normal density function. These functions are plotted in Figure 2. f1 is a constant
function. f2 is strictly increasing, while f3 and f4 are decreasing in some regions. How-
ever, because this model may be partially identified, data generated by f3 and f4 may still
satisfy the null hypothesis. In fact, in DGP I with θF = f3, the null hypothesis is satisfied.
In DGP II, only f1 and f2 satisfy the null hypothesis.

I generate i.i.d. samples with 1000 observations. The sieve space is chosen to be
spanned by B-splines. In DGP I, I use knots {−1�−1�− 1

3 �
1
3 �1�1} to approximate f1,

f2, and f3, and knots {−1�−1�− 3
4 �− 1

2 �
1
4 �

1
2 �

3
4 �1�1} for f4. In model II, I use knots

{−1�−1�0�1�2�2} for f1, f2, f3, and

{−1�−1�−0�625�−0�25�0�125�0�5�0�875�1�25�1�625�2�2}

for f4. Different knots are used because X is supported on [−1�1] in DGP I and on
[−1�2] in DGP II. I also use more knots for f4 because it is harder to approximate. The
weight function is defined as w(z� t)= ϕ( t1−zt2 ) and t = (t1� t2) ∈ T with T = [−0�8�0�8] ×
[0�05�0�2]. This weight function is also used in Santos (2012). The measure μ is chosen
to be the uniform probability measure on T. I approximate the numerical integration by
averaging over points in T. To evaluate the sensitivity of the test to the numerical integra-
tion, I consider two cases. In the first case, I average over 14 points, which is constructed
by taking the product of 7 equally spaced points on [−0�8�0�8] and 2 equally spaced
points on [0�05�0�2]. In the second case, I average over 350 points obtained by taking
the product of 35 equally spaced points on [−0�8�0�8] and 10 equally spaced points on
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[0�05�0�2]. This effectively uses 350 moments to construct the test. I restrict the parame-
ter space such that the B-spline coefficients are no larger than B in absolute values. The
value of B ranges from 5 to 100 to evaluate its influence.

I consider the following choices of In: (1) In = {(√κn/n�0)}. This leads to a test that
is in spirit similar to Gandhi, Lu, and Shi (2013) and is denoted by GLS. (2) In = {(0�κn)},
which is otherwise the same as in Hong (2017) except it is based on a CvM criterion
function and does not include the penalty term. Since this choice uses the most conser-
vative estimate for the local parameter space, I denote it as least favorable (LF). (3) I also
consider bootstrap statistics with

In =
{
(γ�λ)

∣∣∣nγ2 + λ= κn�λ≥ 0�γ ≥ 0�γ = i

N̄

√
κn

n
� i= 0�1�2� � � � � N̄

}
�

Each of these bootstrap statistics is the minimum of several bootstrap statistics with
different (γn�λn), and hence is called the Minimum Bootstrap statistic (MB). To as-
sess the sensitivity of the method to In, I consider tests with N̄ = 1 (MB1) and N̄ = 30
(MB2). The performance of the test can be sensitive to κn. Therefore, I report results for
κn = n2/3� n/ lnn to evaluate its impact. Critical values are computed with 500 bootstrap
statistics and η is set to 0. Setting η = 10−8 yields identical results. I simulate 1000 ran-
dom samples to compute the rejection probability. The significance level is set to 10%.

Table 1 summarizes the rejection probability on the simulated data. The first column
shows the true θF . The other columns report rejection probabilities of corresponding
tests.

First, let us focus on the size control. Under DGP I, the rejection probabilities should
be no larger than 10% for f1, f2, and f3, while under DGP II, the rejection probabilities
should be no larger than 10% for f1 and f2. There are several interesting findings. First,
the MBs perform very well. If κn = n/ lnn, they have the right size control in both DGPs.
In particular, with f1 under DGP II, the rejection probabilities are very close to the nom-
inal size 10%. While under DGP I with f1, the rejection probability is also not far from
10%. This is mostly true with κn = n2/3 except that in some cases, there is slight over-
rejection. Second, MB1 performs significantly better than LF and GLS. The latter two
can be very conservative. This highlights the importance of including multiple points in
In. Third, MB1 performs similarly to MB2 although it has much fewer points in In. This
suggests that the method is not sensitive to the choice of In as long as both (0�κn) and
(
√
κn/n�0) are included. Fourth, the test does not seem to be sensitive to the choices of

B and the number of moments in terms of size control.
Now let us turn to power. First, notice that GLS and LF have much lower power com-

pared to MB1 and MB2. The power difference can be more than 20%. This highlights the
power gain by an In with multiple elements. Second, MB1 and MB2 have almost identi-
cal performance. This is good news for computationally intensive problems because one
can set In = {(0�κn)� (√κn/n�0)} without losing much. Third, B has a limited impact on
the results. Fourth, using more moments may decrease (against f3 in DGP II) or increase
(against f4 in DGP II) power in finite samples. This is not surprising. Intuitively, if one
includes informative moments, power increases. Otherwise, power can decrease. Lastly,
a smaller κn increases the power of the test in certain cases. This is because a smaller κn
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Table 1. Rejection probability with a 10% significance level under n = 1000. GLS: In =
{(√κn/n�0)}; LF: In = {(0�κn)}; MB1: In = {(0�κn)� (√κn/n�0)}; and MB2: In contains 31 equally
spaced points between (0�κn) and (

√
κn/n�0). The number of moments corresponds to how

many points are used to approximate the integral. And B is the bound imposed on the parame-
ter space.

κn = n/ lnn κn = n2/3

θF GLS LF MB1 MB2 GLS LF MB1 MB2 GLS LF MB1 MB2 GLS LF MB1 MB2

DGP I
B = 5, 14 moments B = 5, 350 moments B = 5, 14 moments B = 5, 350 moments

f1 0�017 0�002 0�056 0�058 0�028 0�006 0�068 0�069 0�042 0�003 0�072 0�076 0�050 0�006 0�079 0�081
f2 0�025 0�002 0�049 0�050 0�016 0�004 0�040 0�043 0�026 0�000 0�039 0�039 0�027 0�003 0�060 0�061
f3 0�011 0�000 0�018 0�020 0�006 0�000 0�020 0�020 0�014 0�001 0�020 0�020 0�015 0�000 0�023 0�023
f4 0�812 0�640 0�909 0�914 0�785 0�670 0�912 0�914 0�847 0�674 0�918 0�919 0�863 0�706 0�937 0�937

B = 10, 14 moments B = 10, 350 moments B = 10, 14 moments B = 10, 350 moments
f1 0�023 0�005 0�068 0�071 0�023 0�008 0�064 0�067 0�033 0�002 0�072 0�077 0�041 0�010 0�082 0�083
f2 0�013 0�002 0�038 0�039 0�017 0�001 0�041 0�044 0�028 0�004 0�063 0�063 0�033 0�008 0�065 0�065
f3 0�013 0�000 0�022 0�022 0�011 0�000 0�019 0�020 0�011 0�000 0�020 0�020 0�007 0�000 0�016 0�018
f4 0�814 0�658 0�911 0�915 0�800 0�681 0�912 0�916 0�859 0�662 0�922 0�924 0�839 0�708 0�916 0�917

B = 100, 14 moments B = 100, 350 moments B = 100, 14 moments B = 100, 350 moments
f1 0�031 0�004 0�075 0�076 0�023 0�011 0�079 0�082 0�042 0�003 0�085 0�086 0�054 0�015 0�090 0�095
f2 0�023 0�001 0�057 0�058 0�016 0�004 0�055 0�057 0�038 0�004 0�067 0�067 0�032 0�003 0�064 0�065
f3 0�017 0�000 0�022 0�022 0�008 0�000 0�011 0�013 0�015 0�000 0�026 0�026 0�012 0�000 0�017 0�017
f4 0�766 0�583 0�935 0�940 0�723 0�599 0�900 0�913 0�858 0�680 0�943 0�947 0�857 0�707 0�937 0�944

DGP II
B = 5, 14 moments B = 5, 350 moments B = 5, 14 moments B = 5, 350 moments

f1 0�027 0�031 0�089 0�091 0�031 0�041 0�100 0�101 0�032 0�044 0�113 0�116 0�045 0�074 0�136 0�137
f2 0�009 0�000 0�018 0�019 0�008 0�002 0�017 0�017 0�012 0�000 0�023 0�025 0�013 0�001 0�026 0�028
f3 0�447 0�293 0�592 0�593 0�424 0�314 0�549 0�557 0�496 0�424 0�662 0�675 0�419 0�372 0�561 0�569
f4 0�494 0�483 0�748 0�749 0�656 0�685 0�857 0�860 0�579 0�606 0�799 0�803 0�743 0�777 0�904 0�905

B = 10, 14 moments B = 10, 350 moments B = 10, 14 moments B = 10, 350 moments
f1 0�024 0�026 0�080 0�083 0�030 0�043 0�096 0�099 0�041 0�058 0�131 0�136 0�044 0�073 0�136 0�139
f2 0�007 0�002 0�020 0�022 0�006 0�002 0�022 0�023 0�013 0�004 0�027 0�027 0�009 0�004 0�026 0�027
f3 0�457 0�302 0�605 0�613 0�421 0�304 0�573 0�583 0�497 0�420 0�666 0�676 0�425 0�398 0�592 0�601
f4 0�558 0�527 0�784 0�791 0�680 0�694 0�854 0�856 0�624 0�632 0�829 0�836 0�763 0�795 0�898 0�898

B = 100, 14 moments B = 100, 350 moments B = 100, 14 moments B = 100, 350 moments
f1 0�024 0�026 0�086 0�088 0�027 0�037 0�086 0�092 0�030 0�044 0�110 0�112 0�043 0�072 0�144 0�145
f2 0�005 0�000 0�016 0�017 0�007 0�000 0�018 0�018 0�007 0�001 0�015 0�015 0�011 0�002 0�024 0�025
f3 0�452 0�313 0�592 0�596 0�397 0�288 0�528 0�535 0�498 0�425 0�671 0�678 0�450 0�405 0�594 0�601
f4 0�542 0�506 0�760 0�768 0�713 0�699 0�879 0�880 0�691 0�654 0�851 0�854 0�774 0�771 0�901 0�906

increases the size of the imposed identified set, and hence can lead to smaller critical
values. But it is worth noting that this can also lead to overrejection under the null.

6.2 Asymmetric ascending auctions

DGP III Now consider Example 2.3 where Fs and Fw are beta distributions with param-
eters (2�3) and (2�3�5), respectively. The true value of r in the Gaussian Copula function
is 0�8. Each auction has two bidders. One of them is strong and the other is weak. This
DGP closely follows the empirical application. The goal here is to construct a confidence
interval for Fs evaluated at 0�5, whose true value is 0�6875.
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I generate 500 auctions and use B-splines with knots {0�0� 1
6 �

1
3 �

1
2 �

2
3 �

5
6 �1�1} to ap-

proximate Fs and Fw. Because Fs and Fw are distribution functions, I impose that they
are weakly increasing and Fs(0) = Fw(0) = 0, Fs(1) = Fw(1) = 1. I impose the FOSD re-
striction, that is, Fs(v) ≤ Fw(v) for all v. I also impose that bidders’ valuations are posi-
tively correlated and that the correlation is not too low, that is, r ≥ 0�5.11

Given θ, theoretic moments predicted by the model involve integrals that do not
have closed forms. I approximate the theoretic moments by Monte Carlo integration
with 30,000 simulated auctions. The measure μ is chosen to be the uniform probability
measure on T = [−1�1]. I approximate the integrals by averaging over 100 equally spaced
points in [−1�1]. For the bootstrap statistic, I consider GLS, LF, and MB1 as in the pre-
vious subsection. I report MB3 with In = {(0� n/ lnn)� (

√
1/ lnn�0)� (

√
1/2 lnn�n/2 lnn)}

instead of MB2 because of computational difficulties. As in Section 6.1, I restrict the co-
efficients on the B-splines to be no larger than B in absolute values. I only consider B = 5
and B = 100. Again, η = 0 and η = 10−8 lead to identical rejection probabilities. To as-
sess the sensitivity of my method to κn, I consider κn = n2/3 and n/ lnn. Critical values
are computed based on 200 bootstrap statistics and results are obtained from 500 inde-
pendent samples. The nominal size of these tests is 10%.

Figure 3 reports rejection probabilities against different values of Fs(0�5). The first
row is constructed under B = 5. If κn = n/ lnn as shown in Figure 3(a), all four tests have
correct size control. Similar to the results from DGP I and DGP II, MB1 and MB3 are less
conservative than GLS and LF under the null and have much better power. Including
both (0�κn) and (

√
κn/n�0) in In significantly improves power. Interestingly, LF seems

to be very conservative and does not have any power against alternatives larger than
the true value. Also, notice that MB1 and MB3 have identical rejection probabilities, that
is, adding (

√
1/2 lnn�n/2 lnn) does not seem to affect the performance of the test. Fig-

ure 3(b) is constructed under κn = n2/3. It is very similar to Figure 3(a). Figure 3(c) com-
pares the rejection probabilities of MB1 under κn = n/ lnn and κn = n2/3. The perfor-
mance of the test is not sensitive to κn under this DGP. Overall, the test seems to perform
slightly better with κn = n/ lnn. This finding is suggestive on the choice of κn in Section 7
because the application is very close to DGP III.

The second row of Figure 3 is constructed with B = 100. It is similar to the first row.
In particular, the rejection probabilities are very close to those under B = 5, and the
performance of the tests are not sensitive to the choice of κn.

It is worth noting that accounting for partial identification is desirable here because
the model is only partially identified. At the same time, the dimension of the optimiza-
tion problem is relatively high (17 parameters) and the moment conditions are nonlin-
ear and difficult to evaluate. Solving an optimization problem with a dimension twice
that of the sieve space can be very time consuming. For such applications, the method
proposed in this paper can be very attractive.

To sum up, all the simulation results suggest that MB1 works very well. Adding more
points to In only slightly improves the performance of the test. In addition, κn = n/ lnn
seems to be a good choice and results are not sensitive to the value of B.

11Fan, He, and Li (2015) also use such parametric restrictions on copula functions to partially identify
primitives in auctions with correlated values.
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Figure 3. Rejection probability with a 10% significance level test. GLS: In = {(√κn/n�0)};
LF: In = {(0�κn)}; MB1: In = {(0�κn)� (√κn/n�0)}; and MB3: In = {(0� n/ lnn)� (

√
1/ lnn�0)�

(
√

1/2 lnn�n/2 lnn)}. B is the bound imposed on the parameter space. The true value is 0�6875.

7. Empirical application: USFS ascending auctions

This section applies my method to infer marginal valuation distributions in ascending
auctions held by the USFS. In these auctions, bidders are timber firms and the auctioned
goods are timber tracts. Bidders in these auctions are asymmetric: big firms and firms
with manufacturing capacity are more likely to have higher values compared to small
firms and firms without manufacturing capacity. The former are thus strong bidders
and the latter are weak bidders. For a discussion on the asymmetry, see Athey, Levin,
and Seira (2011). In addition, these bidders have correlated valuations, and ignoring this
correlation can lead to inconsistent inference. For example, see Aradillas-López, Gandhi,
and Quint (2013) and Aradillas-López, Gandhi, and Quint (2016). Therefore, the econo-
metric framework described in Example 2.3 is appropriate for this analysis.

I focus on auctions from region 5 of USFS that are not set-aside auctions. From each
auction, I observe every bidder’s identity, all the bids, and a set of auction characteristics.
I classify bidders as strong or weak according to the SBA classification. To simplify the
analysis, I use auctions with 1 strong bidder and 1 weak bidder. To eliminate outliers,
I exclude auctions with the highest 5% of transaction prices. This gives me a sample
with 218 observations. The average transaction price is $51�13 with a standard devia-
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Figure 4. Pointwise confidence set for Fs .

tion of $38�82. Following Aradillas-López, Gandhi, and Quint (2013), I assume that the
transaction price equals the second highest valuation among all bidders. To keep the
illustration simple, I do not include any auction-level characteristics.

The goal is to construct a pointwise confidence band for Fs. I implement my method
as described in Section 6.2. The only difference is that now the support of the marginal
valuation distributions is the interval between the lowest and the highest transaction
prices observed in the data. In light of the findings in Section 6, I set κn = n/ lnn, In =
{(0� n/ lnn)� (

√
1/ lnn�0)� (

√
1/2 lnn�n/2 lnn)}, and η = 0. I also set B = 5 because in all

simulations in Section 6, the value of B does not seem to change results much, and a
larger B typically leads to longer computing time. As a comparison, I also consider a
version of my test without imposing FOSD.

The results are shown in Figure 4. The dashed lines with circle markers are the upper
and lower bounds of the pointwise 90% confidence set with FOSD, while the ones with
cross markers are bounds of the confidence set without FOSD. The confidence set with
FOSD is much narrower compared to the one without FOSD. I also compute the esti-
mated valuation distribution assuming symmetry and independence, which is shown
by the solid line. Imposing FOSD allows me to exclude the solid line, at least at certain
points, from the conference set. Without FOSD, I cannot exclude any part of the solid
line. This shows that imposing the shape restriction (FOSD) can greatly improve infer-
ence.

8. Conclusion

This paper proposes a test of a shape restriction on an infinite-dimensional parame-
ter that is identified by unconditional moment equalities. This test can be inverted to
construct confidence sets. It is very general and has many applications. One attractive
feature of the test is that it exploits convexity to strike a balance between computing
time and the need to approximate the local parameter space. Specifically, if partial iden-
tification is a concern, my method involves optimization problems that have a much
lower dimension compared with the method proposed in CNS. This can be crucial if the
dimension of the sieve space is high and/or in structural estimation where moments are
difficult to evaluate. I illustrate my method in an empirical application to ascending auc-
tions. The results show that imposing shape restrictions can greatly improve inference.
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Appendix A: Notation list

The parameter space Θ is equipped with a norm ‖ · ‖s and ds is the metric induced by
‖·‖s. Let ‖·‖F be a chosen norm on the parameter spaceΘ under which the convergence
property of Θ̂n(R) is important. Denote the metric induced by ‖ · ‖F as dF . Notice that
‖ · ‖F can depend on F . For example, if θ = (θP�θN) where θP is a finite-dimensional
real vector and θN is a vector-valued function on W , then a common choice is ‖θ‖2

F =
‖θP‖2

E+‖θN‖2
2�F , where ‖ ·‖E is the Euclidean norm and ‖θN‖2

2�F = ∫ ‖θN(W )‖2
E dF is the

usual L2 norm under the distribution F . Also define

Θn�F(R)= arg min
θ∈Θn∩R

QF(θ)

to be the set of minimizers of the population criterion function on the sieve space. For
any function f onΘ,

arg inf
θ∈Θn∩R

f(θ)

=
{
θ ∈Θ : ∃{θk}∞k=1 ⊂Θn ∩R such that lim

k→∞
f (θk)= inf

θ∈Θn∩R
f(θ)� lim

k→∞
ds(θ�θk)= 0

}
�

It is nonempty and lies in Θn ∩ R if Θn ∩ R is compact under ds. If, in addition, f is
continuous, then arg infθ∈Θn∩R f(θ)= arg minθ∈Θn∩R f(θ).

Define the first-order directional derivative of EFρt(Wi� ·) at θ in the direction � as

dEFρt(Wi�θ)

dθ
[�] = lim

τ↓0

EFρt(Wi�θ+ τ�)−EFρt(Wi�θ)

τ
�

Let �∞(Θ× T) be the space of bounded functions on Θ× T equipped with the stan-
dard sup norm ‖ · ‖∞. Let d∞ be the metric induced by ‖ · ‖∞. �κ�F�m�R : �∞(Θ× T)→ R

is a function indexed by κ≥ 0, F ∈ F ,m ∈ Z
+, and R ∈ R such that

�κ�F�m�R(ω)= inf
θ̃∈Θm�F (R)

{
inf

θ∈BκF(θ̃)∩Θm∩R

∫
T

[
ω(θ̃� t)+

√
mdEFρt(Wi� θ̃)

dθ
[θ− θ̃]

]2
dμ(t)

}
�

Notice that if κ1 > κ2, then �κ1�F�m�R(ω)≤ �κ2�F�m�R(ω) because inf in the curly bracket is
taken over a larger set under κ1. The theory of this paper involves showing that the test
statistic and the bootstrap statistic can be approximated asymptotically by �κ�F�m�R(·)
applied to the empirical process and the bootstrap empirical process, respectively.
Lastly, denote the weak limit of Gn�F(θ� t) by GF and Table 2 contains other important
notation used in this appendix.

Appendix B: Assumptions for uniform size control

Assumption B.1. (i) For every R ∈ R, Θ ∩R is compact under ds; (ii) there exist C1�C2 ∈
(0�∞) such that C1dw�F ≤ dF ≤ C2ds for every F ∈ F .
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Table 2. Some important notation.

BεF(θ) {θ̃ ∈Θ : dF(θ̃� θ)≤ ε}
dw�F (a�b)

√∫
T[EFρt(Wi�a)−EFρt(Wi�b)]2 dμ(t) for a�b ∈Θ

dF(a�B) infb∈B dF(a�b) for a ∈Θ and B⊂Θ
ds(a�B) infb∈B ds(a�b) for a ∈Θ and B⊂Θ
dw�F(a�B) infb∈B dw�F (a�b) for a ∈Θ and B⊂Θ
Θεn�F (R) {θ ∈Θn ∩R : dF(θ�Θn�F (R))≤ ε}
ΘεF {θ ∈Θ : dF(θ�ΘF)≤ ε}
a∨ b Maximum of a and b
↓ Converge from above
→ Converge to

Assumption B.2. The sieve space Θn satisfies the following conditions. (i) For ev-
ery n, Θn ⊂ Θ is finite-dimensional, convex, and closed under ds. (ii) As n → ∞,
supR∈R supθ∈Θ∩R ds(θ�Θn ∩ R) = o(1). (iii) As n → ∞, supR∈R supθ∈Θ∩R ds(θ�Θn ∩ R) =
o(n−1/2).

Assumption B.3. (i) For any ε > 0, the following quantity,

Sn(ε)= sup
(F�R)∈J

[
inf

θ∈Θn∩R:dF (θ�Θn�F (R))>ε
QF(θ)− inf

θ∈Θn∩R
QF(θ)

]

satisfies that
√
nSn(ε)→ ∞ if n→ ∞. (ii) There exist ε > 0 and ν ≥ 1 such that

ζn = sup
(F�R)∈J

sup
θ∈Θεn�F (R):dw�F (θ�Θn�F (R))�=0

dF
(
θ�Θn�F(R)

)ν
dw�F

(
θ�Θn�F(R)

)
is finite for every n > 0.

Assumption B.4. (i) There exists ε > 0 such that dEFρt(Wi�θ1)
dθ [θ2 − θ1] exists for every

θ1� θ2 ∈ΘεF , t ∈ T, and F ∈ F . (ii) There exist ε > 0 and ξn > 0 such that ξn → 0,
√
nξn → ∞

as n→ ∞ and

sup
(F�R)∈J

sup
θ1�θ2∈Θεn�F (R):dF(θ1�θ2)≤ξn

sup
t∈T

∣∣∣∣EFρt(Wi�θ2)−EFρt(Wi�θ1)− dEFρt(Wi�θ1)

dθ
[θ2 − θ1]

∣∣∣∣
= o(n−1/2)�

(iii) There exists CD <∞ such that for all F ∈ F

sup
t∈T

EF

[
ρt(Wi�θ1)− ρt(Wi�θ2)

]2 ≤ CDdF(θ1� θ2)
2�

Assumption B.5. The tuning parameter κn satisfies κn → ∞, κn ln lnn/n → 0, and
ζn/

√
κn = o(ξνn).
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Assumption B.6. (i) Θ ∩ S is convex and compact under ds. (ii) φ is linear and φ(θF)
lives in a known compact set K ⊂ R

Dφ , for all F ∈ F . (iii) supa∈K supθ∈Θ∩Ra�φ�S ds(θ�
Θn ∩Ra�φ�S)= o(n−1/2).

Assumption B.7. Let �m�J = �ξm�F�m�R where J = (F�R) and let CF(1 − α��m�J) be the
1 − αth quantile of �m�J(GF) and

J ε
n (α)= {

J ∈ J : CF(1 − α��m�J) > ε ifm≥ n}�
(i) For every ε > 0, if η ↓ 0, then

lim sup
n→∞

sup
J∈J ε

n (α)

PF

(
CF(1 − α−η��n�J)−η< �n�J(GF)≤ CF(1 − α+η��n�J)+η) → 0�

(ii) For every εn > 0 and εn → 0, lim supn→∞ sup(F�R)∈J \J εn
n (α) PF(Tn(R) > 0) < α.

Assumption B.1(i) holds after regularizing the parameter space following Santos
(2012). As in Santos (2012), the choice of Θ depends on R. For example, if R involves
derivatives of θ, Θ needs to be chosen accordingly. For more details, see Section S.2 in
the Online Supplemental Material. Assumption B.1(ii) is satisfied with many commonly
used norms. For example, if ds is the sup metric and dF is induced by the L2 norm un-
der F , then standard smoothness assumptions on ρt(Wi�θ) imply Assumption B.1(ii).
Assumption B.1 ensures that QF(·) is continuous under ds and that infθ∈Θ∩RQF(θ) =
minθ∈Θ∩RQF(θ). It implies that minθ∈Θ∩RQF(θ) > 0 under any fixed alternative, which
is crucial for the power result of the test. Assumption B.2(i) is a mild requirement. To-
gether with Assumption B.1(i), it implies the compactness of Θn ∩R under ds.12 By the
definition of arg inf, this further implies that Θ̂n(R) is nonempty and lies inΘn ∩R. Con-
vexity of Θn ∩ R can be relaxed if dEFρt(Wi�θ)

dθ [�] is linear in � and uniformly bounded.
Assumptions B.2(ii) and (iii) require the sieve spaces to approximate Θ∩R well enough
under ds uniformly in R ∈ R. Under Assumption B.1(ii), this means that the sequence
of sieve spaces approximates Θ ∩ R well under dF uniformly in (F�R) ∈ J . If ds is the
sup metric and one regularizes Θ following Newey and Powell (2003) and Santos (2012),
then the sieve spaces can be spanned by orthogonal polynomials or splines with suffi-
ciently many orders or knots. See Newey (1997) for more discussion. Notice, unlike in
Hong (2017) and Santos (2012), there is no restriction on how the boundary points of Θ
can be approximated by interior points.

Assumption B.3(i) is similar to Assumption 4.1(ii) in CNS. It allows that as n in-
creases, Θn�F(R) becomes less well separable, that is, Sn(ε) can converge to 0 for a
given ε. However, the convergence rate must be slower than

√
n. This assumption rules

out weak identification. It, however, does not require supθ∈Θn�F (R) dF(θ�ΘF ∩ R)→ 0 as
n→ ∞, that is, the minimizers of QF(θ) on the sieve space are allowed to be far away
from the true identified set under dF .

Assumption B.3(ii) is otherwise a standard assumption in the sieve literature ex-
cept that I also take sup across all F ∈ F . Notice that dw�F is related to the weak

12If one is only concerned with size control, one can directly assume that Θn ∩R is compact for every n
and R ∈ R. Then Assumption B.1(i) is not needed.
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norm considered in Ai and Chen (2003). There are several differences. First, since
I am focusing on models with a large number of unconditional moments, dw�F is
based on the integration of these unconditional moments under μ. Second, dw�F does
not allow for a general weight matrix, but it can be extended in this direction. Third, dw�F
does not involve the directional derivatives at the true value of the unknown parameter.
This is more convenient for models with partial identification. It is also worth point-
ing out that in nonparametric IV models, one can choose weight functions and μ such
that dw�F is arbitrarily close to the weak norm defined in Ai and Chen (2003). Also, ζn is
closely related to the measure considered in CNS, who transform conditional moments
into countably infinitely many moments using basis functions. In fact, given the set of
basis functions, one can construct w and μ such that my method essentially uses the
same set of unconditional moments as in CNS. Then ζn with ν = 1 is different from its
counterpart in CNS under r = 2 in two ways. First, it uses all the moments for any finite n,
while CNS use a finite subset of these moments. Second, within the finite subset of mo-
ments used in CNS, ζn typically give each moment a different weight compared to CNS.

If F is known, ζn can be directly calculated. Alternatively, if F = {F0} and ν is known,
one may estimate ζn by replacing dF and dw�F by their sample analog and replacing
Θn�F(R) by a consistent estimator. As a special case, if ν = 1, dF is the L2 norm, ρt is
linear in θ for all t, and Θn is a linear space with a finite number of basis functions, then
one can estimate ζn following the method proposed in Chen and Christensen (2015) if
θF is point-identified.

Assumptions B.4(i) and (ii) imply that the moment conditions can be approximated
by their linear expansion in a neighborhood of Θn�F(R). Combined with other assump-
tions, they rule out cases where all directional derivatives are 0 at the boundary of
Θn�F(R), that is, local identification failure as considered in Dovonon and Renault (2013)
and Lee and Liao (2018). Assumption B.4(iii) accompanied by Definition 5.1(iii) implies
that the empirical process Gn�F(θ� t) is asymptotically equicontinuous in θ.

Assumptions B.1–B.4 are sufficient to guarantee that the test statistic is approxi-
mated asymptotically by �ξn�F�n�R(Gn�F) under the null hypothesis. Assumption B.5 is
needed to validate the bootstrap statistic. It guarantees that the rescaled moments can
be approximated by their first-order expansion around the identified set. If the model
is linear in θ, ξn can be any o(1) sequence and κn can be any sequence that does not
diverge too fast. If the model is nonlinear and ν = 1, usually ξn can be any o(n−1/4) se-
quence. Then κn needs to satisfy ζn/

√
κn = o(n−1/4) and κn ln lnn/n→ 0. In some cases,

such κn may not exist. In particular, these requirements rule out severely ill-posed non-
linear models. Similar assumptions can also be found in the semiparametric conditional
moment literature if endogenous variables enter the unknown functions. For an exam-
ple, see Chen and Pouzo (2009). It is worth noting that if In = {(0�κn)}, this assumption
can be relaxed to only require ζn/

√
κn = o(1). Assumption B.6 guarantees that the con-

fidence set for φ(θF) is valid. It is a version of Assumption B.2 with R = {Ra�φ�S : a ∈K}.
Assumption B.7 is required only if one would like to set η = 0. Assumption B.7(i)

holds if there exists δ > 0 such that uniformly in J ∈ J and sufficiently largem, �m�J(GF)
has a density bounded away from 0 and from above on ((CF(1 − α��m�J) − δ) ∨ 0�
CF(1 − α��m�J)+ δ). Assumption B.7(ii) handles the case where CF(1 − α��m�J) is equal
to or arbitrarily close to 0. It is related to Assumption A.2 in Bugni, Canay, and Shi (2017).
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