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This Online Supplementary Appendix contains additional results for “Quantile treat-
ment effects in difference in differences models with panel data.” The first section con-
tains Monte Carlo simulations. The second section contains additional asymptotic re-
sults for the case where the Distributional DID Assumption holds after conditioning on
covariates as in Section 4 in the main text. The third section contains supplementary
results for the application in the main text.

S1. Monte Carlo simulations

This section contains results from several Monte Carlo simulations. In particular, we
consider the model from Example 1: Y0s = θs + η+ vs for s = t� t − 1� t − 2. We compare
the results using our approach to the results from the change in changes model (Athey
and Imbens (2006)). Because our results for the QTT do not depend on modeling out-
comes for the treated group, we assess the performance of each method in generating
the distribution of counterfactual outcomes for the treated group in the last period, that
is, FY0t |D=1. We report results for the 0�1, 0�5, and 0�9 quantiles.

Throughout, we assume vs ∼N(0�1) and are independent from η and independent
of each other. We also set (η|D = 0) ∼ N(0�1), θt−1 = 1, and θt−2 = 0 for each DGP be-
low. The only remaining objects to set are the distribution of η for the treated group, and
the value of θ3. In this setup, the method proposed in the current paper should be valid
(as discussed in Example 1) and the change in changes model should be valid. The pos-
sible issue with the change in changes method here is that it requires more restrictive
support conditions than our approach. However, because everything is normally dis-
tributed here, the conditions for the change in changes model are satisfied though there
may be performance issues in finite samples. We consider the following data generating
processes:

DGP 1: η|D= 1 ∼N(1�1), θt = 1

DGP 2: η|D= 1 ∼N(2�1), θt = 1
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DGP 3: η|D= 1 ∼N(4�1), θt = 1

DGP 4: η|D= 1 ∼N(1�1), θt = 4

Under each of these setups, the true counterfactual distribution is N(μ1 + θ3�2)
where μ1 is the mean of η for the treated group. Moving from DGP 1 to DGP 2 and
DGP 3, the location of the distribution of the unobserved heterogeneity for the treated
group moves further away from the location of the distribution of the unobserved het-
erogeneity for the untreated group. DGP 4 introduces a relatively large time effect that
is common across both groups. We consider each DGP with n (the number of observa-
tions) equal to 100 and then n= 1000. We set the probability of being to treated to 0�5. We
run each simulation 1000 times and compute the mean bias, median absolute deviation,
and root mean squared error and report them in Table SI.

Table SI. Monte Carlo simulations.

N = 100 N = 1000

10% 50% 90% 10% 50% 90%

DGP 1
PQTT Bias 0�182 0�089 0�124 0�033 0�009 0�004
PQTT MAD 0�351 0�234 0�319 0�106 0�068 0�096
PQTT RMSE 0�480 0�347 0�499 0�148 0�103 0�142
CIC Bias −0�044 −0�063 −0�226 −0�002 −0�008 −0�011
CIC MAD 0�308 0�278 0�502 0�097 0�085 0�171
CIC RMSE 0�481 0�413 0�687 0�148 0�127 0�263

DGP 2
PQTT Bias 0�172 0�082 0�087 0�037 0�015 0�005
PQTT MAD 0�337 0�228 0�284 0�097 0�071 0�098
PQTT RMSE 0�480 0�330 0�458 0�149 0�104 0�143
CIC Bias −0�066 −0�060 −0�737 0�002 −0�014 −0�071
CIC MAD 0�309 0�341 0�858 0�092 0�114 0�304
CIC RMSE 0�465 0�533 0�998 0�142 0�163 0�462

DGP 3
PQTT Bias 0�229 0�118 0�094 0�031 0�011 0�010
PQTT MAD 0�367 0�235 0�299 0�097 0�068 0�096
PQTT RMSE 0�503 0�345 0�472 0�150 0�103 0�147
CIC Bias −0�073 −0�909 −2�637 −0�011 −0�106 −1�526
CIC MAD 0�394 0�992 2�689 0�132 0�363 1�593
CIC RMSE 0�606 1�135 2�727 0�194 0�506 1�618

DGP 4
PQTT Bias 0�195 0�094 0�039 0�028 0�016 0�005
PQTT MAD 0�320 0�229 0�312 0�099 0�070 0�100
PQTT RMSE 0�463 0�338 0�474 0�145 0�105 0�145
CIC Bias −0�060 −0�061 −0�238 −0�005 −0�004 −0�012
CIC MAD 0�313 0�296 0�502 0�099 0�093 0�170
CIC RMSE 0�480 0�428 0�678 0�146 0�133 0�257

Note: This table presents results from Monte Carlo experiments under DGP 1–DGP 4. The rows labeled by PQTT provide the
results developed using the approach of the current paper. The results labeled CIC come from the change in changes method.
The columns are for the 0�1 quantile, 0�5 quantile, and 0�9 quantile. We use 1000 Monte Carlo simulations.
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Results

The performance of our method and the change in changes method is very similar for
DGP 1. Our method performs somewhat better at the 0�9 quantile. And both methods
perform better moving from 100 observations to 1000 observations.

Our method performs substantially better than the change in changes method in
DGP 2 and DGP 3. To give an example, the root mean squared error of the change in
changes method for the 0�9 quantile with 100 observations is six times larger than our
method. The difference in performance between the two methods is essentially negligi-
ble at the 0�1 quantile, large at the 0�5 quantile, and extremely large at the 0�9 quantile.
This is due to the distribution ofη for the treated group being shifted to the right in these
experiments and would be reversed if it were shifted to the left. Also, notice that this is
a finite sample issue as the performance of the change in changes method improves go-
ing from 100 to 1000 observations (though in the latter case, our approach still performs
substantially better).

Finally, in DGP 4 where the time effects are relatively large, there is little differ-
ence in the performance of the two methods. Overall, the biggest differences in per-
formance between our method and the change in changes method occurred when the
distribution of unobserved heterogeneity was quite different between the treated and
untreated groups; in this case, our method performed substantially better. Importantly,
this case is a leading case for using DID-type methods. A final takeaway is that the per-
formance of our method did not vary much across different DGPs—in particular, the
performance did not decline with large time effects or large differences in the distri-
butions of time invariant unobserved heterogeneity between the treated and untreated
groups.

S2. Asymptotic results when Distributional Difference in Differences

Assumption holds conditional on covariates

This section develops the asymptotic properties of our estimator in the case where the
Distributional Difference in Differences Assumption holds conditional on covariates
and the Copula Stability Assumption holds unconditionally as in Proposition 1. In this
setup, the propensity score needs to be estimated. Throughout this section, we denote
the true propensity score by p0(x) and the counterfactual distribution given in Propo-
sition 1 (in the main text) by FpY0t |D=1 for notational clarity. We impose the following
condition on the estimator of the propensity score.

Assumption SA1 (High level condition on the propensity score).

sup
x∈X

∣∣p̂(x)−p0(x)
∣∣ = op

(
n−1/4)�

Below, we provide primitive conditions for Assumption SA1 to hold when the
propensity score is estimated parametrically or nonparametrically, noting that other
(e.g., semiparametric) estimators can satisfy this condition as well. Before that, we state
some preliminary results used for deriving the asymptotic distribution of our estima-
tor.



4 Callaway and Li Supplementary Material

Lemma SA1. Let Fp�Y0t |D=1(δ� p̄) = E[ 1−D
p

p̄(X)
1−p̄(X)1{�Yt ≤ δ}] denote the propensity score

reweighted distribution of the change in untreated potential outcomes for the treated
group for a particular propensity score p̄. Under the Conditional Distributional Differ-
ence in Differences Assumption, the Copula Stability Assumption, Assumptions 3.2, 3.3
and 4.1 and Assumption SA1, the pathwise derivative �(p0)(p̂ − p0) exists and is given
by

�(δ�p0)(p̂−p0)=E
[

1 −D
p

1{�Yt ≤ δ}(
1 −p0(X)

)2

(
p̂(X)−p0(X)

)]
�

Proof.

F
p
�Y0t |D=1

(
δ�p0 + h(p̄−p0)

) − Fp�Y0t |D=1(δ�p0)

h

=E
[

1 −D
p

1{�Yt ≤ δ}
(

p0(X)+ h(
p̄(X)−p0(X)

)
1 −p0(X)− h(

p̄(X)−p0(X)
) − p0(X)

1 −p0(X)

)] /
h

=E
[

1 −D
p

1{�Yt ≤ δ}
(
p̄(X)−p0(X)

)
(
1 −p0(X)

)2 − h(
p̄(X)−p0(X)

) +p0(X)h
(
p̄(X)−p0(X)

)
]

→E

[
1 −D
p

1{�Yt ≤ δ}
(
p̄(X)−p0(X)

)
(
1 −p0(X)

)2

]
as h→ 0�

Lemma SA2. Under the Conditional Distributional Difference in Differences Assumption,
the Copula Stability Assumption, Assumptions 3.2, 3.3, 4.1 and Assumption SA1,

√
n
∣∣Fp�Y0t |D=1(δ� p̂)− Fp�Y0t |D=1(δ�p0)− �(δ�p0)(p̂−p0)

∣∣∞ = op(1)�

Proof.

√
n
∣∣F�Y0t |D=1(δ� p̂)− F�Y0t |D=1(δ�p0)− �(δ�p0)(p̂−p0)

∣∣∞
= √

n

∣∣∣∣E
[

1 −D
p

1{�Yt ≤ δ}
(

p̂(X)

1 − p̂(X) − p0(X)

1 −p0(X)
−

(
p̂(X)−p0(X)(

1 −p0(X)
)2

)]∣∣∣∣∞
= √

n

∣∣∣∣E
[

1 −D
p

1{�Yt ≤ δ}
( (

p̂(X)−p0(X)
)2

(
1 − p̂(X))(1 −p0(X)

)2

)]∣∣∣∣∞
≤C√

n sup
x∈X

∣∣p̂(x)−p0(x)
∣∣2 → 0�

where the last line holds because p is bounded away from 0 and 1, p0(x) is uniformly
bounded away from 1, and p̂(x) converges uniformly to p0(x). Then the result holds
under Assumption SA1.
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Next, we state a high level condition on the pathwise derivative given above. LetW =
(D�X��Yt) andWi = (Di�Xi��Yit).

Assumption SA2 (High level conditions on pathwise derivative).

(i)
√
n(�(δ�p0)(p̂−p0))= 1√

n

∑n
i=1ϕδ�p0(Wi)+ op(1) uniformly in δ ∈ �Y0t|D=1.

(ii) {ϕδ�p0(W ) : δ ∈ �Y0t|D=1} is a uniformly bounded Donsker class of functions.

We will show the validity of both of these conditions in the case where the propensity

score is estimated parametrically and nonparametrically using series logit below and

note that these conditions potentially allow other estimators of the propensity score as

well. The next result establishes an equivalent result for Proposition 3 (in the main text)

in the case where the Distributional DID Assumption holds conditional on covariates.

Let

Ĝ
p
�Y0t |D=1(δ)= √

n
(
F̂
p
�Y0t |D=1(δ)− Fp�Y0t |D=1(δ)

)
�

where Fp�Y0t |D=1(δ) is given in Equation (2) in the main text. Let

Ỹ
p
it = Fp�−1

�Y0t |D=1

(
F�Yt−1|D=1(�Yit−1)

) + F−1
Yt−1|D=1

(
FYt−2|D=1(Yit−2)

)
�

let

F̃
p
Y0t |D=1(y)= 1

nD

∑
i∈T

1
{
Ỹ
p
it ≤ y}�

and let

G̃
p
Y0t |D=1(y)= √

n
(
F̃
p
Y0t |D=1(y)− FpY0t |D=1(y)

)
�

Proposition SA1. Under the Conditional Distributional Difference in Differences As-

sumption, the Copula Stability Assumption, Assumptions 3.2, 3.3 and 4.1 and Assump-

tions SA1 and SA2,

(
Ĝ
p
�Y0t |D=1� Ĝ�Yt−1|D=1� G̃

p
Y0t |D=1� ĜYt |D=1� ĜYt−1|D=1� ĜYt−2|D=1

)
�

(
W
p
1 �W

p
2 �V

p
0 �V

p
1 �W

p
3 �W

p
4

)

in the space S = l∞(�Y0t|D=1) × l∞(�Yt−1|D=1) × l∞(Y0t|D=1) × l∞(Yt|D=1) ×
l∞(Yt−1|D=1) × l∞(Yt−2|D=1) where (Wp

1 �W
p
2 �V

p
0 �V

p
1 �W

p
3 �W

p
4 ) is a tight Gaussian pro-

cess with mean 0 and covariance V (y� y ′)=E[ψp(y)ψp(y ′)′] for y = (y1� y2� y3� y4� y5� y6) ∈
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S and y ′ = (y ′
1� y

′
2� y

′
3� y

′
4� y

′
5� y

′
6) ∈ S and with ψp(y) given by

ψp(y)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕy1�p0(W )+ 1 −D
p

p0(X)

1 −p0(X)
1{�Yt ≤ y1} − Fp�Y0t |D=1(y1)

D

p
1{�Yt−1 ≤ y2} − F�Yt−1|D=1(y2)

D

p
1
{
Ỹ
p
t ≤ y3

} − FpY0t |D=1(y3)

D

p
1{Yt ≤ y4} − FYt |D=1(y4)

D

p
1{Yt−1 ≤ y5} − FYt−1|D=1(y5)

D

p
1{Yt−2 ≤ y6} − FYt−2|D=1(y6)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

Proof. First, we claim that the class of functions {(d�x��yt� y1) 	→ ϕy1�p0(w) + 1−d
p ×

p0(x)
1−p0(X)

1{�yt ≤ y1}|y1 ∈ �Y0t|D=1} is Donsker. To show this, first notice that, ϕy1�p0(w) is

Donsker by Assumption SA2(ii). Next, let K = { 1−d
p

p0(x)
1−p0(x)

1{�yt ≤ y1}|y1 ∈ �Y0t|D=1}. K is

Donsker because 1{�yt ≤ y1}|y1 ∈ �Y0t|D=1} is Donsker, and 1−d
p

p0(x)
1−p0(x)

is a uniformly
bounded and measurable function so that we can apply van der Vaart and Wellner (1996,
Example 2.10.10). Then, the result holds by van der Vaart and Wellner (1996, Example
2.10.7).

Finally, the result follows from Lemma SA2 and from the functional central limit the-
orem for empirical distribution functions.

The next result establishes an analogous result to Proposition 4 for the case where
identification depends on covariates.

Proposition SA2. Let Ĝp0 (y) = √
n(F̂

p
Y0t |D=1(y) − F

p
Y0t |D=1(y)) and let Ĝp1 (y) = √

n ×
(F̂Yt |D=1(y)−FYt |D=1(y)). Under the Conditional Distributional Difference in Differences
Assumption, Copula Stability Assumption, and Assumptions 3.2, 3.3, 4.1, Assumption SA1
and SA2, (

Ĝ
p
0 � Ĝ

p
1

)
�

(
G
p
0 �G

p
1

)
�

where G
p
0 and G

p
1 are tight Gaussian processes with mean 0 with almost surely uniformly

continuous paths on the space Y0t|D=1 ×Yt|D=1 given by

G
p
1 =V

p
1

and

G
p
0 = V

p
0 +

∫ {
W
p
1 ◦K2(y� v)− fp�Y0t |D=1

(
y − F−1

Yt−1|D=1 ◦ FYt−2|D=1 ◦ W
p
4 −W

p
3 ◦K1(v)

fYt−1|D=1 ◦K1(v)

)

−W
p
2 ◦K3(y� v)

}
× f�Yt−1|Yt−2�D=1

(
K3(y� v)|v

)
f�Yt−1|D=1

(
K3(y� v)

) dFYt−2|D=1(v)�
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where K1(v), K2(y� v) are defined in Proposition 4 in the main text and K3(y� v) :=
F−1
�Yt−1|D=1 ◦ Fp�Y0t |D=1(K2(y� v)).

Proof. The result follows immediately from Proposition SA1, by the Hadamard differ-
entiability of the map φ established in Lemma B.4 in the main text, and similar argu-
ments as in the proof of Proposition 4 in the main text.

Theorem SA1. Suppose FpY0t |D=1 admits a positive continuous density fpY0t |D=1 on an in-

terval [a�b] containing an ε-enlargement of the set {Fp�−1
Y0t |D=1(τ) : τ ∈ T }. Under the Condi-

tional Distributional Difference in Differences Assumption, the Copula Stability Assump-
tion, and Assumptions 3.2, 3.3 and 4.1 and Assumptions SA1 and SA2,

√
n
(
Q̂TT

p
(τ)−QTTp(τ)) � Ḡ

p
1 (τ)− Ḡ

p
0 (τ)�

where (Ḡp0 (τ)� Ḡ
p
0 (τ)) is a stochastic process in the metric space (l∞(T ))2 with

Ḡ
p
0 (τ)= G

p
0

(
F
p�−1
Y0t |D=1(τ)

)
f
p
Y0t |D=1

(
F
p�−1
Y0t |D=1(τ)

) and Ḡ
p
1 (τ)= G

p
1

(
F−1
Yt |D=1(τ)

)
fYt |D=1

(
F−1
Yt |D=1(τ)

) �

Proof. The result follows from the Hadamard differentiability of the quantile map (van
der Vaart and Wellner (1996, Lemma 3.9.23(ii)) and by Proposition SA2.

Primitive conditions for the propensity score

The next set of assumptions guarantees that Assumption SA1 holds under parametric
and nonparametric models for the propensity score; we also give explicit expressions for
the pathwise derivative in Assumption SA2 for parametric and nonparametric models
for the propensity score.

Assumption P1 (Parametric model).

(i) p0(x) = Λ(x′β) for a known function Λ : R → [0�1] with β ∈ int(B) where B is a
compact subset of Rk.

(ii) Let U = {x′β : x ∈ X �β ∈ B}. For all u ∈ U , there exists an ε > 0 such that Λ(u) ∈
[ε�1 − ε].

(iii) Λ(u) is strictly increasing and twice continuously differentiable with first deriva-
tives bounded away from 0 and infinity and bounded second derivatives.

Assumption P2 (Distribution ofX).

(i) The support X ofX is a subset of a compact set.

(ii) E[XX ′] is positive definite.
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These are standard conditions for parametrically estimating the propensity score
and will hold, for example, in logit and probit models. Under Assumption P1 and As-
sumption P2, β can be estimated using maximum likelihood, and it is straightforward
to show that

√
n(β̂−β)

= 1√
n

n∑
i=1

E

[
λ
(
X ′β

)2

Λ
(
X ′β

)(
1 −Λ(

X ′β
))XX ′

]−1 (
Di −Λ

(
X ′
iβ

))
λ
(
X ′
iβ

)
Λ

(
X ′
iβ

)(
1 −Λ(

X ′
iβ

)) Xi + op(1)
and

√
n
(
p̂(x)−p0(x)

)

= λ(x′β
)
x′ 1√

n

n∑
i=1

E

[
λ
(
X ′β

)2

Λ
(
X ′β

)(
1 −Λ(

X ′β
))XX ′

]−1 (
Di −Λ

(
X ′
iβ

))
λ
(
X ′
iβ

)
Λ

(
X ′
iβ

)(
1 −Λ(

X ′
iβ

)) Xi + op(1)�
where λ(u) is the derivative of Λ(u). This implies Assumption SA1 holds when the
propensity score is estimated parametrically. Also, it immediately follows that in the case
where the propensity score is estimated parametrically,

�(δ�p0)(p̂−p0)= 1√
n

n∑
i=1

ϕ
p
δ�p0

(Wi)+ op(1)

with

ϕ
p
δ�p0

(Wi)=E
[
(1 −D)
p

1{�Yt ≤ δ}(
1 −p0(X)

)2λ
(
X ′β

)
X ′

]
E

[
λ
(
X ′β

)2

Λ
(
X ′β

)(
1 −Λ(

X ′β
))XX ′

]−1

×
(
Di −Λ

(
X ′
iβ

))
λ
(
X ′
iβ

)
Λ

(
X ′
iβ

)(
1 −Λ(

X ′
iβ

)) Xi�
The second part of Assumption SA2 also follows immediately.

Next, we consider the case where the propensity score is estimated nonparametri-
cally by using series logit methods. Following Hirano, Imbens, and Ridder (2003), we
make the following assumptions on the propensity score.

Assumption NP1 (Differentiability of conditional expectation). E[1{�Y0t ≤ y}|X�D =
0] is continuously differentiable for all x ∈X .

Assumption NP2 (Distribution ofX).

(i) The support X of X is a Cartesian product of compact intervals; that is, X =∏r
j=1[xlj� xuj] where r is the dimension of X and xlj and xuj are the smallest and largest

values in the support of the jth dimension ofX .

(ii) The density ofX , fX(·), is bounded away from 0 on X .
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Assumption NP3 (Assumptions on the propensity score).

(i) p0(x) is continuously differentiable of order s ≥ 7r where r is the dimension ofX .

(ii) There exist p and p̄ such that 0<p≤ p0(x)≤ p̄ < 1.

Assumption NP4 (Series logit estimator). For nonparametric estimation of the propen-
sity score, p0(x) is estimated by series logit where the power series of the order K = nν for
some 1

4(s/r−1) < ν <
1
9 .

Assumptions NP1 to NP4 are standard assumptions in the literature which depends
on first step estimation of the propensity score. Hirano, Imbens, and Ridder (2003) de-
veloped the properties of the series logit estimator under the same set of assumptions.
Similar assumptions have been used in, for example, Firpo (2007) and Donald and Hsu
(2014). Assumption NP2 says that X is continuously distributed though our setup can
easily handle discrete covariates as well by splitting the sample based on the discrete co-
variates. Assumption NP3(i) is a standard assumption on differentiability of the propen-
sity score and guarantees the existence of ν that satisfies the conditions of Assump-
tion NP4. Assumption NP3(ii) is a standard overlap condition.

Let

ϕ
np
δ�p0

(W )= 1{�Y ≤ δ|X}
p

(
1 −p0(X)

) (
D−p0(X)

)
�

Using arguments similar to Hirano, Imbens, and Ridder (2003), Donald and Hsu
(2014), we can show that Assumption SA1 holds under the above assumptions; we can
also show that

�(δ�p0)(p̂−p0)= 1√
n

n∑
i=1

ϕ
np
δ�p0

(Wi)+ op(1)

which corresponds to Assumption SA2(i). Finally, to show that Assumption SA2(ii) holds,
we note that the class of functions {(d�x��yt� δ) 	→ 1{�yt≤δ|x}

p(1−p0(x))
(d − p0(x))|δ ∈ �Y0t|D=1}

is Donsker which holds by Donald and Hsu (2014, Lemma A.2). This implies that our
results will hold in the case where the propensity score is estimated nonparametrically
using series logit.

Results for the bootstrap

Finally, we show that the empirical bootstrap can be used to construct asymptotically
valid confidence bands. The steps for the bootstrap are the same as for the case with-
out covariates—only the F�Y0t |D=1(δ) should be calculated using the result on reweight-
ing rather than replacing it directly with F�Yt |D=0(δ). Below, terms indexed by * are esti-
mated using a bootstrapped sample. The same series terms used to estimate the propen-
sity score can be reused in each bootstrap iteration. Our results in this section essentially
follow using the same arguments as in Chen, Linton, and Van Keilegom (2003), Ferreira,
Firpo, and Galvao (2019).
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Lemma SA3. Under the Conditional Distributional Difference in Differences Assumption,
the Copula Stability Assumption, Assumptions 3.2, 3.3 and 4.1 and Assumption SA1 and
SA2,

√
n
(
F̂
p�∗
�Y0t |D=1

(
δ; p̂∗) − F̂p�Y0t |D=1(δ; p̂)

)
= √

n
(
F̂
p�∗
�Y0t |D=1(δ;p0)− F̂p�Y0t |D=1(δ;p0)+ �(δ� p̂)(p̂∗ − p̂)) + op∗(1)

uniformly in δ ∈ �Y0t|D=1.

Proof. Uniformly in δ ∈ �Y0t|D=1 and by adding and subtracting terms,
√
n
(
F̂
p�∗
�Y0t |D=1

(
δ; p̂∗) − F̂p�Y0t |D=1(δ; p̂)

)
= √

n
{(
F̂
p�∗
�Y0t |D=1

(
δ; p̂∗) − F̂p�Y0t |D=1

(
δ; p̂∗))

− √
n
(
F̂
p
�Y0t |D=1(δ;p0)− F̂p�Y0t |D=1(δ;p0)

)}
+ √

n
(
F̂
p�∗
�Y0t |D=1(δ;p0)− F̂p�Y0t |D=1(δ;p0)+ �(δ� p̂)(p̂∗ − p̂))

+ √
n
{(
F̂
p
�Y0t |D=1

(
δ; p̂∗) − Fp�Y0t |D=1

(
δ; p̂∗))

− √
n
(
F̂
p
�Y0t |D=1(δ; p̂)− Fp�Y0t |D=1(δ; p̂)

)}
+ √

n
(
F
p
�Y0t |D=1

(
δ; p̂∗) − Fp�Y0t |D=1(δ; p̂)− �(δ� p̂)(p̂∗ − p̂))

�

The first, third, and fourth terms in the first equality converge uniformly to 0. These
hold by Assumptions SA1 and SA2 and by arguments similar to those in Lemma SA2.
This implies the result.

Lemma SA4. For some random variable X , let Ĝ∗
X(x) = √

n(F̂∗
X(x) − F̂X(x)) and let

G̃
p�∗
Y0t |D=1(δ) = √

n(F̂
p�∗
Y0t |D=1(δ)− F̂

p
Y0t |D=1(δ)). Under the Conditional Distributional Dif-

ference in Differences Assumption, the Copula Stability Assumption, Assumptions 3.2, 3.3
and 4.1 and Assumption SA1 and SA2,(

Ĝ
p�∗
�Y0t |D=1� Ĝ

∗
�Yt−1|D=1� G̃

p�∗
Y0t |D=1� Ĝ

∗
Yt |D=1� Ĝ

∗
Yt−1|D=1� Ĝ

∗
Yt−2|D=1

)
�∗

(
W
p
1 �W

p
2 �V

p
0 �V

p
1 �W

p
3 �W

p
4

)
�

where (Wp
1 �W

p
2 �V

p
0 �V

p
1 �W

p
3 �W

p
4 ) is the tight Gaussian process given in Proposition SA1.

Proof. The result follows from Lemma SA3 and by van der Vaart and Wellner (1996,
Theorem 3.6.1).

Theorem SA2. Under the Conditional Distributional Difference in Differences Assump-
tion, Copula Stability Assumption, and Assumptions 3.2, 3.3 and 4.1 and Assump-
tions SA1 and SA2,

√
n
(
Q̂TT

p∗
(τ)− Q̂TTp(τ)) �∗ Ḡp1 (τ)− Ḡ

p
0 (τ)�

where (Ḡp0 � Ḡ
p
1 ) are as in Theorem SA1.
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Proof. The result holds by Lemma SA4, by the Hadamard differentiability of our esti-
mator of the QTT, and by the Delta method for the bootstrap (van der Vaart and Wellner
(1996, Theorem 3.9.11)).

S3. Supplementary results for the application

Estimates using alternative approaches for 2007

The plots in this section are for 2007 using alternative methods. The first figure reports
estimates where the Distributional Difference in Differences Assumption and the Cop-
ula Stability Assumption both hold after conditioning on covariates. To make estimation
feasible (as it depends on estimating four conditional distributions/quantile functions),
we impose a linear quantile regression model for each of �Y0t for the untreated group
and �Y0t−1, Y0t−1, and Y0t−2. The results are reported in Figure 1. Here, we report point-
wise 95% confidence intervals computed using the bootstrap with 1000 iterations.

Next, Figure 2 computes the QTT using the change in changes method (both with
and without covariates) and the Quantile Difference in Differences method. Here, we
report pointwise 95% confidence intervals computed using 1000 bootstrap iterations.

Figure 1. QTT estimates under the Conditional Difference in Differences Assumption and Con-
ditional Copula Stability Assumption. Notes: The figure provides estimates of the QTT under
Proposition 2 in the main text using quantile regression to estimate each conditional quantile
and conditional distribution function.
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Figure 2. QTT estimates using alternative approaches.

Overall, the results in this section are largely similar to the ones in the main text using
the methods developed in the current paper.

Pre-treatment QTT estimates

This section plots results from 2002–2006 using our method (both with and without co-
variates), the change in changes method (both with and without covariates) and the
Quantile Difference in Differences method. These are all pre-treatment periods, so we
are interested in “pre-testing” each method using these pre-treatment periods. In other
words, in pre-treatment periods the QTT should be 0 at all values of τ. Here, we use a
finer grid of possible values for τ (τ ranges from 0�1 to 0�9 in increments of 0�02), and we
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report uniform (rather than pointwise) 95% confidence bands using the bootstrap with
100 iterations.
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