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from which Sobol’ indices and univariate effects are then obtained analytically,

using only a limited number of model evaluations. We apply this analysis to sev-
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1. Introduction

The question whether quantitative results of an economic model are sensitive to spe-
cific parameterization assumptions is important, not only for the credibility of a spe-
cific study but also for the general advancement of a quantitative approach to economic
analysis. Since many studies have implications for policymakers, there is a strong case
to be made for structured sensitivity analyses to become an essential part of quantita-
tive studies of economic models. Moreover, a sensitivity analysis can go beyond simple
robustness checks and answer more detailed questions such as which parameters—and
which interactions between them—are driving the conclusions derived from an eco-
nomic model. Such an importance ranking informs the researcher on which parts to fo-
cus on when calibrating or extending a model, or the policymaker on which parameters
need further scrutiny.

The economic literature is well aware of the need for a structured sensitivity analysis
for quantitative models.1 However, with few exceptions, current practice involves a high
degree of subjective and somewhat arbitrary judgments. Typically, some parameters are
chosen and individually changed to a different value to assess the partial influence on
the results. Such “one-at-a-time” approaches tend to be unstructured and, more im-
portantly, suffer from the fact that they are only local, that is, highly dependent on the
chosen parameter values. Moreover, they cannot account for possible interactions be-
tween parameters and nonlinear relationships that are often encountered in economic
models.

The present paper proposes methods for global sensitivity analysis that overcome
the mentioned deficiencies of local approaches. Specifically, we employ Sobol’ indices
and univariate effects, which—in contrast to the local sensitivity analyses typically used
in economics—accurately identify nonlinearities and interactions in the mapping from
parameters to model outcomes. Such global methods have been developed in the last
decades in the engineering and applied mathematics fields as part of the more general
topic of uncertainty quantification.2 While local sensitivity analyses rely on compar-
isons of model outcomes at few selected parameter values, global methods quantita-
tively formalize the uncertainty surrounding parameter values and propagate it through
the model to evaluate the importance of each parameter, as well as interactions between
parameters. The methods we propose are easy to deploy because they are nonintrusive,
meaning that they treat the economic model as a black box, and thus require no changes
to existing code. Also, they are implemented in various freely available software tool-
boxes.

Many global sensitivity analysis methods are described in the literature, character-
ized by varying degrees of complexity, as well as underlying assumptions.3 For an in-
depth unifying view of most global sensitivity measures, the reader is directed to Bor-
gonovo, Hazen, and Plischke (2016). In this paper, we are interested in the class of im-
portance measures, as our aim is that of providing a robust quantitative assessment of

1See Leamer (1985), Kydland (1992), Canova (1995), Hansen and Heckman (1996), among others, who
advocate a structured sensitivity analysis. Canova (1994) and Gregory and Smith (1995) propose global sen-
sitivity analysis as a means to partly answer to the statistical weaknesses of calibration.

2See, for example, Sudret (2007) or Borgonovo and Plischke (2016) for an overview.
3See Iooss and Lemaître (2014) for a comprehensive review.
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the importance of each of the input parameters with respect to the model outcomes.
Arguably one of the most widely accepted importance measures in the engineering and
applied mathematics communities is variance decomposition, also known as analysis of
variance (ANOVA). Based on the functional model decomposition introduced in Sobol’
(1993), variance decomposition allows one to compute total Sobol’ indices, which rep-
resent the fraction of the variance of the outcome that is explained by each parameter.
Total Sobol’ indices contain a parameter’s direct impact as well as its impact due to in-
teractions with other parameters. First-order Sobol’ indices isolate the direct impact,
while higher-order Sobol’ indices identify the contributions due to the joint effects of
groups of parameters at a time, thereby exposing interactions in an economic model.
As a result, we get a complete, global importance ranking of all parameters and their
interactions, which can be helpful for interpreting model mechanics, as well as guiding
model calibration and further model development.

A second sensitivity question of central economic interest is in which direction each
parameter affects the outcomes, not just locally but globally. We answer this with so-
called univariate effects, which display the slope of that relationship for each parameter
over its range, averaging over all other parameters. They help a researcher to find regions
of high and low sensitivity, and can be interpreted as a robust direction of change under
parameter uncertainty. Thus, they can be very useful for economic policy analysis.

The global approach we propose starts by representing the uncertainty about each
parameter by a (potentially bounded) probability distribution. This parameter uncer-
tainty is propagated through the economic model by repeated evaluation at randomly
drawn parameter vectors. The required sampling from the parameter distributions
could be done by Monte Carlo simulation. However, due to the slow convergence prop-
erties of Monte Carlo simulations, a very large number of draws would be required, in
particular if higher-order Sobol’ indices and univariate effects are to be estimated. We
overcome this problem by approximating the mapping from parameters to quantities
of interest with a so-called sparse polynomial chaos expansion. The Sobol’ indices and
univariate effects are then computed analytically from the coefficients of the polynomial
with high accuracy and at no additional cost (see Sudret (2008)).

We exemplify the approach for the canonical real-business-cycle (RBC) model with
capital adjustment costs. This model has been widely studied and is well understood.4

We consider several quantities of interest, that is, endogenous outcomes, that are fre-
quently found in the traditional RBC literature. In the main part of the paper, we focus
on the capital-output ratio, because it is often used as a calibration target, and the ratio
of the variance of log production in the model over its empirical counterpart. This sec-
ond variable, which we will refer to as the production variance ratio, has often been em-
ployed to assess how much of the observed fluctuations can be explained by the model
(see, e.g., Canova (1995) or Eichenbaum (1991)). Results for other quantities are then
summarized to show the broad applicability of global sensitivity analysis.

4For example, Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006) use it to compare different so-
lution methods. Den Haan, Judd, and Juillard (2011) do the same for the multicountry extension.
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We find that the local sensitivity measures typically employed in economics can be
highly misleading. For example, the relative importance of variance and autocorrela-
tion of total factor productivity (TFP) shocks in determining the production variance
ratio flips depending on which parameter vectors are considered. Of course, we know
that it is the combination of both that drives the unconditional variance of TFP and
production, but this interaction cannot be picked up by a local measure where one pa-
rameter at a time is changed individually. Another wide-spread local method is scenario
analysis, which—as we show—suffers from similar weaknesses. By contrast, the global
Sobol’ indices we compute establish an unambiguous ranking of autocorrelation and
standard deviation and accurately quantify the contribution of the interaction between
the two parameters. More generally, our global analysis shows that only few parame-
ters and interactions matter for each quantity of interest. Therefore, when calibrating or
estimating such an RBC model, a researcher can focus on a small subset of the parame-
ters.

The univariate effects uncover a nonlinear relationship between autocorrelation and
the variance of production, with the impact becoming stronger the higher the value of
the autocorrelation parameter. Thus, the empirically much researched question of the
value of the autocorrelation of TFP shocks is of paramount importance for the results
of the RBC model. Another interesting nonlinearity is found for the depreciation rate,
whose impact on the capital-output ratio is decreasing and convex. This exemplifies
the importance of univariate effects for understanding model properties, but also for
economic policy analysis if the parameter under consideration is a policy variable, for
example, a tax rate.

In the economic literature, there are only few papers that perform a global sensitiv-
ity analysis (GSA). An early example is Harrison and Vinod (1992) who assumed distri-
butions over the elasticities of a static, deterministic general equilibrium model of the
macroeconomy to study robustness of their simulation results. A specific field where
GSA has received a bit more attention is the economics of climate change. Anderson,
Borgonovo, Galeotti, and Roson (2014) computed various global sensitivity indices for
the DICE model of Nordhaus (2008). Saltelli, Annoni, Azzini, Campolongo, Ratto, and
Tarantola (2010) showed that the sensitivity analysis of the Stern (2007) report is not ro-
bust. In a highly complex model, Cai, Judd, and Lontzek (2015) performed an extensive
sensitivity analysis of the social cost of carbon using local methods on a wide range of
parameter vectors.

Canova (1994, 1995) proposed a global sensitivity analysis to put the macroeconomic
calibration approach on a statistically more rigorous footing. He analyzes the RBC model
and puts great effort into specifying the distributions over the parameters, for which
he uses existing studies. All of the above papers rely on Monte Carlo simulations and,
therefore, cannot (accurately) compute interactions or univariate effects.

Ratto (2008) employed first-order Sobol’ indices to study the influence of structural
parameters on reduced form estimation of linear or linearized DSGE models. More re-
cently, Scheidegger and Bilionis (2017) proposed Gaussian process machine learning to
solve economic models with very high-dimensional state spaces. They show how this
framework lends itself naturally to uncertainty quantification. The main advantage of
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polynomial chaos expansions as proposed in the present paper lies in the very fast con-
vergence rate of the estimation of Sobol’ indices of first and higher orders (Sudret (2008),
Le Gratiet, Marelli, and Sudret (2016)). In addition, the presented methodology is non-
intrusive, thus requiring no changes to existing code.

The paper is structured as follows: in Section 2, we introduce a general framework
for uncertainty quantification, followed by the theory and numerical techniques em-
ployed in global sensitivity analysis. Section 3 first presents the economic model and
then the parameterization for the sensitivity analyses. In Section 4, we present and dis-
cuss results for local sensitivity analyses, and in Section 5 for our global sensitivity anal-
ysis. Section 6 concludes. Code and data are available in the Supplemental Material on
the journal website as a supplementary file (Harenberg, Marelli, Sudret, and Winschel
(2019)).

2. Uncertainty quantification framework

2.1 Introduction

Uncertainty quantification aims at identifying the sources of uncertainty or lack of
knowledge that can affect parameters of a model and, subsequently, the predictions ob-
tained from this model. In this paper, we call the computational model a mapping:

θ ∈Dθ ⊂R
M �→ y= M(θ) ∈R

Q� (1)

To simplify the presentation, we assume in this section Q = 1, that is, we consider a
scalar quantity of interest (QoI) y. Due to uncertainties in the model parameters, the
latter are represented by a random vector Θ of prescribed joint probability density func-
tion (PDF) fΘ defined over a probabilistic space {Ω�F�P}, where Ω is the space of out-
comes, F is the associated σ-algebra, and P is the probability measure associated with
the PDF fΘ. For instance, without any further information, the various input parame-
ters {Θi� i = 1� � � � �M} may be considered as statistically independent, and be assigned
prescribed ranges.5

Uncertainty propagation techniques aim at characterizing the statistical properties
of the (random) output of the model

Y = M(Θ)� (2)

that is, estimate its statistical moments (meanμY , variance σ2
Y ) or its probability density

function fY . Sensitivity analysis aims at determining which input parameters {Θi� i =
1� � � � �M} (or combination thereof) contribute the most to the uncertainty of the QoI.
In particular, methods for global sensitivity analysis developed in the sequel aim at ap-
portioning the variance σ2

Y to each input parameter Θi, pairs (Θi�Θj), etc., in order to
determine those parameters whose uncertainty explain most of the QoI’s variance, as
well as to detect those whose uncertainty has no impact on the predictions.

Figure 1 summarizes the different concepts presented above (after Sudret (2007)):

5The following derivations however hold whatever the PDF (e.g., Gaussian, Beta, etc.) of these input pa-
rameters.
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Figure 1. Uncertainty quantification framework.

• In Step A, the computational model M is defined, which requires to identify input
parameters and output quantities of interest.

• In Step B, the uncertainty in the input parameters is described by a joint PDF that
best represents the available information. In the present case, bounds on the various
parameters will be selected based on literature review; see details in Section 3.3. Alter-
natively, the PDF could result from a previous estimation of the economic model.

• In Step C, uncertainty propagation is carried out so as to analyze the moments
and distributions of the QoI, for instance by plotting histograms, or calculating low-
probability events.

• Finally, in Step C′, sensitivity analysis is carried out to rank the input parameters
according to their impact onto the prediction uncertainty, or to identify the direction of
change of that impact. The acquired knowledge can be used to focus a more detailed
analysis on a subset of the input variables (dimensionality reduction), hence mitigating
the computational costs associated with the curse of dimensionality.

The above procedure can be carried out using Monte Carlo simulation (MCS), which
is a standard technique to estimate statistical properties based on random number
generation. However, when dealing with computationally expensive models, the well-
known slow convergence rate of MCS methods hinders their application in many prac-
tical scenarios. An alternative, much more efficient approach is given by spectral repre-
sentations and, in particular, polynomial chaos expansions.

2.2 Polynomial chaos expansions

Instead of being represented through samples as in Monte Carlo simulation, the model
output may be represented as a series expansion in an abstract space of random vari-
ables (spectral representation). More specifically, assuming that Y has finite variance,
it belongs to the Hilbert space of second-order random variables and may be cast as
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follows (Soize and Ghanem (2004)):

Y =
∞∑
j=0

bjZj� (3)

In the above equation, {Zj}∞j=0 is a numerable set of random variables (which form a ba-
sis of the Hilbert space), and {bj}∞j=0 are coefficients to be computed. The latter may be
interpreted as the coordinates of Y in this basis. In the sequel, we focus on polynomial
chaos expansions (PCE), in which the basis terms {Zj}∞j=0 are multivariate orthonormal

polynomials w.r.t. the joint PDF of the input random vector Θ.6 Note that, while equa-
tion (3) is exact, approximations are in practice obtained by truncating the series to a
finite number of terms.

We relegate the construction of the basis to Appendix B, because it is formally iden-
tical to other orthonormal polynomials that are often used in economics, for example,
Chebyshev polynomials.7 Let us stress, however, that a crucial difference is that, in the
case of polynomial chaos expansions, the weight functions are given by fΘ, so that the
polynomials efficiently capture the uncertainty in the model parameters. Once such a
basis is constructed, and a truncation scheme is selected (typically, the maximum total
polynomial degree p, cf. Appendix B, or more sophisticated truncation schemes as in
Blatman and Sudret (2010a)), the spectral expansion in equation (3) becomes:

Y =
∑
α∈A

bαΨα(Θ)� (4)

where α = (α1� � � � �αM) is a multiindex that identifies the polynomial degree in each
input variable θi, Ψα is a multivariate orthogonal polynomial built by tensor product of
the underlying univariate polynomials of degree αi and A is the selected truncation set.

2.2.1 Computation of coefficients by least-squares The literature on polynomial chaos
expansions proposes many alternative approaches to compute the expansion coeffi-
cients denoted by {bα�α ∈ A}. Even when limiting the scope to so-called nonintrusive
approaches, which rely upon repeated evaluations of the model M for selected realiza-
tions of the input vector, one can mention projection methods (Le Maître, Knio, Najm,
and Ghanem (2001)), sparse grids (Keese and Matthies (2003), Ganapathysubramanian
and Zabaras (2007)), stochastic collocation (Xiu and Hesthaven (2005)), and least-square
minimization (Berveiller, Sudret, and Lemaire (2006)). In this paper, we focus on the lat-
ter approach for several reasons. First, thanks to recent advances in the field of compres-
sive sensing (see, e.g., Chen, Donoho, and Saunders (1998), Efron, Hastie, Johnstone,
and Tibshirani (2004)), sparse regression-based PCE (Blatman and Sudret (2010a)) has
become a staple method in applied sciences due its efficiency when a limited compu-
tational budget is available, even in high dimensional problems. Second, no dedicated
sampling algorithm is required to generate the pool of full model evaluations needed
to calculate the PCE coefficients (as opposed, e.g., to sparse-grid-based methods). As

6See, for example, Ghanem and Spanos (2003) or Ghanem and Spanos (2003).
7See Judd (1998).
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a matter of fact, sparse PCE can be seen as a post-processing step of an existing MCS.
Finally, this family of methods allows for some noise in the QoI, which is useful in eco-
nomic applications and which we discuss further in the context of the real-business-
cycle model in Section 3.2.

Considering a truncation set A ⊂ N
M , the series expansion in equation (4) is cast as

the sum of the truncated series and a residual ε:

Y =M(Θ)=
∑
α∈A

bαΨα(Θ)+ ε� (5)

The least-square minimization approach consists of finding the set of coefficients B =
{bα�α ∈ A} which minimizes the mean square error E[ε2]. This set is computed at once
by solving:

B= arg min
b∈RcardA

E

[(
M(Θ)−

∑
α∈A

bαΨα(Θ)

)2]
� (6)

In practice, one replaces the expectation operator in equation (6) by the empirical mean
over a sample set:

B̂= arg min
b∈RcardA

1
N

N∑
i=1

(
M

(
θ(i)

) −
∑
α∈A

bαΨα

(
θ(i)

))2
� (7)

In this expression, XED = {θ(i)� i = 1� � � � �N} is a sample set of points called experimen-
tal design (ED) that is typically chosen so as to cover the input parameter space DΘ.
To solve the least-square minimization problem in equation (7), the computational
model M is first run for each point in the ED, and the results are stored in a vector
Y = {y(1) = M(θ(1))� � � � � y(n) = M(θ(N))}T. Then one calculates the information matrix
by evaluating the basis polynomials on each point in the ED:

A = {
Aij

def= Ψj
(
θ(i)

)
� i= 1� � � � �N� j = 1� � � � � cardA

}
� (8)

The solution of the least-square minimization problem finally reads

B̂= (
ATA

)−1
ATY� (9)

The ED may be built from Monte Carlo simulation, Latin Hypercube Sampling (LHS,
see McKay, Beckman, and Conover (1979)) or quasi-random sequences (Niederreiter
(1992)). The size of the ED is of crucial importance for a robust analysis. Typical over-
sampling rates (N/ cardA)= 2 to 3 are used in practice (Berveiller, Sudret, and Lemaire
(2006)).

2.2.2 Error estimation and sparse PCE As discussed above, the proper truncation set
(e.g., the maximal degree of polynomials to be included in the truncated series) depends
on the problem under consideration. In order to assess the accuracy of any truncated
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series, the generalization error E[ε2] in equation (6) shall be estimated. This could be
done using a validation set Xval = {θk�k= 1� � � � � nval} as follows:

err(Xval)
def= 1
nval

nval∑
k=1

(
M(θk)−

∑
α∈A

bαΨα(θk)

)2
� (10)

where the validation points may be sampled by Monte Carlo simulation and where nval is
large enough, typically equal to 104 or 105. Such an estimator is, however, not affordable
in the general case since the very principle of constructing PC expansions is to limit the
number of runs of the original model M. Reusing the ED XED in the above equation
is not a viable option due to overfitting. Indeed, doing so, the so-called empirical error,
err(XED), would strongly underestimate the true error E[ε2].

A good compromise between accuracy and efficiency is obtained by using the leave-
one-out error estimator (Blatman and Sudret (2010a), Le Gratiet, Marelli, and Sudret
(2016)). The principle is the following: a PC expansion MPC\i is constructed using an

experimental design XED\θ(i) def= {θ(1)� � � � �θ(i−1)�θ(i+1)� � � � �θ(N)}, and the error is com-
puted on the point that has been left apart:

�i
def= M

(
θ(i)

) −MPC\i(θ(i))� (11)

Then the operation is repeated for i= 1� � � � �N excluding each point in turn. The leave-
one-out error is defined by

errLOO
def= 1
N

N∑
i=1

�2
i = 1

N

N∑
i=1

(
M

(
θ(i)

) −MPC\i(θ(i)))2
(12)

and turns out to be, after basic algebra:

errLOO =
N∑
i=1

(M
(
θ(i)

) −MPC(
θ(i)

)
1 − hi

)2
� (13)

where hi is the ith diagonal term of matrix A(ATA)−1AT (matrix A is defined in equation
(8)) and MPC(·) is now the PC expansion built up at once from the full experimental
design XED. The error in equation (13) requires neither additional model evaluations nor
additional PCEs and can thus be computed at very low cost. As a conclusion, as soon as
an experimental design is available, the size of which is sufficiently large compared to
the number of unknown PCE coefficients, the latter can be computed from a mere least-
square minimization (equation (9)) and a very good and cheap error estimator is given
by equation (13).

This error estimator allows for degree-adaptive PCE construction. To see how, de-
fine the standard truncation scheme by AM�p = {α ∈ N

M : |α| ≤ p}; see Appendix B for
details.8 For a given ED, different AM�p are tried out by varying the maximal polynomial
degree p, and the best expansion according to equation (13) is finally retained. Values

8In economics, this truncation scheme is also known as complete polynomials; cf. Judd (1998).
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of errLOO ≤ 10−2 guarantee a sufficient accuracy in practice for moment- and sensitivity
analysis. We corroborate this for the real-business-cycle model in Sections 5.2 and 5.4.3.

When the number of input parameters is large (e.g.,M ≥ 10), the standard truncation
set AM�p may easily contain thousands to even millions of basis elements. Due to the
necessity of oversampling (i.e., havingN > cardAM�p), the basic least-squares approach
detailed above may not be practically feasible anymore due to the associated compu-
tational costs, especially in the presence of expensive-to-evaluate modern computa-
tional codes, which may take hours to execute even on dedicated high-performance-
computing hardware. In the last few years, algorithms for deriving sparse expansions
have been proposed: in these approaches, instead of computing a possibly big set of co-
efficients the majority of which are eventually close to zero, one searches directly for the
nonzero coefficients. Techniques such as compressive sensing (e.g., orthogonal match-
ing pursuit (Pati, Rezaiifar, and Krishnaprasad (1993)) or least-angle regression (Efron
et al. (2004))) have proven effective in selecting only a few basis polynomials out of a
large candidate basis set, and then compute the associated coefficients (Blatman and
Sudret (2011), Doostan and Owhadi (2011)). A detailed description can be found in these
publications and the literature therein. In the real-business-cycle model of Section 3.1,
degree-adaptive sparse PCE based on least-angle regression (LAR) (see Blatman and Su-
dret (2011)) is used.

2.2.3 Post-processing of PC expansions As mentioned previously, the truncated PC ex-
pansion

Ŷ =MPC(Θ)=
∑
α∈A

b̂αΨα(Θ) (14)

is a sample-free representation of the model output. It contains all the information
about the statistical properties of the random output Y = M(Θ). Due to the orthog-
onality of the PC basis, mean and standard deviation of Ŷ may be computed directly
from the coefficients B̂ (see details in Le Gratiet, Marelli, and Sudret (2016)):

μ̂Y
def= E[Ŷ ] = E

[∑
α∈A

b̂αΨα(Θ)

]
= b̂0�

σ̂2
Y

def= Var[Ŷ ] = E
[
(Ŷ − b̂0)

2] =
∑
α∈A
α
=0

b̂2
α�

(15)

In other words, the mean and variance of the random response may be obtained by
a mere combination of the PCE coefficients once the latter have been computed. This
property, together with the close relation to Sobol’ indices and univariate effects pre-
sented in detail in Section 2.3, significantly distinguish PCE from formally similar poly-
nomial approximation methods (as used, e.g., in Cai and Judd (2010)). Indeed, especially
in the context of moment- and sensitivity analysis, the polynomial expansion in equa-
tion (14) is never used directly to approximate the full model. Rather, it is the coefficients
themselves that are directly used to give a fast-converging estimate of the statistics of the
underlying model.
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From a functional point of view, however, the function θ �→ MPC(θ) in equation (14)
can still be viewed as a surrogate of the original model M, that is, an analytical, easy-
to-evaluate function that gives a good approximation of the true model output M(θ).
The quality of the approximation is not ensured pointwise uniformly, but in the mean-
square sense, as can be seen from the derivation of the PC coefficients (equations (6)–
(9)). Importantly, the construction of PCE using the parameters’ input distributions en-
sures that the stochastic properties of the uncertainty are retained, which is crucial for
the GSA we propose in this paper. One can take advantage of this feature to obtain accu-
rate plots of the output distribution, that is, the PDF of the output random variable Y =
M(Θ). For this purpose, a large Monte Carlo sample set X = {θ1� � � � �θn} is drawn from
the input distribution fΘ, say n = 106. Then the surrogate model MPC is run onto this
sample set in no time. The sample set of PCE outputs YPC = {MPC(θ1)� � � � �MPC(θn)} is
then plotted as a histogram, or using kernel density smoothing techniques (Wand and
Jones (1995)).

2.3 Sensitivity analysis

2.3.1 Global sensitivity analysis Global sensitivity analysis aims at quantifying which
are the input parameters {Θi}Mi=1 or combinations thereof that best explain the variabil-
ity of the quantity of interest Y = M(Θ) (Saltelli, Chan, and Scott (2000), Saltelli, Ratto,
Andres, Campolongo, Cariboni, Gatelli, Saisana, and Tarantola (2008)). This variability
being described by the variance Var[Y ], the question reduces to apportioning the lat-
ter to each input parameter {Θ1� � � � �ΘM}, pairs (Θi�Θj), etc. For this purpose, variance
decomposition techniques (a.k.a. functional ANOVA) have gained interest since the mid
90s. The Sobol’ decomposition (Sobol’ (1993)) states that any square integrable function
M with respect to a probability measure associated with a PDF fΘ(θ)= ∏M

i=1 fΘi(θi) (in-
dependent components9) may be cast as

M(θ)= M0 +
M∑
i=1

Mi(θi)+
∑

1≤i<j≤M
Mij(θi� θj)+ · · · +M12���M(θ)� (16)

that is, as a sum of a constant M0, univariate functions {Mi(θi)�1 ≤ i ≤M}, bivariate
functions {Mij(θi� θj)�1 ≤ i < j ≤M}, etc. Using the set notation for indices,

u
def= {i1� � � � � is} ⊂ {1� � � � �M}� (17)

the Sobol’ decomposition in equation (16) reads

M(θ)= M0 +
∑

u⊂{1�����M}
u
=∅

Mu(θu)� (18)

9Extensions of functional ANOVA to the case of dependent random variables exist; see, for example,
Kucherenko, Tarantola, and Annoni (2012), Mara and Tarantola (2012), Caniou and Sudret (2013). However,
their interpretation is more complex due to the need to distinguish between contributions due to interac-
tion and to correlation. An important class of global sensitivity measures that do not rely on the indepen-
dence of the input parameters is that of moment-independent measures, first introduced by Borgonovo
(2007).
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where θu is a subvector of θ which only contains the components that belong to the
index set u. It can be proven that the Sobol’ decomposition is unique when the orthogo-
nality between summands is required, namely

E
[
Mu(θu)Mv(θv)

] = 0 ∀u�v ⊂ {1� � � � �M}�u 
= v� (19)

Orthogonality with the constant term M0 implies in particular that E[Mu(θu)] = 0 ∀u ⊂
{1� � � � �M}. The existence and uniqueness of equation (16) together with the orthogonal-

ity property in equation (19) now allow one to decompose the varianceD
def= Var[M(Θ)]

as follows:

D= Var
[ ∑

u⊂{1�����M}
u
=∅

Mu(Θu)

]
=

∑
u⊂{1�����M}

u
=∅

Var
[
Mu(Θu)

] =
∑

u⊂{1�����M}
u
=∅

Du� (20)

where the partial variances are defined by

Du
def= Var

[
Mu(Θu)

] = E
[
M2

u(Θu)
]
� (21)

2.3.2 Sobol’ indices The so-called Sobol’ indices Su are defined as the ratio of the partial
variances Du to the total variance D. Due to equation (20) they obviously sum up to 1.
Hence each index is interpreted as the share of variance that is explained by the group
of parameters Θu. The first-order indices correspond to single input variables, that is,
u = {i}:

Si = Di
D

= Var
[
Mi(Θi)

]
Var[Y ] � (22)

The second-order indices (u = {i� j}) read

Sij = Dij

D
= Var

[
Mij(Θi�Θj)

]
Var[Y ] � (23)

etc. Note that the total Sobol’ index STi , which quantifies the total impact of a given pa-
rameter Θi including all interactions with other parameters, may be computed by the
sum of the Sobol’ indices of any order that involveΘi:

STi =
∑
i∈u

Su� (24)

Sobol’ indices allow for an in-depth analysis of the relative impact of the uncertainties
affecting the model predictions. The formulæ above are interpreted as follows:

• Factor setting : the total Sobol’ index STi indicates the share of the total variance D
explained by the input parameter θi, alone or in combination with any other parame-
ter(s). If this is negligible (in pratice, if STi < 1%), this means that parameter θi could be
set to a deterministic value without changing the distribution of the quantity of interest.
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• Screening : the first-order Sobol’ index Si indicates by what percentage the total vari-
anceDwould be reduced, should the parameter θi be perfectly known and set to a fixed
value. It allows to determine which parameter(s) shall be investigated in priority, should
one want to decrease the prediction variability.

Classically, Sobol’ indices are evaluated by Monte Carlo simulation. Detailed expres-
sions of the estimators of first-order and total indices can be found in Sobol’ (1993),
Sobol’ (2001), Janon, Klein, Lagnoux, Nodet, and Prieur (2014). In practice, two sam-
ple sets of the input vector Θ are used for computing each first-order (resp., total) in-
dex. Typically, nS = 103 to 104 samples are needed for accuratey estimating each index,
leading to a total cost of (M + 1) · nS . This high computational cost is affordable when
the considered model M is analytical, or at least very fast to evaluate. Fortunately, the
technique of polynomial chaos expansions presented above allows for a straightforward
evaluation of Sobol’ indices.

2.3.3 PC expansion-based Sobol’ indices Sobol’ indices are considered as the most ver-
satile sensitivity measures for general computational models, since they do not rely on
any assumption of linearity nor monotonicity of the model M (Saltelli et al. (2008)).
Their estimation by Monte Carlo simulation is, however, computationally demanding,
as mentioned above. A number of recent approaches has been proposed to reduce the
computational burden associated to their estimation, mostly based on recent develop-
ments of stochastic collocation techniques (Ma and Zabaras (2010), Yang, Choi, Lin,
and Karniadakis (2012)). In this paper, we choose to follow the approach proposed by
Sudret (2008), where the Sobol’ indices are derived by directly post-processing the co-
efficients of the PCE. When combined with their sparse-regression-based calculation,
this approach has been extensively shown to be computationally very efficient (see, e.g.,
Blatman and Sudret (2010b), Deman, Konakli, Sudret, Kerrou, Perrochet, and Benabder-
rahmane (2016)). Indeed, the Sobol’ decomposition (equation (16)) of a truncated PC
expansion MPC(θ)= ∑

α∈A b̂αΨα(θ) can be derived analytically, as shown below.
For any subset of variables u = {i1� � � � � is} ⊂ {1� � � � �M}, let us define the set of multi-

variate polynomials Ψα which depend only on u by

Au = {α ∈ A : αk 
= 0 if and only if k ∈ u}� (25)

One can observe that the Au’s form a partition of A since

⋃
u⊂{1�����M}

Au = A� (26)

Thus a truncated PC expansion such as in equation (14) may be rewritten as follows by
simple reordering of the terms:

MPC(θ)= b0 +
∑

u⊂{1�����M}
u
=∅

MPC
u (θu)� (27)
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where

MPC
u (θu)

def=
∑
α∈Au

bαΨα(θ)� (28)

Consequently, due to the orthogonality of the PC basis, the partial variance Du in equa-
tion (21) reduces to

Du = Var
[
MPC

u (Θu)
] =

∑
α∈Au

b2
α� (29)

that is, again, a mere sum of squares of selected coefficients. The Sobol’ indices Su can
then be computed by dividing the above results by the total variance (equation (15)). In
other words, from a given PC expansion, the Sobol’ indices of any order may be obtained
by a mere combination of the squares of the coefficients. As an illustration, the first-
order PC-based Sobol’ indices read

SPC
i =

∑
α∈Ai

b2
α/D� Ai = {α ∈ A : αi > 0�αj 
=i = 0}� (30)

whereas the total PC-based Sobol’ indices are

ST�PC
i =

∑
α∈AT

i

b2
α/D� ATi = {α ∈ A : αi > 0}� (31)

As a conclusion, polynomial chaos expansions not only provide a surrogate model
for a possibly computationally expensive model as those used nowadays in economics,
but also yield at no cost the full set of sensitivity indices that are useful for a better un-
derstanding of the single and joint effects of input parameters on quantities of interest.

2.3.4 Univariate effects While Sobol’ indices provide quantitative insight on the im-
portance of a parameter, they do not include information about the direction in which
it affects the quantities of interest. Which parameters have an overall positive, which
a negative relationship? Is the relationship of the input parameter to the model out-
come linear or nonlinear? In which regions of the parameter range is the sensitivity the
largest? These questions can be answered with univariate effects, originally introduced
by Younes, Mara, Fajraoui, Lehmann, Belfort, and Beydoun (2013). Univariate effects
can be defined as the conditional expectation of a quantity of interest as a function of a
single parameter, where expectations are taken over all other parameters:

M(1)
i (θi)= E

[
M(Θ|Θi = θi)

]
� (32)

They can thus be interpreted as an average or robust relationship between an input pa-
rameter and the quantity of interest. In the case of PCE models, univariate effects have
an analytical closed form that is closely related to the first-order Sobol’ decomposition
in equation (30) (Deman et al. (2016)):

M(1)
i (θi)= b0 +

∑
α∈Ai

bαΨα(θi)� Ai = {α ∈ A : αi > 0�αi 
=j = 0}� (33)

All the techniques described will be applied to the economic model of Section 3.1.
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2.4 Relevance for structural estimation

Sobol’ indices and univariate effects can play a major role in structural estimation. The
identification of a parameter (or a set thereof) through structural estimation is only pos-
sible if the corresponding total Sobol’ index is significant. A negligible total Sobol’ index
means that the QoI under scrutiny is not affected by the value of the underlying random
variable. Thus, additional empirical evidence on such QoI cannot constrain the param-
eter’s value.

On the other hand, while a large total Sobol’ index means that the paremeter affects
the QoI, it is possible that its effect is highly nonlinear, hence leading to multiple lo-
cal maxima in the corresponding likelihood function. In other words, a significant total
Sobol’ index is a necessary but not sufficient condition for the identifiability of a param-
eter in structural estimation. Univariate effects can provide an effective tool to identify
this particular scenario.

The PCE-based approach presented here could be particularly useful as a prestep
in structural estimation because of its efficiency and accuracy in identifying irrelevant
parameters. Showing this in an economic application would, in our view, be very in-
teresting, but is outside the scope of the present paper, so that we leave it for future
research.

3. Economic model and parameterization

The presented tools for uncertainty quantification are generically applicable to any eco-
nomic model. To illustrate their use, we apply them to a canonical real-business-cycle
(RBC) model with capital adjustment costs, because this model has often been used as
a test bench for introducing new numerical methods; see, for example, Den Haan, Judd,
and Juillard (2011), Brumm and Scheidegger (2017), or Winschel and Kraetzig (2010).

In the subsection on the RBC model, we also define the QoIs for which we perform
uncertainty quantification. In the subsection on the parameterization, we also include
parameter bounds, which are essential to the local and global sensitivity analyses later
on.

3.1 Real-business-cycle model and quantities of interest

We first summarize the standard RBC model before defining the quantities of interest.
The allocation problem is described by the dynamic optimization

max
{ct �lt �it }∞t=0

E0

∞∑
t=0

βt
(
c
χ
t (1 − lt)1−χ)1− 1

τ(
1 − 1

τ

) � (34)

The objective function is a discounted sum of utilities of consumption ct and leisure
1 − lt in each period, where β is the discount factor, τ is the intertemporal elasticity of
substitution (IES), and χ is the leisure share parameter in utility. The decision variables
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are consumption ct , labor lt , and investment it . The aggregate resource constraint is

qt = ct + it + φ

2
kt

(
it

kt
− δ

)2
� (35)

where qt denotes the quantity of produced goods, kt the capital stock, and δ the depre-
ciation rate of capital. Production qt can be used for consumption and investment, the
latter being subject to a convex adjustment cost. These investment adjustment costs are
modeled like in Den Haan, Judd, and Juillard (2011), with φ governing the size of the
costs. The production technology

qt = exp(zt)kαt l
1−α
t (36)

depends on productivity zt , capital kt , labor lt and the capital share α. The capital tran-
sition and stochastic productivity processes are given by

kt+1 = it + (1 − δ)kt� (37)

zt+1 = ρzt + et+1� (38)

where ρ is the autocorrelation coefficient of the productivity process with independent,
identically and normally distributed shocks et+1 ∼ N (0�σ).

Using the notation of the uncertainty quantification framework introduced above,
we have a parameter vector containing eight parameters,

θ= {β�τ�χ�α�δ�ρ�φ�σ}� (39)

From an uncertainty quantification perspective, the parameter vector is the input to the
RBC model, which itself can be treated as a black box, M(θ).10 In this model, all pa-
rameters are continuous, but for the GSA methods we propose it is no problem to have
discrete parameters, for example, the number of countries, as an input.

Turning to the quantities of interest, let us first repeat that the basic RBC model was
chosen for illustrating the methodology, not because it features particularly insightful
QoIs. For most of the paper, we consider just two quantities of interest, y = {y1� y2} =
M(θ), to keep the exposition clear. The first QoI is the average capital-output ratio,

y1 = E

[
kt

qt

]
� (40)

which is often used as a calibration target, for example, Kydland and Prescott (1982) or
Cooley and Prescott (1995). Our sensitivity analysis can help identify which parameters
are most relevant for calibrating it (and which are not), and—by looking at univariate

10This is different from the literature that considers robust decision making under model uncertainty; cf.
our discussion in the concluding Section 6. Under that approach, the agent takes the parameter uncertainty
into account such that the optimization problem in equation (34) needs to be modified accordingly.
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effects—in which regions of the parameter space the capital-output ratio is particularly
sensitive.11

The second QoI is the ratio of the variance of log production in the model over its
empirical counterpart. This second variable, which we will refer to as the production
variance ratio, is frequently the quantity of interest in standard RBC models, where it is
used to assess how much of the observed fluctuations can be explained by the model
(see, e.g., Eichenbaum (1991), King and Rebelo (1999), or Canova (1995)). Denoting by
σ̂2
q the empirical variance of log production in the data, the variance ratio is

y2 = 1

σ̂2
q

Var
[
log(qt)

]
� (41)

We set σ̂2
q = 3�28, a standard value in the literature (see, e.g., King and Rebelo (1999)). In

Section 5.6, we discuss and present results for other quantities of interest.

3.2 Accuracy of model solution for global sensitivity analysis

The Sobol’ decomposition in equation (16) is exact when there is no error in the QoIs.
Nonetheless, the methods we propose are robust to some numerical error in the evalua-
tion of the model for the following important reasons. First, as discussed in Section 2.2.1,
we compute the PCE by least-squares regression, which allows for small noise in the
data.12 Second, Sobol’ indices and univariate effects are based on conditional expecta-
tions; see equations (22) and (32). As long as numerical error in the model evaluation is
unbiased and small relative to the variance of the QoIs, the error is integrated out and
the results of the GSA are unaffected.13 Third, for Sobol’ indices and univariate effects to
be used as a sensitivity measure, it is not necessary that their values be known exactly.
For example, it does not matter whether the total Sobol’ index of the capital share, α,
is 0�83 or 0�84, because small differences do not affect the interpretation in a sensitivity
context. The interpretation would rather be that,for example, the variance of the QoI ex-
plained by α is “between 80 and 85 percent,” and α is “clearly more important than” or
“approximately of equal importance as” another parameter.

Thus, while the canonical RBC model presented above can be solved easily at high
accuracy, our methods are well suited to more expensive models that are harder to eval-
uate. For the reasons mentioned in the previous paragraph, it is not necessary to solve
expensive models at very high accuracy. On top of that, we employ a degree-adaptive,
sparse PCE, as explained in Section 2.2.2, meaning that a small number of model eval-
uations is often sufficient. We discuss this further in Section 5.4.3, where we study the
convergence of Sobol’ indices with respect to the experimental design.

11Alternatively, one can first calibrate the model to match the capital-output ratio and then study how
sensitive the results are. This is relevant, since the empirical values found in the literature range from 2�5 to
4 and higher (cf., e.g., McGrattan and Prescott (2017)), which deliver different parameter values.

12In addition, if the model cannot be solved to the desired accuracy at a given parameter vector, for
example, due to nonconvergence for numerical reasons, the vector can simply be discarded from the ex-
perimental design.

13If the error is large relative to the variance of the QoIs, or if it is biased, then the model results are likely
to be unreliable independently of sensitivity analysis.
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We solve the RBC model with global nonlinear methods (Cai and Judd (2010)) using
the generic toolbox of Miranda and Fackler (2002). Specifically, we use a time iteration
algorithm to solve the Euler equation for optimal choices. We employ Chebyshev col-
location with a polynomial of degree 11 (Judd (1992)). To compute our QoIs, the model
is simulated for 5000 periods, discarding the first 1000. This is sufficient for an accurate
and stable solution of the model.14 Relative Euler equation errors, evaluated along the
simulation path for all parameter vectors and reported in log10-scale, are in the range of
−5�0 to −6�2 for the average error and in the range of −3�0 to −4�1 for the maximum error.
This is in line with other studies (e.g., Aruoba, Fernández-Villaverde, and Rubio-Ramírez
(2006)).

To illustrate the robustness of the global sensitivity measures, we reduced the de-
gree of the Chebyshev polynomial to three. Average Euler errors increase markedly to a
range of [−2�3�−4�2] in log10-scale. While small changes in the Sobol’ indices and uni-
variate effects are observable, the results in terms of importance ranking, interactions,
and direction of change do not change at all.

3.3 Parametrization for sensitivity analysis

Generally, the parameter vector, θ, can be determined either by estimation or by cali-
bration of the model. Since we do not want to distract from the paper’s contribution, we
will simply parametrize the model by setting θ to values that are common in the liter-
ature. However, it is important to note that the methods for uncertainty quantification
and global sensitivity analysis proposed in this paper are just as applicable and relevant
when the parameters are first calibrated or estimated.

Our baseline parameterization, θ0, closely follows Cooley and Prescott (1995), whose
values are considered standard in the literature. They are displayed in the second col-
umn of Table 1. Since Cooley and Prescott (1995) do not have adjustment costs, we take
the value for φ from Juillard and Villemot (2011). As is typical in the RBC literature, the
values are for quarterly data.

The lower and upper bounds for each parameter, θi and θi, are set symmetrically
around each baseline value. In the context of sensitivity analysis, the bounds should be
chosen to represent values at the upper and the lower end of what most economists
would still find reasonable. For example, in an RBC model, a value for the capital share
of α= 0�9 is theoretically possible, but would not be considered plausible and is thus not
included in our range. The restriction that the bounds be symmetric around the mean
is not necessary, but facilitates the discussion of the local sensitivity analysis. It does,
however restrict the ranges that we can consider, for example, for the discount factor β,
since β< 1 is also required. The bounds are displayed in the third and fourth column of
Table 1. We base them on Canova (1994), who performs an extensive literature review of
the parameter values of this RBC model.15

14Increasing the order of the polynomial to 15 and the number of simulation periods to 10,000 does not
affect our results at all.

15Canova (1994) considers log utility and therefore does not have bounds for the IES. Instead, we cover
the same range of the IES as Juillard and Villemot (2011).
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Table 1. Parameter values.

Parameter Baseline, θ0
i Lower bound, θi Upper bound,θi

Discount factor, β 0�98 0�97 0�99
IES, τ 0�6 0�2 1
Leisure share in utility, χ 0�3 0�2 0�4
Capital share, α 0�35 0�2 0�5
Depreciation rate, δ 0�02 0�01 0�03
Capital adjustment cost, φ 0�5 0�00 1�00
Autocorrelation of TFP, ρ 0�95 0�92 0�98
Standard deviation of TFP, σ 0�007 0�005 0�009

The three values θ0
i , θi, and θi for each parameter are used in the local sensitivity

analysis in the next section. The global sensitivity analysis also uses them, but addition-
ally specifies a distribution over each parameter; cf. Section 5.1.

4. Local sensitivity analysis

This section presents two local sensitivity measures that are often encountered in quan-
titative economic work, namely one-at-time finite differences and scenario analysis.16

Thereby, we can compare them to the global sensitivity measures that are presented
in Section 5. Generally, local measures are intuitive and easy to implement, but suffer
from three important drawbacks. First, they are valid only locally at the chosen evalu-
ation points and may differ substantially for other, even close-by points. Second, they
typically rely on a linear approximation of the slope, so that nonlinearities are not ac-
counted for. And third, they either do not capture interactions between the parameters,
or if they do, they cannot isolate them. Because of these important drawbacks, this sec-
tion only presents the methods without giving economic interpretation. The economic
interpretation is instead given in the section on the global sensitivity measures.

4.1 One-at-a-time finite differences

One of the most common sensitivity analyses in numerical economics consists of chang-
ing a single parameter value, while keeping all others fixed, and reporting the change in
the quantity of interest. Often this is interpreted as a robustness check. When performed
for all parameters in turn, this procedure is known in the uncertainty quantification lit-
erature as one-at-a-time (OAT) finite differences (e.g., Borgonovo and Plischke (2016)).

Since OAT is a local measure, we compute it for two different points. Specifically, we
first change one parameter at a time from its lower bound to its baseline value given
in Table 1, while keeping all other parameters fixed at their lower bound values. The
corresponding change in each QoI is

OAT 1
i = M

(
θ∼i� θ

0
i

) −M(θ)� (42)

16Elasticities are another local sensitivity measure, which is conceptually related to OAT analysis.
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(a) Average capital-output ratio (b) Production variance ratio

Figure 2. One-at-a-time (OAT) sensitivity indices, showing the impact of changing a single pa-
rameter while keeping all others fixed (cf. equations (42) and (43)). Red bars represent parameter
changes from lower bound to baseline value, blue bars from baseline value to upper bound; cf.
Table 1.

where θ∼i means that all parameters but i take their lower bound values. We then do the
same starting at the baseline values in Table 1 and changing one parameter at a time to
its upper bound, thereby keeping the same direction and size of change as in equation
(42):

OAT 2
i = M

(
θ0

∼i� θi
) −M

(
θ0)� (43)

Figure 2 plots the values of OAT 1
i in red and OAT 2

i in blue. Turning first to average
capital-output ratio in the left-hand panel, we observe that only three of the eight pa-
rameters have a nonzero impact. When looking at the first evaluation point, OAT 1

i , rep-
resented in red, it is clear that capital share, α, is the most important parameter, fol-
lowed by discount factor, β, and depreciation rate δ. However, when we move to the
second evaluation point, OAT 2

i , represented in blue, α and β are much more similar in
their impact, because the importance of β has increased whereas the effect of α remains
unchanged. The reason is that for β, nonlinearities, interactions, or both are at work,
whereas capital share, α, seems to have a linear impact on the average capital-output
ratio.

Turning to the production variance ratio in the right-hand panel, we similarly ob-
serve that only three parameters matter. However, the set of parameters impacting this
QoI is quite different. By comparing the two evaluation points, OAT 1

i in red and OAT 2
i in

blue, we see clearly the main weakness of local analysis: not only does the impact of au-
tocorrelation, ρ, change dramatically between OAT 1 and OAT 2, but also the importance
ranking of ρ and σ is reversed. The reasons are, again, nonlinearities and interactions,
which cannot be identified or accounted for with the OAT sensitivity measure. Joint vari-
ation of multiple parameters is known as scenario analysis, discussed next.
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4.2 Scenario analysis

Scenario analysis is another very common form of sensitivity analysis in economics.17

In a scenario, typically several parameter values are changed simultaneously to reflect
some change in the economic environment.18 This is intuitively appealing and allows
for more complex parameter changes than the one-at-a-time finite differences of the
previous section. Thereby, scenario analysis is able to capture interactions between pa-
rameters, but it is not straightforward to isolate the effect of such interactions.

We consider three scenarios based on the parameter values in Table 1. Due to the
simplicity of the canonical RBC model, the scenarios are not meant to capture a particu-
larly plausible economic environment, but rather to exemplify the approach. One draw-
back that becomes apparent is the high level of discretion typically involved in choosing
scenarios and corresponding parameter values, which is due to the local nature of this
sensitivity measure. The scenarios are:

1. Scenario “Baseline”: all parameters take their baseline values.

2. Scenario “High risk and risk aversion”: σ , and ρ are at their upper bounds and τ is at
its lower bound, so that risk aversion 1

τ is high. All other parameters are at their baseline
values.

3. Scenario “High capital utilization and frictions”: α, δ, and φ are at their upper
bounds, all other parameters are at their baseline values.

Figure 3 plots the three scenarios in a graph with the two quantities of interest, av-
erage capital-output ratio and production variance ratio, on the axes. Therefore, we can
compare the scenarios and evaluate the impact of joint parameter changes on the two

Figure 3. Scenario analysis, each scenario representing a set of parameter values as explained
in the enumerated list in the main text.

17See, for example, Stern (2007).
18More generally, a scenario can be defined as a set of assumptions. As long as the assumptions can be

nested using a real-valued parameter, they can be analyzed with the tools discussed in this paper.
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quantities of interest. However, scenario analysis does not allow us to tell which param-
eter or which interaction between parameters is important in each case.

For example, the “Baseline” scenario has the lowest level of both QoIs. The “High risk
and risk aversion” scenario has a much higher variance ratio, but we cannot say whether
this is mostly due to the increase in autocorrelation, ρ, or standard deviation, σ , of TFP
shocks. From the results in the previous section, it could be either; cf. Figure 2. One solu-
tion would be to combine the scenario analysis with OAT finite differences to tease out
individual parameter effects and interactions, known as scenario decomposition or gen-
eralized Tornado diagrams (see, e.g., Borgonovo (2010) and Borgonovo, Castaings, and
Tarantola (2011)). However, such Tornado diagrams are rarely encountered in economic
studies and are outside the scope of this paper, since they also suffer from the fact that
they are local and linear.

5. Global sensitivity analysis

In this section, we present the results of the global sensitivity analysis for the canoni-
cal RBC model. In contrast to the local sensitivity measures of the previous section, the
global measures do not depend on a specific evaluation point. In addition, they fully
capture the nonlinearity in the mapping from parameters to quantities of interest and
allow us to analyze interactions between parameters. All calculations in this section are
performed with UQLab©, an actively maintained Matlab© toolbox for uncertainty quan-
tification (Marelli and Sudret (2014, 2017)).19

5.1 Parameter distributions

As explained in Section 2, we need to specify a distribution that represents the uncer-
tainty about the value of each parameter. This is a crucial step in GSA, as the sensitivity
results depend on it, and should thus be done carefully. Methodologically, there is no
limitation on what distributions are allowed.20 This is determined by the research ques-
tion and data availability. In our case, the research question is how sensitive outcomes
are with respect to the parameters, and there is only little data on parameter values of
RBC models.

The most widely used approach to determine the most suited distributions to rep-
resent the lack of knowledge of the specific value of a parameter in the absence of em-
pirical data is given by the principle of maximum entropy (Jaynes (1982)), commonly
used to define prior information in Bayesian analysis. The rationale behind this prin-
ciple is that if only a set of constraints is available regarding the value of an unknown
variable, for example, its maximum and minimum bounds, its moments, or its sign, the
distribution that maximizes the information entropy (a measure of the variability of a
random variable) while respecting the constraints should be used to represent its sta-
tistical uncertainty. Common examples of such distributions for continuous variables
include the uniform distribution when the minimum and maximum values are known,

19The toolbox can be freely downloaded from www.uqlab.com.
20It is, for example, possible to use discrete distributions with mass points.

http://www.uqlab.com
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the Gaussian distribution when the first two moments are known, or the exponential
distribution when the variable is strictly positive but unbounded.

In our particular case, we have identified the available information on the parame-
ters of the RBC model as the minimum and maximum bounds on the admissible param-
eters based on the work of Canova (1994), who derives “a least informative (Bayesian)
density” for each parameter of the RBC model using a comprehensive literature review.
Since we assume that the only knowledge we have are the bounds of each parameter,
applying the maximum entropy principle results in the choice of uniform distributions
to represent our lack of knowledge on the actual parameter values. Of course, the avail-
able information for other economic models may not be the same, hence requiring dif-
ferent distributions to parametrize the corresponding uncertainty. Since often data on
parameter values may not be available, the use of literature review, expert opinion, and
“commonly used values” is perfectly acceptable. In such circumstances, the uncertainty
about a parameter value is usually represented using a continuous distribution rather
than point mass for discrete values, unless the parameter is known to have a discrete
nature. It should also be noted that the maximum entropy distributions can be updated
through Bayesian analysis in the case empirical data were to become available. A uni-
form distribution is also adequate for our research question, where we want to under-
stand the model sensitivities over plausible ranges of parameters. We do not—and for
lack of data could not—ask what empirical parameter distributions would mean for the
distribution of the quantities of interest. Therefore, we assume that all parameters of our
model are independently and uniformly distributed with support given by the lower and
upper bounds in Table 1.21

For this approach, it does not matter whether the values for the baseline parameter
vector, θ0, are taken from the literature or are calibrated to some empirical targets. If
the model was calibrated, we could proceed in the same fashion by specifying distribu-
tions and performing our global sensitivity analysis. If, instead, a structural model was
estimated with data, then one could additionally use the marginal distributions of the
parameter estimates as the parameter distributions.

5.2 Polynomial chaos expansion of the economic model

We first demonstrate the convergence of the polynomial chaos expansion of the real-
business-cycle model, since the following GSA is based on it. Due to the computa-
tional cost of the RBC model, a maximum computational budget of 500 model eval-
uations was available, which allowed us to run both GSA and additional convergence
analysis. We therefore generated a set of nested experimental designs of increasing size
NED = {50�60� � � � �500} using nested Latin Hypercube Sampling (Blatman and Sudret
(2011)). For each set, a sparse PCE was calculated based on least-angle-regression with
an adaptive degree selection in the range 3 ≤ p≤ 20; cf. Section 2.2.2. The resulting set of
PCEs was then compared based on their leave-one-out error estimator calculated with
equation (13).

21As mentioned in footnote 9, assuming dependence between parameter distributions makes it difficult
to disentangle the effects of parameters.
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Figure 4. Convergence of the PCE leave-one-out error estimator (equation (13)) as a function
of the size of the experimental design for both QoIs.

The resulting convergence plot for each of the two QoIs is displayed in Figure 4.
The error for the average capital-output ratio drops very quickly, while the production
variance ratio converges at a slower rate. Based on the guidelines given in Le Gratiet,
Marelli, and Sudret (2016), a leave-one-out error errLOO ≤ 0�05 was deemed sufficient
for the purposes of first and total Sobol’ indices. Therefore, a computational budget of
N = 150 model evaluations was selected for all the subsequent analyses, unless explicitly
specified. As shown below, this budget suffices to achieve a very high accuracy of Sobol’
indices. However, for more sophisticated economic models, a more realistic computa-
tional budget may be in the order of 101−2. This is typically sufficient for GSA for the
reasons discussed in Sections 3.2 and 5.4.3.

5.3 Histograms of the quantities of interest

To see how the the parameter uncertainty propagates through the model, first consider
the resulting histograms of the two quantities of interest. To get the histograms, we eval-
uate the surrogate model on a Monte Carlo sample of size one million. Such a large num-
ber of evaluations would be prohibitively expensive for the RBC model. For smaller sam-
ple sizes, the histograms of the surrogate and the original model are virtually identical.

Figure 5 displays the histograms of average capital-output ratio (left) and production
variance ratio (right). Both distributions have a notable dispersion and are right-skewed.
The values corresponding to the baseline, θ0, are indicated by vertical lines. For these
two QoIs, the baseline values are close to the respective modes of the distribution, but
that need not generally be the case. The left-hand figure shows that typical target values
for the capital-output ratio in [2�5�3�5] can be achieved with many different parame-
ter combinations, whereas the more extreme value of 6 considered by McGrattan and
Prescott (2017), while still being in the range considered here, substantially limits the
possible parameter values. The right-hand figure is very similar to Figure 5 in Canova
(1994), who, however, had only 1000 Monte Carlo-based model evaluations, too few to
perform a global sensitivity analysis, as we do next.
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(a) Average capital-output ratio (b) Production variance ratio

Figure 5. Histograms of the QoIs, calculated by drawing a Monte Carlo sample of size 1,000,000
from the parameter distributions and evaluating each parameter vector with the PCE surrogate
of the RBC model. The straight line represents the value if the model is evaluated at the baseline
parameter values; cf. Table 1.

5.4 Sobol’ indices

5.4.1 Total and first-order Sobol’ indices As described in Section 2.3.2, Sobol’ indices
are an important tool to establish an importance ranking of input parameters and their
interactions. Total Sobol’ indices (equation (24)) represent the fraction of the variance
of a quantity of interest that is explained by the variability of each input parameter, in-
cluding nonlinearities and interactions. Therefore, small total indices are indicative of
unimportant variables. First-order indices (equation (22)) instead only account for the
direct contribution of each parameter, including nonlinearities but excluding interac-
tions terms. It is common to compare the two sets of indices to identify the importance
of interactions between input variables: if total and first-order indices are very similar,
the model is mostly additive (no interactions), otherwise interactions play an important
role. Figure 6 shows this comparison between total (in red) and first-order (in blue) in-
dices for both QoIs.

The left-hand panel displays the indices for the average capital-output ratio. The first
thing to notice is that only three of the eight parameters have an influence. The other
Sobol’ indices are zero, meaning that we can fix them to any value without influencing
the capital-output ratio. To some extent, this is surprising, because in a general equilib-
rium of a dynamic, stochastic economy with rational expectations, as considered here,
all parameters can, in principle, affect all endogenous outcomes. Due to the complexity
of such models, obtaining the insight that only few parameters matter is generally dif-
ficult. Moreover, local analysis would not help, as any results are valid only locally. We
can, of course, derive the deterministic steady state of the RBC model, where is easy to
see that τ, χ, and φ drop out of the equations (and by definition of deterministic steady
state, ρ and σ play no role). But that this transfers to the stochastic economy is not im-
mediately clear. Turning to the three parameters with nonzero indices, we first observe
that they are of substantial (not just minor) importance. The capital share, α is clearly
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(a) Average capital-output ratio (b) Production variance ratio

Figure 6. Total Sobol’ indices, STi , in red and first-order Sobol’ indices, Si, in blue. The total
Sobol’ indices are larger by construction, as they include all interactions. Based onN = 150 eval-
uations of the RBC model.

the most important, indicating that most effort should go into that parameter when cal-
ibrating the RBC model. Since estimates of the capital share depend a lot on data qual-
ity, period considered, and the measure of capital (or labor) income employed, a global
sensitivity analysis should be an integral part of quantitative studies using a neoclassical
production function.22 Typically, when calibrating the RBC model, α is fixed to a value
taken from other studies. Given that α is so fixed, we see that the discount factor β and
the depreciation rate δ are equally important in determining the capital-output ratio.

The production variance ratio in the right-hand panel displays a similar pattern in
that again only three parameters are nonzero. Note, however, that the set of parameters
governing capital-output ratio and variance ratio is quite different. While it is not sur-
prising that autocorrelation, ρ, and standard deviation, σ , of TFP shocks are the most
important parameters for the variance of production, it is to some extent unexpected
that no other parameters play a role (α being the only other nonzero parameter, but
unimportant compared to ρ and σ). As argued above, in a rational expectations general
equilibrium of a dynamic economy, preference parameters could, in principle, have an
impact on this QoI. In addition, for such a variance-related QoI, it would be hard to de-
rive insights by resorting to a deterministic steady state. The conclusion we can draw
from the figure is that preferences and technology do not matter for determining one of
the most relevant quantities of interest of the early RBC literature—it is only the shock
process that matters. Thus, the assumption of log-utility found in many papers (e.g.,
Cooley and Prescott (1995)) is innocuous, at least when the variance ratio is the focus.
Last, recall that in the local OAT analysis of Section 4.1, the results on which param-
eter was more important—ρ or σ—were ambiguous and depended on the evaluation

22For example, estimates of the capital share depend on whether nonfarm proprietors’ income or in-
tellectual property rights are included in the measure of capital. Also, the capital share has increased over
time, cf. Karabarbounis and Neiman (2014) or Elsby, Hobijn, and Şahin (2013).
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point. There is no such ambiguity here: over the intervals specified, ρ is more impor-
tant. As there is substantial disagreement in the literature on the empirical value of ρ,
GSA should be performed.23

For all nonzero parameters, the total Sobol’ index in red and the first-order Sobol’ in-
dex in blue behave very similarly. The total index is larger by construction, as it contains
all interactions, whereas the blue bar represents the direct impact of each parameter
(excluding interactions). The difference represents the interactions of each parameter.
While nonnegligible, the interactions are, overall, surprisingly small, given that this is a
general equilibrium model, where all parameters could potentially interact. Such inter-
actions are of substantial interest economically, since they help explain the model’s me-
chanics, which often cannot be derived analytically. The figure therefore confirms the
inadequacy of OAT measures since they cannot take interactions into account. To see
which of any two parameter combinations interact, we next study second-order Sobol’
indices.

5.4.2 Second-order Sobol’ indices From an economic perspective, interactions be-
tween parameters are particularly interesting. However, accurate computation of
higher-order indices requires an experimental design of bigger size. To estimate second-
order indices, we choose—based on the convergence shown in Figure 4—a sample size
ofN = 250, corresponding to errLOO ≈ 2 · 10−3 for the production variance ratio.

The three second-order Sobol’ indices corresponding to the three parameters that
had nonzero total Sobol’ indices are displayed in Figure 7 for each of the two QoIs. Gen-
erally, they are not large, but, as we show in the next section, they are estimated at very
high precision, meaning that we can confidently interpret them.

(a) Average capital-output ratio (b) Production variance ratio

Figure 7. Second-order Sobol’ indices, representing the importance of interactions between
any two parameters. Only the three largest are shown for each of the two quantities of interest.
Based onN = 250 evaluations of the RBC model.

23Estimates of the stochastic process of TFP depend, for example, on how aggregate time series are de-
trended; cf. Canova (1998).
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For average capital-output ratio, the strongest interaction turns out be between
those two parameters that, individually, had less of an impact, namely β and δ. The in-
teraction means that, for example, increasing the discount factor will directly increase
the capital output ratio (first-order Sobol’ index), but this effect is dampened due to de-
preciation. In other words, the smaller δ, the larger the effect of β. While this interaction
can also be seen in the analytic solution for the deterministic steady state, it is not obvi-
ous from the deterministic solution that this is the most important interaction, and what
that means for the stochastic economy. Another interesting point is that the indices Sβα
and Sαδ are of essentially the same magnitude. It is due to the fact that these two inter-
actions offset each other that the local OAT for α does not change between evaluation
points in Figure 2(a).

Turning to the production variance ratio, we find that the interaction between auto-
correlation ρ and standard deviationσ is very important, which is not surprising as these
two parameters determine the unconditional variance of TFP, and thus of production.
That both parameters interact with α is due to the standard modeling of the TFP shocks
being multiplicative to production technology, which in turn is determined mainly by α.
The result that Sαρ is much larger than Sασ reflects the corresponding finding for first-
order Sobol’ indices, namely that ρ is more important than σ .

Finally, recall that local OAT analysis cannot identify such interactions. The ambigu-
ous results it provided regarding the relative importance of ρ versus σ were in part due
to this deficiency, as these two parameters turn out to interact strongly. Since the eco-
nomic literature typically uses local sensitivity measures, there are nearly no studies that
identify interactions.24 The fast, accurate, and nonintrusive identification of parameter
interactions is an important advantage of the global methods we propose.

5.4.3 Convergence of Sobol’ indices As discussed in Section 5.2, the main rationale for
choosing a minimum experimental size is to achieve a sufficiently low generalization
error for the PCE. However, it is worth giving further insight on the convergence behavior
of the Sobol’ indices, as these are of central interest and tend to converge very fast.25

Therefore, in this section we look at the estimates of the Sobol’ indices as a function of
the experimental design size.

The convergence study consists of estimating total, first-order, and second-order in-
dices for a set of increasingly larger experimental designs with a maximum of of N =
500. The experimental designs are constructed as described in Section 5.2. Confidence
bounds for each index estimate are calculated as the 95% empirical inter-quantile
ranges by means of NB = 100 bootstrap replications of the underlying PCE coefficients.
The main results are reported in Figure 8 for the two largest first-order Sobol’ indices
(left panel) and the two largest second-order indices (right panel). Total Sobol’ indices
are not shown because their convergence behavior is essentially identical to that of their
first-order counterparts. From the convergence behavior in Figure 8, it is clear that esti-
mators of first-order (and total) indices converge already with as few as N = 120 model

24One exception is Anderson et al. (2014) who compute second-order Sobol’ indices for a subset of the
parameters of the climate change model of Nordhaus.

25See also our discussion relating to the robustness of Sobol’ indices in Section 3.2.
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(a) First-order Sobol’ indices (b) Second-order Sobol’ indices

Figure 8. Convergence of estimates of first- and second-order Sobol’ indices. The left panel
shows the two largest nonzero first-order indices for each QoI. The right panel shows the two
largest second-order indices for each QoI. Error bounds are calculated by bootstrap resampling
of the PCE coefficients.

evaluations, whereas second-order indices require approximatelyN = 220 model evalu-
ations.

Therefore, the empirical error bounds of errLOO ≤ 5 · 10−2 for total and first-order
indices as well as errLOO ≤ 5 · 10−3 for second-order indices are appropriate. For more
expensive models, it is possible to adopt a greedy strategy by gradually enriching the
experimental design until the target errLOO for the desired analysis is reached.

In realistic scenarios with highly complex models, the available computational bud-
get can be much lower than the 500 model evaluations we could afford for this model.
However, the combination of sparse PCE and Sobol’ indices is widely regarded as one
of the most computationally effective tools available to perform global sensitivity anal-
ysis and can often be performed with affordable experimental designs. This efficiency is
largely due to the effectiveness of sparse PCE, whose convergence is very fast globally, a
crucial property for the unbiased estimation of Sobol’ indices. Further considerations on
convergence, even for models that show a relatively poor point-wise convergence of the
PCE surrogates, are discussed in Le Gratiet, Marelli, and Sudret (2016). Recent applica-
tions with complex, high dimensional and/or highly computationally expensive models
can be found, for example, in Deman et al. (2016), Le Gratiet, Marelli, and Sudret (2016)
and Chiaramello, Parazzini, Fiocchi, Ravazzani, and Wiart (2017).

5.5 Univariate effects

As described in Section 2.3.4, univariate effects are conditional expectations functions
of a parameter that provide a robust magnitude and sign of the parameter’s impact on
the QoIs. The univariate effects for the eight input parameters are shown in Figure 9 for
average capital-ouput ratio (left) and production variance ratio (right), respectively. The
mean effect is included in each, so that the y-axis directly shows the corresponding value
of the quantity of interest; cf. equation (32). For example, as β ranges from 0�97 to 0�99,
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(a) Average capital-output ratio (b) Production variance ratio

Figure 9. Univariate effects, which are conditional expectation functions, showing the direc-
tion in which a parameter impacts each quantity of interest. Because the mean effect is included,
the y-axis represents the expected value of the quantity of interest.

expected average capital-output ratio increases from approximately 2�2 to 4, where the
expectation is taken over all other parameters.

For capital-output ratio, the parameters which had a total Sobol’ index of zero ac-
cordingly have univariate effects that are flat. The univariate effect for the discount rate
β is increasing and convex. The convexity reflects, of course, the exponential discount-
ing in the agent’s objective. The impact of capital share α is very close to linear over
the whole range. This is because—even though α enters as an exponent in the produc-
tion function—the quantity of interest here is the ratio of capital over output, both of
which are affected similarly by α. Finally, the univariate effect of the depreciation rate δ
is falling and convex. The result that β and δ are nonlinear, while α is close to linear, cor-
responds to the findings of the local OAT analysis of Section 4.1. However, we now get a
much clearer picture as to the exact shape of (non)linearities over the respective ranges.
Together with the insights on interactions that we get from the second-order Sobol’ in-
dices, we can only now fully understand and interpret the results of the OAT analysis.

For the production variance ratio, shown in the right panel, we again observe that
parameters with first-order Sobol’ indices close to zero display univariate effects that
are zero or negligibly small, while those corresponding to higher indices (α, ρ, and σ)
display sizeable effects. Unsurprisingly, both ρ and σ display a positive slope, but the
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univariate effect of σ on the variance ratio is close to linear while that of ρ is strongly
convex. Therefore, when setting ρ to a high value, for example, to 0�975, it is much more
important to be careful and put effort in obtaining an accurate estimate than it is for low
values. Empirically, the discussion centers a lot around values approaching a unit root,
which, in light of our results, indeed is an important question when studying how much
of the business cycle a given model can explain.

All univariate effects of the RBC model turn out to be monotone in the ranges we
specified. Of course, nonmonotonic behavior is possible and would be highly relevant
for calibrating a model. For example, a parameter could first have a negative impact on
a quantity of interest and, after crossing some threshold value, a positive impact. Iden-
tifying and interpreting such relationships should typically be of substantial economic
relevance. As a point in case, an interesting application of univariate effects would be
the study of a policy reform, where the reform is governed by a real-valued parameter,
say a tax rate. If the quantity of interest is, for example, social welfare, then the univariate
effect can be interpreted as the robust impact of the tax rate on welfare, which often will
be nonmonotonic and have local or global maxima.26 Finding such global optima that
are robust to parameter uncertainty should make policy recommendations stemming
from economic models more credible to policy makers.

5.6 Other quantities of interest

We have focused on two quantities of interest, average capital-output ratio and produc-
tion variance ratio, to explain the methodology of GSA. In Appendix A, we extend the
analysis to four more QoIs that are frequently found in the traditional RBC literature:
the variance ratio of log consumption, the correlation of consumption and output, the
variance of consumption growth, and the correlation of investment with output. Our
aim is to showcase how the methodology applies broadly, picks up the individually dif-
ferent characteristics of the QoIs, and presents them in an easy to convey manner. It is
important to note that extending the analysis with more QoIs can be done at very small
cost as long as either the QoIs have already been calculated or—in the case of stochastic
models like our RBC model—the model simulations have been saved. In that case, there
is no need to create a new experimental design and run the model.

We find that there is substantial variation as to which parameters are important for
each QoI. One result worth highlighting is that the utility leisure share, χ, and the capital
adjustment costs,φ, do not impact any of the QoIs we studied. As mentioned previously,
these two parameters drop out in the steady state equation of the capital-output ratio,
but that this transfers to the stochastic economy and all other QoIs, for which analytical
solutions do not exist, is not obvious. One conclusion is that the functional specification
of adjustment costs, which is frequently used in the literature (cf. Den Haan, Judd, and
Juillard (2011)), is not well suited for studying these QoIs. Depending on the research
question, it should be modified or extended.

26As discussed in our concluding Section 6, robustness in our context refers to the sensitivity of the
model’s quantities of interest under parameter uncertainty. In particular, this is complementary to the ro-
bust decision making under model uncertainty as studied, for example, in Hansen and Sargent (2007).
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Other QoIs that would be of economic interest and for which GSA may yield impor-
tant insights are, for example, welfare, inequality, or bankruptcies. Such questions are,
of course, not in the scope of the canonical RBC model, which is used here to explain
the methodology.

6. Conclusion

This paper introduces Sobol’ indices and univariate effects as tools for global sensitivity
analysis (GSA) and uncertainty quantification in economics and shows how to accu-
rately compute them with a limited computational budget using polynomial chaos ex-
pansions. We apply this methodology to the canonical real-business-cycle model with
capital adjustment costs and compare it to traditional local methods, such as one-at-
a-time parameter changes and scenario analyses. The comparison shows that the tradi-
tional local sensitivity analysis can be misleading as it depends on the chosen evaluation
points. Only the global analysis captures nonlinearities and identifies interactions, both
of which are central to economic models. For univariate effects, which are conditional
expectation functions of each parameter, it is worth emphasizing the economic signifi-
cance for public policy evaluation. For example, the policy parameter could be a tax rate
and the quantity of interest could be social welfare. Then the univariate effect could be
interpreted as the robust impact of the tax on welfare under parameter uncertainty.27

With respect to robust economic policy analysis, a related strand of the economic
literature has studied the impact of model uncertainty, where the decision maker can-
not assign probabilities to different, competing economic models because of funda-
mental, irreducible uncertainty. In that strand of literature, non-Bayesian approaches
to decision making are used, such as min-max (e.g., Hansen and Sargent (2007)) or min-
max regret (e.g., Brock, Durlauf, and West (2003), Brock, Durlauf, Nason, and Rondina
(2007)), yielding optimal policies that perform sufficiently well under all—and, in par-
ticular, adverse—model specifications.28 The sensitivity analysis we propose is comple-
mentary, as it can be applied to a min-max (regret) model in order to understand the
importance of the parameters that are not part of the fundamental model uncertainty,
for example, the parameters in the decision maker’s utility function. Combining model
uncertainty and parameter uncertainty is an interesting undertaking that we leave for
future research.

While we parameterized the model with standard values from the literature to fo-
cus on the sensitivity analysis, the methods we propose are equally well suited if the
model is calibrated to empirical targets or even structurally estimated. For a structurally
estimated model, one can use the moments of the parameter estimates to specify the
distributions needed for uncertainty quantification, or even the posterior marginal dis-
tributions (obtained, e.g., through kernel density estimation). For a calibrated model,
uncertainty quantification puts the calibration procedure on a more rigorous statistical

27A nice example is the ongoing work of Gersbach, Liu, and Tischhauser (2018), who apply the methods
we propose to study robustness of forward guidance for monetary policy.

28An insightful study comparing different approaches is Cai and Sanstad (2016).
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footing, as argued by Eichenbaum (1991), Gregory and Smith (1995), and in particular
Canova (1994, 1995).

There are several freely available toolboxes that implement GSA and uncertainty
quantification. The analysis in this paper is done with the Matlab© toolbox UQLab,
which is nonintrusive, that is, it treats the model as a black box. Therefore, no changes
have to be made to an existing model solution code and the proposed methods can read-
ily be deployed. In addition, the methods in this paper are straightforward to parallelize
by distributing the experimental design points.

For academic research, the insights offered by GSA can help economists understand
mechanisms and interactions in complex models and inform them as to where to di-
rect efforts, for example, when extending the model or calibrating it. For policy-oriented
work, a GSA is crucial for assessing the plausibility and credibility of policy recommen-
dations.

Appendix A: Other quantities of interest

In this section, we present results for the quantities of interest discussed in Section 5.6.
These are the variance ratio of log consumption, y3 = 1

σ̂2
c

Var[log(ct)], the correlation of

consumption and output, y4 = corr(ct� qt), the variance of consumption growth, y5 =
var( ct+1

ct
− 1), and the correlation of investment with output, y6 = corr(it� qt).

Figure 10 displays the total Sobol’ indices for all four QoIs. The Sobol’ indices for
consumption variance are, as expected, very similar to those of production variance.
The variance of consumption growth, by contrast, depends mostly on the standard de-
viation of TFP shocks, σ , and only very little on the autocorrelation, ρ. Turning to the
correlations of consumption and investment with output, it is well known that the stan-
dard RBC model has difficulty matching the data (cf. King and Rebelo (1999)). The Sobol’
indices show that, while both are influenced by the same set of parameters, the impor-
tance of the parameters differs strongly. This knowledge can help to calibrate the model.

The corresponding univariate effects are displayed together in Figure 11. When the
univariate effects for different QoIs are plotted together, it is common to scale them by

Figure 10. Total Sobol’ indices for other QoIs.
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Figure 11. Univariate effects.

mean and variance, since otherwise some effects may be hard to see due to scaling is-
sues. This is different of how we represented the univariate effects in Section 5.5, but the
advantage here is that the direction of change can easily be compared. The information
on the importance of each parameter is given by the Sobol’ indices of the previous figure.
For example, Figure 11 shows a positive impact of φ on three of the QoIs, but the corre-
sponding total Sobol’ indices are essentially zero, meaning that these univariate effects
can be ignored. On the other hand, the capital share α has nonzero Sobol’ indices for
all QoIs, and we see that its univariate effects have positive slope for the consumption
variance ratio and the correlation of investment with production, while having a nega-
tive impact on the variance of consumption growth and the correlation of consumption
with production. Also, one can see that the impact is close to linear for some parameters
and nonlinear for others.

Appendix B: Polynomial basis

In this Appendix, we provide details on how to construct a polynomial basis in Sec-
tion 2.2. While this can also be found in, for example, Judd (1998), we restate it here
as the context is very different, and because the construction is crucial to the PCE.

A suitable basis for equation (3) is given by orthonormal polynomials with respect
to a weight function that corresponds to the PDF of the input random variables. In the
sequel, we assume that the input variables are statistically independent, so that the joint
PDF is the product of theM marginal distributions: fΘ(θ)= ∏M

i=1 fθi(θi), where fθi ’s are
the marginal distributions of each variable {θi� i = 1� � � � �M} defined on DΘi . For each
variable Θi and any two functions φ1�φ2 : θ ∈ DΘi �→ R, we define the functional inner
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product by the following integral (provided it exists):

〈φ1�φ2〉i def= E
[
φ1(Θi)φ2(Θi)

] =
∫
DΘi

φ1(θ)φ2(θ)fΘi(θ)dθ� (44)

where E[·] is the expectation operator. Using the above notation, classical algebra allows
one to build a family of orthogonal polynomials {P(i)k �k ∈N} satisfying

〈
P
(i)
j �P

(i)
k

〉
i

def= E
[
P
(i)
j (Θi)P

(i)
k (Θi)

] = a(i)j δjk; (45)

see, for example, Abramowitz and Stegun (1970). In the above equation, subscript k de-
notes the degree of the polynomial P(i)k , δjk is the Kronecker symbol equal to 1 when

j = k and 0 otherwise and a(i)j
def= ‖P(i)j ‖2

i = 〈P(i)j �P(i)j 〉i corresponds to the squared norm

of P(i)j . For standard distributions, the associated families of orthogonal polynomials are

wellknown. For instance, ifΘi ∼ U(−1�1) has a uniform distribution over [−1�1], the re-
sulting family is that of the so-called Legendre polynomials (Xiu and Karniadakis (2002)).
The obtained polynomials may be normalized as follows:

ψ
(i)
j = P(i)j /

√
a
(i)
j � i= 1� � � � � d� j ∈N� (46)

From the sets of univariate orthonormal polynomials, one can now build multivari-
ate orthonormal polynomials by tensor product. For this purpose, let us define the multi-
indices α ∈ N

M , which are ordered lists of natural integers α = (α1� � � � �αM), αi ∈ N. One
can associate a multivariate polynomial Ψα to any multiindex α by

Ψα(θ)
def=

M∏
i=1

ψ(i)αi (θi)� (47)

where the univariate polynomials {ψ(i)k �k ∈N} are defined in equation (46). Due to equa-
tion (45) and the above tensor product construction, the multivariate polynomials in the
input vector Θ are also orthonormal, that is,

E
[
Ψα(Θ)Ψβ(Θ)

] def=
∫
DΘ

Ψα(θ)Ψβ(θ)fΘ(θ)dθ= δαβ ∀α�β ∈ N
M� (48)

where δαβ is the Kronecker symbol which is equal to 1 if α= β and zero otherwise. With
this notation, it can be proven that the set of all multivariate polynomials in the input
random vector Θ forms a basis of the Hilbert space in which Y = M(Θ) is represented
(Soize and Ghanem (2004)):

Y =
∑

α∈NM
bαΨα(Θ)� (49)

The representation of the random response in equation (49) is exact when the in-
finite series is considered. However, in practice, only a finite number of terms can be
computed. For this purpose, a truncation scheme A has to be selected. Since the basis
consists of multivariate polynomials, it is natural to consider all the polynomials up to
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a given maximum degree. Let us define the total degree of a multivariate polynomial Ψα

by |α| def= ∑M
i=1 αi. The standard truncation scheme consists in selecting all polynomials

such that the total degree |α| is smaller than or equal to a given p. The maximal poly-
nomial degree p may typically be equal to 3–10 in practical applications. Note that the
cardinality of the truncation set AM�p = {α ∈ N

M : |α| ≤ p} increases polynomially with
M and p, since cardAM�p = (M+p

p

) = (M+p)!
M!p! . Thus the number of coefficients to be com-

puted increases dramatically whenM is large, sayM > 10. This complexity is referred to
as the curse of dimensionality. This issue is however solved satisfactorily using specific
algorithms to compute sparse PCE, which we discuss in Section 2.2.2.
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