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A.1. Some remarks on applying our identification analysis to the

Smets–Wouters model

In this supplementary material, we show how the widely cited medium-sized DSGE
model of Smets and Wouters (2007) can be easily fitted into our identification analy-
sis. The model has rich dynamics, its equilibrium conditions feature variables that show
up both in conditional expectations and lags, and some shocks have an ARMA struc-
ture. These characteristics make this model a good object to demonstrate the generality
of our approach.

We first present the full list of equations making up the Smets and Wouters (2007)
model and show how to define the vector of states st and policy variables pt . We next
demonstrate how some of the model structural equations can be used to recover the
policy function matrices F and G if one wants to speed up Algorithm 1 as discussed in
Section 5.2.

A.1.1 List of model equations and classification of variables

The Smets–Wouters model is made up of the following 34 equations:

yt = cssy ct + issy it + rssk kssy zt + εgt � (A.1)

ct = λγ−1

1 + λγ−1 ct−1 + 1

1 + λγ−1Etct+1 + wsslc (σc − 1)

σc
(
1 + λγ−1)(lt −Etlt+1)

(A.2)

− 1 − λγ−1(
1 + λγ−1)σc

(
rt −Etπt+1 + εbt

)
�

it = 1

1 +βγ1−σc it−1 + βγ1−σc

1 +βγ1−σc Etit+1 + 1(
1 +βγ1−σc )ϕγ2 qt + εit� (A.3)
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qt = βγ−σc (1 − δ)Etqt+1 + [
1 −βγ−σc (1 − δ)]Etrkt+1 − (

rt −Etπt+1 + εbt
)
� (A.4)

yt = φp
[
αkst + (1 − α)lt + εat

]
� (A.5)

kst = kt−1 + zt� (A.6)

zt = 1 −ψ
ψ

rkt � (A.7)

rkt = −(
kst − lt

) +wt� (A.8)

kt = (1 − δ)γ−1kt−1 + [
1 − (1 − δ)γ−1][it + (

1 +βγ1−σc )ϕγ2εit
]
� (A.9)

μ
p
t = α

(
kst − lt

) + εat −wt� (A.10)

πt = ιp

1 +βγ1−σc ιp
πt−1 + βγ1−σc

1 +βγ1−σc ιp
Etπt+1

(A.11)

−
(
1 −βγ1−σcξp

)
(1 − ξp)(

1 +βγ1−σc ιp
)
ξp

[
(φp − 1)εp + 1

]μpt + εpt �

μwt = wt − σllt − 1

1 − λγ−1

(
ct − λγ−1ct−1

)
� (A.12)

wt = 1

1 +βγ1−σc (wt−1 + ιwπt−1)+ βγ1−σc

1 +βγ1−σc Et(wt+1 +πt+1)

(A.13)

− 1 +βγ1−σc ιw
1 +βγ1−σc πt −

(
1 −βγ1−σcξw

)
(1 − ξw)(

1 +βγ1−σc )ξw[
(φw − 1)εw + 1

]μwt + εwt �

rt = ρrt−1 + (1 − ρ)[rππt + ry(yt − y∗
t

)] + r�y
[(
yt − y∗

t

) − (
yt−1 − y∗

t−1
)] + εrt � (A.14)

y∗
t = cssy c

∗
t + issy i∗t + rssk kssy z∗

t + εgt � (A.15)

c∗t = λγ−1

1 + λγ−1 c
∗
t−1 + 1

1 + λγ−1Etc
∗
t+1 + wsslc (σc − 1)

σc
(
1 + λγ−1)(

l∗t −Etl∗t+1
)

(A.16)

− 1 − λγ−1(
1 + λγ−1)σc

(
r∗t + εbt

)
�

i∗t = 1

1 +βγ1−σc i
∗
t−1 + βγ1−σc

1 +βγ1−σc Eti
∗
t+1 + 1(

1 +βγ1−σc )ϕγ2 q
∗
t + εit� (A.17)

q∗
t = βγ−σc (1 − δ)Etq∗

t+1 + [
1 −βγ−σc (1 − δ)]Etrk∗

t+1 − (
r∗t + εbt

)
� (A.18)

y∗
t = φp

[
αks∗t + (1 − α)l∗t + εat

]
� (A.19)

ks∗t = k∗
t−1 + z∗

t � (A.20)

z∗
t = 1 −ψ

ψ
rk∗
t � (A.21)

rk∗
t = −(

ks∗t − l∗t
) +w∗

t � (A.22)

k∗
t = (1 − δ)γ−1k∗

t−1 + [
1 − (1 − δ)γ−1][i∗t + (

1 +βγ1−σc )ϕγ2εit
]
� (A.23)
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μ
p∗
t = α

(
ks∗t − l∗t

) + εat −w∗
t � (A.24)

μ
p∗
t = 0� (A.25)

μw∗
t = w∗

t − σll∗t − 1

1 − λγ−1

(
c∗t − λγ−1c∗t−1

)
� (A.26)

μw∗
t = 0� (A.27)

εat = ρaε
a
t−1 + σaηat � (A.28)

εbt = ρbε
b
t−1 + σbηbt � (A.29)

ε
g
t = ρgε

g
t−1 + ρgaσaηat + σgηgt � (A.30)

εit = ρiε
i
t−1 + σiηit� (A.31)

εrt = ρrε
r
t−1 + σrηrt � (A.32)

ε
p
t = ρpε

p
t−1 + σpηpt −μpσpηpt−1� (A.33)

εwt = ρwε
w
t−1 + σwηwt −μwσwηwt−1� (A.34)

Equations (A.1)–(A.14) are the equilibrium conditions summarizing the constraints and
choices made by agents populating the model economy, equations (A.15)–(A.27) define
a hypothetical economy that would prevail under flexible prices and wages in the ab-
sence of markup shocks,1 while equations (A.28)–(A.34) describe the processes driving
structural shocks. Symbols without a time subscript are the model structural parame-
ters or their explicit functions, the latter indicated with a superscript “ss.” See Smets and
Wouters (2007) or Iskrev (2010) for more detail.

Since our representation of a DSGE model given by form (1) does not allow for lags
in innovations to structural shocks, we need to rewrite the two ARMA processes (A.33)
and (A.34) using their state space representations as follows:

ε
p
t = ε̃

p
t−1 + σpηpt � (A.35)

ε̃
p
t = ρpε̃

p
t−1 + (ρp −μp)σpηpt � (A.36)

εwt = ε̃wt−1 + σwηwt � (A.37)

ε̃wt = ρwε̃
w
t−1 + (ρw −μw)σwηwt � (A.38)

Fitting this extended model, consisting of 36 equations (A.1)–(A.32) and (A.35)–
(A.38), into form (1) is straightforward if we define the vectors of states st , policy vari-
ables pt and structural shocks εt as follows:

st =
[
yt ct it kt πt wt rt y∗

t

c∗t i∗t k∗
t εat εbt ε

g
t εit εrt ε̃

p
t ε̃wt

]′� (A.39)

pt =
[
zt qt lt rkt kst μ

p
t μwt

z∗
t q∗

t l∗t rk∗
t ks∗t μ

p∗
t μw∗

t w∗
t r∗t ε

p
t εwt

]′� (A.40)

εt = [
ηat ηbt η

g
t ηit ηrt η

p
t ηwt

]′ ∼ i�i�d� N(0� I7)� (A.41)

1This block is needed to describe the evolution of potential output y∗
t that enters the monetary policy

rule (A.14).



4 Kocięcki and Kolasa Supplementary Material

Note that any variable that shows up in at least one of the model equilibrium condi-
tions with a lag has to be a part of the state vector, even if in the underlying dynamic
programming problem it is a control variable, that is, it is determined at any given point
in time. For example, because the model features habit formation, the Euler equation
(A.2) includes the lagged value of consumption ct−1, and hence this variable must be
included in vector st . It would be classified as a policy variable if we introduced an addi-
tional model equation defining the habit stock as ht = ct and replaced ct−1 with ht−1 in
equation (A.2), in which case ht would enter the vector of states.

This example shows that the classification of variables in our framework depends on
whether some of them are substituted out from the original equilibrium conditions or
not. However, the rule according to which we should assign the endogenous variables to
either group is very simple: all variables showing up in lags enter vector st , the remaining
ones form vector pt .

As discussed in the supplementary material to Komunjer and Ng (2011), the ABCD-
representation corresponding to the states vector (A.39) violates Assumption 3. There-
fore, to apply our global identification framework, we follow Komunjer and Ng (2011)
and define an auxiliary variable

r̃t = ρrt − r�y
(
yt − y∗

t

)
(A.42)

so that the monetary policy rule (A.14) can be rewritten as follows:

rt = r̃t−1 + (1 − ρ)[rππt + ry(yt − y∗
t

)] + r�y
(
yt − y∗

t

) + εrt � (A.43)

In the system consisting of 37 equations (A.1)–(A.13), (A.15)–(A.32), (A.35)–(A.38), and
(A.42)–(A.43), rt , yt , and y∗

t can now be classified as policy variables, and replaced in the
state vector by a new variable r̃t . As a result, vectors st and pt become

st = [
ct it kt πt wt c∗t i∗t k∗

t εat εbt ε
g
t εit εrt ε̃

p
t ε̃wt r̃t

]′
� (A.44)

pt =
[
yt zt qt lt rkt kst μ

p
t μwt rt

y∗
t z∗

t q∗
t l∗t rk∗

t ks∗t μ
p∗
t μw∗

t w∗
t ε

p
t εwt r∗t

]′ (A.45)

and the underlying ABCD-representation obeys Assumption 3; see the supplementary
material to Komunjer and Ng (2011). Hence, our identification framework can be ap-
plied.

A.1.2 Recovering policy functions F andG to speed up Algorithm 1

As we discussed in Section 5.2, the time needed to execute Algorithm 1 can be reduced
by using some of the structural model equations represented by form (1), together with
matrices A and B that describe the law of motion for states st , to back out matrices F
and G that determine equilibrium values of policy variables pt . To this end, we have
derived formulas that explicitly solve for these two policy matrices, or at least some of
their rows. In this section, we show that this procedure allows to fully recover matrices
F andG in the Smets and Wouters (2007) model.
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The first step is to identify the model equilibrium conditions that fit the form given
by (17). These are all of the 37 equations making up the model with state vector (A.44),
except for (A.2), (A.4), (A.16), and (A.18). After some rearrangement in the sequence of
these equations, the associated matrix �p0 can be written as follows:

�
p
0 =

[
Z 020×1

× 013×1

]
� (A.46)

whereZ is a 20 × 20 lower block triangular matrix comprising six diagonal blocks placed
in the following order:

Z1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −rssk kssy 0 0 0 0

0 0 − 1(
1 +βγ1−σc )ϕγ2 0 0 0

1 0 0 −φp(1 − α) 0 −φpα
0 −1 0 0 0 1

0 1 0 0 −1 −ψ
ψ

0

0 0 0 −1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� (A.47)

Z2 = I2� (A.48)

Z3 =
[
−ρ −r�y
1 (1 − ρ)ry + r�y

]
� (A.49)

Z4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−rssk kssy 0 0 0 0

0 − 1(
1 +βγ1−σc )ϕγ2 0 0 0

0 0 −φp(1 − α) 0 −φpα
−1 0 0 0 1

1 0 0 −1 −ψ
ψ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� (A.50)

Z5 =
⎡
⎢⎣1 0 1

1 0 0
0 −1 1

⎤
⎥⎦ � (A.51)

Z6 = I2 (A.52)

and the rows of which correspond to the following 20 model equations: Z1—equations
(A.1), (A.3), and (A.5)–(A.8); Z2—equations (A.10) and (A.12); Z3—equations (A.42)–
(A.43); Z4—equations (A.15), (A.17) and (A.19)–(A.21); Z5—equations (A.24), (A.25),
and (A.27); Z6—equations (A.35) and (A.37). Note that Z4 is the upper-right submatrix
of Z1.

Provided that each Zi is nonsingular (which holds for almost all deep model param-
eters), the first 20 columns of �p0 form a full column rank submatrix (since Z is nonsin-
gular). It means that we can recover the first 20 out of 21 rows of policy matrices F andG
as explained in Section 5.2. To obtain the last row, we need equations that can be written
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in form (21). Bearing in mind the notation from Section 5.2, we have p̌t = r∗t . Since r∗t
shows up in equations (A.16) and (A.18) that do not involve conditional expectations of

r∗t , we get Ψ̌p
0 = [ 1−λγ−1

(1+λγ−1)σc
1]′ . Since the latter is of full column rank, we can recover the

last row of F andG associated with p̌t = r∗t as explained in Section 5.2.
To provide more intuition on what happens behind the scenes of these mechani-

cal matrix operations, we now additionally show how matrices F and G can be fully
retrieved by working directly with selected model equations. Note that, to convey our
point, we just need to demonstrate how each of the policy variables included in vector
(A.45) can be expressed as a function of (lagged, current, or expected future) states col-
lected in vector (A.44), as well as shocks collected in vector (A.41). Having completed
this step, the next one is trivial and boils down to using the law of motion for states (3) to
eliminate current and expected future states so that, conformably with (4), each policy
variable is expressed as a function of lagged states and current shocks.

Again, equations that do not involve taking expectations in policy variables (i.e., hav-
ing form (17)) can be particularly useful in recovering F and G, and hence we will use
them first. For a start, let us use equations (A.1), (A.5), (A.6), (A.7), and (A.8) to solve for
zt as a function of states

zt =
(
(1 − αψ)φp

1 −ψ − rssk kssy
)−1(

cssy ct + issy it + εgt +φp
[
(1 − α)wt − kt−1 − εat

])
� (A.53)

A similar solution for z∗
t can be obtained by using equations (A.20), (A.21), (A.24), (A.25),

(A.22), (A.26), and (A.27):

z∗
t = 1 −ψ

ψ+ (1 − α)(1 −ψ)
(
(α− 1)k∗

t−1 + α− 1

σl
(
1 − λγ−1)(

c∗t − λγ−1c∗t−1
) + εat

)
� (A.54)

These two expressions allow us to obtain the formulas for all but one remaining vari-
ables collected in vector pt by consecutive substitutions, so that we obtain yt from (A.1),
kst from (A.6), lt from (A.5), rkt from (A.7), qt from (A.3), μpt from (A.10), μwt from (A.12),
y∗
t from (A.15), ks∗t from (A.20), l∗t from (A.19), rk∗

t from (A.21), q∗
t from (A.17), w∗

t from
(A.22), μp∗

t from (A.24), μw∗
t from (A.26), rt from (A.43), εpt from (A.35), and εwt from

(A.37).
The only policy variable that cannot be expressed as a function of states and shocks

using equations in form (17) is r∗t . This is because this variable shows up only in equa-
tions featuring conditional expectations of policy variables, which means that matrix
�
p
0 has a corresponding zero column (see (A.46)), and hence it is rank deficient. How-

ever, the missing policy functions can also be recovered using the obtained solutions
for other policy variables and equilibrium conditions in form (21). In our case, we
need just one equation of this type that has not been already used, and we can choose
from equation (A.16) and (A.18). For example, if we pick the former, all we need to ex-
press r∗t as a function of states and shocks is to plug into it the solution for l∗t derived
above.
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The final step to obtain F andG is to get rid of the current period and expected future
states. This is straightforward using the law of motion for states (3) with given matrices
A and B, and the property of shocks Etεt+1 = 0 so that Etst+1 =Ast =A2st−1 +ABεt .

A.2. Analytical identification analysis in a simple a-theoretical state-space

model

Checking global identification of the simple state-space system discussed in Section 6
at some θ boils down to solving the five matrix restrictions included in Theorem 1 for θ̄,
T , and U .

First note that, since Σ = Σ̄ = 1, restriction 5) of Theorem 1 implies that U = 1 or
U = −1.2 Then, from restriction 4) we get ᾱ2 = α2 or ᾱ2 = 2−α2, respectively. The second
solution does not lie within a unit interval, so it must be that U = 1 and ᾱ2 = α2. Using
this result, the remaining three restrictions included in Theorem 1 yield the following
system of equations:

ᾱ2
1t11 = α2

1t11 + (
1 − α2

1 − α2
1α2

)
t12� (A.55)

ᾱ2
1t12 = (

1 − α2
1
)
t12� (A.56)(

1 − ᾱ2
1 − ᾱ2

1α2
)
t11 + (

1 − ᾱ2
1
)
t21 = α2

1t21 + (
1 − α2

1 − α2
1α2

)
t22� (A.57)(

1 − ᾱ2
1 − ᾱ2

1α2
)
t12 + (

1 − ᾱ2
1
)
t22 = (

1 − α2
1
)
t22� (A.58)

1 = t11 − α2t12� (A.59)

−α2 = t21 − α2t22� (A.60)(
1 − ᾱ2

1α2
)
t11 + (

1 − ᾱ2
1
)
t21 = 1 − α2

1α2� (A.61)(
1 − ᾱ2

1α2
)
t12 + (

1 − ᾱ2
1
)
t22 = 1 − α2

1� (A.62)

where tij denotes the (i, j) element of T .

From equation (A.56), we can see that t12 = 0 or ᾱ1 = (1 − α2
1)

1
2 . Let us first deal

with the case t12 = 0. From equation (A.59), we immediately have t11 = 1. Since equa-
tion (A.62) implies t22 �= 0, solving equation (A.58) gives ᾱ1 = α1. Then from equation
(A.62), we have t22 = 1 and from equation (A.60) we get t21 = 0. It is easy to verify that
this solution is also consistent with equations (A.55), (A.57), and (A.61), so that eventu-
ally we have θ̄= θ, T = I2, and U = 1, which is the point at which we are checking global
identification.

If instead ᾱ1 = (1 − α2
1)

1
2 , then solving equations (A.58) and (A.62) result in

t12 = 1 − 2α2
1(

1 − α2
1
)
(1 − α2)

� (A.63)

t22 = α2
1(1 + α2)− α2(

1 − α2
1
)
(1 − α2)

(A.64)

2This also immediately follows from Corollary 1, according to which U = V , where V is orthogonal.
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and plugging this solution into equations (A.59) and (A.60) gives

t11 = 1 − α2
1(1 + α2)(

1 − α2
1
)
(1 − α2)

� (A.65)

t21 = α2
(
2α2

1 − 1
)

(
1 − α2

1
)
(1 − α2)

� (A.66)

It is easy to verify that this solution also satisfies equations (A.55)–(A.57) and (A.61).
Overall, we can conclude that there are two solutions to the system of restrictions

from Theorem 1 and there exist θ̄ = [(1 − α2
1)

1
2 α2 ]′ that is observationally equivalent

to θ = [α1 α2 ]′. These two parameterizations are linked to each other via the similarity
transformation, with matrices T and U given by

T = 1(
1 − α2

1
)
(1 − α2)

[
1 − α2

1(1 + α2) 1 − 2α2
1

α2
(
2α2

1 − 1
)

α2
1(1 + α2)− α2

]
� U = 1
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