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In this technical report, we derive optimal convergence rates and efficiency
bounds for a class of models studied in Khan and Nekipelov (2010). These models
include the triangular discrete response models and simultaneous models.

SB.1. Optimal rate for estimation of the interaction parameter

in a triangular discrete response model

The fact that the information associated with the treatment effect coefficient param-
eter, α0, is zero (Theorem 2.1 in Khan and Nekipelov (2010)) does not imply that this
parameter cannot be estimated consistently. We now provide the convergence rates of
the semiparametric estimator for α0. This will prove useful when we consider specific
distributional assumptions in Section SB.3.

We begin with a definition of the optimal rate following Ibragimov and Has’minskii
(1978). Let G characterize a class of joint densities of error terms (U�V ) (denoted g(·� ·))
and single indicesX1 andX (with density function f (·� ·)). By Pf�g we denote the proba-
bility measure associated with the product of two densities f and g. Suppose that α̂ is a
consistent estimator for parameter α0. First, we recall that for the class of distributions
G, we define the risk using a positive (rate) sequence rn and a constant L as

R(α̂� rn�L)= sup
f�g∈G

Pf�g
(
rn|α̂− α0| ≥L

)
�

Using this notion of the risk, we introduce the definition of the convergence rates for the
estimator.

Definition SB.1. (i) We call the positive sequence rn the lower rate of convergence for
the class of densities G if there exists L> 0 such that

lim inf
n→∞ inf

α̂
R(α̂� rn�L)≥ p0 > 0 for some constant p0�
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(ii) We call the positive sequence rn the upper rate of convergence if there exists an
estimator α̂n such that

lim
L→∞

lim sup
n→∞

R(α̂n� rn�L)= 0�

(iii) The positive sequence rn is the minimax (or optimal) rate of convergence if it is
both a lower and an upper rate.

We derive the upper convergence rate by providing an estimator that attains the up-
per rate of convergence in Definition SB.1(ii). The convergence rate of the estimator re-
lies on the tail behavior of the joint density of the error distribution. We formulate as-
sumptions that restrict the “thickness” of tails of the error distribution in addition to
Assumption SB.1, which requires that the density of this distribution is smooth and the
random shocks U and V are independent from the covariatesX1 andX .

Assumption SB.1. (i) The single indices X1 and X have a joint distribution with the
full support on R

2 that is not contained in any proper one-dimensional subspace. The
parameter of interest is in the interior of a convex compact set A.

(ii) The shocks (U�V ) are independent of X1 and X and have an absolutely continu-
ous density with full support on R

2 and joint c.d.f. G(·� ·). The partial derivative ∂G(u�v)
∂u

exists and is strictly positive on R
2.

(iii) For each t ∈R and fixed γ0 and δ0, there exists function q(·� ·)withE[q(X1�X)
2]<

∞ that dominates ∂G(x1+t�x)
∂t .

Assumption SB.2. Denote the joint c.d.f. of unobserved payoff components U and V as
G(·� ·), where Gv(·) is the marginal c.d.f. of V . Let G be the class of distributions of errors
g(·� ·) and covariates f (·� ·) that satisfy the assumptions of Theorem 2.1 in the main text
and the following additional conditions:

(i) There exists a nondecreasing function1 ν(·) such that for any |t|<∞,

lim
c→+∞

1
ν(c)

sup
f�g∈G

Ef�g

[(
∂G(X1 + t�X)

∂t

)2
G(X1 + t�X)−1

× (Gv(X)−G(X1 + t�X))−1
∣∣∣|X1|� |X|< c

]
<∞�

(ii) There exists a nonincreasing function β(·) such that for any |t|<∞,

lim
c→+∞β(c) sup

f�g∈G
Ef�g

[
log
(
G(X1 + t�X)

× (Gv(X)−G(X1 + t�X)))∣∣|X1|� |X|> c]−1
<∞�

1We use the same c to trim the support of covariatesX andX1 for notational and algebraic convenience
only. Our analysis has a straightforward extension to the case where the relative tail behaviors of X1 and X
are different. In that case ν(·) will be a function of two arguments.
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where Ef�g denotes the expectation operator with respect to densities f and g. This as-
sumption allows the inverse joint cumulative distribution function to be nonintegrable
in the R

2 plane (its improper integral diverges). It is, however, integrable on any square
with finite edge and its integral can be expressed as a function of the length of the edge.
The following theorem outlines our main result on the optimal rate for the parameter in
the triangular model.

Theorem SB.1. Suppose that Assumptions SB.1 and SB.2 hold. Suppose that cn → ∞ is

a sequence such that nβ
2(cn)
ν(cn)

= O(1) with n/ν(cn)→ ∞. Then, for this sequence,
√

n
ν(cn)

is

the optimal rate for the estimator for parameter α0 in the model described in (2.3) in the
main paper.

Proof. We first prove the following lemma.

Lemma SB.1. Suppose that the choice probability functions are estimated via an orthog-
onal sequence

H(K)(·� ·)= (Hk(x1�x)
)K
k=0

and

inf
μ∈RK

∥∥Py1y2(x1�x)−μ′H(K)(x1�x)
∥∥=O(K−r)

with

P̂
y1y2
n (x1�x)= μ̂′H(K)(x1�x)� y1� y2 ∈ {0�1}�

where μ̂ are the estimated coefficients of the OLS regression of y1y2 on the elements of
H(K)(x1�x). We assume that K → ∞ as n → ∞ such that n/(K logn) → ∞. The esti-
mator is then constructed by defining the likelihood with support restricted to the set
{|x1|� |x| ≤ cn}. Suppose that a sequence cn is selected such that ν(cn)/n→ 0,Kr/ν(cn)→ 0,
and ν(cn)K2/n→ ∞. Then, for any sequence α̂n with the function l̂(α) corresponding to
the maximand of (SB.2) such that

l̂K�cn(α̂0�n)≥ sup
α
l̂K�cn(α)− op

(√
ν(cn)

n

)
�

we have √
n

ν(cn)

∣∣α̂∗
0�n − α0

∣∣=Op(1)�
Proof. We introduce the “uncensored” objective function

l(α; y1� y2�x1�x)=y1y2 log P̂11
n (x1 + α�x)+ (1 − y1)y2 log P̂01

n (x1 + α�x)

withQ(α)=E[l(α; y1� y2�x1�x)] and P̂11
n as defined on the following page. Denote

l̂(α)= 1
n

n∑
i=1

l(α; y1i� y2i� x1i� xi)�
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Also use the censoring function ωn(·)= 1{| · | ≤ cn}:

�(α; y1� y2�x1�x)= y1y2ωn(x1 + α)ωn(x) logP11(x1 + α�x)
+ (1 − y1)y2ωn(x1 + α)ωn(x) logP01(x1 + α�x)

and

�̂(α)= 1
n

n∑
i=1

�(α; y1i� y2i� x1i� xi)�

Now consider the decomposition of the objective function

l̂(α)− �̂(α0)=R1 +R2 +R3 +R4 +R5 +R6�

where

R1 = l̂(α)− �̂(α)−E[l̂(α)]+E[�̂(α)]�
R2 = �̂(α)− �̂(α0)−E[�̂(α)]+E[�̂(α0)

]
�

R3 =E[l̂(α)]−E[�̂(α)]� R4 =E[�̂(α)]−Q(α)
R5 = −E[�̂(α0)

]+Q(α0)� R6 =Q(α)−Q(α0)�

Term R1. For convenience, we introduce new notation denoting

pKk(z)=ωn(x1)ωn(x)
[
Hl1(cn)−Hl1(x1)

][
Hl2(cn)−Hl2(x)

]
and introduce vectors pK(z)= (pK1(z)� � � � �pKK(z))′. Also let d00

i = (1− y1i)(1− y2i) and
d00 = (d00

1 � � � � � d
00
n )

′. Let Δ(z)= E[d00|z] and Δ= (Δ(z1)� � � � �Δ(zn))
′. We can project this

function of z on K basis vectors of the sieve space. Let β be the vector of coefficients
of this projection. As demonstrated in Newey (1997), for P = (pK(z1)� � � � �p

K(zn))
′ and

Q̂= P ′P/n,

‖Q̂−Q‖ =Op
(√

K

n

)
�

where his ζ0(K) = C and Q is nonsingular by assumption with the smallest eigenvalue
bounded from below by some constant λ > 0. Hence the smallest eigenvalue of Q̂ will
converge to λ > 0. Following Newey (1997), we use the indicator 1n to indicate the cases
where the smallest eigenvalue of Q̂ is above λ

2 to avoid singularities. We also introduce

mKk(z)=ωn(x1)ωn(x)
[
Hl1(x1)−Hl1(−cn)

][
Hl2(x)−Hl2(−cn)

]
�

We then can write the estimator

P̂11(x1�x)=mK(z)′Q̂−1Pd00/n�

Note that

mK′(z)(β̂−β)=mK′(z)
(
Q̂−1P ′(d00 −Δ)/n+ Q̂−1P ′(Δ− Pβ)/n)� (SB.1)
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We can evaluate the component in the second term as

∥∥P(Δ− Pβ)/n∥∥=

√√√√√ K∑
k=1

(
1
n

n∑
i=1

pKk(zi)
(
Δ(zi)−pK(zi)′β

))2

≤
√
KCK−2r =O(K 1

2 −r)
provided our assumption regarding the sieve space (Assumption SA.2 in Supplemental
Material A). As we demonstrate, this result allows us to concentrate on the first term
and ignore the second one. For the first term in (SB.1), we can use the result that the
smallest eigenvalue of Q̂ is converging to λ > 0. Then application of the Cauchy–Schwarz
inequality leads to∣∣mK′(z)Q̂−1P ′(d00 −Δ)∣∣≤ ∥∥Q̂−1mK(z)

∥∥∥∥P ′(d00 −Δ)∥∥�
Then ∥∥Q̂−1mK(z)

∥∥≤ C

λ

√
K

and

∥∥P ′(d00 −Δ)∥∥=

√√√√√ K∑
k=1

(
n∑
i=1

pKk(zi)
(
d00
i −Δ(zi)

))2

≤ √
Kmax

k

∣∣∣∣∣
n∑
i=1

pKk(zi)
(
d00
i −Δ(zi)

)∣∣∣∣∣�
Thus,

∣∣mK′(z)Q̂−1P ′(d00 −Δ)/n∣∣≤ CK

λ
max
k

∣∣∣∣∣1n
n∑
i=1

pKk(zi)
(
d00
i −Δ(zi)

)∣∣∣∣∣�
Denote

μn = μ n
δ/2

√
nK

= γn/K

for any δ ∈ (0�1]. Next we adapt the arguments for proving Theorem 37 in Pollard (1984)
to provide the bound for

P

(
sup
z

1
n

∥∥mK′(z)Q̂−1P ′(d00 −Δ)∥∥>Kμn)�
ForK nonnegative random variables Yi, we note that

P
(

max
i
Yi > Kc

)
≤

K∑
i=1

P(Yi > c)�



6 Khan and Nekipelov Supplementary Material

Using this observation, we find that

P

(
sup
z

1
n

∥∥mK′(z)Q̂−1P ′(d00 −Δ)∥∥>Kμn)≤
K∑
k=1

P

(∥∥∥∥∥ 1
n

n∑
i=1

pKk(zi)
(
d00
i −Δ(zi)

)∥∥∥∥∥> γn
)
�

where we used our definition of γn =Kμn. This inequality allows us to substitute the tail
bound for the class of functions P11

n (·� ·) for a tail bound for fixed functions

Pn�k = {pKk(·)(d00 −Δ(·))}�
Then we can apply the inequality from Theorem 37 in Pollard (1984) to obtain

P

(
1
n

∥∥∥∥∥
n∑
i=1

pKk(zi)
(
d00
i −Δ(zi)

)∥∥∥∥∥> γn
)

≤ 2 exp
(

−2nγ2
n

C2 +A′γ−γ′
n

)
�

As a result, we find that

P

(
sup
z

1
n

∥∥mK′(z)Q̂−1P ′(d00 −Δ)∥∥>Kμn)≤ 2K exp
(

−2nγ2
n

C2 +A′γ−γ′
n

)
�

Then, provided that n/ logK → ∞ and γ′ < 1, we prove that the right-hand side of this
inequality converges to 0. This means that

sup
(x1�x)∈X

∥∥P̂11(x1�x)− proj
(
P11(x1�x)|HK

)∥∥= op
(
n
γ
2 − 1

2
)
�

From the second term, we provide the evaluation

sup
P11∈H

sup
x1�x

∥∥proj
(
P11(x1�x)|HK

)− P11(x1�x)
∥∥=O(K−r)�

Therefore, if Kr/n(1−δ)/2 → ∞, then the “bias” term will be negligible. Next we note that
similar evaluations can be provided for P01. As the density of (U�V ) is strictly positive
on R

2, the probabilities are bounded away from zero on any bounded subset of R2, and
we can make the same evaluations for logP11(·) and logP01(·). As a result, we can attain
the rate

sup
α

∣∣l̂(α)− �̂(α)−E[l̂(α)]+E[�̂(α)]∣∣= op(n−(1−δ)/2)�
Term R3. Consider the approximation bias term. Note that we can express

E
[
l̂(α)

]=E[ωn(x1 + α)ωn(x)
(
P11(x1 + α�x) log P̂11

n (x1 + α�x)
+ P01(x1 + α�x) log P̂01

n (x1 + α�x))]�
Similarly, we can express

E
[
�̂(α)

]=E[ωn(x1 + α)ωn(x)
(
P11(x1 + α�x) logP11(x1 + α�x)

+ P01(x1 + α�x) logP01(x1 + α�x))]�
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One can attain a uniform rate

sup
x1�x

∥∥P̂11
n (x1 + α�x)− P11(x1 + α�x)∥∥=Op

(√
K

n
+K−r

)
�

given the quality of approximation by selected sieves. We can then evaluate the entire
term

|R3| =O
(√

K

n
+K1−r

)
�

Terms R4 and R5. Consider term R4. We can evaluate this term as∣∣E[�̂(α)]−Q(α)∣∣≤ 4
∣∣∣∣∫ cn

−∞

∫ cn

−∞
P11(x1 + α�x) logP11(x1 + α�x)f (x1�x)dx1 dx

∣∣∣∣�
We can then apply the Cauchy–Schwarz inequality and continue evaluation as∣∣E[�̂(α)]−Q(α)∣∣≤ 4E[y1y2]

∣∣∣∣∫ cn

−∞

∫ cn

−∞
logP11(x1 + α�x)f (x1�x)dx1

∣∣∣∣
≤ Cβ(cn)

from Assumption SB.2.
TermR2. We use the following assumption regarding the population likelihood func-

tion.

Assumption SB.3. The population likelihood functionQ(·) is twice continuously differ-
entiable and uniquely maximized at α0 with a negative definite Hessian.

Consider the class of functions indexed by α ∈A such that given

�(α� y1� y2�x1�x)= [y1y2 logP11(x1 + α�x)+ (1 − y1)y2 logP01(x1 + α�x)]
×ωn(x1 + α)ωn(x)�

then

Fn�δ = {f = �(α� ·)− �(α0� ·)� |α− α0| ≤ δ
}
�

Provided that the density of errors is twice differentiable in mean square with bounded
mean-square derivatives, there exist bounded functions Ṗ11 and Ṗ01 such that functions
in class Fn�δ have envelope

Fn�δ = 1
{|x1 + α0| ≤ cn + δ}ωn(x)

×
[
y1y2Ṗ

11

P11 + (1 − y1)y2Ṗ
01

P01

]
δ�

Then, by Assumption SB.2, we can evaluate(
E
[
F2
n�δ

])1/2 =O(ν(cn)1/2δ)�
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Consider the reparametrization of the model α = α0 + h
rn

for a sequence rn → ∞.

Take h ∈ [0�ηrn] for some large η and split the interval [0�ηrn] into “shells” Sn�j = {h :
2j−1 < |h|< 2j}. Suppose that ĥ is the maximizer for l̂(α0 + h

rn
). Then if |ĥ|> 2M for some

M , then ĥ belongs to Sn�j with j ≥M . As a result

P
(|ĥ|> 2M

)≤ ∑
j≥M�2j<ηrn

P

(
sup
h∈Sn�j

(
l̂

(
α0 + h

rn

)
− l̂(α0)

)
≥ 0
)
�

We now use the results from the evaluation of the terms R1, R3, R4, and R5, taking into

consideration that

Q(α)−Q(α0)≤ −H|α− α0|2

for someH > 0 due to the differentiability ofQ(·) and the restriction on its Hessian at α0

in Assumption SB.3. We can evaluate

P

(
sup
h∈Sn�j

(
l̂

(
α0 + h

rn

)
− l̂(α0)

)
≥ 0
)

≤ P
(

sup
h∈Sn�j

|R2| ≥ |R1| + |R3| + |R4| + |R5| + |R6|
)

= P
(

sup
h∈Sn�j

|R2| ≥ 22j−2

r2
n

+O
(√

K

n
+K1−r +β(cn)−1

))
�

where we use that the difference of absolute values is smaller than the absolute value of

the difference. Then we use the Markov inequality to obtain that

P

(
sup
h∈Sn�j

(
l̂

(
α0 + h

rn

)
− l̂(α0)

)
≥ 0
)

≤
E

[
sup
h∈Sn�j

∣∣∣∣�̂(α0 + h

rn

)
− �̂(α0)−E

[
�̂

(
α0 + h

rn

)]
+E[�̂(α0)

]∣∣∣∣]
22j−2

r2
n

+O
(√

K

n
+K1−r +β(cn)−1

) �

Using empirical process notation, we define the covering integral as

J(δ�F)= sup
Q

∫ δ

0

√
1 + logN

(
ε‖F‖Q�2�F�L2(Q)

)
dε�

where Q is the probability measure, F is a class of functions with the envelope F , and

N(·) is the covering number of the considered class. Provided the finiteness of the cov-
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ering integral of the class Fn�δ, we can use the maximum inequality to evaluate

E

[
sup
h∈Sn�j

√
n

∣∣∣∣�̂(α0 + h

rn

)
− �̂(α0)−E

[
�̂

(
α0 + h

rn

)]
+E[�̂(α0)

]∣∣∣∣]

≤ J(1�Fn�h/rn)E
[
F2
n�h/rn

]1/2 =O
(
ν(cn)

1/2 2j

rn

)
�

Assuming that rnβ(cn)−1 = o(1), rn
√
K/n= o(1), and rnK−(d+1)/2 → 0, then

P

(
sup
h∈Sn�j

(
l̂

(
α0 + h

rn

)
− l̂(α0)

)
≥ 0
)

≤O
(

2−j+2rn

√
ν(cn)

n

)
�

This implies that

P
(|ĥ|> 2M

)≤O(2−M+3rn

√
ν(cn)

n

)
�

The right-hand side converges to 0 forM → ∞ if rn =
√

n
ν(cn)

. �

SB.1.1 Proof of convergence rates in triangular model

First, consider the evaluation from the proof of Lemma SB.1:

P

(
sup
h∈Sn�j

(
l̂

(
α0 + h

rn

)
− l̂(α0)

)
≥ 0
)

≤
E

[
sup
h∈Sn�j

∣∣∣∣�̂(α0 + h

rn

)
− �̂(α0)−E

[
�̂

(
α0 + h

rn

)]
+E[�̂(α0)

]∣∣∣∣]
22j−2

r2
n

+O
(√

K

n
+K−(d+1)/2 +β(cn)−1

) �

Using the maximum inequality as before, we can conclude that the ratio can be evalu-
ated as

P

(
sup
h∈Sn�j

(
l̂

(
α0 + h

rn

)
− l̂(α0)

)
≥ 0
)

≤O
(

2−j+1 ν(cn)
1/2rn√
n

)
�

We note that evaluation here is different, because, unlike in Lemma SB.1, here we allow
rnβ(cn)=O(1). This allows us to obtain

P

(√
n

ν(cn)
|ĥ|> 2M

)
≤O

(
2−M+2rn

√
ν(cn)

n

)
�

Thus, if L= 2M , then

P

(√
n

ν(cn)
|ĥ|>L

)
≤O

(
4
L
rn

√
ν(cn)

n

)
�
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Provided that we choose rn
√
ν(cn)
n = 1, we assure that for the maximal risk,

lim
L→∞

lim sup
n→∞

R

(
α0 + ĥ

rn
� rn�L

)
= 0�

This means that rn is the upper rate.
To derive the lower convergence rate, we use the result from Koroselev and Tsybakov

(1993). Denote the likelihood ratio as Λ(P1�P2)= dPnP1
dPnP2

. Then the following lemma is the

result given in Koroselev and Tsybakov (1993).

Lemma SB.2. Suppose that α1
0 = α(P1) and α2

0 = α(P2), and let λ > 0 be such that

PP2

(
Λ(P1�P2) > exp(−λ))≥ p> 0

and |α1
0 − α2

0| ≥ 2sn. Then, for any estimator α̂0�n, we have

max
P1�P2

P
(|α̂0�n − α0|> sn

)≥ pexp(−λ/2)�

We can now use this lemma to derive the following result regarding the lower rate for
the estimator of interest.

The log-likelihood function of the model is

nL̂(α)= n�̂(α)+ nê(α)
with

ê(α)= 1
n

n∑
i=1

{
y1i logP11(x1i + α�xi)+ (1 − y1i) logP01(x1i + α�xi)

}
× y2i1

{|x1i|> cn� |xi|> cn
}
�

Note that we use the same distribution of covariates x1 and x. For cn → ∞, pick2

P2(·� ·)= P(·� ·) and P1(·� ·)= P(·� ·)ωn(·)ωn(·)�
Following from our previous analysis for such choices of P1(·) and P2(·), the correspond-
ing likelihood maximizers satisfy

|α1 − α2| =O
(
β(cn)

)
�

We can then express

Λ(P1�P2)= exp
(
nL̂1(α1)− nL̂2(α2)

)
= exp

(
n�̂(α1)− n�̂(α2)− nê(α2)

)
= exp

(
n
[
�̂(α1)− �̂(α2)− �(α1)+ �(α2)

]− nê(α2)− n(�(α2)− �(α1)
))
�

2The selected P1 may not be a probability measure; however, it bears the properties of the measure, such
that characteristics of the measure such as a Radon–Nykodim derivative are still well defined.
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We note that

�̂(α1)− �̂(α2)− �(α1)+ �(α2)= op(1)
and

ê(α2)= op(1)�
As a result, the last term dominate as n→ ∞. Then logΛ(P1�P2) is bounded from be-
low as n approaches infinity if and only if n(�(α2)− �(α1)) is bounded. We note that α1

maximizes �(α). This means that

�(α2)− �(α1)= −1
2
H(cn)(α2 − α1)

2 + o(|α2 − α1|
)
�

Invoking the Cauchy–Schwarz inequality, we can evaluate H(cn) = O(ν(cn)
−1). As a re-

sult, we find that

n
[
�(α2)− �(α1)

]=O(nβ(cn)2
ν(cn)

)
�

This means that nβ(cn)
2

ν(cn)
=O(1), suggesting that for large n, there exists a lower bound on

the likelihood ratio. By invoking Lemma SB.2, we obtain the desired result. �

SB.2. Optimal convergence rate for strategic interaction parameter

in a static game model

In this section we show that the proposed estimators achieve the optimal rate of conver-
gence in the triangular model.

Step 1. Consider the family of normalized Hermite polynomials and denote

hl(x)= (√2πl!)−1/2e−
x2
4 Hl(x)�

whereHl(·) is the lth degree Hermite polynomial. Also denote

Hl(x)=
∫ x

−∞
hl(z)dz�

We note that this sequence is orthonormal for the inner product defined as

〈f�g〉 =
∫ ∞

−∞
f (x)g(x)dx�

We take the sequence cn → ∞, define the function ωn(x)= 1{|x| ≤ cn}, and estimate the
probability that both indicators are equal to 0 (y1 = y2 = 0) as

P̂00
n (x1�x)=

K(n)∑
l1�l2=1

al1l2ωn(x1)
[
Hl1(cn)−Hl1(x1)

]
ωn(x)

[
Hl1(cn)−Hl1(x)

]
�
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The estimates can be obtained via a regression of

ωn(x1)
[
Hl1(cn)−Hl1(x1)

]
ωn(x)

[
Hl2(cn)−Hl2(x)

]
on the indicators (1 − y1)(1 − y2). Then the estimator for the joint density of errors can
be obtained from the regression coefficients as

ĝn(x1�x)=
K(n)∑
l1�l2=1

âl1l2ωn(x1)hl1(x1)ωn(x)hl2(x)�

Step 2. Using the estimator for the density, we compute the fitted values for condi-
tional probabilities of y1 = y2 = 1 and y1 = 0, y2 = 1 as

P̂11
n (x1 + α�x)=

K(n)∑
l1�l2=1

âl1l2ωn(x1 + α)[Hl1(x1 + α)−Hl1(−cn)
]
ωn(x)

[
Hl1(x)−Hl1(−cn)

]
and

P̂01
n (x1 + α�x)=

K(n)∑
l1�l2=1

âl1l2ωn(x1 + α)[Hl1(cn)−Hl1(x1 + α)]ωn(x)[Hl1(x)−Hl1(−cn)
]
�

Using these fitted probabilities, we can form the conditional log-likelihood function

l(α; y1� y2�x1�x)= y1y2ωn(x1 + α)ωn(x) log P̂11
n (x1 + α�x)

+ (1 − y1)y2ωn(x1 + α)ωn(x) log P̂01
n (x1 + α�x)�

Then we can express the empirical score as

s(α; y1� y2�x1�x)=
[

y1y2

P̂11
n (x1 + α�x) − (1 − y1)y2

P̂01
n (x1 + α�x)

]
∂P̂11

n (x1 + α�x)
∂α

ωn(x1 + α)ωn(x)�

This expression can be rewritten as

s(α; y1� y2�x1�x)=ωn(x1 + α)ωn(x)y2

P̂11
n (cn�x)

y1 − P̂11
n (x1 + α�x)
P̂11
n (cn�x)(

1 − P̂11
n (x1 + α�x)
P̂11
n (cn�x)

)
P̂11
n (x1 + α�x)
P̂11
n (cn�x)

∂P̂11
n (x1 + α�x)

∂α
�

Setting the empirical score equal to zero, we obtain the estimator for α0 as

α̂∗
n = argmax

α

1
n

n∑
i=1

l(α; y1i� y2i� x1i� xi)� (SB.2)
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SB.3. Examples of convergence rates for common classes of distributions

Here we illustrate how rates of convergence can depend on relative tail conditions by
considering particular parametric distributions of observed and unobserved variables.

To evaluate function ν(·), we consider the one-dimensional case. LetF(·) be the c.d.f.
of the errors and let φ(·) be the probability density function (p.d.f.) of the covariates.
We note that in the one-dimensional case, ∂

∂tG(x1 + t� x) corresponds to F(x1 + t) and
G(x1 + t� x)(Gv(x)−G(x1 + t� x)) corresponds to F(x1 + t)(1 − F(x1 + t)). Thus, given
that we evaluate

ν(c)=O
(
E

[(
∂

∂t
G(X1 + t�X)

)2

G(X1 + t�X)−1
(
Gv(X)−G(X1 + t�X))−1

∣∣∣|X1|� |X|< c
])
�

In the one-dimensional case this leads to

ν(c)=O
(∫ c

−c
F(x1 + t)2

F(x1 + t)(1 − F(x1 + t))φ(x1)dx1

)
�

For our considered distributions, F(x1 + t) is symmetric in x1 + t, meaning that ν(c)will
be majorized by the choice t = 0. Next we notice that

F(x1)
2

F(x1)
(
1 − F(x1)

) = F(x1)

1 − F(x1)
≤ 1

1 − F(x1)
�

Note that for our considered distributions, the right and left tails behave equivalently
and, thus, we can consider integration only over positive x1. We conclude that we can
evaluate

ν(c)=O
(∫ c

0

φ(x1)

1 − F(x1 + t) dx1

)
�

We evaluate the term of interest as∫ c

0

φ(x)

1 − F(x) dx=
∫ c

0

ex

1 + ex dx�

A change of variables z = ex allows us to rewrite this expression as∫ ec

1

dz

1 + z =O(c)�

Given that we have a two-dimensional distribution, we can select ν(c) = c2. Next we
evaluate function β(·), whose leading term can be represented as∫ ∞

c
log
((

1 + ex)−1) ex(
1 + ex)2 dx=O(e−c)�

Therefore, we can select β(c) = e−c and the optimal rate will be
√
n/c2

n with cnecn/n =
O(1). For example, we can select cn = δ√logn for some 0< δ< 1, delivering convergence
rate

√
n/ logn. Similar arguments can be used for other distributions. Examples are in

Table SB.1.
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Table SB.1. Elements of the optimal rate for various distributions.

Covariate Distribution

Error Distribution Logistic Normal

Logistic ν(c)= c2, β(c)= e−c ν(c)= 1, β(c)= e−c2

Rate ∼√n/ logn Rate ∼ √
n

Normal ν(c)= ec2
, β(c)= c2e−c ν(c)= c4, β(c)= ce−c2

Rate ∼ n1/4 Rate ∼ √
n/ logn

SB.4. Semiparametric efficiency bound in the triangular model

with incomplete information

The semiparametric efficiency bound provides the minimum variance for the finite-

dimensional parameters over admissible sets of nonparametric components of the

model. We take the triangular model with incomplete information constructed in Khan

and Nekipelov (2010). We follow Ai and Chen (2003); note that the model is represented

by a system of semiparametric conditional moment equations:

P11(x1�x)=E[y1y2|x1�x] =
∫

1
{
x1 − u+ αΦ

(
x− v
σ

)
> 0
}
Φ

(
x− v
σ

)
g(u�v)dudv�

P(x1�x)=E[y2|x1�x] =
∫
Φ

(
x− v
σ

)
gv(v)dv�

Q(x1�x)=E[y1|x1�x] =
∫

1
{
x1 − u+ αΦ

(
x− v
σ

)
> 0
}
g(u�v)dudv�

(SB.3)

These equations fully characterize the conditional distribution of the outcome variables.

We can rewrite this system of equations in an equivalent form as

m1(x1�x;α�g)=E
[
y1y2 −

∫
1
{
x1 − u+ αΦ

(
x− v
σ

)
> 0
}

×Φ
(
x− v
σ

)
g(u�v)dudv|x1�x

]
=E[ρ1(y�x;α�g)

∣∣∣x1�x
]
�

m2(x1�x;α�g)=E
[
y1 −

∫
1
{
x1 − u+ αΦ

(
x− v
σ

)
> 0
}
g(u�v)dudv

]
=E[ρ2(y�x;α�g)

∣∣∣x1�x
]
�

m3(x1�x;α�g)=E
[
y2 −

∫
Φ

(
x− v
σ

)
gv(v)dv|x1�x

]
=E[ρ3(y�x;α�g)|x1�x

]
�

(SB.4)
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Consider the derivatives of these moment equations with respect to parameter α:

dm1

dα
= −

∫
Φ

(
x− v
σ

)2 ∂

∂v
G

(
x1 + αΦ

(
x− v
σ

)
� v

)
dudv�

dm2

dα
= −

∫
Φ

(
x− v
σ

)
∂

∂v
G

(
x1 + αΦ

(
x− v
σ

)
� v

)
dudv�

dm3

dα
= 0�

Then considering the space of densities that are uniformly manageable, we take a direc-
tion in this space h and

dm1

dg
[h] = −

∫
1
{
x1 − u+ αΦ

(
x− v
σ

)
> 0
}
Φ

(
x− v
σ

)
h(u�v)dudv�

dm2

dg
[h] = −

∫
1
{
x1 − u+ αΦ

(
x− v
σ

)
> 0
}
h(u�v)dudv�

dm3

dg
[h] = −

∫
Φ

(
x− v
σ

)
hv(v)dv�

We introduce the vector with elements

ψ1(x1�x�u�v)= 1
{
x1 − u+ αΦ

(
x− v
σ

)
> 0
}(
Φ

(
x− v
σ

)
g(u�v)− h(u�v)

)
�

ψ2(x1�x�u�v)= 1
{
x1 − u+ αΦ

(
x− v
σ

)
> 0
}(
g(u�v)− h(u�v))�

ψ3(x1�x�u�v)= −h(u�v)�
and denote

ζ1(x1�x�u�v)= 1
{
x1 − u+ αΦ

(
x− v
σ

)
> 0
}
�

ζ2(x1�x�u�v)= 1
{
x1 − u+ αΦ

(
x− v
σ

)
> 0
}
�

ζ3(x1�x�u�v)= 1�

and

ξ1(x1�x�u�v)= 1
{
x1 − u+ αΦ

(
x− v
σ

)
> 0
}
Φ

(
x− v
σ

)
�

ξ2(x1�x�u�v)= 1
{
x1 − u+ αΦ

(
x− v
σ

)
> 0
}
�

ξ3(x1�x�u�v)= 1�

We express

Dh(x1�x)= dm

dα
− dm

dg
[h] =

∫
Φ

(
x− v
σ

)
ψ(x1�x�u�v)dudv�
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which is a linear functional of h(·� ·); in fact,

Dh(x1�x)=
∫
Φ

(
x− v
σ

)
ξ(x1�x�u�v)g(u�v)dudv

−
∫
Φ

(
x− v
σ

)
ζ(x1�x�u�v)h(u�v)dudv�

Next we find the conditional covariance matrix

Σ(x1�x)= P11

⎛⎜⎜⎜⎜⎜⎝I −

⎛⎜⎜⎜⎜⎜⎝
P11 Q P

Q 1 − Q(1 −Q)
P11

PQ

P11

P
PQ

P11
1 − P(1 − P)

P11

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠ � (SB.5)

The semiparametric efficiency bound will be associated with the “least favorable” direc-
tion h. To find this direction one needs to solve the minimization problem

min
h∈G−g0

E
[
Dh(X1�X)

′Σ−1(X1�X)Dh(X1�X)
]
�

It is convenient to define the least favorable direction as h= q2 to ensure that the solu-
tion is positive and also require that

∫
q2(u�v)dudv= 1. Then the minimization problem

becomes a constrained optimization problem. The considered minimized functional is
quadratic and we can express the necessary condition for its minimum as

E

[
Φ

(
X − v
σ

)
ζ(X1�X�u�v)

′Σ−1(X1�X)Dh∗(X1�X)

]
+ λ= 0�

where λ is the Lagrange multiplier and h∗ = q∗2 corresponds to the optimal solution. Fi-
nally, we can transform this equation by isolating the terms for h∗ and g and introducing
notations

K
(
u�v�u′� v′)=E[Φ(X − v

σ

)
Φ

(
X − v′

σ

)
ζ(X1�X�u�v)

′Σ−1(X1�X)ζ
(
X1�X�u

′� v′)]
and

R
(
u�v�u′� v′)=E[Φ(X − v

σ

)
Φ

(
X − v′

σ

)
ζ(X1�X�u�v)

′Σ−1(X1�X)ξ
(
X1�X�u

′� v′)]�
Thus, ∫

K
(
u�v�u′� v′)h∗(u′� v′)du′ dv′ = λ+

∫
R
(
u�v�u′� v′)g(u′� v′)du′ dv′�

Given that K(u�v�u′� v′) is a nonseparable symmetric kernel. Thus it has an infinitely
countable set of eigenfunctions with real eigenvalues. The Fredholm integral equation
above has a solution. This solution to this equation that is strictly positive and normal-
izes to 1 yields the semiparametric efficiency bound

Ω=E[Dh∗(X1�X)
′Σ−1(X1�X)Dh∗(X1�X)

]
�
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SB.5. Semiparametric efficiency bound in the static game

with incomplete information

The following result states that the optimal convergence rate for the estimator for the
strategic interaction parameters in the incomplete information game is parametric with
a limiting normal distribution and the minimum variance of the estimator converging
at the parametric rate corresponds to the semiparametric efficiency bound.

The conditional distribution of observed actions is fully characterized by three ex-
pectations:

E[Y1|x1�x2]�
E[Y2|x1�x2]�

and

E[Y1Y2|x1�x2]�
These expectations characterize the conditional moments that identify the strategic in-
teraction parameters:

P11(x1�x2)=E[Y1Y2|x1�x2] =
∫
P1(x1 − u�x2 − v)P2(x1 − u�x2 − v)g(u�v)dudv�

Q(x1�x2)=E[Y1|x1�x2] =
∫
P1(x1 − u�x2 − v)g(u�v)dudv�

P(x1�x2)=E[Y2|x1�x2] =
∫
P2(x1 − u�x2 − v)g(u�v)dudv�

We can rewrite this system of equations in an equivalent form as

m1(x1�x2;α�g)= E
[
Y1Y2 −

∫
P1(X1 − u�X2 − v)P2(X1 − u�X2 − v)

× g(u�v)dudv|x1�x2

]
= E[ρ1(Y�X;α�g)|x1�x

]
�

m2(x1�x2;α�g)= E
[
Y1 −

∫
P1(X1 − u�X2 − v)g(u�v)dudv

]
= E[ρ2(Y�X;α�g)|x1�x2

]
�

m3(x1�x2;α�g)= E
[
Y2 −

∫
P2(X1 − u�X2 − v)g(u�v)dudv|x1�x2

]
= E[ρ3(Y�X;α�g)|x1�x

]
�

(SB.6)

Under our assumption regarding the distribution of errorsη1 andη2, equilibrium beliefs
are monotone functions of the parameters. Previously, we derived the Jacobi matrix that
corresponds to the derivatives of the equilibrium beliefs with respect to the parameters
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as

Jα =

⎛⎜⎜⎝
∂P1

∂α1

∂P1

∂α2
∂P2

∂α1

∂P2

∂α2

⎞⎟⎟⎠= a1a2

1 + α1α2a1a2

(
P1/a2 α1P1

α2P2 P2/a1

)
�

where ai = σ−1φ(Φ−1(Pi)).
We can express the Jacobi matrix of the moment vector m(·) with respect to the

finite-dimensional parameters α1 and α2 as

dm(x1�x2;α�g)
dα′ =

∫
M(x1 − u�x2 − v)Jα(x1 − u�x2 − v)g(u�v)dudv�

where

M =
⎛⎜⎝P2 P1

1 0
0 1

⎞⎟⎠= (μ1�μ2)�

Then considering the space of densities that satisfy, we take a direction in this space h
and obtain

dm(x1�x2;α�g)
dg

[h] =
∫
ψ(x1 − u�x2 − v)h(u�v)dudv�

where

ψ(q1� q2)= (P1(q1� q2)P1(q1� q2)�P1(q1� q2)�P2(q1� q2)
)′
�

The semiparametric efficiency bound will be associated with a vector of two least favor-
able directions h∗

1 and h∗
2 such that h∗

i minimizes

E
[
Dhi(X1�X2)Σ(X1�X2)

−1Dhi(X1�X2)
]
�

where

Dhi(x1�x2)= dm(x1�x2;α�g)
dαi

− dm(x1�x2;α�g)
dg

[hi]

and Σ(·� ·) is determined by (SB.5). We note that Dhi(x1�x2) is linear in hi. We can mini-
mize the considered objective function under the constraint that the solution has to be
a density function. This optimization leads us to the expression

E
[
ψ(X1 − u�X2 − v)′Σ(X1�X2)

−1Dhi(X1�X2)
]+ λ= 0�

where λ is the Lagrange multiplier. We introduce notation

K
(
u�v�u′� v′)=E[ψ(X1 − u�X2 − v)′Σ(X1�X2)

−1ψ
(
X1 − u′�X2 − v′)]

and

Ri
(
u�v�u′� v′)=E[ψ(X1 −u�X2 −v)′Σ(X1�X2)

−1μi
(
X1 −u′�X2 −v′)Jα(X1 −u′�X2 −v′)]�
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Then we can find the least favorable direction for i= 1�2 as a solution to∫
K
(
u�v�u′� v′)h∗

i

(
u′� v′)du′ dv′ = λ+

∫
R
(
u�v�u′� v′)g(u′� v′)du′ dv′�

The kernel function K(u�v�u′� v′) is positive, symmetric, nonseparable, and square-
integrable. Thus, the Hilbert space G has an orthonormal basis consisting of the eigen-
vectors of the integral operator with the kernelK(u�v�u′� v′), and the solution for h∗

i will
be in this basis. The semiparametric efficiency bound isl then be constructed from

Dh∗(x1�x2)= (Dh∗
1
(x1�x2)�Dh∗

2
(x1�x2)

)′
�

We can express the bound as

Ω=E[Dh∗(X1�X2)Σ(X1�X2)
−1Dh∗(X1�X2)

]−1
�

This result is not that surprising in light of the finding in Khan and Nekipelov (2010)
that, given that the information for the strategic interaction parameters is positive, the
semiparametric efficiency bound will be finite. The efficiency bound for a static two-
player game of incomplete information has been analyzed in Aradillas-Lopez (2010)
without allowing for player-specific unobserved heterogeneity that is commonly ob-
served by the players. Grieco (2010) allows for individual-specific heterogeneity, but
assumes a specific parametric form for both the payoff noise distribution and the dis-
tribution of unobserved heterogeneity. We provide the result that parametric inference
remains feasible even when the distribution of unobserved heterogeneity remains fully
nonparametric. Our efficiency result provides a semiparametric efficiency bound for the
generalized class of static games of incomplete information in Bajari, Hong, Krainer, and
Nekipelov (2010) as well as in Haile, Hortaçsu, and Kosenok (2008) for the games with
quantal response equilibria considered in Palfrey (1985).

References

Ai, C. and X. Chen (2003), “Efficient estimation of models with conditional moment re-
strictions containing unknown functions.” Econometrica, 71 (6), 1795–1843. [14]

Aradillas-Lopez, A. (2010), “Semiparametric estimation of a simultaneous game with in-
complete information.” Journal of Econometrics, 157, 409–431. [19]

Bajari, P., H. Hong, M. Krainer, and D. Nekipelov (2010), “Estimating static models of
strategic interactions.” Journal of Business & Economic Statistics, 28, 469–482. [19]

Grieco, P. (2010), “Discrete games with flexible information structures: An application to
local grocery markets.” Working paper. [19]

Haile, P. A., A. Hortaçsu, and G. Kosenok (2008), “On the empirical content of quantal
response equilibrium.” American Economic Review, 98 (1), 180–200. [19]

Ibragimov, I. and R. Has’minskii (1978), “On the capacity in communication by smooth
signals.” Soviet Mathematics. Doklady, 19, 1043–1047. [1]

http://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/ai:chen&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/ardillas&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/bajari:hong:krainer:nekipelov&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/haile:2008&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/ibragimov:hasminskii:1978&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/ai:chen&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/ardillas&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/bajari:hong:krainer:nekipelov&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/haile:2008&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/ibragimov:hasminskii:1978&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T


20 Khan and Nekipelov Supplementary Material

Khan, S. and D. Nekipelov (2010), “Semiparametric efficiency in irregularly identified
models.” Working paper, Duke University. [1, 14, 19]

Koroselev, A. and A. Tsybakov (1993), Minimax Theory of Image Reconstruction. Springer,
New York. [10]

Newey, W. (1997), “Convergence rates and asymptotic normality for series estimators.”
Journal of Econometrics, 79, 147–168. [4]

Palfrey, T. (1985), “Uncertainty resolution, private information aggregation and the
Cournot competitive limit.” Review of Economic Studies, 52, 69–83. [19]

Pollard, D. (1984), Convergence of Stochastic Processes. Springer, New York. [5]

Co-editors Orazio Attanasio and Rosa L. Matzkin handled this manuscript.

Manuscript received 6 June, 2012; final version accepted 3 October, 2017; available online 5 De-
cember, 2017.

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/korostelev:tsybakov:1993&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/newey:1997&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/palfrey&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/pollard&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/korostelev:tsybakov:1993&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/newey:1997&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/palfrey&rfe_id=urn:sici%2F1759-7323%28201807%299%3A2%2B%3C1%3ASTISAS%3E2.0.CO%3B2-T

	Optimal rate for estimation of the interaction parameter in a triangular discrete response model
	Proof of convergence rates in triangular model

	Optimal convergence rate for strategic interaction parameter in a static game model
	Examples of convergence rates for common classes of distributions
	Semiparametric efﬁciency bound in the triangular model with incomplete information
	Semiparametric efﬁciency bound in the static game with incomplete information
	References

