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Appendix C gives additional sufficient conditions for monotonicity and shows
how the results may be applied. Appendix D shows the algorithms deliver cor-
rect solutions and incidentally shows how additional state variables (for which
one does not want to exploit monotonicity) may be handled. Appendix E quan-
titatively evaluates binary monotonicity with sorting while also showing (1) how
binary monotonicity with sorting can be used to solve some problems that do not
immediately fit the class of nonmonotone problems and (2) how choice variables
for which one does not want to (or cannot) exploit monotonicity may be handled.
Appendix F contains all the omitted proofs and lemmas.

Appendix C: Additional sufficient conditions and applications

This Appendix expands on the discussion of monotonicity sufficient conditions in Sec-
tion 5 in two ways. First, Section C.1 gives sufficient conditions for choice correspon-
dences to be ascending and for functions to exhibit increasing differences. Second, Sec-
tion C.2 applies these sufficient conditions and the ones from the main text to establish
monotonicity in the RBC model, the Arellano (2008) model, and the sorted problem (6).
Appendix F gives the proofs.

C.1 Ascending correspondences and increasing differences

Proposition 3 requires the choice correspondence to be ascending. One way to ensure
this is for every choice to be feasible. The following lemma, which relies on increasing
differences, provides an alternative.

Lemma 1. Let I�I ′ ⊂R� and I ′ : I → P(I ′). Suppose I ′(i) = {i′ ∈ I ′|hm(i� i
′)≥ 0 for all m ∈

M} with M arbitrary. If I ′ is increasing, hm is decreasing in i′, and hm has increasing dif-
ferences on I × I ′ (for all m), then I′ is ascending on I .
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For an example application of Lemma 1, consider the RBC model and define
c(k′�k� z) := −k′ + zF(k) + (1 − δ)k. Since c is increasing in k and decreasing in k′,
the budget constraint {k′ ∈ K|c(k�k′� z)≥ 0} will be ascending on K for each z as long as
c has increasing differences in k, k′.

To apply the sufficient conditions Proposition 3 and Proposition 4 or to apply
Lemma 1, one must establish functions have increasing differences. The following
lemma provides a number of sufficient conditions for establishing that this is the case.
Some additional conditions may be found in Topkis (1978) and Simchi-Levi, Chen, and
Bramel (2014).

Lemma 2. For I�I ′ ⊂ R� and S ⊂ I × I ′, f : S → R has increasing differences on S if any
of the following hold:

(a) f (i� i′)= p(i)+ q(i′) for arbitrary p and q.

(b) f (i� i′) = p(i)+q(i′)+ r(i)s(i′) for arbitrary p and q with r and s both increasing or
decreasing.

(c) f (i� i′) agrees with g : L ⊂ R
2 → R, a C2 function having g12 ≥ 0 and L a hypercube

with S ⊂L.

(d) f (i� i′) is a nonnegative linear combination (i.e., f = ∑
αkfk with αk ≥ 0) of func-

tions having increasing differences.

(e) f (i� i′) = h(g(i� i′)) for h an increasing, convex, C2 function and g increasing (in i

and i′) and having increasing differences.

(f ) f (i� i′) = h(g(i� i′)) for h an increasing, concave, C2 function and g increasing in i,
decreasing in i′, and having increasing differences.

(g) f (i� i′) = ∫
E g(h(i� ε)� i′)dF(ε) with g having increasing differences on {(ĥ� i′)|ĥ =

h(i�ε)�ε ∈E�(i� i′) ∈ S} and h increasing in i.

(h) f (i� i′) = maxx∈Γ (i�i′) g(i� i′�x) exists for all (i� i′) ∈ S, S is a lattice, Γ : S → P(X),
X ⊂R, the graph of Γ is a lattice, and g has increasing differences in i, i′ and i, x and i′, x
on I × I ′, I ×X , and I ′ ×X , respectively (for all i, i′, x).

Since our method primarily exploits monotonicity of one choice variable, it will be
convenient in some cases to construct an indirect utility function over the other choices
and then establish that the indirect utility function has increasing differences. Lemma 2
part (h) gives one sufficient condition for this, but its conditions can be difficult to guar-
antee unless every choice is feasible. Proposition 5 provides an alternative sufficient
condition that may be easier to verify.

Proposition 5. Let S ⊂ R
2 be open and convex. Let f : S → R be defined by f (i� i′) =

maxx∈X u(g(x� i� i′)�x) where u is differentiable, increasing, and concave in its first argu-
ment and X is arbitrary. Then f has increasing differences on S if :

1. f is well defined and C1 in i on the closure of S, and

2. for any optimal policy x∗ and any (i� i′) ∈ S, g2(x
∗(i� i′)� i� i′) exists, is positive, and is

increasing in i′ and g(x∗(i� i′)� i� i′) is decreasing in i′.
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C.2 Applying the sufficient conditions

We now show how the preceding results can be applied to establish monotonicity in the
RBC model, Arellano (2008), and the sorted problem (6).

C.2.1 Monotonicity in k in the RBC model Consider the RBC model where we defined
c(k′�k� z)= −k′ + zF(k)+ (1 − δ)k. By Lemma 2 part (a), c has increasing differences in
k, k′. Then u(c(k′�k� z)) and u(c(k′�k� z)) + βEz′|zV0(k

′� z′) have increasing differences
by parts (f) and (d), respectively. Consequently, an application of Proposition 3 (not-
ing the budget constraint is ascending by Lemma 1) gives that arg maxk′ u(c(k′�k� z)) +
βEz′|zV0(k

′� z′) is ascending on K. As stated in the main text and proven in Appendix D,
this means binary monotonicity can be used to compute an optimal policy k′(k� z) that
is monotone in k.

C.2.2 Monotonicity in z in the RBC model With additional assumptions, one can also
use these results to establish k′ is monotone in z, although doing so is more complicated.
Identical arguments to the above give the optimal choice correspondence as ascending
in z if Ez′|zV0(k

′� z′) has increasing differences in k′, z. By Lemma 2 part (g), this will
hold as long as z′ is increasing in z and V0(k� z) has increasing differences in k, z. To en-
sure this is the case at each step of the Bellman update (assuming the initial guess has
increasing differences), one can use Lemma 2 part (h) if the graph of the choice corre-
spondence is a lattice and u ◦ c +βEz′|zV0 has increasing differences in k�z. A sufficient
condition for the former is that every choice is feasible. A sufficient condition for the lat-
ter, by Lemma 2 part (c), is that ∂2u(c)/(∂k∂z) ≥ 0, which is the same condition required
in Hopenhayn and Prescott (1992).

C.2.3 Monotonicity in k in the RBC model with elastic labor supply One can establish
monotonicity of k′(k� z) in k for the RBC model with elastic labor supply by using Propo-
sition 5 to establish increasing differences of the indirect utility function followed by an
application of Proposition 3. Specifically, the maximization problem for a given z can
be written as maxk′ U(k�k′) + βEz′|zV (k′� z′) where U(k�k′) := maxl∈[0�1] u(c(l�k′�k)� l)
and c(l�k�k′) := max{0�−k′ + zF(k� l) + (1 − δ)k}. If U is differentiable and solutions
are interior—that is, l∗ ∈ (0�1) and c(l∗�k�k′) > 0—then c2(l

∗�k�k′) = zFk(k� l
∗)+ 1 − δ

exists, is positive, and is weakly increasing in k′. If in addition consumption is a normal
good so that c(l∗�k�k′) is decreasing in k′, then Proposition 5 gives U as having increas-
ing differences. In this case, Proposition 3 gives monotonicity of k′(k� z) in k.

C.2.4 Monotonicity in the Arellano (2008) model and the sorted problem Proposition 4
may be used to establish monotonicity in the Arellano (2008) model and the sorted
problem (6). For the Arellano (2008) model, the budget constraint may be written as
c(b�b′; y) = b + y − q(b′� y)b′, which is increasing in b. By Lemma 2 part (a), c has in-
creasing differences in b, b′. Moreover, the continuation utility W (b′; y) := βEy ′|yV (b′� y)
(where V is the upper envelope of the repayment and default value functions) is weakly
increasing in b′. Consequently, Proposition 4 applies. An identical argument may be
used for the sorted problem.



4 Gordon and Qiu Supplementary Material

Appendix D: Algorithm correctness for a more general problem

This appendix shows binary monotonicity and the other algorithms deliver correct so-
lutions in a more general formulation of (1). Section D.1 gives the more general formu-
lation and states the correctness result. Section D.2 shows how the result applies in the
RBC and Arellano (2008) models while incidentally showing how additional state vari-
ables, for which one does not want to exploit monotonicity, may be handled.

D.1 A more general formulation

In both the RBC and Arellano (2008) model, there is no guarantee that every choice is
feasible. Consequently, one cannot directly use binary monotonicity because the maxi-
mization problems do not directly fit (1). To handle this issue in a general way, suppose
that the feasible choice set is I ′(i) ⊂ {1� 	 	 	 � n′}, which may be empty, and that the objec-
tive function is given by some π̃(i� i′) only defined for (i� i′) such that i′ ∈ I ′(i). For every
i such that I ′(i) is nonempty, define

Π̃(i) = max
i′∈I′(i)

π̃
(
i� i′

)
	 (7)

Let π denote a lower bound on π̃,7 and define

π
(
i� i′

) =

⎧⎪⎪⎨
⎪⎪⎩
π̃
(
i� i′

)
if I ′(i) 	= ∅ and i′ ∈ I ′(i)�

π if I ′(i) 	= ∅ and i′ /∈ I ′(i)�
1
[
i′ = 1

]
if I ′(i) = ∅	

(8)

Further, formalize the notion of concavity in the following way.

Definition 3. The problem is concave if, for all i such that I ′(i) 	= ∅, I ′(i) = {1� 	 	 	 � n′(i)}
for some monotone increasing function n′(i) and π(i� ·) is either first strictly increasing
and then weakly decreasing; or is always weakly decreasing; or is always strictly increas-
ing (where defined).

Now we can state the correctness result.

Proposition 6. If I ′ is increasing, then any of brute force, simple, or binary mono-
tonicity combined with any of brute force, simple, or binary concavity applied to (1)
with the objective function defined as in (8) delivers an optimal solution to (7) provided
arg maxi′∈I′(i) π̃(i� i

′) is ascending and the problem is concave as required by the algorithm
choices.

For the proof, see Appendix F.

7A theoretical lower bound on π̃ is −1 + mini mini′∈I′(i) π̃(i� i′). While this particular bound is not prac-
tically useful (because computing it would be very costly), the smallest machine-representable number
serves as a lower bound for computational purposes.
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D.2 Examples

To see how this result may be applied and how the RBC model can be cast into (7), con-
sider the problem’s Bellman update,

V (k�z) = max
c≥0�k′∈K

u(c)+βEz′|zV0
(
k′� z′)�

s.t. c + k′ = zF(k)+ (1 − δ)k

(9)

for k ∈ K, z ∈ Z where K = {k1� 	 	 	 �kn} with the ki increasing. (While here we have used
inelastic labor supply, elastic labor supply can be incorporated by replacing the period
utility function with an an indirect utility function as we discuss in Appendix C.) Now,
create a separate problem for each z and write

Π̃z(i) = max
i′∈I′

z(i)
π̃z

(
i� i′

)
� (10)

where π̃z and I ′
z are defined as

π̃z
(
i� i′

) := u
(−ki′ + zF(ki)+ (1 − δ)ki

) +βEz′|zV0
(
ki′� z

′)�
I ′
z(i) := {

i′ ∈ {1� 	 	 	 � n}|ki′ ≤ zF(ki)+ (1 − δ)ki

}
	

(11)

Then (10) is just (9) with k and k′ given by grid indices. Moreover, (10) has the same
form as (7). Further, because I ′

z has the form {1� 	 	 	 � n̄′
z(i)} for an increasing function

n̄′
z(i), Proposition 6 shows the monotonicity and concavity algorithms will deliver cor-

rect solutions.
The Arellano (2008) model can be mapped into (7) in the same fashion. The main

computational difficulty in that model is solving the sovereign’s problem conditional on
not defaulting. Specifically, the problem is to solve, for each b ∈ B and y ∈ Y ,

V n(b� y) = max
c≥0�b′∈B

u(c)+βEy ′|y max
{
V n

(
b′� y ′)� V d

(
y ′)}�

s.t. c + q
(
b′� y

)
b′ = b+ y�

(12)

where b is the sovereign’s outstanding bonds, q(b′� y) is the bond price, y is output, and
V d is the value of defaulting. Taking B as {b1� 	 	 	 � bn} with the bi increasing and creating
a separate problem for each y, one has

Π̃y(i) = max
i′∈I′

y (i)
π̃y

(
i� i′

)
� (13)

where π̃y and I ′
y are defined as

π̃y
(
i� i′

) := u
(−q(bi′� y)bi′ + bi + y

)+βEy ′|y max
{
V n

(
bi′� y

′)� V d
(
y ′)}�

I ′
y(i) := {

i′ ∈ {1� 	 	 	 � n}| − q(bi′� y)bi′ + bi + y ≥ 0
}
	

(14)

Then (13) has the same form as (7) and I ′
y is increasing. Consequently, the monotonicity

algorithms will deliver correct solutions.
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Appendix E: Additional results for the class of nonmonotone problems

This appendix builds on Section 4 by testing the quantitative performance of binary
monotonicity with sorting. The application, a sovereign default model with endogenous
capital accumulation, is described in Section E.1. Section E.2 assesses the algorithm’s
performance inclusive of sorting costs. Last, Section E.3 shows how binary monotonic-
ity with sorting can be used to solve some problems that do not fit (6) by transforming
them into two-stage problems. It also illustrates how choice variables for which one does
not want to (or cannot) exploit monotonicity may be handled.

E.1 A sovereign default model with capital

The model is similar to Bai and Zhang (2012) but lacks capital adjustment costs (in Sec-
tion E.3 we use adjustment costs to illustrate how two-stage reformulations allow bi-
nary monotonicity to be used). A sovereign has total factor productivity a that is Markov
and chooses bonds b′ and capital k′ from sets B and K, respectively, with 0 ∈ B. If the
sovereign defaults, output akα falls by a fraction κ. In equilibrium, the discount bond
price q satisfies q(b′�k′� a) = (1 + r)−1

Ea′|a(1 −d(b′�k′� a′)) where r is an exogenous risk-
free rate and d gives the default decision. The sovereign’s problem is to solve

V (b�k�a) = max
d∈{0�1}

dV d(k�a)+ (1 − d)V n(b�k�a)� (15)

where the value of defaulting is

V d(k�a) = max
c≥0�k′∈K

u(c)+βEa′|a
(
θV d

(
k′� a′) + (1 − θ)V n

(
0�k′� a′))�

s.t. c + k′ = (1 − κ)akα + (1 − δ)k

(16)

and the value of repaying is

V n(b�k�a) = max
c≥0�b′∈B�k′∈K

u(c)+βEa′|aV
(
b′�k′� a′)�

s.t. c + q
(
b′�k′� a

)
b′ + k′ = akα + (1 − δ)k+ b	

(17)

The most difficult part of computing this model is solving for V n. Note the optimal
policies for the problem are generally not monotone: An increase in bonds b or capital
k may cause a substitution from b′ into k′ or vice versa. This is true even if one uses a
cash-at-hand formulation. Nevertheless, binary monotonicity can be used to solve this
problem by mapping it into (5) and then sorting to arrive at (6). Specifically, suppose
the states (b�k) and choices (b′�k′) both lie in a set X = {(bi�ki)} having cardinality n.
Creating a separate problem for each a, one may then write

V n
a (i) = max

c≥0�i′∈{1�			�n}
u(c)+Wa

(
i′
)
�

s.t. c = za(i)−wa
(
i′
)
�

(18)

where Wa(i
′) := βEa′|aV (bi′�ki′� a′), za(i) := akα

i + (1 − δ)ki + bi, and wa(i
′) :=

q(bi′�ki′� a)bi′ + ki′ . Generally, za and Wa will not be increasing. However, by sorting
them, one can solve the model using binary monotonicity.
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Table 3. Run times and evaluations for the combined Arellano (2008) and RBC model.

Run times Evaluations per state

Points (m) Brute Simple Binary Brute Simple Binary Speedup

Original formulation
50 1	73 (m) 37	1 (s) 2	64 (s) 2500 1273 14 14	1

100 26	4 (m) 9	48 (m) 9	35 (s) 10,000 5100 16 60	8
250 16	1∗ (h) 5	83∗ (h) 1	10 (m) 62,500∗ 31,936∗ 19 317	9∗
500 10	3∗ (d) 3	72∗ (d) 5	02 (m) 250,000∗ 127,919∗ 21 1066	8∗

1000 157∗ (d) 57	0∗ (d) 21	1 (m) 1,000,000∗ 512,379∗ 23 3890	5∗

Cash-at-hand formulation
50 3	14 (s) 1	21 (s) 0	85 (s) 2500 1304 379 1	4

100 17	5 (s) 8	03 (s) 4	16 (s) 10,000 5127 860 1	9
250 4	12 (m) 1	76 (m) 31	0 (s) 62,500 31,723 2467 3	4
500 32	3 (m) 12	8 (m) 2	27 (m) 250,000 126,354 5432 5	6

1000 4	23∗ (h) 1	55∗ (h) 10	1 (m) 1,000,000∗ 503,277∗ 11,855 9	2∗

Note: Run times are in seconds (s), minutes (m), hours (h), or days (d). The last column gives the run time for simple relative
to binary; an ∗ means the value is estimated; times and average evaluations are over the first 200 value function iterations.

E.2 Performance

As stated in the main text, binary monotonicity with sorting is O(n logn) + O(n′ logn′)
as either n or n′ grow. While the cost depends only on the total number of points n and
n′, in the case of tensor grids with a fixed number of points m along each dimension,
n = md and n′ = md′

grow quickly in m when d and d′ (the dimensionality of states and
choices, resp.) are bigger than 1. The cost in these terms is O(mmax{d�d′} logm) for binary
monotonicity and O(md+d′

) for brute force. While theoretically this results in a massive
improvement when d = d′ > 1, the extreme cost of using brute force in this case means
one would almost surely reformulate the problem in terms of cash-at-hand, effectively
reducing d to 1.

Table 3 reports the run times and evaluation counts for brute force, simple mono-
tonicity, and binary monotonicity for different grid sizes m.8 In the top panel, the cash-
at-hand reformulation has not been used, and so binary monotonicity vastly outper-
forms the other methods. For 50 points in each dimension, binary monotonicity is al-
ready 14 times faster than simple monotonicity and 39 times faster than brute force.
For a 1000 points, simple monotonicity’s estimated run time is 2 months while binary
monotonicity’s actual run time is only 21 minutes. A doubling of the grid sizes makes
the speedup increase by roughly a factor of 4, which agrees with binary monotonicity
being O(m2 logm) and brute force being O(m4). The speedups measured in evaluation
counts are even more dramatic as they exclude time spent sorting.

Reformulating the problem using cash-at-hand (with m points for the cash-at-hand
state variable) makes brute force an O(m3) algorithm but has no change on binary

8For this example, productivity follows an AR(1) with a persistence parameter of 0	945 and standard
deviation of 0	025, the default cost κ is 0	05, the risk-free rate r is 0	017, the discount factor β is 0	952, and
the capital share, risk aversion, and depreciation rate are as in the RBC calibration.
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monotonicity’s asymptotics (which are still O(m2 logm)). Consequently, binary mono-
tonicity still has an advantage, but it is much smaller. This can be seen in a comparison
of the top and bottom panels of Table 3. With the cash-at-hand formulation, brute force
and simple monotonicity are faster by a factor of roughly m, but binary monotonicity
is only twice as fast. Overall, binary monotonicity still outperforms simple monotonic-
ity, but by a more modest factor of 1	4 to 9	2 for run times. The better evaluation count
speedups, which are in the 3	4 to 42	5 range, show that sorting costs are playing a non-
trivial role. When only n or n′ grow, sorting costs dominate, and here that is essentially
the case because n′ = m2 grows much faster than n = m. However, the speedups mea-
sured against brute force—which may be a better benchmark since the sorting of con-
tinuation utilities is, to our knowledge, novel—are roughly twice as large.

E.3 Two-stage reformulations

Some models, such as models with adjustment costs, do not directly have the additive
separability in the budget constraint of (6). However, they might when breaking the max-
imization problem into two stages. For instance, adding capital adjustment costs to our
example results in a budget constraint

c + q
(
b′�k′� a

)
b′ + k′ + ξ

(
k′ − k

)2 = akα + (1 − δ)k+ b� (19)

which can be written as c = za(b�k�k
′) − wa(b

′�k�k′) where za(b�k�k
′) := akα + (1 −

δ)k+b and wa(b
′�k�k′) := q(b′�k′� a)b′ +k′ +ξ(k′ −k)2. Consequently, the problem has

the form

V n
a (i� j) = max

c≥0�i′�j′
u(c)+Wa

(
i′� j′

)
�

s.t. c = za
(
i� j� j′

) −wa
(
i′� j� j′

)
�

(20)

so that there is additive separability between the i and i′ variables conditional on a j,
j′ pair. Binary monotonicity can be used to solve (20) by breaking it into a two-stage
problem where j′ is chosen in the first stage and i′ in the second:

V n
a (i� j) = max

j′
Ṽ n
a

(
i� j� j′

)
�

Ṽ n
a

(
i� j� j′

) = max
c≥0�i′

u(c)+Wa
(
i′� j′

)
�

s.t. c = za
(
i� j� j′

)−wa
(
i′� j� j′

)
	

(21)

For each j, j′ combination, one can sort z(·� j� j′) and W (·� j′) so that the optimal policy of
the second-stage problem is monotone in i. For grids of size m in each dimension, binary
monotonicity with sorting can be used to solve for Ṽ n

a in O(m3 logm) operations and
then V n

a in O(m3) operations. So, the total cost is O(m3 logm), which compares favorably
with brute force’s O(m4).

In general, if one wants to use binary monotonicity for one choice variable (say i′)
but not another (say j′), a two-stage reformulation must be done. The above example
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illustrates one way to do this: First, choose j′ and make it a state variable when choos-
ing i′. The other way is to first choose i′ and make it a state variable when choosing j′.
The RBC model with elastic labor supply provides an example of this latter approach,
and one may consult Section C.2.3 of Appendix C for more details.

Appendix F: Omitted proofs and lemmas

This appendix gives omitted proofs and lemmas. Section F.1 gives the results for the
monotonicity-related sufficient conditions. Section F.2 gives proofs and lemmas show-
ing binary monotonicity and the other algorithms work correctly. Section F.3 gives the
proofs and lemmas for the cost bounds in established in Propositions 1 and 2 in the
main text.

F.1 Monotonicity sufficient condition proofs and lemmas

To give the omitted sufficient condition proofs, we first give some definitions and a
lemma.

F.1.1 Definitions and a lemma Lattices are general mathematical structures. For our
purposes, we need only lattices consisting of subsets of Euclidean space with the
component-wise ordering, that is, x ≤ y for x� y ∈ R

n if xj ≤ yj for all j where zj denotes
the jth component of z. In this context, the join operation ∨ gives the component-wise
maximum, namely, x ∨ y = (max{x1� y1}� 	 	 	 �max{xn� yn}). Likewise, the meet operation
∧ gives the component-wise minimum, x ∧ y = (min{x1� y1}� 	 	 	 �min{xn� yn}). A lattice
consists of a set X ⊂ R

n with the component-wise ordering such that x� y ∈ X implies
x ∨ y�x ∧ y ∈ X . Note that if X ⊂ R, it constitutes a lattice with our ordering: x� y ∈ X

implies min{x� y}�max{x� y} ∈ X . A function f : X → R where X is a lattice is said to be
supermodular (submodular) if f (x) + f (y) ≤ (≥)f (x ∧ y) + f (x ∨ y) for all x� y ∈ X ; if
the inequality is strict for all x and y that cannot be ordered, then the function is strictly
supermodular (submodular).

For part of Lemma 2, we will need a slightly broader definition of increasing differ-
ences than what was given in the main text.

Definition 4. Let X ⊂R
n. Use the notation (x−ij� yi� yj) to denote the vector x but with

the ith and jth component replaced with the ith and jth component of y, respectively.
A function f :X →R has increasing differences on X if for all i, j with i 	= j and for all yi, yj
having xi ≤ yi and xj ≤ yj (such that (x−ij� yi� xj)� (x−ij� xi� xj)� (x−ij� yi� yj)� (x−ij� xi� yj) ∈
X) one has

f (x−ij� yi� xj)− f (x−ij� xi� xj)≤ f (x−ij� yi� yj)− f (x−ij� xi� yj)	

The function f has decreasing differences if f (x−ij� yi� xj) − f (x−ij� xi� xj) ≥
f (x−ij� yi� yj) − f (x−ij� xi� yj). The differences are strict if the inequality holds strictly
(whenever xi < yi and xj < yj).
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Note that this is equivalent to having increasing differences—as defined in the main
text—for all pairs of components. Any univariate function has increasing differences be-
cause the condition requires i 	= j.

We will also need to appeal to the following partial equivalence between increasing
differences and supermodularity.

Lemma 3. Suppose X ⊂ R
n is a lattice. If f is (strictly) supermodular on X , then f has

(strictly) increasing differences on X . If X = ∏n
i=1 Xi with Xi ⊂ R for all i and f has

(strictly) increasing differences on X , then f is (strictly) supermodular on X .

Proof. Let×denote the direct product (a generalization of the Cartesian product).9

Then Theorem 2.6.1 of Topkis (1998) gives that if Xα is a lattice for each α in a set A,
X is a sublattice of×α∈AXα, and f (x) is (strictly) supermodular on X , then f (x) has
(strictly) increasing differences on X . Taking A= {1� 	 	 	 � n} and Xα = R for all α ∈A gives×α∈AXα =R

n (which is example 2.2.1 part (c) on Topkis (1998, p. 12)). Consequently, X
is a sublattice of Rn and the theorem applies to show the (strict) supermodularity of f
on X implies (strictly) increasing differences of f on X .

Corollary 2.6.1 of Topkis (1998) gives that if Xi is a chain (by definition, a partially
ordered set that contains no unordered pairs of elements) for i = 1� 	 	 	 � n and f has
(strictly) increasing differences on×n

i=1 Xi, then f is (strictly) supermodular on×n
i=1 Xi.

Since Xi ⊂ R, it is a chain, and the direct product×n
i=1 Xi is just the Cartesian product∏n

i=1 Xi. Hence (strictly) increasing differences on X implies (strict) supermodularity
on X . �

F.1.2 Proofs

Proof of Proposition 3. Because I ′ ⊂ R, it is a lattice. Additionally, −π(i� i′) has
decreasing differences and is trivially submodular in i′ (as well as supermodular). So
Theorem 6.1 of Topkis (1978) gives that arg mini′∈I′(i) −π(i� i′) is ascending on the set
of i such that a solution exists. Theorem 6.3 strengthens this to strongly ascending
when −π(i� i′) has strictly decreasing differences. Noting G(i) := arg maxi′∈I′(i) π(i� i

′) =
arg mini′∈I′(i) −π(i� i′) then gives the result. �

Proof of Lemma 1. To have I ′ ascending on I one needs i1 < i2, i′1 ∈ I ′(i1), and i′2 ∈
I ′(i2) to imply min{i′1� i′2} ∈ I ′(i1) and max{i′1� i′2} ∈ I ′(i2). Since I ′ is increasing, i′1 ∈ I ′(i2)
and so max{i′1� i′2} ∈ I ′(i2). If i′2 ≥ i′1, then one has min{i′1� i′2} = i′1 ∈ I ′(i1). So, take i′2 < i′1.

9Topkis (1998) defines the direct product, which he denotes by×, in this way: “If Xα is a set for each α

in a set A, then the direct product of these sets Xα is the product set×α∈AXα = {x= (xα : α ∈ A) : xα ∈ Xα

for each α ∈ A}” (p. 12). The notation (xα : α ∈ A) gives a vector that “consists of a component xα for each
α ∈ A” (p. 12). In words,×α∈AXα is the set of vectors that can be formed under the restriction that each α

component has to lie in Xα.
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We need to show that i′2 ∈ I ′(i1) for i1 < i2 and i′2 < i′1. Pick an arbitrary m and sup-
press dependence on it. Then

h
(
i2� i

′
2
) − h

(
i1� i

′
2
) ≤ h

(
i2� i

′
1
)− h

(
i1� i

′
1
)

≤ h
(
i2� i

′
1
)

≤ h
(
i2� i

′
2
)
�

where the first line follows from increasing differences, the second from i′1 ∈ I ′(i1) so
that h(i1� i′1) ≥ 0, and the third from h being decreasing in i′. Consequently, −h(i1� i

′
2) ≤ 0

which gives h(i1� i
′
2) ≥ 0. Since the m was arbitrary, this holds for all m and so i′2 ∈ I ′(i1).

Thus, min{i′1� i′2} ∈ I ′(i1) and so I ′ is ascending on I . �

Proof of Lemma 2. For (a) and (b), we prove (b) which implies (a). Let (i1� i′1)� (i2� i
′
2) ∈

S with i1 < i2 and i′1 < i′2 but otherwise arbitrary. Then

f
(
i2� i

′
j

)− f
(
i1� i

′
j

) = p(i2)+ q
(
i′j
)+ r(i2)s

(
i′j
)−p(i1)− q

(
i′j
)− r(i1)s

(
i′j
)

= p(i2)−p(i1)+ (
r(i2)− r(i1)

)
s
(
i′j
)
	

So, f (i2� i′1)− f (i1� i
′
1) ≤ f (i2� i

′
2)− f (i1� i

′
2) if and only if

p(i2)−p(i1)+ (
r(i2)− r(i1)

)
s
(
i′1
) ≤ p(i2)−p(i1)+ (

r(i2)− r(i1)
)
s
(
i′2
)

⇔ 0 ≤ (
r(i2)− r(i1)

)(
s
(
i′2
)− s

(
i′1
))
�

which holds because r and s are either both increasing or both decreasing.
For (c), let (i1� i′1)� (i2� i

′
2) ∈ S with i1 < i2 and i′1 < i′2 but otherwise arbitrary. Then f

has increasing differences if and only if

g
(
i2� i

′
1
)− g

(
i1� i

′
1
) ≤ g

(
i2� i

′
2
)− g

(
i1� i

′
2
)

since g agrees with f on S. Because g is C2, this holds if∫
[i1�i2]

g1
(
θ� i′1

)
dθ ≤

∫
[i1�i2]

g1
(
θ� i′2

)
dθ ⇔ 0 ≤

∫
[i1�i2]

(
g1

(
θ� i′2

) − g1
(
θ� i′1

))
dθ	

Again, by g being C2, this holds if

0 ≤
∫

[i1�i2]

∫
[i′1�i′2]

g12
(
θ�θ′)dθ′ dθ	

Because L is assumed to be a hypercube containing S and g12 ≥ 0 on L, this holds.
For (d), let (i1� i′1)� (i2� i

′
2) ∈ S with i1 < i2 and i′1 < i′2 but otherwise arbitrary. Then f

has increasing differences if and only if∑
k

αkfk
(
i2� i

′
1
)−

∑
k

αkfk
(
i1� i

′
1
) ≤

∑
k

αkfk
(
i2� i

′
2
)−

∑
k

αkfk
(
i1� i

′
2
)

⇔
∑
k

αk

(
fk

(
i2� i

′
1
) − fk

(
i1� i

′
1
)) ≤

∑
k

αk

(
fk

(
i2� i

′
2
)− fk

(
i1� i

′
2
))
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A sufficient condition for this is that, for all k, fk has increasing differences so that
fk(i2� i

′
1)− fk(i1� i

′
1)≤ fk(i2� i

′
2)− fk(i1� i

′
2).

For (e) and (f), let (i1� i′1)� (i2� i
′
2) ∈ S with i1 < i2 and i′1 < i′2 but otherwise arbitrary.

The composition h ◦ g has increasing differences on S if and only if

h
(
g
(
i2� i

′
1
))− h

(
g
(
i1� i

′
1
)) ≤ h

(
g
(
i2� i

′
2
))− h

(
g
(
i1� i

′
2
))
	 (22)

Because g is increasing in i, g(i2� i′)−g(i1� i
′)≥ 0. Then because h is C2, (22) is equivalent

to ∫ g(i2�i
′
1)−g(i1�i

′
1)

0
h′(g(i1� i′1)+ θ

)
dθ ≤

∫ g(i2�i
′
2)−g(i1�i

′
2)

0
h′(g(i1� i′2)+ θ

)
dθ	

Because g has increasing differences, g(i2� i′1)−g(i1� i
′
1) ≤ g(i2� i

′
2)−g(i1� i

′
2). Hence, this

is equivalent to

∫ g(i2�i
′
1)−g(i1�i

′
1)

0

(
h′(g(i1� i′1)+θ

)−h′(g(i1� i′2)+θ
))
dθ ≤

∫ g(i2�i
′
2)−g(i1�i

′
2)

g(i2�i
′
1)−g(i1�i

′
1)

h′(g(i1� i′2)+θ
)
dθ	

Because h′ > 0, the right-hand side is positive. So, a sufficient condition for this to hold is
that the left-hand side be negative, which is true if h′(g(i1� i′1)+θ)≤ h′(g(i1� i′2)+θ) for all
positive θ. In (f), g is increasing in its second argument, so g(i1� i

′
1)+θ ≤ g(i1� i

′
2)+θ, and,

because h′′ > 0, this holds. In (g), g is decreasing in its second argument, so g(i1� i
′
1)+θ ≥

g(i1� i
′
2)+ θ, and because h′′ < 0, this holds. So, h ◦ g has increasing differences.

For (g), let (i1� i
′
1)� (i2� i

′
2) ∈ S with i1 < i2 and i′1 < i′2 but otherwise arbitrary. Then

because h is increasing in i and because g has increasing differences,

g
(
h(i2� ε)� i

′
1
)− g

(
h(i1� ε)� i

′
1
) ≤ g

(
h(i2� ε)� i

′
2
)− g

(
h(i1� ε)� i

′
2
)

for any ε ∈E. Integrating,∫
E

(
g
(
h(i2� ε)� i

′
1
) − g

(
h(i1� ε)� i

′
1
))
dF(ε) ≤

∫
E
g
(
h(i2� ε)� i

′
2
)− g

(
h(i1� ε)� i

′
2
)
dF(ε)	

From f (i� i′) = ∫
E g(h(i� ε)� i′)dF(ε), this says

f
(
i2� i

′
1
)− f

(
i1� i

′
1
) ≤ f

(
i2� i

′
2
)− f

(
i1� i

′
2
)
�

which establishes that f has increasing differences.
For (h), note that the pairwise increasing differences of g in i, i′, and i, x, and i′, x

gives, by definition, that g has increasing differences on I×I ′ ×X . So, g is supermodular
on the lattice I ×I ′ ×X by Lemma 3. Since the graph of Γ is assumed to be a lattice, it is
a sublattice of S×X . Last, because g is supermodular, −g is submodular. Consequently,
Theorem 4.3 of Topkis (1978) applies to show that minx∈Γ (i�i′) −g(i� i′�x) is submodular.
Therefore, −minx∈Γ (i�i′) −g(i� i′�x) is supermodular, and this equals maxx∈Γ (i�i′) g(i� i′�x),
which by definition is f (i� i′). So, f is supermodular on the lattice S, which implies f has
increasing differences on S by Lemma 3. �
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Proof of Proposition 4. Let a < b with a�b ∈ I . Define the feasible set as Γ (i) := {i′ ∈
I ′|c(i� i′) ≥ 0}. Let g1 ∈G(a) and g2 ∈ G(b).

To establish that G is ascending, it is sufficient to show that g1 > g2 implies g1 ∈G(b)

and g2 ∈ G(a). To establish that G is strongly ascending, it is sufficient to show that
g1 > g2 gives a contradiction. So, suppose g1 > g2. Unless explicitly stated, we only as-
sume c is weakly increasing in i, has weakly increasing differences, and that W is weakly
increasing.

First, we will show c(a�g2) ≥ c(a�g1) ≥ 0 and c(b�g2) ≥ c(b�g1) ≥ 0 for W weakly
increasing and c(a�g2) > c(a�g1)≥ 0 and c(b�g2) > c(b�g1) ≥ 0 for W strictly increasing.
To see this, note that Γ is increasing. Consequently, g1 ∈ Γ (b) (so c(b�g1)≥ 0), and hence
g2 ∈G(b) implies

u
(
c(b�g2)

) +W (g2) ≥ u
(
c(b�g1)

) +W (g1)	 (23)

Because g2 < g1 and W is weakly (strictly) increasing, this implies c(b�g2) ≥ (>)c(b�g1).
So, exploiting weakly increasing differences, 0 ≥ (>)c(b�g1) − c(b�g2) ≥ c(a�g1) −
c(a�g2) for W weakly (strictly) increasing. Also using g1 ∈ Γ (a), c(a�g2) ≥ (>)c(a�g1) ≥ 0
for W weakly (strictly) increasing. For use below, note also that because g1 ∈ G(a) and
g2 ∈ Γ (a),

u
(
c(a�g1)

) +W (g1) ≥ u
(
c(a�g2)

) +W (g2)	 (24)

Combining (23) and (24),

u
(
c(b�g2)

)+W (g2)−u
(
c(b�g1)

)−W (g1) ≥ 0 ≥ u
(
c(a�g2)

)+W (g2)−u
(
c(a�g1)

)−W (g1)�

which implies

u
(
c(b�g2)

) − u
(
c(b�g1)

) ≥ u
(
c(a�g2)

) − u
(
c(a�g1)

)
	 (25)

As established above, c(b�g2)≥ c(b�g1) and c(a�g2) ≥ c(a�g1). Using this and the differ-
entiability of u, (25) is equivalent to∫ c(b�g2)−c(b�g1)

0
u′(c(b�g1)+ θ

)
dθ ≥

∫ c(a�g2)−c(a�g1)

0
u′(c(a�g1)+ θ

)
dθ	

Because of weakly increasing differences, c(a�g1) − c(a�g2) ≤ c(b�g1) − c(b�g2) or,
equivalently, c(b�g2)− c(b�g1)≤ c(a�g2)− c(a�g1). Moreover, c(b�g2) ≥ c(b�g1). So, the
above inequality is equivalent to

0 ≥
∫ c(a�g2)−c(a�g1)

c(b�g2)−c(b�g1)
u′(c(a�g1)+ θ

)
dθ

+
∫ c(b�g2)−c(b�g1)

0

(
u′(c(a�g1)+ θ

)− u′(c(b�g1)+ θ
))
dθ	

Because c is weakly increasing in i and u is concave, the second integral is positive. The
first must also be positive. Hence, the inequality holds if and only if

c(a�g2)− c(a�g1) = c(b�g2)− c(b�g1) (C1)

AND c(b�g2) = c(b�g1) or c(a�g1)= c(b�g1)	 (C2)
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Now, consider the claims again. For the second claim, we seek a contradiction.
A contradiction obtains if c has strictly increasing differences as then (C1) is violated.
Alternatively, if W is strictly increasing and c is strictly increasing in i, (C2) will be vio-
lated because c(b�g2) > c(b�g1) and c(a�g1) > c(b�g1).

For the first claim, we want to show g1 ∈ G(b) and g2 ∈ G(a). (C2) implies ei-
ther c(b�g2) = c(b�g1) and/or c(a�g1) = c(b�g1). Consider the cases separately with
c(b�g2) = c(b�g1) first. Then (C1) gives c(a�g2) − c(a�g1) = c(b�g2) − c(b�g1). So,
c(a�g2) = c(a�g1). Hence, the choices give the same consumption at a and b. So, the
continuation utility must be the same: equation (23) implies W (g2) ≥ W (g1) and (24)
implies W (g1) ≥ W (g2). So, with the same consumption and choice utilities, g1 ∈ G(a)

gives g2 ∈ G(a) and g2 ∈G(b) gives g1 ∈ G(b).
Now consider the second case where c(a�g1) = c(b�g1). Because (C1) gives c(a�g2)−

c(a�g1) = c(b�g2) − c(b�g1), replacing c(a�g1) with c(b�g1) gives c(a�g2) − c(b�g1) =
c(b�g2)− c(b�g1) or c(a�g2)= c(b�g2). Then

u
(
c(a�g1)

) +W (g1) ≥ u
(
c(a�g2)

)+W (g2)

⇔ u
(
c(b�g1)

) +W (g1)≥ u
(
c(b�g2)

)+W (g2)�
(26)

where the first line follows from the optimality of g1 ∈ G(a) and the second from
c(a�g1) = c(b�g1) and c(a�g2) = c(b�g2). Consequently, since g2 ∈ G(b) and (26) shows
g1 delivers weakly higher utility at b, g1 ∈ G(b).

To establish g2 ∈ G(a), the argument is similar. We have c(a�g1) = c(b�g1) and
c(a�g2) = c(b�g2). Because we have shown g1 ∈G(b), u(c(b�g1))+W (g1)= u(c(b�g2))+
W (g2). Replacing c(b�g1) with c(a�g1) and c(b�g2) with c(a�g2), this becomes

u
(
c(a�g1)

) +W (g1) = u
(
c(a�g2)

) +W (g2)	

Consequently, g1 ∈G(a) implies g2 ∈ G(a). �

Proof of Proposition 5. Because f is assumed to be differentiable (left and right)
on the closure of S, Theorem 1 of Milgrom and Segal (2002) gives that fi(i� i

′) =
u1(g(x

∗(i� i′)� i� i′))g2(x
∗(i� i′)� i� i′) on S.

To show increasing differences, we need to establish that

f
(
i2� i

′
1
) − f

(
i1� i

′
1
) ≤ f

(
i2� i

′
2
)− f

(
i1� i

′
2
)

for (i1� i′1)� (i2� i
′
2) ∈ S with i1 ≤ i2 and i′1 ≤ i′2. Since f is C1 in i, this is equivalent to

0 ≤
∫ i2

i1

(
fi
(
θ� i′2

) − fi
(
θ� i′1

))
dθ	

Hence, if fi is increasing in i′, then increasing difference holds. Defining x∗
j := x∗(i� i′j),

then fi is increasing in i′ if

0 ≤ u1
(
g
(
x∗

2� i� i
′
2
))
g2

(
x∗

2� i� i
′
2
)− u1

(
g
(
x∗

1� i� i
′
1
))
g2

(
x∗

1� i� i
′
1
)

= u1
(
g
(
x∗

2� i� i
′
2
))(

g2
(
x∗

2� i� i
′
2
) − g2

(
x∗

1� i� i
′
1
))

+ (
u1

(
g
(
x∗

2� i� i
′
2
))− u1

(
g
(
x∗

1� i� i
′
1
)))

g2
(
x∗

1� i� i
′
1
)
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Since u1 ≥ 0 and g2(x
∗(i� i′)� i� i′) is increasing in i′, the first term is positive. Since u11 ≤ 0,

g2(x
∗(i� i′)� i� i′) ≥ 0, and g(x∗(i� i′)� i� i′) is decreasing in i′, the second term is positive. So,

f has increasing differences. �

F.2 Algorithm correctness proofs and lemmas

We now give the omitted proofs and lemmas pertaining to the algorithm correctness.
Let the objective function π̃(i� i′), the maximum Π̃(i), and the feasible choice set

I′(i) be as in (7). Assume that I ′(i) ⊂ {1� 	 	 	 � n′}—which may be empty—is monotonically
increasing, and define I := {i ∈ {1� 	 	 	 � n}|I ′(i) 	= ∅} so that i ∈ I has a feasible solution.
For all i ∈ I, define G̃(i) := arg maxi′∈I′(i) π̃(i� i

′). Let π be defined via (8)—where π is such
that π̃(i� i′) > π for all i ∈ I and i′ ∈ I ′(i)—with Π(i) := maxi′∈{1�			�n′} π(i� i′) and G(i) :=
arg maxi′∈{1�			�n′} π(i� i′). Note that by construction, i′ = 1 is optimal whenever there is no
feasible choice and i′ ∈ I ′(i) is always preferable to i′ /∈ I ′(i) when a feasible choice exists.

Lemma 4 establishes the mathematical equivalence of these problems (but does not
say that the algorithms applied to (1) deliver a correct solution to (7)).

Lemma 4. All of the following are true:

1. Π(i)= Π̃(i) for all i ∈ I.

2. G(i) = G̃(i) for all i ∈ I.

3. If G̃ is ascending on I, then G is ascending on {1� 	 	 	 � n}.

Proof. The first claim is an implication of the second claim. For the proof of the second
claim, let i ∈ I. Then I ′(i) 	= ∅. Infeasible choices, that is, i′ ∈ {1� 	 	 	 � n′} \ I ′(i), are strictly
suboptimal in the Π problem (1) because any feasible choice j′ ∈ I ′(i) delivers π(i� j′) >
π = π(i� i′). Hence,

G(i) = arg max
i′∈{1�			�n′}

π
(
i� i′

) = arg max
i′∈I′(i)

π
(
i� i′

) = arg max
i′∈I′(i)

π̃
(
i� i′

) = G̃(i)

(where the third equality follows from the definition of π).
To show the third claim, let G̃ be ascending on I. Now, let i1 ≤ i2 and g1 ∈ G(i1) and

g2 ∈ G(i2). We want to show that min{g1� g2} ∈ G(i1) and max{g1� g2} ∈ G(i2). Clearly,
this is the case if g1 ≤ g2, so take g1 > g2. Then since G(i) = {1} for all i /∈ I and g1 >

g2 ≥ 1, it must be that i1 ∈ I (otherwise, g1 would have to be 1). Then, because I ′(i) is
increasing, i2 ∈ I. Hence, G(i1) = G̃(i1) and G(i2) = G̃(i2). So, G̃ ascending gives the
desired result. �

Lemmas 5 and 6 establish that, for concave problems, simple and binary concavity
deliver an optimal choice provided there is one in the search space.

Lemma 5. If the problem is concave and π(i� j) ≥ π(i� j + 1) for some j, then π(i� j) =
maxi′∈{j�			�n′} π(i� i′) (j is as least as good as anything to the right of it). If π(i�k − 1) <
π(i�k) for some k, then π(i�k) = maxi′∈{1�			�k}π(i� i′) = maxi′∈{1�			�k} π̃(i� i′) (k is as least as
good as anything to the left of it).
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Proof. Note that by the problem being concave (as given in Definition 3), there is some
increasing function n′(i) such that I ′(i) = {1� 	 	 	 � n′(i)} for i ∈ I.

To prove π(i� j) ≥ π(i� j + 1) implies π(i� j) = maxi′∈{j�			�n′} π(i� i′), consider two cases.
First, suppose i /∈ I. Then I ′(i) = ∅ and π(i� i′) = 1[i′ = 1]. Consequently, for any j,
π(i� j) = maxi′∈{j�			�n′} π(i� i′). In other words, j is weakly better than any value to the right
of it.

Second, suppose i ∈ I. If j > n′(i), then π(i� j) = π = maxi′∈{j�			�n′} π(i� i′). If j = n′(i),
then π(i� j) > π = maxi′∈{j+1�			�n′} π(i� i′) implying π(i� j) = maxi′∈{j�			�n′} π(i� i′). If j <

n′(i), then

max
i′∈{j�			�n′}

π
(
i� i′

) = max
{

max
i′∈{j�			�n′(i)}

π
(
i� i′

)
� max
i′∈{n′(i)+1�			�n′}

π
(
i� i′

)}
= max

{
max

i′∈{j�			�n′(i)}
π
(
i� i′

)
�π

}
= max

i′∈{j�			�n′(i)}
π
(
i� i′

)
= max

i′∈{j�			�n′(i)}
π̃
(
i� i′

)
	

All that remains to be shown for this case is π(i� j) = maxi′∈{j�			�n′(i)} π̃(i� i′). Since π(i� j) =
π̃(i� j) and π(i� j + 1) = π̃(i� j + 1), the hypothesis gives π̃(i� j) ≥ π̃(i� j + 1). Because the
problem is concave and π̃(i� ·) is weakly decreasing from j to j + 1, it must be weakly
decreasing from j to n′(i). Hence, π̃(i� j) = maxi′∈{j�			�n′(i)} π̃(i� i′). So, π(i� j) = π̃(i� j) =
maxi′∈{j�			�n′(i)} π̃(i� i′) = maxi′∈{j�			�n′} π(i� i′).

Now, we prove the case for π(i�k − 1) < π(i�k). In this case, k − 1 and k must both
be feasible, that is, k ≤ n′(i), because (1) if they were both infeasible, then π(i�k − 1) =
π = π(i�k) and (2) if only k were infeasible, then π(i�k − 1) > π = π(i�k). Given that
k − 1 and k are feasible, π(i�k − 1) = π̃(i�k − 1) and π(i�k) = π̃(i�k). Since π̃(i� ·) is
strictly increasing until it switches to weakly decreasing, π̃(i�1) < · · · < π̃(i�k − 1) <
π̃(i�k). Hence π̃(i�k) = maxi′∈{1�			�k} π̃(i� i′). Since all of 1� 	 	 	 �k are feasible, π(i�k) =
maxi′∈{1�			�k}π(i� i′)= maxi′∈{1�			�k} π̃(i� i′). �

Lemma 6. Suppose it is known that G(i) ∩ {a� 	 	 	 � b} is nonempty. Then brute force ap-
plied to

max
i′∈{a�			�b}

π
(
i� i′

)
delivers an optimal solution, that is, letting ĝ be the choice the algorithm delivers, ĝ ∈
G(i). Additionally, if the problem is concave, then the simple concavity and binary con-
cavity algorithms also deliver an optimal solution.

Proof. First, suppose i /∈ I so that π(i� i′) = 1[i′ = 1]. Then it must be that a = 1 since
G(i) = {1}. Brute force clearly finds the optimum since it checks every value of i′. Simple
concavity will compare i′ = a = 1 against i′ = a+ 1 = 2 and find i′ = 2 is strictly worse. So,
it stops and gives ĝ = 1, implying ĝ ∈ G(i) = {1}. Binary concavity first checks whether
b − a + 1 ≤ 2. If so, it is the same as brute force. If not, it checks whether b − a + 1 ≤ 3.
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If so, then b − a + 1 = 3 and it does a comparison of either (1) a and m = (b + a)/2, in
which case it correctly identifies the maximum as a or (2) m and b in which case it drops
b from the search space and does a brute force comparison of a and a+ 1 (when it goes
to step 2). If b − a + 1 > 3, it will evaluate the midpoint m = �(a + b)/2� and m + 1 and
find π(i�m) = π(i�m + 1) = 0. It will then proceed to step 2, searching for the optimum
in {1� 	 	 	 �m} with a = 1 and b = m in the next iteration of the recursive algorithm. This
proceeds until b− a+ 1 ≤ 3, where it then correctly identifies the maximum (as was just
discussed). Therefore, binary concavity finds a correct solution, ĝ ∈G(i).

Now, suppose i ∈ I. Because brute force will evaluate π(i� ·) at every i′ ∈ {a� 	 	 	 � b},
it finds ĝ ∈ G(i). Now, suppose the problem is concave. The simple concavity algo-
rithm evaluates π(i� i′) at i′ ∈ {a� 	 	 	 � b} sequentially until it reaches a x ∈ {a + 1� 	 	 	 � b}
that π(i�x − 1) ≥ π(i�x). If this stopping rule is not triggered, then simple concavity
is identical to brute force and so finds an optimal solution. So, it suffices to consider
otherwise. In this case, x − 1 satisfies the conditions for “j” in Lemma 5, and hence
π(i�x − 1) = maxi′∈{x−1�			�n′} π(i� i′). By virtue of not having stopped until x − 1, π(i�x −
1) ≥ maxi′∈{a�			�x−1}π(i� i′). Consequently, π(i�x − 1) ≥ maxi′∈{a�			�x−1}∪{x−1�			�n′} π(i� i′) =
maxi′∈{a�			�n′} π(i� i′). Since a maximum is known to be in {a� 	 	 	 � b},

Π(i) = max
i′∈{a�			�b}

π
(
i� i′

) ≤ max
i′∈{a�			�n′}

π
(
i� i′

) ≤ π(i�x− 1) ≤Π(i)	

So, π(i�x− 1)= Π(i) giving x− 1 ∈G(i).
Now consider the binary concavity algorithm. If b ≤ a + 1 (so that the size of the

search space, b − a + 1, is 1 or 2), the algorithm is the same as brute force and so finds
a maximum. If b = a+ 2 (a search space of size 3), the algorithm goes to either step 3(a)
or step 3(b). In step 3(a), it stops if π(i�a) > π(i�m) (where m = (a + b)/2) taking the
maximum as a and otherwise does the same as brute force. So, suppose the stopping
condition is satisfied. A maximum is a as long as π(i�a) = maxi′∈{a�			�b} π(i� i′), which it is
since a satisfies the conditions for “j” in Lemma 5. In step 3(b), it stops if π(i�b) > π(i�m)

taking the maximum as b and otherwise does the same as brute force. So, suppose the
stopping condition is satisfied. A maximum is b as long as π(i�b) = maxi′∈{a�			�b}π(i� i′),
which is true since b satisfies all the conditions for “k” in Lemma 5.

If b ≥ a+ 3 (a search space of 4 or more), binary concavity goes to step 4 of the algo-
rithm. In this case, it evaluates at two points m = �(a + b)/2� and m + 1. If π(i�m) ≥
π(i�m + 1), it assumes a maximum is in {a� 	 	 	 �m}. Since m satisfies the conditions
for “j” in Lemma 5, π(i�m) ≥ maxi′∈{m�			�b}π(i� i′), which justifies this assumption. If
π(i�m) < π(i�m + 1), it instead assumes a maximum is in {m + 1� 	 	 	 � b}. This again is
justified since m + 1 satisfies all the conditions for “k” in Lemma 5 and so m + 1 is bet-
ter than any value of i′ < m + 1. The algorithm repeatedly divides {a� 	 	 	 � b} into either
{a� 	 	 	 �m} or {m+ 1� 	 	 	 � b} until the size of the search space is either two or three. Since
we have already shown the algorithm correctly identifies a maximum when the search
space is of size two or three (i.e., b = a+ 1 or b= a+ 2), the algorithm correctly finds the
maximum for larger search spaces as long as this subdivision stops in a finite number of
iterations (since then induction can be applied). Lemma 7 shows the required number
of function evaluations is finite, and so this holds. �



18 Gordon and Qiu Supplementary Material

We now give the proof of Proposition 6, which establishes that the monotonicity and
concavity algorithms deliver an optimal policy.

Proof of Proposition 6. We will show, letting ĝ be the policy function the algorithm
finds, that ĝ(i) ∈ G(i) for all i, which implies ĝ(i) ∈ G̃(i) for all i ∈ I by Lemma 4. Each
of the brute force, simple, and binary monotonicity algorithms can be thought of as
iterating through states i (in some order that, in the case of binary monotonicity, de-
pends on π) with a search space {a� 	 	 	 � b}. If every state is visited and optimal choice
is found at each state, then an optimal solution is found. So, it suffices to show that
each of the brute force, simple, and binary monotonicity algorithms explore every state
i ∈ {1� 	 	 	 � n} and at each state, the following conditions are met so that Lemma 6 can
be applied: (1) {a� 	 	 	 � b} ⊂ {1� 	 	 	 � n′}; (2) a ≤ b; and (3) G(i) ∩ {a� 	 	 	 � b} 	= ∅. An applica-
tion of Lemma 6 then gives ĝ(i) ∈ G(i) (provided an appropriate concavity algorithm is
used).

Brute force monotonicity trivially explores all states i ∈ {1� 	 	 	 � n} sequentially. At
each i, a = 1 and b = n′. Consequently, G(i)∩{a� 	 	 	 	b} 	= ∅ and Lemma 6 can be applied.

Now, we prove simple monotonicity and binary monotonicity deliver a correct solu-
tion when G̃ is ascending, which, by Lemma 4, gives that G is ascending.

The simple monotonicity algorithm explores all states i ∈ {1� 	 	 	 � n} sequentially al-
ways with b = n′ (and so a ≤ b). For i = 1, a = 1 and so G(1) ∩ {a� 	 	 	 � b} 	= ∅. Conse-
quently, Lemma 6 gives that ĝ(1) ∈ G(1). Now, consider some i > 1 and suppose for in-
duction that ĝ(i − 1) ∈ G(i − 1). Because G is ascending and ĝ(i − 1) ∈ G(i − 1), any
ġ ∈G(i) implies max{ĝ(i− 1)� ġ} ∈G(i). So, G(i)∩ {g(i− 1)� 	 	 	 � n′} 	= ∅. Hence, Lemma 6
applies, and ĝ(i) ∈ G(i) completing the induction argument.

Now consider the binary monotonicity algorithm. If n = 1 or n = 2, the algorithm is
the same as simple monotonicity and so delivers a correct solution. If n > 2, then the al-
gorithm first correctly identifies ĝ(1) (by brute force) and ĝ(n) (using the same argument
as simple monotonicity). It then defines i = 1 and i = n and maintains the assumption
that ĝ(i) ∈G(i) and ĝ(i) ∈G(i).

The goal of step 2 is to find the optimal solution for all i ∈ {i� 	 	 	 � i}. The algo-
rithm stops at step 2(a) if i ≤ i + 1, in which case this objective is clearly met since
{i� 	 	 	 � i} = {i� i}. If the algorithm does not stop, then it computes ĝ(m) for m= �(a+b)/2�
using the search space {ĝ(i)� 	 	 	 � ĝ(i)}. By Lemma 6, an optimum is found as long as
G(m) ∩ {ĝ(i)� 	 	 	 � ĝ(i)} 	= ∅. If ĝ(i) ∈ G(i) and ĝ(i) ∈ G(i), then for any ġ ∈ G(m), G as-
cending gives min{ĝ(i)�max{ĝ(i)� ġ}} ∈G(m). So, G(m)∩ {ĝ(i)� 	 	 	 � ĝ(i)} 	= ∅ if ĝ(i) ∈G(i)

and ĝ(i) ∈ G(i). This holds because of the algorithm’s maintained assumptions.10 So,
if every i ∈ {2� 	 	 	 � n − 1} is the midpoint of some (i� i) after iterating some number of
times, the proof is complete. In other words, since the algorithm only solves for the op-
timal policy at midpoints once it reaches step 2, we need to prove every state (except for
i = 1 and i = n) is eventually a midpoint.

10Formally, it can be shown through induction. It is true at the first instance of step 2. Since in step 2(c)
the algorithm then divides into {i� 	 	 	 �m} and {m� 	 	 	 � i}, it is also true at the next iteration. Consequently,
induction gives that a maximum is found for every midpoint.
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To show that every i ∈ {2� 	 	 	 � n − 1} is a midpoint of some interval reached in the
recursion, fix an arbitrary such i and suppose not. Define (i1� i1) = (1� n). When step 2 is
first reached, i ∈ {i1 +1� 	 	 	 � i1 −1}. Now, uniquely and recursively define (ik� ik) to be the
one of (ik−1�m) and (m� ik−1) with m= �(ik−1 + ik−1)/2� such that i ∈ {ik + 1� 	 	 	 � ik − 1}
(because i is assumed to never be a midpoint, this is well defined).

Now, consider the cardinality of {ik� 	 	 	 � ik} defining it as Nk = ik − ik + 1. By con-
struction, i ∈ {ik+1� 	 	 	 � ik−1} for each k. So, a contradiction is reached if {ik+1� 	 	 	 � ik−
1} = ∅ which is equivalent to Nk ≤ 2. So, it must be that Nk ≥ 3 for all k. If Nk−1

is odd, then Nk = (Nk−1 + 1)/2. If Nk−1 is even, Nk ≤ Nk−1/2 + 1. So, in either case
Nk ≤ Nk−1/2 + 1. Defining Mk recursively by M1 = N1 and Mk = Mk−1/2 + 1, one can
show by induction that Nk ≤ Mk for all k. Because Nk ≥ 3 for all k, Mk ≥ 3 for all k.
Hence Mk − Mk−1 = 1 − Mk−1/2 ≤ 1 − 3/2 = −1/2. Hence Mk ≤ Mk−1 − 1/2. Therefore,
Mk will be less than three in a finite number of iterations, which gives a contradiction. �

F.3 Cost bound proofs and lemmas

We now give the cost bound proofs and supporting lemmas. Section F.3.1 establishes
the performance of Heer and Maußner’s (2005) binary concavity. Section F.3.2 proves
the performance of the one-state binary monotonicity as stated in Proposition 1. Sec-
tion F.3.3 provesthe performance of the two-state binary monotonicity as stated in
Proposition 2.

F.3.1 Binary concavity

Lemma 7. Consider the problem maxi′∈{a�			�a+n−1}π(i� i′) for any a and any i. For any n ∈
Z

++, binary concavity requires no more 2�log2(n)� − 1 evaluations if n ≥ 3 and no more
than n evaluations if n ≤ 2.

Proof. For n = 1, the algorithm computes π(i�a) and stops, so one evaluation is re-
quired. For n = 2, two evaluations are required (π(i�a) and π(i�a + 1)). For n = 3, step 3
requires π(i�m) to be computed and may require π(i�a) to be computed. Then step 3(a)
or step 3(b) either stop with no additional function evaluations or go to step 2 with
max{1a�1b} = 1 where, in that case, at most one additional function evaluation is re-
quired. Consequently, n = 3 requires at most three function evaluations, which agrees
with 2�log2(3)� − 1 = 3. So, the statement of lemma holds for 1 ≤ n≤ 3.

Now consider each n ∈ {4�5�6�7} for any 1a, 1b flags. Since n ≥ 4 the algorithm is in
(or goes to) step 4. Consequently, two evaluations are required. Since the new interval is
either {a� 	 	 	 �m} or {m+ 1� 	 	 	 � b} and π(i�m) and π(i�m+ 1) are computed in step 4, the
next step has max{1a�1b} = 1. Now, if n = 4, the next step must be step 2, which requires
at most one additional evaluation (since max{1a�1b} = 1). Hence, the total evaluations
are less than or equal to three (two for step 4 and one for step 2). If n = 5, then the next
step is either step 2, requiring one evaluation, or step 3, requiring two evaluations. So,
the total evaluations are not more than four. If n = 6, the next step is step 3, and so four
evaluations are required. Lastly, for n = 7, the next step is either step 3, requiring two
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evaluations, or step 4 (with n = 4), requiring at most three evaluations. So, the evalua-
tions are weakly less than 5 = 2 + max{2�3}. Hence, for every n = 4�5�6, and 7, the re-
quired evaluations are less than 3, 4, 4, and 5, respectively. One can then verify that the
evaluations are less than 2�log2(n)� − 1 for these values of n.

Now, suppose n ≥ 4. We shall prove that the required number of evaluations is less
than σ(n) := 2�log2(n)� − 1 by induction. We have already verified the hypothesis holds
for n ∈ {4�5�6�7}, so consider some n ≥ 8 and suppose the hypothesis holds for all
m ∈ {4� 	 	 	 � n− 1}. Let i be such that n ∈ [2i + 1�2i+1]. Then note that two things are true,
�log2(n)� = i+ 1 and �log2(�n+1

2 �)� = i.11 Since n ≥ 4, the algorithm is in (or proceeds to)
step 4, which requires two evaluations, and then proceeds with a new interval to step 4
(again). If n is even, the new interval has size n/2. If n is odd, the new interval either has
a size of (n + 1)/2 or (n − 1)/2. So, if n is even, no more than 2 + σ(n/2) evaluations are
required; if n is odd, no more than 2 + max{σ((n+ 1)/2)�σ((n− 1)/2)} = 2 +σ((n+ 1)/2)
evaluations are required. The even and odd case can then be handled simultaneously
with the bound 2 + σ(�n+1

2 �). Manipulating this expression using the previous observa-
tion that �log2(n)� = i+ 1 and �log2(�n+1

2 �)� = i,

2 + σ

(⌊
n+ 1

2

⌋)
= 2 + 2

⌈
log2

⌊
n+ 1

2

⌋⌉
− 1

= 2 + 2i− 1

= 2
⌈

log2(n)
⌉− 1	

Hence, the proof by induction is complete. �

F.3.2 Binary monotonicity in one dimension In proving the performance on the one-
state binary monotonicity algorithm, we allow for many maximization techniques by
characterizing the algorithm’s properties conditional on a monotonically increasing σ :
Z

++ → Z
+ that bounds the evaluation count required to solve (3).

Because of the recursive nature of binary monotonicity, the π evaluation bound for
general σ is also naturally recursive. In Proposition 7, we will show the algorithm’s cost
is 2σ(n′)+Mσ(n�n

′) where the function Mσ is defined as follows.

Definition 5. For any σ : Z++ → Z
+, define Mσ : {2�3� 	 	 	} × Z

+ → Z
+ recursively by

Mσ(z�γ) = 0 if z = 2 or γ = 0 and

Mσ(z�γ) = σ(γ)+ max
γ′∈{1�			�γ}

{
Mσ

(⌊
z

2

⌋
+ 1�γ′

)
+Mσ

(⌊
z

2

⌋
+ 1�γ − γ′ + 1

)}

for z > 2 and γ > 0.

Now, we establish that Mσ is increasing.

11The proof is as follows. Both �log2(·)� and �log2(�·�)� are weakly increasing functions. So, n ∈
[2i + 1�2i+1] implies �log2(n)� ∈ [�log2(2

i + 1)�� �log2(2
i+1)�] = [i + 1� i + 1]. Likewise, �log2(� n+1

2 �)� ∈
[�log2(� 2i+1+1

2 �)�� �log2(� 2i+1+1
2 �)�] = [i� i].
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Lemma 8. For any σ , Mσ(z�γ) is weakly increasing in z and γ.

Proof. Fix a σ and suppress dependence on it. First, we will show M(z�γ) is weakly
increasing in γ for every z. The proof is by induction. For z = 2, M(2� ·) = 0. For z = 3,
M(3�γ) = σ(γ) which is weakly increasing in γ. Now consider some z > 3 and suppose
M(y� ·) is weakly increasing for all y ≤ z − 1. For γ2 > γ1,

M(z�γ1) = σ(γ1)+ max
γ′∈{1�			�γ1}

{
M

(⌊
z

2

⌋
+ 1�γ′

)
+M

(⌊
z

2

⌋
+ 1�γ1 − γ′ + 1

)}

≤ σ(γ2)+ max
γ′∈{1�			�γ2}

{
M

(⌊
z

2

⌋
+ 1�γ′

)
+M

(⌊
z

2

⌋
+ 1�γ2 − γ′ + 1

)}
=M(z�γ2)�

where the inequality is justified by σ being increasing and the induction hypothesis giv-
ing M(� z

2� + 1� ·) as an increasing function (note � z
2� + 1 ≤ z − 1 for all z > 3).

Now we will show M(z�γ) is increasing in z for every γ. The proof is by induction.
First, note that M(2�γ) = 0 ≤ σ(γ) = M(3�γ) for all γ > 0 and M(2�γ) = 0 = M(3�γ) for
γ = 0. Now, consider some k > 3 and suppose that for any z1� z2 ≤ k − 1 with z1 ≤ z2
that M(z1�γ) ≤ M(z2�γ) for all γ. The goal is to show that for any z1� z2 ≤ k with z1 ≤ z2
that M(z1�γ) ≤ M(z2�γ) for all γ. So, consider such z1� z2 ≤ k with z1 ≤ z2. If γ = 0, then
M(z1�γ)= 0 =M(z2�γ), so take γ > 0. Then

M(z1�γ)= σ(γ)+ max
γ′∈{1�			�γ}

{
M

(⌊
z1

2

⌋
+ 1�γ′

)
+M

(⌊
z1

2

⌋
+ 1�γ − γ′ + 1

)}

≤ σ(γ)+ max
γ′∈{1�			�γ}

{
M

(⌊
z2

2

⌋
+ 1�γ′

)
+M

(⌊
z2

2

⌋
+ 1�γ − γ′ + 1

)}
= M(z2�γ)	

The inequality obtains since � zi
2 � + 1 ≤ k − 1 for all i (which is true since even if zi = k,

one has �k/2�+1 ≤ k−1 by virtue of k> 3). So, the induction hypothesis gives M(� z1
2 �+

1� ·) ≤ M(� z2
2 � + 1� ·), and the proof by induction is complete. �

Now we can give a cost bound for the one-state binary monotonicity algorithm.

Proposition 7. Let σ : Z++ → Z
+ be an upper bound on the number of π evaluations

required to solve (3). Then the algorithm requires at most 2σ(n′)+Mσ(n�n
′) evaluations

for n≥ 2 and n′ ≥ 1.

Proof. Since g is the policy function associated with (1), g : {1� 	 	 	 � n} → {1� 	 	 	 � n′}. By
monotonicity, g is weakly increasing. Define N : {1� 	 	 	 � n}2 → Z

+ by

N(a�b)= M
(
b− a+ 1� g(b)− g(a)+ 1

)
noting that this is well defined (based on the definition of M) whenever b > a. Addition-
ally, define a sequence of sets Ik for k= 1� 	 	 	 � n− 1 by

Ik := {
(i� i)|i = i+ k and i� i ∈ {1� 	 	 	 � n}}	
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Note that for any k ∈ {1� 	 	 	 � n − 1}, Ik is nonempty and N(a�b) is well defined for any
(a�b) ∈ Ik.

We shall now prove that for any k ∈ {1� 	 	 	 � n−1}, (i� i) ∈ Ik implies N(i� i) is an upper
bound on the number of evaluations of π required by the algorithm in order to compute
the optimal policy for all i ∈ {i� 	 	 	 � i} when g(i) and g(i) are known. If true, then begin-
ning at step 2 in the algorithm (which assumes g(i) and g(i) are known) with (i� i) ∈ Ik,
N(i� i) is an upper bound on the number of π evaluations.

The argument is by induction. First, consider k = 1. For any (a�b) ∈ I1, the algorithm
terminates at step 2(a). Consequently, the number of required π evaluations is zero,
which is the same as N(a�b)=M(b− a+ 1� g(b)− g(a)+ 1)= M(2� g(b)− g(a)+ 1) = 0
(recall M(2� ·) = 0).

Now, consider some k ∈ {2� 	 	 	 � n − 1} and suppose the induction hypothesis holds
for all j in 1� 	 	 	 �k − 1. That is, assume for all j in 1� 	 	 	 �k − 1 that (i� i) ∈ Ij implies
N(i� i) is an upper bound on the number of required π evaluations when g(i) and g(i)

are known. We shall show it holds for k as well.
Consider any (i� i) ∈ Ik with g(i) and g(i) are known. Since i > i + 1, the algo-

rithm does not terminate at step 2(a). In step 2(b), to compute g(m) (where m := � i+i
2 �),

one must find the maximum within the range g(i)� 	 	 	 � g(i), which requires at most
σ(g(i)− g(i)+ 1) evaluations of π. In step 2(c), the space is then divided into {i� 	 	 	 �m}
and {m� 	 	 	 � i}.

If k is even, then m equals i+i
2 . Since (i�m) ∈ Ik/2 and g(i) and g(m) are known,

the induction hypothesis gives N(i�m) as an upper bound on the number of π eval-
uations needed to compute g(i)� 	 	 	 � g(m). Similarly, since (m� i) ∈ Ik/2 and g(m) and
g(i) are known, N(m� i) provides an upper bound on the number of π evaluations
needed to compute g(m)� 	 	 	 � g(i). Therefore, to compute g(i)� 	 	 	 � g(i), at most σ(g(i)−
g(i) + 1) + N(i�m) + N(m� i) evaluations are required. Defining γ = g(i) − g(i) + 1 and
γ′ = g(m) − g(i) + 1 and using the definition of m and N , we have that the number of
required evaluations is less than

σ(γ)+M
(
m− i+ 1� g(m)− g(i)+ 1

)+M
(
i−m+ 1� g(i)− g(m)+ 1

)
= σ(γ)+M

(
i+ i

2
− i+ 1�γ′

)
+M

(
i− i+ i

2
+ 1� g(i)− g(m)+ 1

)

= σ(γ)+M

(
i− i

2
+ 1�γ′

)
+M

(
i− i

2
+ 1� g(i)− g(m)+ γ′ − γ′ + 1

)

= σ(γ)+M

(
i− i

2
+ 1�γ′

)
+M

(
i− i

2
+ 1� g(i)− g(m)+ g(m)− g(i)+ 1 − γ′ + 1

)

= σ(γ)+M

(
i− i

2
+ 1�γ′

)
+M

(
i− i

2
+ 1�γ − γ′ + 1

)
	

By virtue of monotonicity, g(m) ∈ {g(i)� 	 	 	 � g(i)} and so g(m) − g(i) + 1 ∈ {1� 	 	 	 � g(i) −
g(i) + 1} or equivalently γ′ ∈ {1� 	 	 	 � γ}. Consequently, the number of function evalua-
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tions is not greater than

σ(γ)+ max
γ′∈{1�			�γ}

{
M

(
i− i

2
+ 1�γ′

)
+M

(
i− i

2
+ 1�γ − γ′ + 1

)}
	

The case of k odd is very similar, but the divide-and-conquer algorithm splits the

space unequally. If k is odd, then m equals i+i−1
2 . In this case (i�m) ∈ I(k−1)/2 and (m� i) ∈

I(k−1)/2+1.12 Consequently, computing the policy for i� 	 	 	 � i takes no more than σ(g(i)−
g(i) − 1) + N(i�m) + N(m� i) maximization steps. Defining γ and γ′ the same as before
and using the definition of m and N , we have that the required maximization steps is
less than

σ(γ)+M
(
m− i+ 1�γ′)+M

(
i−m+ 1�γ − γ′ + 1

)
= σ(γ)+M

(
i+ i− 1

2
− i+ 1�γ′

)
+M

(
i− i+ i− 1

2
+ 1�γ − γ′ + 1

)

= σ(γ)+M

(
i− i+ 1

2
�γ′

)
+M

(
i− i+ 1

2
+ 1�γ − γ′ + 1

)
	

Because M is increasing in the first argument, this is less than

σ(γ)+ max
γ′∈{1�			�γ}

{
M

(
i− i+ 1

2
+ 1�γ′

)
+M

(
i− i+ 1

2
+ 1�γ − γ′ + 1

)}
	

Combining the bounds for k even and odd, the required number of π evaluations is
less than

σ(γ)+ max
γ′∈{1�			�γ}

{
M

(⌊
i− i+ 1

2

⌋
+ 1�γ′

)
+M

(⌊
i− i+ 1

2

⌋
+ 1�γ − γ′ + 1

)}
(27)

because if k is even, then � i−i+1
2 � = i−i

2 . Consequently, (27) gives an upper bound for any
(i� i) ∈ Ik for k ≥ 1 when g(i) and g(i) are known. If N(i� i) is less than this, then the proof
by induction is complete.

Since N(i� i) is defined as M(i− i+ 1� g(i)− g(i)+ 1), using the definitions of N and
M shows

N(i� i) =M
(
i− i+ 1� g(i)− g(i)+ 1

)
=M(i− i+ 1�γ)

= σ(γ)+ max
γ′∈{1�			�γ}

{
M

(⌊
i− i+ 1

2

⌋
+ 1�γ′

)
+M

(⌊
i− i+ 1

2

⌋
+ 1�γ − γ′ + 1

)}
	

Consequently, N(i� i) exactly equals the value in (27), and the proof by induction is com-
plete.

12To see this, note that (i� i) ∈ Ik implies k = i − i. To have, (i�m) ∈ I(k−1)/2, it must be that m = i + k−1
2 .

This holds: i + k−1
2 = i + i−i−1

2 = i + i+i−1−i−i
2 = i + m + −2i

2 = m. Similarly, to have (m� i) ∈ I(k−1)/2+1, one

must have i = m+ (k− 1)/2 + 1. This also obtains m+ (k−1)
2 + 1 = i+i−1

2 + i−i−1
2 + 1 = 2i−2

2 + 1 = i.
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Step 1 of the algorithm requires at most 2σ(n′) evaluations to compute g(1) and
g(n). If n = 2, step 2 is never reached. Since M(n�n′) = 0 in this case, 2σ(n′) + M(n�n′)
provides an upper bound. If n > 2, then since (1� n) ∈ In−1 and g(1) and g(n) known,
only N(1� n) additional evaluations are required. Therefore, to compute for each i ∈
{1� 	 	 	 � n}, no more than 2σ(n′)+N(1� n)= 2σ(n′)+M(n�g(n)− g(1)+ 1) function eval-
uations are needed. Lemma (8) then gives that this is less than 2σ(n′) + M(n�n′) since
g(n)− g(1)+ 1 ≤ n′ − 1 + 1 = n′. �

The preceding proposition gives a fairly tight bound. However, it is unwieldy because
of the discrete nature of the problem. By bounding σ whose domain is Z

++ with a σ̄

whose domain is [1�∞), a more convenient bound can be found. We give this bound in
Lemma 11. For its proof, we need the following two lemmas.

Lemma 9. Define a sequence {mi}∞i=1 by m1 = 2 and mi = 2mi−1 − 1 for i ≥ 2. Then mi =
2i−1 + 1 and log2(mi − 1) = i− 1 for all i ≥ 1.

Proof. The proof of mi = 2i−1 + 1 for all i ≥ 1 is by induction. For i = 1, m1 is defined
as 2, which equals 21−1 + 1. For i > 1, suppose it holds for i − 1. Then mi = 2mi−1 − 1 =
2[2i−2 + 1] − 1 = 2i−1 + 1. �

Lemma 10. Consider any z ≥ 2. Then there exists a unique sequence {ni}Ii=1 such that
n1 = 2, nI = z, �ni

2 � + 1 = ni−1, and ni > 2 for all i > 1. Moreover, I = �log2(z − 1)� + 1.

Proof. The proof that a unique sequence exists is by construction. Let z ≥ 2 be fixed.
Define an infinite sequence {zi}∞i=1 recursively as follows: define zi = Ti(z) for all i ≥ 1
with T1(z) := z and Ti+1(z) = �Ti(z)

2 � + 1. We now establish all of the following: Ti(z) ≥ 2,
Ti(z) ≥ Ti+1(z), and Ti(z) > Ti+1(z) whenever Ti(z) > 2. As an immediate consequence,
for any z ≥ 2, there exists a unique I(z) ≥ 1 such that TI(z) = 2 and, for all i < I(z),
Ti(z) > 2. We also show for later use that Ti(z) is weakly increasing in z for every i.

To show Ti(z) ≥ 2, the proof is by induction. We have T1(z) = z and z ≥ 2. Now, con-
sider some i > 1 and suppose it holds for i− 1. Then Ti(z)= �Ti−1(z)

2 � + 1 ≥ � 2
2� + 1 = 2.

To show Ti(z) > Ti+1(z) whenever Ti(z) > 2, consider two cases. First, consider Ti(z)

even. Then Ti+1(z) = �Ti(z)
2 � + 1 = Ti(z)

2 + 1 and so Ti+1(z) < Ti(z) as long as Ti(z) > 2.

Second, considerTi(z) odd. ThenTi+1(z) = �Ti(z)
2 �+1 = Ti(z)−1

2 +1 and so Ti+1(z) < Ti(z)

as long as Ti(z) > 1.
To show that Ti(z) ≥ Ti+1(z), all we need to show now is that Ti+1(z) = 2 when

Ti(z) = 2 (since the inequality is strict if Ti(z) > 2 and Ti(z) ≥ 2 for all i). If Ti(z) = 2,
then Ti+1(z) = � 2

2� + 1 = 2.
To establish that Ti(z) is weakly increasing in z for every i, the proof is by induction.

For a ≤ b, T1(a) = a ≤ b = T1(b). Now consider some i > 1 and suppose the induction
hypothesis holds for i− 1. Then Ti(a) = �Ti−1(a)/2� + 1 ≤ �Ti−1(b)/2� + 1 = Ti(b).

The sequence {nj}I(z)j=1 defined by nj = TI(z)−j+1(z)—that is, an inverted version

of the sequence {Ti(z)}I(z)i=1 —satisfies nI(z) = T1(z) = z, n1(z) = TI(z) = 2, and ni−1 =
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TI(z)−(i−1)+1 = �TI(z)−(i−1)
2 � + 1 = �ni

2 � + 1. Also, by the definition of I(z), Ti(z) > 2 for any
i > I(z). So, if we can show that I(z) = �log2(z − 1)� + 1, the proof is complete.

The proof of I(z) = �log2(z−1)�+1 is as follows. Note that for z = 2, the sequence {zi}
is simply zi = 2 for all i which implies I(2) = 1. Since �log2(2−1)�+1 = 1, the relationship
holds for z = 2. So, now consider z > 2. The proof proceeds in the following steps. First,
for the special {mi} sequence defined in Lemma 9, we show Tj(mi) = mi+1−j for any
i ≥ 1 and any j ≤ i. Second, we use this to show that I(mi) = i for all i ≥ 1. Third, we
show that z ∈ (mi−1�mi] implies I(z) = i by showing I(mi − 1) < I(z) ≤ I(mi). Fourth,
we show that the i such that z ∈ (mi−1�mi] is given by �log2(z − 1)� + 1. This then gives
I(z) = �log2(z − 1)� + 1 since I(z) = I(mi) = i = �log2(z − 1)� + 1.

First, we show Tj(mi) = mi+1−j for any i ≥ 1 and any j ≤ i. Fix some i ≥ 1. The proof
is by induction. For j = 1, T1(mi) = mi = mi+1−1. Now consider some j having 2 ≤ j ≤ i

and suppose the induction hypothesis holds for j − 1. Then

Tj(mi) =
⌊
Tj−1(mi)

2

⌋
+ 1

=
⌊
mi+1−(j−1)

2

⌋
+ 1

=
⌊
mi+2−j

2

⌋
+ 1

=
⌊

2mi+1−j − 1
2

⌋
+ 1

=mi+1−j�

which proves Tj(mi) = mi+1−j for j ≤ i. The fourth equality follows from the definition
of {mi} in Lemma 9.

Second, we show I(mi) = i for all i ≥ 1. Fix any i ≥ 1. We just showed Tj(mi) =mi+1−j .
Hence, Ti(mi) =m1 = 2 and Ti−1(mi) =m2 = 3. Consequently, the definition of I—which
for a given z is defined as the smallest i ≥ 1 such that Ti(z)= 2—gives I(mi)= i (recall Tj

is decreasing in j).
Third, we show that z ∈ (mi−1�mi] implies I(z) = i by showing I(mi − 1) < I(z) ≤

I(mi). Note that, since z > 2 (having taken care of the z = 2 case already), there is some
i ≥ 2 such that z ∈ (mi−1�mi] (since m1 = 2). To see I(z) ≤ I(mi), suppose not, that
I(z) > I(mi). But then 2 = TI(z)(z) < TI(mi)(z) ≤ TI(mi)(mi)= 2, which is a contradiction.
Therefore, I(z) ≤ I(mi).

To see I(mi−1) < I(z), we begin by showing Tj(mi−1) < Tj(mi−1 +ε) for any ε > 0 and
any j ≤ i − 1. Since Tj(mi−1) = mi−j , it is equivalent to show that mi−j < Tj(mi−1 + ε),
which we show by induction. Clearly, for j = 1, we have mi−1 <mi−1 + ε = T1(mi−1 + ε).
Now consider j > 1 and suppose it is true for j − 1. Then

Tj(mi−1 + ε)=
⌊
Tj−1(mi−1 + ε)

2

⌋
+ 1

=
⌊
Tj−1(mi−1 + ε)−mi−j+1 +mi−j+1

2

⌋
+ 1
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=
⌊
Tj−1(mi−1 + ε)−mi−j+1 + 2mi−j − 1

2

⌋
+ 1

=
⌊
Tj−1(mi−1 + ε)−mi−j+1 − 1

2

⌋
+mi−j + 1	

Now, since the induction hypothesis of Tj−1(mi−1 + ε) > mi−j+1 gives Tj−1(mi−1 + ε) −
mi−j+1 − 1 ≥ 0, one has

Tj(mi−1 + ε)≥
⌊

0
2

⌋
+mi−j + 1 =mi−j + 1 >mi−j	

Hence the proof by induction is complete.
Now, having established Tj(mi−1) < Tj(mi−1 + ε) for any ε > 0 and any j ≤ i − 1,

we show I(mi−1) < I(z). Suppose not, that I(mi−1) ≥ I(z). Then since z > mi−1, taking
ε = z −mi−1 we have 2 = TI(mi−1)(mi−1) < TI(mi−1)(mi−1 + ε) = TI(mi−1)(z) ≤ TI(z)(z) = 2,
which is a contradiction.

Lastly, we now show that the i such that z ∈ (mi−1�mi] is given by �log2(z − 1)� + 1.
That this holds can be seen as follows. Note that z ∈ (mi−1�mi] implies log2(z − 1) +
1 ∈ (log2(mi−1 − 1) + 1� log2(mi − 1) + 1]. Then, since log2(mj − 1) + 1 = j for all j ≥ 1
(Lemma 9), we have log2(z − 1) + 1 ∈ (i − 1� i]. Then, by the definition of �·�, one has
�log2(z − 1)+ 1� = i, which of course is equivalent to �log2(z − 1)� + 1 = i.

We established the i such that z ∈ (mi−1�mi] is i = �log2(z − 1)� + 1. Also we showed
i − 1 = I(mi−1) < I(z) ≤ I(mi) = i. Hence I(z) = �log2(z − 1)� + 1, which completes the
proof. �

Now we give a more convenient bound than the one in Proposition 7. The main re-
sult will apply it with σ̄ bounds corresponding to brute force and binary concavity.

Lemma 11. Suppose σ̄ : [1�∞) → R
+ is either the identity map (σ̄(γ) = γ) or is a strictly

increasing, strictly concave, and differentiable function. If σ̄(γ) ≥ σ(γ) for all γ ∈ Z
++,

then an upper bound on function evaluations is

3σ̄
(
n′)+

I−2∑
j=1

2jσ̄
(
2−j

(
n′ − 1

)+ 1
)

if I > 2 where I = �log2(n− 1)� + 1. An upper bound for I ≤ 2 is 3σ̄(n′).

Proof. In keeping with the notation of the other proofs, let z and γ correspond to n

and n′, respectively. Fix some arbitrary z ≥ 2. By Lemma 10, there is a strictly monotone
increasing sequence {zi}Ii=1 with zI = z, zi = � zi+1

2 � + 1 for i < I, and with I = �log2(z −
1)� + 1 (and having z1 = 2).

For i > 1 and any γ ≥ 1, define

W (zi�γ) := max
γ′∈{1�			�γ}

M
(
zi−1�γ

′)+M
(
zi−1�γ − γ′ + 1

)
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For i = 1, define W (zi� ·) = 0. The definition of M gives M(zi�γ) = σ(γ) + W (zi�γ) for
any i > 1 with M(z1� ·) = 0. Note that W (z2�γ) = W (z1�γ) = 0.

Define W̄ —which we will demonstrate is an upper bound and continuous version of
W —as

W̄ (zi�γ) := σ̄∗(γ)+ max
γ′∈[1�γ]

W̄
(
zi−1�γ

′)+ W̄
(
zi−1�γ − γ′ + 1

)
for i > 2 with

σ̄∗(γ) := max
γ′∈[1�γ]

σ̄
(
γ′)+ σ̄

(
γ − γ′ + 1

)
	 (28)

For i = 1 or 2, define W̄ (zi�γ) = 0. Then W (zi�γ) ≤ W̄ (zi�γ) for all i ≥ 1 and all γ ∈ Z
++.

The proof is by induction. They are equal for i = 1 and i = 2. Now consider an i > 2 and
suppose it holds for i− 1. Then

W (zi�γ) = max
γ′∈{1�			�γ}

M
(
zi−1�γ

′) +M
(
zi−1�γ − γ′ + 1

)
= max

γ′∈{1�			�γ}
σ
(
γ′) + σ

(
γ − γ′ + 1

)+W
(
zi−1�γ

′)+W
(
zi−1�γ − γ′ + 1

)
≤ max

γ′∈{1�			�γ}
σ
(
γ′)+ σ

(
γ − γ′ + 1

) + max
γ′∈{1�			�γ}

W
(
zi−1�γ

′)+W
(
zi−1�γ − γ′ + 1

)
≤ max

γ′∈{1�			�γ}
σ̄
(
γ′)+ σ̄

(
γ − γ′ + 1

) + max
γ′∈{1�			�γ}

W̄
(
zi−1�γ

′)+ W̄
(
zi−1�γ − γ′ + 1

)
≤ max

γ′∈[1�γ]
σ̄
(
γ′)+ σ̄

(
γ − γ′ + 1

) + max
γ′∈[1�γ]

W̄
(
zi−1�γ

′)+ W̄
(
zi−1�γ − γ′ + 1

)
≤ σ̄∗(γ)+ max

γ′∈[1�γ]
W̄

(
zi−1�γ

′) + W̄
(
zi−1�γ − γ′ + 1

)
= W̄ (zi�γ)	

If σ̄(x) = x for all x, then σ̄(γ′)+ σ̄(γ−γ′ + 1)= γ+ 1, which does not depend on γ′.
So, σ̄∗(γ) = γ + 1 = 2σ̄(γ+1

2 ). If the σ̄ function is strictly increasing, strictly concave, and
differentiable, then the first-order condition of the σ̄∗(γ) problem yields σ̄ ′(γ′)= σ̄ ′(γ−
γ′ + 1). The derivative is invertible (by strict concavity) and so γ′ = γ+1

2 . So, σ̄∗(γ) =
σ̄(γ+1

2 ) + σ̄(γ − γ+1
2 + 1), which gives σ̄∗(γ) = 2σ̄(γ+1

2 ), the same condition as in the
linear case.13 Hence,

σ̄∗(γ) = 2σ̄
(
γ + 1

2

)
	 (29)

So, for i > 2,

W̄ (zi�γ) = 2σ̄
(
γ + 1

2

)
+ max

γ′∈[1�γ]
W̄

(
zi−1�γ

′)+ W̄
(
zi−1�γ − γ′ + 1

)
	 (30)

We will now show for i > 2 that W̄ (zi�γ) = 2σ̄(γ+1
2 ) + 2W̄ (zi−1�

γ+1
2 ), which gives

a simple recursive relationship for the upper bound (for i = 1 or 2, W̄ (zi�γ) = 0).

13Since this is an interior solution and the problem is concave, the constraint γ′ ∈ [1�γ] is not binding.
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First, note that 2W̄ (zi�
γ+1

2 ) is just W̄ (zi�γ
′) + W̄ (zi�γ − γ′ + 1) evaluated at γ+1

2 , and

so maxγ′∈[1�γ] W̄ (zi�γ
′) + W̄ (zi�γ − γ′ + 1) ≥ 2W̄ (zi�

γ+1
2 ). So, it is sufficient to show

maxγ′∈[1�γ] W̄ (zi�γ
′)+ W̄ (zi�γ − γ′ + 1) ≤ 2W̄ (zi�

γ+1
2 ). Now,

max
γ′∈[1�γ]

W̄
(
zi�γ

′)+ W̄
(
zi�γ − γ′ + 1

)

= max
γ′∈[1�γ]

2σ̄
(
γ′ + 1

2

)
+ 2W̄

(
zi−1�

γ′ + 1
2

)
+ 2σ̄

((
γ − γ′ + 1

)+ 1
2

)

+ 2W̄
(
zi−1�

(
γ − γ′ + 1

)+ 1
2

)

= 2 max
γ′∈[1�γ]

σ̄

(
γ′ + 1

2

)
+ σ̄

(
γ + 1

2
− γ′ + 1

2
+ 1

)
+ W̄

(
zi−1�

γ′ + 1
2

)

+ W̄

(
zi−1�

γ + 1
2

− γ′ + 1
2

+ 1
)

= 2 max
γ̃′∈[1� γ+1

2 ]
σ̄
(
γ̃′)+ σ̄

(
γ + 1

2
− γ̃′ + 1

)
+ W̄

(
zi−1� γ̃

′)+ W̄

(
zi−1�

γ + 1
2

− γ̃′ + 1
)

≤ 2 max
γ̃′∈[1� γ+1

2 ]
σ̄
(
γ̃′) + σ̄

(
γ + 1

2
− γ̃′ + 1

)
+ 2 max

γ̃′∈[1� γ+1
2 ]

W̄
(
zi−1� γ̃

′)

+ W̄

(
zi−1�

γ + 1
2

− γ̃′ + 1
)

= 2 max
γ̃′∈[1� γ+1

2 ]
σ̄
(
γ̃′)+ σ̄

(
γ + 1

2
− γ̃′ + 1

)
+ 2

(
W

(
zi�

γ + 1
2

)
− 2σ

( γ + 1
2

+ 1

2

))

= 2σ̄∗
(
γ + 1

2

)
+ 2W

(
zi�

γ + 1
2

)
− 4σ

( γ + 1
2

+ 1

2

)

= 4σ̄

( γ + 1
2

+ 1

2

)
+ 2W

(
zi�

γ + 1
2

)
− 4σ

( γ + 1
2

+ 1

2

)

= 2W̄
(
zi�

γ + 1
2

)
	

The first equality follows from (30). The second equality follows from algebra. The

third equality is just a change of variables where γ̃′ = (γ + 1)/2. The inequality follows

from max(f + g) ≤ max f + maxg for any f , g. The fourth equality follows from eval-

uating (30) at (γ + 1)/2 and manipulation. The fifth equality follows from the defini-

tion of σ̄∗ in (28). The sixth equality follows from (29). The last equality simplifies. So,

maxγ′∈[1�γ] W̄ (zi�γ
′)+ W̄ (zi�γ − γ′ + 1) = 2W̄ (zi�

γ+1
2 ). Using this equality to replace the
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max in (30), one has (for i > 2) that

W̄ (zi�γ)= 2σ̄
(
γ + 1

2

)
+ 2W̄

(
zi−1�

γ + 1
2

)
	 (31)

Now, fix any γ ≥ 1 and define γI := γ and γi = γi+1+1
2 . Then γi = 2i−I(γI − 1) + 1.14

Then, for i > 2, (31) becomes

W̄ (zi�γi)= 2σ̄(γi−1)+ 2W̄ (zi−1�γi−1)	

So, if I > 2, one can repeatedly expand the above to find a value for W̄ (zI�γI):

W̄ (zI�γI) = 2σ̄(γI−1)+ 2W̄ (zI−1�γI−1)

= 2σ̄(γI−1)+ 22σ̄(γI−2)+ 22W̄ (zI−2�γI−2)

= 2σ̄(γI−1)+ · · · + 2I−2σ̄(γ2)+ 2I−2W̄ (z2�γ2)

= 2σ̄(γI−1)+ · · · + 2I−2σ̄(γ2)

=
I−2∑
j=1

2jσ̄(γI−j)

=
I−2∑
j=1

2jσ̄
(
2I−j−I(γI − 1)+ 1

)

=
I−2∑
j=1

2jσ̄
(
2−j(γI − 1)+ 1

)
	

The first equalities are algebra, the fourth uses the definition of W̄ (z2� ·) = 0, and the rest
are algebra. If I ≤ 2, then W̄ (zI�γI)= 0.

Proposition 7 shows the number of required evaluations is less than or equal to
2σ(γI) + M(zI�γI) for zI ≥ 2 and γI ≥ 1. Since M(zi�γ) = σ(γ) + W (zi�γ) for any
i > 1 (with M(z1�γ) = 0) and W (zi�γ) ≤ W̄ (zi�γ), the required function evaluations are
weakly less than 3σ(γI) + W̄ (zI�γI) for any I (recalling W (zI�γI) = 0 for I ≤ 2). Hence,
if I > 2, then an upper bound is

3σ(γI)+
I−2∑
j=1

2jσ̄
(
2−j(γI − 1)+ 1

)

and if I ≤ 2 an upper bound is 3σ(γI). �

14The proof is by induction. For i = I, γI = 2I−I(γI − 1)+ 1 = γI , which holds. Consider then some i < I,
and suppose it holds for i+ 1. Then

γi = γi+1 + 1
2

=
(
2i+1−I(γI − 1)+ 1

)+ 1
2

= 2i−I(γI − 1)+ 1	
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Proposition 1 essentially applies the formula in Lemma 11 and simplifies. In the
proof, there will be two partial sums, and we establish what they equal now.

Lemma 12. For r 	= 1,
∑b

j=a r
j = (ra − rb+1)/(1 − r) and

∑b
j=a jr

j = ara−brb+1

1−r + ra+1−rb+1

(1−r)2 .

For r = 2,
∑b

j=a r
j = 2b+1 − 2a and

∑b
j=a jr

j = 2a(2 − a)+ 2b+1(b− 1).

Proof. The first sum,
∑b

j=a r
j , is the standard geometric series and its sum can be com-

pactly written as (ra − rb+1)/(1 − r) for r 	= 1. For r = 2, this is 2b+1 − 2a.
The second sum,

∑b
j=a jr

j , a sort of weighted geometric series, has no commonly

known formula, so we derive it. Define S := ∑b
j=a jr

j . Then for r 	= 1,

(1 − r)S =
b∑

j=a

jrj −
b∑

j=a

jrj+1

=
b∑

j=a

jrj −
b+1∑

j=a+1

(j − 1)rj

=
b∑

j=a

jrj −
b+1∑

j=a+1

jrj +
b+1∑

j=a+1

rj

=
(
ara +

b∑
j=a+1

jrj

)
−

(
b∑

j=a+1

jrj + (b+ 1)rb+1

)
+ ra+1 − rb+2

1 − r
	

The first line is algebra, the second a change of indices, the third algebra, and the fourth
separates out a term from each of the first two summations (and uses the geometric
series formula to replace the third). Canceling the remaining summations, one then has

(1 − r)S = ara − (b+ 1)rb+1 + ra+1 − rb+2

1 − r

= ara − brb+1 − (1 − r)rb+1

1 − r
+ ra+1 − rb+2

1 − r

= ara − brb+1 + ra+1 − rb+1

1 − r

⇔ S = ara − brb+1

1 − r
+ ra+1 − rb+1

(1 − r)2 	

Plugging in r = 2 gives S = b2b+1 − a2a + 2a+1 − 2b+1 = 2a(2 − a)+ 2b+1(b− 1). �

We can now prove Proposition 1 by applying Lemma 11 with σ bounds correspond-
ing to brute force and binary concavity.
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Proof of Proposition 1. From Lemma 11, the number of evaluations required by the

algorithm is not greater than 3σ̄(n′)+ W̄ (n�n′) where W̄ (n�n′) := ∑I−2
j=1 2jσ̄(2−j(n′ − 1)+

1) and I = �log2(n − 1)� + 1. In the case of brute force, σ̄(γ) = γ is a valid upper bound

on σ(γ) = γ. Plugging this into the expression for W̄ (n�n′), one has

W
(
n�n′) = (I − 2)

(
n′ − 1

)+
I−2∑
j=1

2j

= (I − 2)
(
n′ − 1

)+ 2I−1 − 2

= (I − 2)
(
n′ − 1

)+ 2�log2(n−1)� − 2

≤ (I − 2)
(
n′ − 1

)+ 2log2(n−1)+1 − 2

≤ (I − 2)
(
n′ − 1

)+ 2(n− 1)− 2

= (⌈
log2(n− 1)

⌉− 1
)(
n′ − 1

)+ 2n− 4

≤ (
n′ − 1

)
log2(n− 1)+ 2n− 4	

where we have used Lemma 12 to arrive at the second line. So, no more than (n′ −
1) log2(n− 1)+ 3n′ + 2n− 4 evaluations are required.

In the case of binary concavity, Lemma 7 shows σ(γ) = 2�log2(γ)� − 1 for γ ≥ 3
and σ(γ) = γ for γ ≤ 3 is an upper bound. Now consider σ̄(γ) = 2 log2(γ) + 1. It is

a strictly increasing, strictly concave, and differentiable function. For γ = 1 or 2, one

can plug in values to find σ(γ) ≤ σ̄(γ). Additionally, for γ ≥ 3, σ(γ) ≤ 2�log2(γ)� − 1 ≤
2(1 + log2(γ))− 1 = σ̄(γ) So, σ̄ satisfies all the conditions of Lemma 11.

Plugging this σ̄ into the bound, one finds

W̄
(
n�n′) =

I−2∑
j=1

2j
[
1 + 2 log2

(
2−j

(
n′ − 1

)+ 1
)]

= (
2I−1 − 2

)+ 2
I−2∑
j=1

2j log2
(
2−j

(
n′ − 1

)+ 1
)

(using Lemma 12). To handle the log2(2
−j(n′ − 1) + 1) term, we break the summation

into two parts, one with 2−j(n′ −1) < 1 and one with 2−j(n′ −1) ≥ 1. We do this to exploit

the following fact: For x ≥ 1, log2(x + 1) ≤ log2(x) + 1 since they are equal at x = 1 the

right-hand side grows more quickly in x (i.e., the derivative of log2(x+ 1) is less than the

derivative of log2(x)+ 1).

Let J be such that j > J implies 2−j(n′ − 1) < 1 and j ≤ J implies 2−j(n− 1)≥ 1. Then

since 2−j(n − 1) = 1 for j = log2(n
′ − 1), J is given by �log2(n

′ − 1)�. Recall that in the
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statement of the proposition we assumed that n′ ≥ 3. So, J ≥ 1,

W̄
(
n�n′) = (

2I−1 − 2
)+ 2

I−2∑
j=J+1

2j log2
(
2−j

(
n′ − 1

)︸ ︷︷ ︸
<1

+1
) + 2

J∑
j=1

2j log2
(
2−j

(
n′ − 1

)︸ ︷︷ ︸
≥1

+1
)

≤ (
2I−1 − 2

) + 2
I−2∑

j=J+1

2j + 2
J∑

j=1

2j
(
1 + log2

(
2−j

(
n′ − 1

)))

= (
2I−1 − 2

)+ 2
I−2∑
j=1

2j + 2
J∑

j=1

2j log2
(
2−j

(
n′ − 1

))

= 3
(
2I−1 − 2

)+ 2
J∑

j=1

2j log2
(
2−j

(
n′ − 1

))

= 3
(
2I−1 − 2

)+ 2
J∑

j=1

2j
(−j + log2

(
n′ − 1

))

= 3
(
2I−1 − 2

)− 2
J∑

j=1

j2j + 2 log2
(
n′ − 1

) J∑
j=1

2j	

The first line follows from the definition of J; the second from log2(x + 1) ≤ 1 + log2(x)

for x ≥ 1; the third from algebra; the fourth from the standard geometric series formula;

and the fifth and sixth from algebra. Then, using the weighted geometric sum found in

Lemma 12, that is,
∑b

a j2
j = 2a(2 − a)+ 2b+1(b− 1),

= 3
(
2I−1 − 2

) − 2
(
21(2 − 1)+ 2J+1(J − 1)

) + 2 log2
(
n′ − 1

)(
2J+1 − 2

)
= 3

(
2I−1 − 2

) − 4 − 2J+2(J − 1)+ 2 log2
(
n′ − 1

)(
2J+1 − 2

)
≤ 3

(
2I−1 − 2

)− 4 − 2J+2(J − 1)+ 2(J + 1)
(
2J+1 − 2

)
= 3

(
2I−1 − 2

) − 4 − 2J+2(J − 1)+ (J + 1)2J+2 − 4(J + 1)

= 3
(
2I−1 − 2

) − 4 − J2J+2 + 2J+2 + J2J+2 + 2J+2 − 4(J + 1)

= 3
(
2I−1 − 2

) − 4 + 2J+3 − 4J − 4

= 3 · 2I−1 + 2J+3 − 4J − 14	

The first line applies the weighted geometric sum formula, the second simplifies, the

third uses log2(n
′ − 1) ≤ J + 1 (i.e., log2(n

′ − 1) ≤ �log2(n
′ − 1)�), and the remaining lines

use algebra.
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Now, substituting the expressions for I and J,

= 3 · 2�log2(n−1)�+1−1 + 2�log2(n
′−1)�+3 − 4

⌊
log2

(
n′ − 1

)⌋− 14

≤ 3 · 21+log2(n−1) + 2log2(n
′−1)+3 − 4

⌊
log2

(
n′ − 1

)⌋− 14

= 6(n− 1)+ 8
(
n′ − 1

)− 4
⌊

log2
(
n′ − 1

)⌋− 14

= 6n+ 8n′ − 4
⌊

log2
(
n′ − 1

)⌋− 28

≤ 6n+ 8n′ − 4
(
log2

(
n′ − 1

)− 1
)− 28

= 6n+ 8n′ − 4 log2
(
n′ − 1

)− 24	

The above expression provides a bound for W̄ (n�n′). Hence, the total number of
evaluations—which must be less than 3σ̄(n′)+ W̄ (n�n′)—cannot exceed

3
(
2 log2

(
n′)+ 1

)+ 6n+ 8n′ − 4 log2
(
n′ − 1

)− 24

= 6n+ 8n′ + 6 log2
(
n′)− 4 log2

(
n′ − 1

)− 21

≤ 6n+ 8n′ + 6
(
log2

(
n′ − 1

)+ 1
)− 4 log2

(
n′ − 1

)− 21

= 6n+ 8n′ + 2 log2
(
n′ − 1

)− 15	

The second line is algebra, the third again uses log2(x + 1) ≤ 1 + log2(x) for x ≥ 1 (note
n′ ≥ 3 in the statement of the proposition), and the last simplifies. �

F.3.3 Binary monotonicity in two dimensions In proving the efficiency of the two-state
binary monotonicity algorithm, we first establish a lemma.

Lemma 13. Define m(a�b) = �a+b
2 � for b > a with a�b ∈ Z. Then m(a�b) − a + 1 ≤

�b−a+1
2 � + 1 and b−m(a�b)+ 1 ≤ �b−a+1

2 � + 1.

Proof. If exactly one of a, b is odd, then m= b+a−1
2 ; otherwise, m= b+a

2 . So,

m− a+ 1 ≤ b+ a

2
− a+ 1 = b− a+ 1

2
+ 1

2
≤

⌊
b− a+ 1

2

⌋
+ 1	

Now, take the case of exactly one of a, b being odd. Then b − a is odd and b − a + 1 is
even. In this case,

b−m+ 1 = b− b+ a− 1
2

+ 1 = b− a+ 1
2

+ 1 =
⌊
b− a+ 1

2

⌋
+ 1	

If on the other hand a, b are either both even or both odd, then b − a + 1 is odd. In this
case,

b−m+ 1 = b− b+ a

2
+ 1 = b− a+ 1

2
+ 1

2
=

⌊
b− a+ 1

2

⌋
+ 1	 �

We now give the proof of the two-state algorithm’s cost bounds.
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Proof of Proposition 2. Let an upper bound on the cost of the usual binary mono-
tonicity algorithm given z states and γ choices as C(z�γ). Then note that the cost of
solving for g(·�1) is less than C(n1� n

′), as is the cost of solving for g(·� n2).
Let g(·� ·;π) give the policy selected by the algorithm when the objective function

is π. Let T exact(j� j;π) denote the exact cost of the algorithm for recovering g(·� j;π) for

all j ∈ {j + 1� 	 	 	 � j − 1} when the objective function is π and g(·� j;π) and g(·� j;π) are
known. (i.e., the cost from Step 3 onward). Define for z > 2 and γ ≥ 1,

T ∗(z�γ) = sup
j�j∈{1�			�n2}�π

C(n1�γ)+ T exact(j�m(j� j);π)+ T exact(m(j� j)� j;π)
�

s.t. j − j + 1 ≤ z� j < j�

g(n1� j;π)− g(1� j;π)+ 1 ≤ γ�

where m(a�b) is the integer midpoint �a+b
2 �. For z = 2, define T ∗(z� ·) = 0. Note T ∗(z�γ)

must be weakly increasing in both arguments.
Fix some (j� j�π) with j� j ∈ {1� 	 	 	 � n2} and j < j, and note that (j� j�π) is in the

choice set of the T ∗(j − j + 1� g(n1� j;π) − g(1� j;π) + 1) problem. We now show T exact

is bounded by T ∗ in that T exact(j� j;π) ≤ T ∗(j − j + 1� g(n1� j;π)− g(1� j;π)+ 1). To see

this, note that if j − j + 1 = 2 then T exact(j� j;π) = 0, in which case T ∗(j − j + 1� ·) = 0 by

definition. On the other hand, if j − j + 1 > 2, then T exact(j� j;π) ≤ C(n1� g(n1� j;π) −
g(1� j;π) + 1) + T exact(j�m(j� j);π) + T exact(m(j� j)� j;π) because C bounds the cost

of the one-dimensional algorithm. Comparing with the definition of T ∗, T ∗(j − j +
1� g(n1� j;π)− g(1� j;π)+ 1) is necessarily larger because (j� j�π) is in its choice set.

Now, using this bound and the definition of T ∗ gives

T ∗(z�γ)

≤ sup
j�j�π

C(n1�γ)+ T ∗(m− j + 1�γ′(π� j� j)
)

+ T ∗(j −m+ 1� g(n1� j;π)− g(1�m;π)+ 1
)

= sup
j�j�π

C(n1�γ)+ T ∗(m− j + 1�γ′(π� j� j)
)

+ T ∗(j −m+ 1� g(n1� j;π)− g(1� j;π)+ 1 + g(1� j;π)− g(1�m;π))
≤ sup

j�j�π

C(n1�γ)+ T ∗(m− j + 1�γ′(π� j� j)
)

+ T ∗(j −m+ 1�γ + g(1� j;π)− g(1�m;π))
= sup

j�j�π

C(n1�γ)+ T ∗(m− j + 1�γ′(π� j� j)
)

+ T ∗(j −m+ 1�γ + g(n1�m;π)− g(1�m;π)+ 1 − γ′(π� j� j)
)
�
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where m= m(j� j) and we have defined γ′(π� j� j) := g(n1�m;π)− g(1� j;π)+ 1. The first
relation follows from T exact being less than T ∗, the second from adding and subtracting
g(1� j;π), the third from the constraint that g(n1� j;π) − g(1� j;π) + 1 ≤ γ and T ∗ be-
ing increasing in its second argument, and the last from adding and subtracting γ′ and
manipulation. With this definition of γ′, the constraint g(n1� j;π) − g(1� j;π) + 1 ≤ γ is

equivalent to γ′(π� j� j)≤ γ. So, γ′(π� j� j) ∈ [1�γ].
Using our λ-based restriction, we have as an implication of it that g(n1�m;π) −

g(1�m;π) + 1 ≤ λ(g(n1� j;π) − g(1� j;π) + 1) ≤ λγ. So, because T ∗ is increasing in its
second argument,

T ∗(z�γ) ≤ sup
j�j�π

C(n1�γ)+ T ∗(m− j + 1�γ′(π� j� j)
)

+ T ∗(j −m+ 1� (1 + λ)γ − γ′(π� j� j)
)
	

Note now that π only shows up in γ′. Since the choice set implies γ′ ∈ [1�γ], we can drop
π and allow γ′ ∈ [1�γ] to be chosen directly:

T ∗(z�γ) ≤ sup
j�j�γ′∈[1�γ]

C(n1�γ)+ T ∗(m− j + 1�γ′)+ T ∗(j −m+ 1� (1 + λ)γ − γ′)	
By Lemma 13, m − j + 1 and j − m + 1 are less than � j−j+1

2 � + 1 which—because of the

constraint j − j + 1 ≤ z—must be less than � z
2� + 1. So,

T ∗(z�γ) ≤ sup
j�j�γ′∈[1�γ]

C(n1�γ)+ T ∗
(⌊

z

2

⌋
+ 1�γ′

)
+ T ∗

(⌊
z

2

⌋
+ 1� (1 + λ)γ − γ′

)
�

which no longer depends on j or j. Hence, dropping these from the choice set, one has

T ∗(z�γ) ≤ C(n1�γ)+ sup
γ′∈[1�γ]

T ∗
(⌊

z

2

⌋
+ 1�γ′

)
+ T ∗

(⌊
z

2

⌋
+ 1� (1 + λ)γ − γ′

)
	

Defining T(z�γ) := C(n1�γ)+maxγ′∈[1γ] T(� z
2�+1�γ′)+T(� z

2�+1� (1+λ)γ−γ′) for z > 2
and 0 otherwise, we then have T(z�γ) as an upper bound for T ∗(z�γ) (by induction with
T ∗(2�γ) = T(2�γ) = 0 as the base case).

Now, by Lemma 10, there is a unique sequence {zi}Ii=1 with zI = z, � zi
2 � + 1 = zi−1,

z1 = 2, and zi > 2 for all i > 1 and I = �log2(z − 1)� + 1. Then

T(zi�γ) = C(n1�γ)+ sup
γ′∈[1�γ]

T
(
zi−1�γ

′)+ T
(
zi−1� (1 + λ)γ − γ′)

for all i.
For binary monotonicity with brute force grid search, the upper bound on function

counts in Proposition 1 is linear increasing in γ. So suppose C is linear increasing in γ.
In that case, we will show T(zi�γ) is linear increasing in γ for all i ≥ 2 and that

T(zi�γ) = C(n1�γ)+ 2T
(
zi−1�γ

(1 + λ)

2

)
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First, note this is trivially the case for i = 2 since in that case T(zi−1� ·) = T(z1� ·) =
T(2� ·) = 0. Now, suppose that it holds for i − 1. Then continuity gives that the maxi-

mum is attained so sup can be replaced with max. Because of linearity, T(zi−1�γ
′) +

T(zi−1� (1 +λ)γ−γ′) is independent of γ′. Consequently, maxγ′ T(zi−1�γ
′)+T(zi−1� (1 +

λ)γ − γ′) = 2T(zi−1�γ
(1+λ)

2 ). Hence, T(zi�γ) will also be linearly increasing and satisfy

the recursive formulation above.

Now, expanding the recursive formulation and defining c := (1 + λ)/2,

T(zI�γ)= C(n1�γ)+ 2T(zI−1�γc)

= C(n1�γ)+ 2(C(n1�γc)+ 2T
(
zI−2� (γc)c

)
= C(n1�γ)+ 2C(n1�γc)+ 22T

(
zI−2�γc

2)
= C(n1�γ)+ 2C(n1�γc)+ · · · + 2I−2C

(
n1�γc

I−2)+ 2I−1T
(
zI−(I−1)� γc

I−1)
= C(n1�γ)+ 2C(n1�γc)+ · · · + 2I−2C

(
n1�γc

I−2)+ 2I−1T
(
2�γcI−1)

= C(n1�γ)+ 2C(n1�γc)+ · · · + 2I−2C
(
n1�γc

I−2)
=

I−2∑
i=0

2iC
(
n1�γc

i
)
	

Plugging in c = (1 + λ)/2, zI = n2 (corresponding to the first time Step 3 is reached),

and γ = n′ (corresponding to Step 3 being reached with the worst case g(·�1) = 1 and

g(·� n2) = n′),

T
(
n2� n

′) =
I−2∑
i=0

2iC
(
n1�2−i(1 + λ)in′)�

where I = �log2(n2 − 1)� + 1.

With brute force grid search, a valid C is C(n1�γ) = 2n1 + γ(log2(n1)+ 3). Then

T
(
n2� n

′) =
I−2∑
i=0

2i
(
2n1 + (

2−i(1 + λ)in′)(log2(n1)+ 3
))

= n′(log2(n1)+ 3
) I−2∑
i=0

(1 + λ)i + 2n1

I−2∑
i=0

2i

= n′(log2(n1)+ 3
)1 − (1 + λ)I−1

−λ
+ 2n1

(
2I−1 − 1

)
= n′(log2(n1)+ 3

)(1 + λ)I−1 − 1
λ

+ 2n1
(
2I−1 − 1

)
using the formulas in Lemma 12.
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Now, I = �log2(n2 −1)�+1 implies I−1 ≤ log2(n2 −1)+1. So, defining κ := log2(1+λ)

so that (1 + λ)= 2κ,

T
(
n2� n

′) = n′(log2(n1)+ 3
)2κ(I−1) − 1

λ
+ 2n1

(
2I−1 − 1

)
≤ n′(log2(n1)+ 3

)
λ−12κ(I−1) + 2n1

(
2I−1 − 1

)
≤ n′(log2(n1)+ 3

)
λ−12κ(log2(n2−1)+1) + 2n1

(
2log2(n2−1)+1 − 1

)
= n′(log2(n1)+ 3

)
λ−1(2log2(n2−1))κ2κ + 2n1

(
2(n2 − 1)− 1

)
= n′(log2(n1)+ 3

)
λ−1(n2 − 1)κ2κ + 4n1n2 − 6n1

≤ n′(log2(n1)+ 3
)
λ−1nκ2 (1 + λ)+ 4n1n2 − 6n1

= (1 + λ)λ−1 log2(n1)n
′nκ2 + 3(1 + λ)λ−1n′nκ2 + 4n1n2 − 6n1

= (
λ−1 + 1

)
log2(n1)n

′nκ2 + 3
(
λ−1 + 1

)
n′nκ2 + 4n1n2 − 6n1	

This bound does not include the cost of solving for g(·�1) and g(·� n2) using the standard
binary algorithm. Including this cost, the algorithm’s total cost is less than

2C
(
n1� n

′) + T
(
n2� n

′)
≤ 2n′(log2(n1)+ 3

)+ 4n1 + (
1 + λ−1) log2(n1)n

′nκ2 + 3
(
1 + λ−1)n′nκ2 + 4n1n2 − 6n1

≤ (
1 + λ−1) log2(n1)n

′nκ2 + 3
(
1 + λ−1)n′nκ2 + 4n1n2 + 2n′ log2(n1)+ 6n′�

which is the bound stated in the proposition.
Now, suppose that λ < 1 provides a uniform bound on (g(n1� j) − g(1� j) + 1)/

(g(n1� j+1)−g(1� j−1)+1) (this also implies λ > 0). So, κ ∈ (0�1) (since κ= log2(1+λ)).
To characterize the algorithm’s O(n1n2) behavior when n1 = n′ =: n and n2 = ρ−1n, divide
the bound by n1n2 = n2/ρ to arrive at

c
log2(n)n

1+κ

n2 + 4 + o
(
n2)
n2 �

where c is a positive constant. Then it is enough to show that log(n)n1+κ (using that
natural log has the same asymptotics as log2) grows more slowly than n2. The ratio
log(n)n1+κ/n2 equals log(n)/n1−κ. Using L’Hopital’s rule as n → ∞, if the limit exists it is
the same as the limit of (1/n)/((1−κ)n−κ) = n−1+κ/(1−κ). This equals 0 since κ ∈ (0�1).
Consequently, the cost is O(n1n2) with a hidden constant of 4. �
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