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This supplementary appendix contains material to support our paper. Appendix D
presents pointwise normality of sieve t-statistics for nonlinear functionals of NPIV un-
der low-level sufficient conditions. Appendix E contains background material on B-
spline and wavelet bases and the equivalence between Besov and wavelet sequence
norms. Appendix F contains material on useful matrix inequalities and convergence re-
sults for random matrices. The secondary supplementary appendix contains additional
technical lemmas and all of the proofs (Appendix G).

Appendix D: Pointwise asymptotic normality of sieve t-statistics

In this section we derive the pointwise asymptotic normality of sieve t-statistics for non-
linear functionals of a NPIV function under low-level sufficient conditions. Previously,
under some high-level conditions, Chen and Pouzo (2015) established the pointwise
asymptotic normality of sieve t-statistics for (possibly) nonlinear functionals of h0 satis-
fying general semi/nonparametric conditional moment restrictions including NPIV and
nonparametric quantile IV models as special cases. As the sieve NPIV estimator ĥ has
a closed-form expression and for the sake of easy reference, we derive the limit theory
directly rather than appealing to the general theory in Chen and Pouzo (2015). Our low-
level sufficient conditions are tailored to the case in which the functional f (·) is irregular
in h0 (i.e., slower than root-n estimable), so that they are directly comparable to the suf-
ficient conditions for the uniform inference theory in Section 4.

We consider a functional f : H ⊂ L∞(X)→ R for which Df(h)[v] = limδ→0+[δ−1 ×
{f (h + δv) − f (h)}] exists for all v ∈ H − {h0} for all h in a small neighborhood of h0.
Recall that the sieve 2SLS Riesz representer ofDf(h0) is

vn(f )(x)=ψJ(x)′[S′G−1
b S

]−1
Df(h0)

[
ψJ

]
�
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and let [
sn(f )

]2 = ∥∥ΠKTvn(f )∥∥2
L2(W )

= (
Df(h0)

[
ψJ

])′[
S′G−1

b S
]−1
Df(h0)

[
ψJ

]
denote its weak norm. Chen and Pouzo (2015) called the functional f (·) an irregular
(i.e., slower than

√
n-estimable) functional of h0 if sn(f ) ↗ ∞ and a regular (i.e.,

√
n-

estimable) functional of h0 if limn sn(f ) <∞. Denote

v̂n(f )(x)=ψJ(x)′[S′G−1
b S

]−1
Df(ĥ)

[
ψJ

]
�

It is clear that vn(f )= v̂n(f ) whenever f (·) is linear.
Recall that Ω= E[u2

i b
K(Wi)b

K(Wi)
′], that the 2SLS covariance matrix for ĉ (given in

equation (2)) is

�= [S′G−1
b S]−1S′G−1

b ΩG
−1
b S[S′G−1

b S]−1�

and that the sieve variance for f (ĥ) is[
σn(f )

]2 = (
Df(h0)

[
ψJ

])′
�

(
Df(h0)

[
ψJ

])
�

Under Assumption 2(i) and (iii) we have that [σn(f )]2 	 [sn(f )]2. Therefore, f ( ) is an
irregular functional of h0 if and only if σn(f )↗ +∞ as n→ ∞. Recall that the sieve vari-
ance estimator is [

σ̂(f )
]2 = (

Df(ĥ)
[
ψJ

])′
�̂

(
Df(ĥ)

[
ψJ

])
�

where �̂ is defined in equation (6).

Assumption 2 (continued). (iv′) We have supw E[u2
i {|ui|> 	(n)}|Wi = w] = o(1) for any

positive sequence with 	(n)↗ ∞.

Assumption 2(iv′) is a mild condition that is trivially satisfied if E[|ui|2+ε|Wi = w] is
uniformly bounded for some ε > 0.

Assumption 5′ . Letηn andη′
n be sequences of nonnegative numbers such thatηn = o(1)

andη′
n = o(1). Let σn(f )↗ +∞ as n→ ∞. Either (a) or (b) of the following options holds:

(a) The functional f is a linear functional and
√
n(σn(f ))

−1|f (h̃)− f (h0)| =Op(ηn).
(b) (i) The functional v 
→Df(h0)[v] is a linear functional; (ii)∣∣∣∣√nf(ĥ)− f (h0)

σn(f )
− √

n
Df(h0)[ĥ− h̃]

σn(f )

∣∣∣∣ =Op(ηn);

(iii)
‖ΠKT (̂vn(f )−vn(f ))‖L2(W )

σn(f )
=Op(η′

n).

Assumption 5′(a) and 5′(b)(i) and (ii) is similar to Assumption 3.5 of Chen and Pouzo
(2015). Assumption 5′(b)(iii) controls any additional error arising in the estimation of
σn(f ) due to nonlinearity of f (·) and is automatically satisfied when f (·) is a linear func-
tional.
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Remark D.1. Remark 4.1 presents sufficient conditions for Assumption 5′ as a special
case, with ft = f , σn = σn(f ), and T a singleton.

Again these sufficient conditions are formulated to take advantage of the sup-norm
rate results in Section 3. Denote

Ẑn ≡
(
Df(h0)

[
ψJ

])′[
S′G−1

b S
]−1
S′G−1

b

σn(f )

1√
n

n∑
i=1

bK(Wi)ui

and δV �n ≡ [ζ(2+δ)/δ
b�K

√
(logK)/n]δ/(1+δ) + τJζ

√
(logJ)/n + δh�n, where δh�n = op(1) is a

positive finite sequence such that ‖ĥ− h0‖∞ =Op(δh�n).

Theorem D.1. (i) Let Assumptions 1(iii), 2(i), (iii), and (iv′), 4(i), and either 5′(a) or
5′(b)(i) and (ii) hold, and let τJζ

√
(J logJ)/n= o(1). Then

√
n

(
f (ĥ)− f (h0)

)
σn(f )

= Ẑn + op(1)→d N(0�1)�

(ii) If ‖ĥ−h0‖∞ = op(1) and Assumptions 2(ii) and 3(iii) hold (and 5′(b)(iii) also holds
if f is nonlinear), then ∣∣∣∣ σ̂(f )σn(f )

− 1
∣∣∣∣ =Op

(
δV �n +η′

n

) = op(1)

and

√
n

(
f (ĥ)− f (h0)

)
σ̂(f )

= Ẑn + op(1)→d N(0�1)�

By exploiting the closed-form expression of the sieve NPIV estimator and by apply-
ing exponential inequalities for random matrices, Theorem D.1 derives the pointwise
limit theory under lower-level sufficient conditions than those in Chen and Pouzo (2015)
for irregular nonlinear functionals. In particular, when specialized to the exogenous case
of Xi = Wi, h0(x) = E[Yi|Wi = x], K = J, and bK = ψJ with τJ = 1, the regularity condi-
tions for Theorem D.1 become about the same mild conditions for Theorem 3.2 in Chen
and Christensen (2015) on asymptotic normality of sieve t-statistics for nonlinear func-
tionals of series LS estimators. It is now obvious that one could also derive the asymp-
totic normality of sieve t-statistics for regular (i.e., root-n estimable) nonlinear function-
als of a NPIV function under lower-level sufficient conditions by using our sup-norm
rates results to verify Assumption 3.5(ii) and Remark 3.1 in Chen and Pouzo (2015).

Appendix E: Spline and wavelet bases

In this section, we bound the terms ξψ�J , eJ = λmin(Gψ�J), and κψ(J) for B-spline and
CDV wavelet bases. Although we state the results for the space ΨJ , they may equally be
applied to BK when BK is constructed using B-spline or CDV wavelet bases.
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E.1 Spline bases

We construct a univariate B-spline basis of order r ≥ 1 (or degree r − 1 ≥ 0) with
m ≥ 0 interior knots and support [0�1] in the following way. Let 0 = t−(r−1) = · · · =
t0 < t1 < · · · < tm < tm+1 = · · · = tm+r = 1 denote the extended knot sequence and let
I0 = [t0� t1)� � � � � Im = [tm� tm+1]. A basis of order 1 is constructed by setting

Nj�1(x)=
{

1� if x ∈ Ij�
0� otherwise

for j = 0� � � �m. Bases of order r > 1 are generated recursively according to

Nj�r(x)= x− tj
tj+r−1 − tj Nj�r−1(x)+ tj+r − x

tj+r − tj+1
Nj+1�r−1(x)

for j = −(r − 1)� � � � �m, where we adopt the convention 1
0 := 0 (see Section 5 of

DeVore and Lorentz (1993)). This results in a total of m + r splines of order r, namely
N−(r−1)�r� � � � �Nm�r . Each spline is a polynomial of degree r − 1 on each interior interval
I1� � � � � Im and is (r − 2)-times continuously differentiable on [0�1] whenever r ≥ 2. The
mesh ratio is defined as

mesh(m)=
max

0≤j≤m
(tj+1 − tj)

min
0≤j≤m

(tj+1 − tj) �

Clearly mesh(m)= 1 whenever the knots are placed evenly (i.e., ti = i
m+1 for i= 1� � � � �m

and m ≥ 1), and we say that the mesh ratio is uniformly bounded if mesh(m) � 1 as
m→ ∞. EachNj�r has continuous derivatives of orders ≤ r− 2 on (0�1). We let the space
BSpl(r�m� [0�1]) be the closed linear span of them+ r splinesN−(r−1)�r� � � � �Nm�r .

We construct B-spline bases for [0�1]d by taking tensor products of univariate bases.
First generate d univariate bases N−(r−1)�r�i� � � � �Nm�r�i for each of the d components xi
of x as described above. Then form the vector of basis functions ψJ by taking the tensor
product of the vectors of univariate basis functions, namely,

ψJ(x1� � � � � xd)=
d⊗
i=1

⎛⎜⎝N−(r−1)�r�i(xi)
���

Nm�r�i(xi)

⎞⎟⎠ �
The resulting vector ψJ has dimension J = (r +m)d . Let ψJ1� � � � �ψJJ denote its J ele-
ments.

Stability properties The following two lemmas bound ξψ�J , and the minimum eigen-
value and condition number of Gψ = Gψ�J = E[ψJ(Xi)ψJ(Xi)′] when ψJ1� � � � �ψJJ is
constructed using univariate and tensor products of B-spline bases with uniformly
bounded mesh ratio.

Lemma E.1. Let X have support [0�1] and let ψJ1 =N−(r−1)�r� � � � �ψJJ =Nm�r be a uni-
variate B-spline basis of order r ≥ 1 with m = J − r ≥ 0 interior knots and uniformly
bounded mesh ratio. Then (a) ξψ�J = 1 for all J ≥ r; (b) if the density of X is uniformly
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bounded away from 0 and ∞ on [0�1], then there exist finite positive constants cψ and Cψ
such that cψJ ≤ λmax(Gψ)

−1 ≤ λmin(Gψ)
−1 ≤ CψJ for all J ≥ r; (c) λmax(Gψ)/λmin(Gψ) ≤

Cψ/cψ for all J ≥ r.

Lemma E.2. Let X have support [0�1]d and let ψJ1� � � � �ψJJ be a B-spline basis formed
as the tensor product of d univariate bases of order r ≥ 1 with m = J1/d − r ≥ 0 interior
knots and uniformly bounded mesh ratio. Then (a) ξψ�J = 1 for all J ≥ rd ; (b) if the density
of X is uniformly bounded away from 0 and ∞ on [0�1]d , then there exist finite posi-
tive constants cψ and Cψ such that cψJ ≤ λmax(Gψ)

−1 ≤ λmin(Gψ)
−1 ≤ CψJ for all J ≥ rd ;

(c) λmax(Gψ)/λmin(Gψ)≤Cψ/cψ for all J ≥ rd .

E.2 Wavelet bases

We construct a univariate wavelet basis with support [0�1] following Cohen, Daubechies,
and Vial (1993) (CDV hereafter). Let (ϕ�ψ) be a Daubechies pair such that ϕ has support
[−N+1�N]. Given j such that 2j−2N > 0, the orthonormal (with respect to theL2([0�1])
inner product) basis for the space Vj includes 2j − 2N interior scaling functions of the
form ϕj�k(x)= 2j/2ϕ(2jx− k), each of which has support [2−j(−N + 1 + k)�2−j(N + k)]
for k = N� � � � �2j − N − 1. These are augmented with N left scaling functions of the
form ϕ0

j�k(x) = 2j/2ϕlk(2
jx) for k = 0� � � � �N − 1 (where ϕl0� � � � �ϕ

l
N−1 are fixed indepen-

dent of j), each of which has support [0�2−j(N + k)], and N right scaling functions of
the form ϕj�2j−k(x) = 2j/2ϕr−k(2

j(x− 1)) for k = 1� � � � �N (where ϕr−1� � � � �ϕ
r
−N are fixed

independent of j), each of which has support [1 − 2−j(1 − N − k)�1]. The resulting 2j

functions ϕ0
j�0� � � � �ϕ

0
j�N−1�ϕj�N� � � � �ϕj�2j−N−1�ϕ

1
j�2j−N� � � � �ϕ

1
j�2j−1 form an orthonormal

basis (with respect to the L2([0�1]) inner product) for their closed linear span Vj .
An orthonormal wavelet basis for the space Wj , defined as the orthogonal comple-

ment of Vj in Vj+1, is similarly constructed from the mother wavelet. This results in an or-
thonormal basis of 2j functions, denoted ψ0

j�0� � � � �ψ
0
j�N−1�ψj�N� � � � �ψj�2j−N−1�ψ

1
j�2j−N�

� � � �ψ1
j�2j−1 (we use this conventional notation without confusion with theψJj basis func-

tions spanning ΨJ), where the “interior” wavelets ψj�N� � � � �ψj�2j−N−1 are of the form

ψj�k(x)= 2j/2ψ(2jx− k). To simplify notation, we ignore the 0 and 1 superscripts on the
left and right wavelets and the scaling functions henceforth. Let L0 and L be integers
such that 2N < 2L0 ≤ 2L. A wavelet space at resolution level L is the 2L+1-dimensional
set of functions given by

Wav
(
L� [0�1]) =

{2L0−1∑
k=0

aL0�kϕL0�k +
L∑

j=L0

2j−1∑
k=0

bj�kψj�k : aL0�k� bj�k ∈R

}
�

We say that Wav(L� [0�1]) has regularity γ if ψ ∈ Cγ (which can be achieved by choosing
N sufficiently large) and write Wav(L� [0�1]�γ) for a wavelet space of regularity γ with
continuously differentiable basis functions.

We construct wavelet bases for [0�1]d by taking tensor products of univariate bases.
We again take L0 and L to be integers such that 2N < 2L0 ≤ 2L. Let ψ̃j�k�G(x) denote
an orthonormal tensor-product wavelet for L2([0�1]d) at resolution level j, where k =
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(k1� � � � �kd) ∈ {0� � � � �2j − 1}d and where G ∈Gj�L ⊆ {wϕ�wψ}d denotes which elements
of the tensor product areψj�ki (indices corresponding towψ) and which areϕj�ki (indices

corresponding to wϕ). For example, ψ̃j�k�wdψ
= ∏d

i=1ψj�ki(xi). Note that each G ∈ Gj�L
with j > L has an element that iswψ (see Triebel (2006) for details). We have #(GL0�L0)=
2d and #(Gj�L0)= 2d − 1 for j > L0. Let Wav(L� [0�1]d�γ) denote the space

Wav
(
L� [0�1]d�γ) =

{
L∑

j=L0

∑
G∈Gj�L0

∑
k∈{0�����2j−1}d

aj�k�Gψ̃j�k�G : aj�k�G ∈R

}
� (25)

where each univariate basis has regularity γ. This definition clearly reduces to the above
definition for Wav(L� [0�1]�γ) in the univariate case.

Stability properties The following two lemmas bound ξψ�J , as well as the minimum
eigenvalue and condition number of Gψ =Gψ�J = E[ψJ(Xi)ψJ(Xi)′] when ψJ1� � � � �ψJJ
is constructed using univariate and tensor products of CDV wavelet bases.

Lemma E.3. LetX have support [0�1] and let be a univariate CDV wavelet basis of resolu-
tion level L= log2(J)− 1. Then (a) ξψ�J =O(√J) for each sieve dimension J = 2L+1, (b) if
the density ofX is uniformly bounded away from 0 and ∞ on [0�1], then there exists finite
positive constants cψ and Cψ such that cψ ≤ λmax(Gψ)

−1 ≤ λmin(Gψ)
−1 ≤ Cψ for each J,

and (c) λmax(Gψ)/λmin(Gψ)≤Cψ/cψ for each J.

Lemma E.4. Let X have support [0�1]d and let ψJ1� � � � �ψJJ be a wavelet basis formed as
the tensor product of d univariate bases of resolution level L. Then (a) ξψ�J =O(√J) each
J, (b) if the density of X is uniformly bounded away from 0 and ∞ on [0�1]d , then there
exists finite positive constants cψ and Cψ such that cψ ≤ λmax(Gψ)

−1 ≤ λmin(Gψ)
−1 ≤ Cψ

for each J, and (c) λmax(Gψ)/λmin(Gψ)≤ Cψ/cψ for each J.

Wavelet characterization of Besov norms When the wavelet basis just described is of
regularity γ > 0, the norms ‖ · ‖Bp∞�∞ for p < γ can be restated in terms of the wavelet
coefficients. We briefly explain the multivariate case as it nests the univariate case. Any
f ∈L2([0�1]d)may be represented as

f =
∑
j�G�k

aj�k�G(f )ψ̃j�k�G�

where the sum is understood to be taken over the same indices as in display (25). If
f ∈ Bp∞�∞([0�1]d), then

‖f‖Bp∞�∞ 	 ‖f‖bp∞�∞ := sup
j�k�G

2j(p+d/2)∣∣aj�k�G(f )∣∣�
and if f ∈ Bp2�2([0�1]), then

‖f‖2
B
p
2�2

	 ‖f‖2
b
p
2�2

:=
∑
j�k�G

2jpaj�k�G(f )2�

See Johnstone (2013) and Triebel (2006) for more thorough discussions.
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Appendix F: Useful results on random matrices

Notation. For a r × c matrix A with r ≤ c and full row rank r, we let A−
l denote its left

pseudoinverse, namely (A′A)−A′, where the prime (′) denotes transpose and the bar
(−) denotes generalized inverse. We let smin(A) denote the minimum singular value of
a rectangular matrix A. For a positive-definite symmetric matrix A, we let λmin(A) and
λmax(A) denote its minimum and maximum eigenvalue, respectively.

F.1 Some matrix inequalities

The following lemmas are used throughout the proofs in this paper and are stated here
for convenience.

Lemma F.1 (Weyl’s inequality). Let A�B ∈ R
r×c , and let si(A) and si(B) denote the ith

(ordered) singular value ofA and B, respectively, for 1 ≤ i≤ (r ∧ c). Then |si(A)− si(B)| ≤
‖A−B‖	2 for all 1 ≤ i≤ (r ∧ c). In particular, |smin(A)− smin(B)| ≤ ‖A−B‖	2 .

Lemma F.2. LetA ∈R
r×r be nonsingular. Then ‖A−1 − Ir‖	2 ≤ ‖A−1‖	2‖A− Ir‖	2 .

Lemma F.3 (Schmitt (1992)). LetA�B ∈ R
r×r be positive definite. Then∥∥A1/2 −B1/2∥∥

	2 ≤ 1√
λmin(B)+ √

λmin(A)
‖A−B‖	2 �

Lemma F.4. LetA�B ∈R
r×c with r ≤ c, and letA and B have full row rank r. Then

∥∥B−
l −A−

l

∥∥
	2 ≤ 1 + √

5
2

(
smin(A)

−2 ∨ smin(B)
−2)‖A−B‖	2 �

If, in addition, ‖A−B‖	2 ≤ 1
2 smin(A), then∥∥B−

l −A−
l

∥∥
	2 ≤ 2(1 + √

5)smin(A)
−2‖A−B‖	2 �

Lemma F.5. LetA ∈R
r×c with r ≤ c have full row rank r. Then ‖A−

l ‖	2 ≤ smin(A)
−1.

Lemma F.6. LetA�B ∈R
r×c with r ≤ c, and letA and B have full row rank r. Then∥∥A′(AA′)−1

A−B′(BB′)−1
B

∥∥
	2 ≤ (

smin(A)
−1 ∨ smin(B)

−1)‖A−B‖	2 �

F.2 Convergence of the matrix estimators

Before presenting the following lemmas, we define the orthonormalized matrix estima-
tors

Ĝob =G
−1/2
b ĜbG

−1/2
b �

Ĝoψ =G
−1/2
ψ ĜψG

−1/2
ψ �

Ŝo =G
−1/2
b ŜG

−1/2
ψ �

and letGob = IK ,Goψ = IJ , and So denote their respective expected values.
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Lemma F.7. The orthonormalized matrix estimators satisfy the exponential inequalities

P
(∥∥Ĝoψ −Goψ

∥∥
	2 > t

) ≤ 2 exp
{

logJ − t2/2

ζ2
ψ�J(1 + 2t/3)/n

}
�

P
(∥∥Ĝob −Gob

∥∥
	2 > t

) ≤ 2 exp
{

logK − t2/2

ζ2
b�K(1 + 2t/3)/n

}
�

P
(∥∥Ŝo − So∥∥

	2 > t
) ≤ 2 exp

{
logK − t2/2(

ζ2
b�K ∨ ζ2

ψ�J

)
/n+ 2ζb�Kζψ�Jt/(3n)

}
and, therefore, ∥∥Ĝoψ −Goψ

∥∥
	2 = Op

(
ζψ�J

√
(logJ)/n

)
�∥∥Ĝob −Gob

∥∥
	2 = Op

(
ζb�K

√
(logK)/n

)
�∥∥Ŝo − So∥∥

	2 = Op
(
(ζb�K ∨ ζψ�J)

√
(logK)/n

)
as n�J�K→ ∞ provided (ζb�K ∨ ζψ�J)

√
(logK)/n= o(1).

Lemma F.8 (Newey (1997, p. 162)). Let Assumption 2(i) hold. Then ‖G−1/2
b B′u/n‖	2 =

Op(
√
K/n).

Lemma F.9. Let hJ(x)=ψJ(x)′cJ for any deterministic cJ ∈R
J and letHJ = (hJ(X1)� � � � �

hJ(Xn))
′ =ΨcJ . Then∥∥G−1/2

b

(
B′(H0 −ΨcJ)/n−E[

bK(Wi)
(
h0(Xi)− hJ(Xi)

)])∥∥
	2

=Op
((√

K/n× ‖h0 − hJ‖∞
) ∧ (

ζb�K/
√
n× ‖h0 − hJ‖L2(X)

))
�

Lemma F.10. Let s−1
JKζ

√
(logJ)/n= o(1) and let J ≤K =O(J). Then

(a)
∥∥(
Ĝ

−1/2
b Ŝ

)−
l
Ĝ

−1/2
b G

1/2
b − (

G
−1/2
b S

)−
l

∥∥
	2 =Op

(
s−2
JKζ

√
(logJ)/(neJ)

)
�

(b)
∥∥G1/2

ψ

{(
Ĝ

−1/2
b Ŝ

)−
l
Ĝ

−1/2
b G

1/2
b − (

G
−1/2
b S

)−
l

}∥∥
	2 =Op

(
s−2
JKζ

√
(logJ)/n

)
)�

(c)
∥∥G−1/2

b S
{(
Ĝ

−1/2
b Ŝ

)−
l
Ĝ

−1/2
b G

1/2
b − (

G
−1/2
b S

)−
l

}∥∥
	2 =Op

(
s−1
JKζ

√
(logJ)/n

)
�
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