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Appendix A: Construction of individual identifiers

This section overviews existing techniques for the construction of individual identifiers,
especially in the case of numerical variables.

The key element of our identification argument is based on the construction of the
identifying variables Zy and Zx such that we can merge some or all observations in the
disjoint data bases to enable estimation of the econometric model of interest. While we
took the existence of these variables as given, their construction in itself is an important
issue and there is a vast literature in applied statistics and computer science that is de-
voted to the analysis of the broken record linkage. For completeness of the analysis in
our paper we present some highlights from that literature.

In general the task of merging disjoint data bases is a routine necessity in may practi-
cal applications. In many cases there do exist perfect cross-data-base identifiers of indi-
vidual entries. There could be multiple reasons why that is the case. For instance, there
could be errors in data entry and processing, wrong variable formatting, and duplicate
data entry. The idea that has arisen in Newcombe, Kennedy, Axford, and James (1959)
and was later formalized in Fellegi and Sunter (1969) was to treat the record linkage
problem as a problem of classification of record subsets into matches, nonmatches, and
uncertain cases. This classification is based on defining the similarity metric between
each two records. Then given the similarity metric one can compute the probability of
a particular pair of records being a match or non-match. The classification of pairs is
then performed by fixing the probability of erroneous identification of a nonmatched
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pair of records as a match and a matched pair of records as a nonmatch by minimizing
the total proportion of pairs that are uncertain. This matching technique is based on
the underlying assumption of randomness of records being broken. As a result, using
the sample of perfectly matched records one can recover the distribution of the similar-
ity metric for the matched and unmatched pairs of records. Moreover, as in hypothesis
testing, one needs to fix the probability of record misidentification. Finally, the origin of
the similarity metric remains arbitrary.

A large fraction of the further literature was devoted to, on one hand, development
of classes of similarity metrics that accommodate nonnumeric data and, on the other
hand, development of fast and scalable record classification algorithms. For obvious rea-
sons, measuring the similarity of string data turns out to be the most challenging. Edit
distance (see Gusfield (1997) for instance) is a metric that can be used to measure the
string similarity. The distance between the two strings is determined as the minimum
number of insert, delete, and replace operations required to transform one string into
another. Another measure developed in Jaro (1989) and elaborated in Winkler (1999) is
based on the length of matched strings, and the number of common characters and their
position within the string. In its modification it also allows for the prefixes in the names
and is mainly intended to link relatively short strings such as individual names. Alterna-
tive metrics are based on splitting strings into individual “tokens” that are substrings of
a particular length and then analyzing the power of sets of overlapping and nonoverlap-
ping tokens. For instance, the Jaccard coefficient is based on the relative number of over-
lapping and overall tokens in two strings. More advanced metrics include the TF/IDF
metric that is based on the term frequency (TF) or the number of times the term (or to-
ken) appears in the document (or string) and the inverse document frequency (IDF) or
the number of documents containing the given term. The structure of the TF/IDF-based
metric construction is outlined in Salton and Harman (2003). The distance measures
may include a combination of the edit distance and the TF/IDF distance such as a fuzzy
match similarity metric as described in Chaudhuri, Ganjam, Ganti, and Motwani (2003).

Given a specific definition of the distance, the practical aspects of matching obser-
vations will entail calibration and application of a particular technique for matching
observations. The structure of those techniques is based on, first, the assumption re-
garding the data structure and the nature of the record errors. Second, it depends on
the availability of known matches, and, thus, allows empirical validation of a particu-
lar matching technique. When such a validation sample is available, one can estimate
the distribution of the similarity measures for matched and nonmatched pairs for the
validation sample. Then using the estimated distribution, one can assign the matches
for the pairs outside the validation sample. When one can use numeric information in
addition to the string information, one can use hybrid metrics that combine the known
properties of numeric data entries and the properties of string entries.

Ridder and Moffitt (2007) overview some techniques for purely numeric data combi-
nation in the absence of validation subsamples that may incorporate distributional as-
sumptions on the “similar” numeric variables. For instance, joint normality assumption
with a known sign of correlation can allow one to invoke likelihood-based techniques
for record linkage.
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Appendix B: More details on the risk of disclosure and choice of

threshold sequences

Propositions 2 and 3 demonstrate that the compliance of the decision rule generated by
a particular threshold sequence with a given bound guarantee for the disclosure risk de-
pends on the rate at which the threshold sequence converges toward zero as the sizes of
Dy and Dx increase. Informally, consider two threshold sequences αN and α∗

N , where the

former converges to zero much faster than the latter so that
α∗
N
αN

→ ∞. Clearly, for large
enough sizes of the data sets Dy and Dx, the sequence α∗

N not only allows more observa-
tions to be included in the combined data set, but also gives a greater number of possible
combined data sets. In fact, all observations with the values of the constructed identi-
fiers zxi between 1

α∗
N

and 1
αN

are rejected by the decision rule implied by the sequence αN
but could be approved by the decision rule implied by the sequence α∗

N . In addition, the
sequence α∗

N is much more liberal in its definition of the proximity between the iden-
tifiers zyj and zxi . As a result, the decision rule implied by the sequence α∗

N generates

larger combined data sets. Because the matching information in (− 1
αN
�− 1

α∗
N
)∪ ( 1

α∗
N
� 1
αN
)

is less reliable than that in (−∞�− 1
αN
)∪ ( 1

αN
�∞) and because linkages for observations

with larger distances between the identifiers are decreasingly reliable, the sequence α∗
N

results in a larger proportion of incorrect matches. The effect can be so significant that
even for arbitrarily large data sets the probability of making a data combination error
does not approach 0. In Proposition 2, where nondisclosure is not guaranteed and the
probability of making a data combination error of the first kind approaches 0 asNy and
Nx increase, thresholds used for the decision rule shrink to zero faster than those in
Proposition 3, where nondisclosure is guaranteed.

In the remarks below we consider cases when the tails of the distributions of identi-
fiers are geometric or exponential.

Remark (Absence of disclosure guarantees). Here we consider cases when the tails of
the distributions of identifiers are geometric or exponential.

(a) Suppose that for small enough α > 0, we have φ(α)= b1α
c1 , b1� c1 > 0 and ψ(α)=

b2α
c2 , b2� c2 > 0. If αN > 0 is chosen in such a way that

αN = o
(

1(
Nx

) 1
c2+2

)
(S1)

asNy → ∞, then

inf
x∈X �y∈Y

inf
Dx�Dy

inf
i�j
pNij

(
x� y�Dx�Dy

) → 1 asNy → ∞

and, thus, nondisclosure is not guaranteed.

(b) Alternatively, suppose that for small enough α > 0, we have φ(α) = b1e
−c1/α,

b1� c1 > 0 and ψ(α)= b2e
−c2/α, b2� c2 > 0. If αN → 0 is chosen in such a way that

lim
Ny→∞

Nxe
− c2
αN αN = 0� (S2)
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then

inf
x∈X �y∈Y

inf
Dx�Dy

inf
i�j
pNij

(
x� y�Dx�Dy

) → 1 asNy → ∞

and, thus, nondisclosure is not guaranteed.
For instance, sequences αN = a

(Nx)d
when a�d > 0 satisfy this condition.

Proof. (a) Let us check that if a sequence αN is chosen as in (S1), then it satisfies (10).
In other words, let us check that

Nx

α
c1
N

∫ ∞
1
αN

((
1

z− αN
)c2

−
(

1
z+ αN

)c2
)

1

zc1+1 dz→ 0 asNy → ∞�

Indeed,

Nx

α
c1
N

∫ ∞
1
αN

((
1

z− αN
)c2

−
(

1
z+ αN

)c2
)

1

zc1+1 dz

= Nx

α
c1
N

∫ ∞
1
αN

(
1 −

(
1 − 2αN

z+ αN
)c2

)
(z− αN)−c2

zc1+1 dz�

If αN is small enough, then for all z ≥ 1
αN

, it holds that 1−(1− 2αN
z+αN )

c2 ≤ q1
αN
z+αN for some

constant q1 > 0. Therefore, if αN is small enough, then for all z ≥ 1
αN

we have

(
1 −

(
1 − 2αN

z+ αN
)c2

)
(z− αN)−c2

zc1+1 ≤ q2
αN

zc1+c2+2

for some constant q2 > 0. Finally, note that

q2N
x

α
c1−1
N

∫ ∞
1
αN

1

zc1+c2+2 dz = q2N
x

1 + c1 + c2
α
c2+2
N → 0 asNy → ∞

if αN is chosen as in (S1).
(b) Let us check that if a sequence αN is chosen as in (S2), then it satisfies (10). In

other words, let us check that

Nxe
c1
αN

∫ ∞
1
αN

(
e−c2(z−αN) − e−c2(z+αN))e−c1z dz→ 0 asNy → ∞�

Indeed,

Nxe
c1
αN

∫ ∞
1
αN

(
e−c2(z−αN) − e−c2(z+αN))e−c1z dz =Nxe

− c2
αN
ec2αN − e−c2αN

c1 + c2
�

Note that for some constant r > 0,

ec2αN − e−c2αN ≤ rαN�
Now it is clear that if αN is chosen as in (S2), then (10) holds. �
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Remark (Disclosure guarantees).

(a) Suppose for α ∈ (0� ᾱ),φ(α)= b1α
c1 , b1� c1 > 0, andψ(α)= b2α

c2 , b2� c2 > 0. Let the
sequence of αN → 0 (asNy → ∞) be chosen in such a way that

lim inf
Ny→∞

αN
(
Nx

) 1
c2+2 > 0� (S3)

Then nondisclosure is guaranteed.

(b) Suppose for α ∈ (0� ᾱ), φ(α) = b1e
−c1/α, b1� c1 > 0 and ψ(α) = b2e

−c2/α, b2� c2 > 0.
Let the sequence of αN → 0 (asNy → ∞) be chosen in such a way that

lim inf
Ny→∞

Nxe
− c2
αN αN > 0� (S4)

Then nondisclosure is guaranteed.
For instance, sequences αN = a

logNx , when a > c2, satisfy this condition (in this case,

limNy→∞Nxe
− c2
αN αN = ∞).

Proof. (a) Let us check that if a sequence αN is chosen as in (S3), then it satisfies (11).
In other words, let us check that

lim inf
Ny→∞

b2c1
Nx

α
c1
N

∫ ∞
1
αN

((
1

z− αN
)c2

−
(

1
z+ αN

)c2
)

1

zc1+1 dz > 0�

Use (( 1
z−αN )

c2 − ( 1
z+αN )

c2) 1
zc1+1 = (1 − (1 − 2αN

z+αN )
c2) (z−αN)

−c2
zc1+1 and note that if αN is small

enough, then for all z ≥ 1
αN

,

1 −
(

1 − 2αN
z+ αN

)c2

≥ q̃1
αN

z+ αN
for some constant q̃1 > 0. Therefore, if αN is small enough, then for all z ≥ 1

αN
we have

(
1 −

(
1 − 2αN

z+ αN
)c2

)(
1

z− αN
)c2 1

zc1+1 ≥ q̃2
αN

zc1+c2+2

for some constant q̃2 > 0. Finally, note that if αN is chosen as in (S3), then

lim inf
Ny→∞

q̃2b2c1
Nx

α
c1−1
N

∫ ∞
1
αN

1

zc1+c2+2 dz = lim inf
Ny→∞

q̃2b2c1
Nx

1 + c1 + c2
α
c2+2
N > 0�

(b) Let us check that if a sequence αN is chosen as in (S4), then it satisfies (11). In
other words, we want to check that

lim inf
Ny→∞

c1N
xe

c1
αN

∫ ∞
1
αN

(
e−c2(z−αN) − e−c2(z+αN))e−c1z dz > 0�
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Note that

Nxe
c1
αN

∫ ∞
1
αN

(
e−c2(z−αN) − e−c2(z+αN))e−c1z dz =Nxe

− c2
αN
ec2αN − e−c2αN

c1 + c2

and for some constant r̃ > 0,

ec2αN − e−c2αN ≥ r̃αN�
Thus, if αN is chosen as in (S4), then (11) holds. �

It can be seen in the preceding two remarks that the rates of the threshold sequences
used for the decision rule can be described in terms of the size of the data set Dx alone
rather than both Dy and Dx. This is quite intuitive because in the data base in Assump-
tion 2 we assumed that Dy contains the subset of individuals from the data base Dx and,
hence, Dx is larger. The size of the larger data set is the only factor determining how
many potential matches from this data set we are able to find for any observation in the
smaller data set without using any additional information from the identifiers.

Appendix C: Proof of Proposition 5

Fix θ̃ ∈Θ∞. Let π ∈Π∞ be such that θ̃minimizes

Q(θ�π)≡ gπ(θ)′W0gπ(θ)�

We can find a sequence {πN(·� ·)} that converges to π uniformly over all y and all x. Let
θN be any value that minimizes

QN
(
θ�πN

) ≡ gN(θ)′W0g
N(θ)

for the chosen πN(·� ·). Clearly, θN ∈ΘN . Let us show that θN → θ̃.
First, we establish that supθ∈Θ |QN(θ�πN)−Q(θ�π)| → 0. Note that

QN
(
θ�πN

) −Q(θ�π)= (
gN(θ)− gπ(θ)

)′
W0

(
gN(θ)− gπ(θ)

)
+ 2gπ(θ)′W0

(
gN(θ)− gπ(θ)

)
�

Therefore,

sup
θ∈Θ

∣∣QN(
θ�πN

) −Q(θ�π)∣∣ ≤ sup
θ∈Θ

∥∥gN(θ)− gπ(θ)
∥∥2‖W0‖

+ 2 sup
θ∈Θ

∥∥gπ(θ)∥∥ sup
θ∈Θ

∥∥gN(θ)− gπ(θ)
∥∥‖W0‖�

Conditions (15) imply that supθ∈Θ ‖gπ(θ)‖ < ∞. Thus, we only need to establish that
supθ∈Θ ‖gN(θ)− gπ(θ)‖ → 0. Using condition (18), we can show that gN(θ) can be rep-
resented as the sum of four terms,

gN(θ)=AN1 +AN2 +BN1 +BN2�
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where

AN1

1 −π =
∫ ∫ ∫

|zxi |> 1
αN

∫
|zyj−zxi |<αN

h(xi)ρ(yj�xi;θ)

× fY�X|Zy�Zx
(
yj�xi|zyj � zxi

)
fZy�Zx

(
z
y
j � z

x
i

)
dz
y
j dz

x
i dyj dxi

×
(∫ ∫ ∫

|zxi |> 1
αN

∫
|zyj−zxi |<αN

× fY�X|Zy�Zx
(
yj�xi|zyj � zxi

)
fZy�Zx

(
z
y
j � z

x
i

)
dz
y
j dz

x
i dyj dxi

)−1
�

AN2 =
∫ ∫

|zxi |> 1
αN

∫
|zyj−zxi |<αN

oyx(1)h(xi)ρ(yj�xi;θ)

× fY�X|Zy�Zx
(
yj�xi|zyj � zxi

)
fZy�Zx

(
z
y
j � z

x
i

)
dz
y
j dz

x
i dyj dxi

×
(∫ ∫ ∫

|zxi |> 1
αN

∫
|zyj−zxi |<αN

× fY�X|Zy�Zx
(
yj�xi|zyj � zxi

)
fZy�Zx

(
z
y
j � z

x
i

)
dz
y
j dz

x
i dyj dxi

)−1
�

BN1

π
=

∫ ∫ ∫
|zxi |> 1

αN

∫
|zxi −zyj |<αN

h(xi)ρ(yj�xi;θ)fY�Zy
(
yj� z

y
j

)
× fX�Zx

(
xi� z

x
i

)
dz
y
j dz

x
i dyj dxi

×
(∫ ∫ ∫

|zxi |> 1
αN

∫
|zxi −zyj |<αN

fY�Zy
(
yj� z

y
j

)
fX�Zx

(
xi� z

x
i

)
dz
y
j dz

x
i dyj dxi

)−1
�

BN2 =
∫ ∫ ∫

|zxi |> 1
αN

∫
|zxi −zyj |<αN

oyx(1)h(xi)ρ(yj�xi;θ)fY�Zy
(
yj� z

y
j

)
× fX�Zx

(
xi� z

x
i

)
dz
y
j dz

x
i dyj dxi

×
(∫ ∫ ∫

|zxi |> 1
αN

∫
|zxi −zyj |<αN

fY�Zy
(
yj� z

y
j

)
fX�Zx

(
xi� z

x
i

)
dz
y
j dz

x
i dyj dxi

)−1
�

and terms oyx(1) do not depend on θ and are such that supyj∈Y�xi∈X |oyx(1)| → 0 as
αN → 0.

Proposition 4 implies that E[h(X)ρ(Y�X;θ)||Zx| > 1
α� |Zx − Zy | < α] = E[h(X) ×

ρ(Y�X;θ)]. Therefore,

AN1 = (1 −π)E[
h(X)ρ(Y�X;θ)]

and, thus,

gN(θ)− gπ(θ)=AN2 +BN1 +BN2 −πE∗[h(X)ρ(Ỹ �X;θ)]�
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Note that

sup
θ∈Θ

‖AN2‖ ≤ sup
yj�xi

∣∣oyx(1)∣∣ ·E
[

sup
θ∈Θ

∥∥h(X)ρ(Y�X;θ)∥∥|∣∣Zx∣∣> 1
α
�
∣∣Zx −Zy ∣∣<α]

= sup
yj�xi

∣∣oyx(1)∣∣ ·E
[
sup
θ∈Θ

∥∥h(X)ρ(Y�X;θ)∥∥]
→ 0

as αN → 0. From Assumption 3(iv), for small αN the denominator in BN1/π is the sum∫ ∫ ∫
|zxi |> 1

αN

∫
|zxi −zyj |<αN

(
oxzx(1)+ ozyy(1)+ ozyy(1)oxzx(1)

)
× g2

(
z
y
j

)
g1

(
zxi

)
fY (yj)fX(xi)dz

y
j dz

x
i dyj dxi

+
∫

|zxi |> 1
αN

∫
|zxi −zyj |<αN

g2
(
z
y
j

)
g1

(
zxi

)
dz
y
j dz

x
i

and, similarly, the numerator is the sum∫ ∫
h(xi)ρ(yj�xi;θ)fY (yj)fX(xi)dyj dxi ·

∫
|zxi |> 1

αN

∫
|zxi −zyj |<αN

g2
(
z
y
j

)
g1

(
zxi

)
dz
y
j dz

x
i

+
∫ ∫

h(xi)ρ(yj�xi;θ)
∫

|zxi |> 1
αN

∫
|zxi −zyj |<αN

(
oxzx(1)+ ozyy(1)+ ozyy(1)oxzx(1)

)
× g2

(
z
y
j

)
g1

(
zxi

)
fY (yj)fX(xi)dz

y
j dz

x
i dyj dxi�

where oyzy (1) and oxzx(1) do not depend on θ and are such that

sup
|zyj |> 1

αN
−αN

sup
yj

|oyzy (1)| → 0 and sup
|zxi |> 1

αN

sup
xi

|oxzx(1)| → 0

as αN → 0. Then BN1 −πE∗[h(X)ρ(Ỹ �X;θ)] is the sum of the two terms

πE∗[h(X)ρ(Ỹ �X;θ)] ·
(

CN1

CN1 +
∫ ∫

DN1(yj�xi)fY (yj)fX(xi)dyj dxi

− 1
)

(S5)

and

π ·

∫ ∫
h(xi)ρ(yj�xi;θ)DN1(yj�xi)fY (yj)fX(xi)dyj dxi

CN1 +
∫ ∫

DN1(yj�xi)fY (yj)fX(xi)dyj dxi

� (S6)

where

CN1 =
∫

|zxi |> 1
αN

∫
|zxi −zyj |<αN

g2
(
z
y
j

)
g1

(
zxi

)
dz
y
j dz

x
i �

DN1(yj�xi)=
∫

|zxi |> 1
αN

∫
|zxi −zyj |<αN

(
oxzx(1)+ozyy(1)+ozyy(1)oxzx(1)

)
g2

(
z
y
j

)
g1

(
zxi

)
dz
y
j dz

x
i �
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The supremum over θ ∈Θ of the norm of the term in (S5) is bounded from above by

πE∗[sup
θ∈Θ

∥∥h(X)ρ(Ỹ �X;θ)∥∥]
·
∣∣∣∣ CN1

CN1 +
∫ ∫

DN1(yj�xi)fY (yj)fX(xi)dyj dxi

− 1
∣∣∣∣�

Because ∣∣DN1(yj�xi)
∣∣ ≤ sup

|zxi |> 1
αN

sup
|zyj |> 1

αN
−αN

sup
yj�xi

∣∣oyzyxzx(1)∣∣ ·CN1

with sup|zxi |> 1
αN

sup|zyj |> 1
αN

−αN supyj�xi |oyzyxzx(1)| → 0, then

CN1

CN1 +
∫ ∫

DN1(yj�xi)fY (yj)fX(xi)dyj dxi

→ 1 as αN → 0�

Hence, (S5) converges to 0 uniformly over θ ∈Θ.
The supremum over θ ∈Θ of the norm of the term in (S6) is bounded from above by

π ·

∫ ∫
sup
θ∈Θ

∥∥h(xi)ρ(yj�xi;θ)∥∥∣∣DN1(yj�xi)
∣∣fY (yj)fX(xi)dyj dxi

CN1 +
∫ ∫

DN1(yj�xi)fY (yj)fX(xi)dyj dxi

≤ π · sup
|zxi |> 1

αN

sup
|zyj |> 1

αN
−αN

sup
yj�xi

∣∣oyzyxzx(1)∣∣ ·
CN1 ·E∗[sup

θ∈Θ

∥∥h(X)ρ(Ỹ �X;θ)∥∥]

CN1 +
∫ ∫

DN1(yj�xi)fY (yj)fX(xi)dyj dxi

�

which converges to 0 as αN → 0. Thus, we obtain that supθ∈Θ ‖BN1 − πE∗[h(X)ρ(Ỹ �X;
θ)]‖ → 0.

Finally, consider supθ∈Θ ‖BN2‖. This norm is bounded from above by the sum of

sup
yj�xi

∣∣oyx(1)∣∣ ·
∫

sup
θ∈Θ

∥∥h(xi)ρ(yj�xi;θ)∥∥fY (yj)fX(xi)dyj dxi
× CN1

CN1 +
∫ ∫

DN1(yj�xi)fY (yj)fX(xi)dyj dxi

and

sup
yj�xi

∣∣oyx(1)∣∣ · sup
|zxi |> 1

αN

sup
|zyj |> 1

αN
−αN

sup
yj�xi

∣∣oyzyxzx(1)∣∣

×
CN1

∫
sup
θ∈Θ

∥∥h(xi)ρ(yj�xi;θ)∥∥fY (yj)fX(xi)dyj dxi
CN1 +

∫ ∫
DN1(yj�xi)fY (yj)fX(xi)dyj dxi

�
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and, hence, supθ∈Θ ‖BN2‖ → 0 as αN → 0.
To summarize our results so far, we shown that

sup
θ∈Θ

∥∥gN(θ)− gπ(θ)
∥∥ ≤ sup

θ∈Θ
‖AN2‖ + sup

θ∈Θ

∥∥BN1 −πE∗[h(X)ρ(Ỹ �X;θ)]∥∥ + sup
θ∈Θ

‖BN2‖

and, thus, supθ∈Θ ‖gN(θ)− gπ(θ)‖ → 0 as αN → 0. This implies that

sup
θ∈Θ

∣∣QN(
θ�πN

) −Q(θ�π)∣∣ → 0� (S7)

Now fix ε > 0. Let us show that for large enough Nx�Ny , Q(θN�π) <Q(θ̃�π)+ ε. In-
deed, (S7) implies that whenNx andNy are large enough,Q(θN�π) <QN(θN�πN)+ε/3.
Also, QN(θN�πN) < QN(θ̃�πN)+ ε/3 because θN is an arg min of QN(θN�πN). Finally,
(S7) implies that whenNx andNy are large enough,QN(θ̃�πN) <Q(θ̃�π)+ ε/3.

Let S be any open neighborhood of θ̃ and let Sc be its complement in R
l. From the

compactness ofΘ and the continuity of ρ(·� ·� ·) in θ, we conclude that minSc∩ΘQ(θ�π) is
attained. The fact that θ̃ is the unique minimizer ofQ(θ�π) gives that minSc∩ΘQ(θ�π) >
Q(θ̃�π). Denote ε= minSc∩ΘQ(θ�π)−Q(θ̃�π). As we showed above, for this ε we have,
whenNx andNy are large enough, that

Q
(
θN�π

)
<Q(θ̃�π)+ ε= min

Sc∩Θ
Q(θ�π)�

which for large enoughNx andNy gives θN ∈ S. Since S can be chosen arbitrarily small,
this means that θN → θ̃.
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