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It is commonplace that the data needed for econometric inference are not con-
tained in a single source. In this paper we analyze the problem of parametric in-
ference from combined individual-level data when data combination is based on
personal and demographic identifiers such as name, age, or address. Our main
question is the identification of the econometric model based on the combined
data when the data do not contain exact individual identifiers and no parametric
assumptions are imposed on the joint distribution of information that is common
across the combined data set. We demonstrate the conditions on the observable
marginal distributions of data in individual data sets that can and cannot guaran-
tee identification of the parameters of interest. We also note that the data combi-
nation procedure is essential in a semiparametric setting such as ours. Provided
that the (nonparametric) data combination procedure can only be defined in fi-
nite samples, we introduce a new notion of identification based on the concept
of limits of statistical experiments. Our results apply to the setting where the indi-
vidual data used for inferences are sensitive and their combination may lead to a
substantial increase in the data sensitivity or lead to a “de-anonymization” of the
previously “anonymized” information. We demonstrate that the point identifica-
tion of an econometric model from combined data is incompatible with restric-
tions on the risk of individual disclosure. If the data combination procedure guar-
antees a bound on the risk of individual disclosure, then the information available
from the combined data set allows one to identify the parameter of interest only
partially, and the size of the identification region is inversely related to the upper
bound guarantee for the disclosure risk. This result is new in the context of data
combination as we notice that the quality of links that need to be used in the com-
bined data to assure point identification may be much higher than the average
link quality in the entire data set, and thus point inference requires the use of the
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most sensitive subset of the data. Our results provide important insights into the
ongoing discourse on the empirical analysis of merged administrative records as
well as discussions on the “disclosive” nature of policies implemented by the data-
driven companies (such as internet services companies and medical companies
using individual patient records for policy decisions).

Keywords. Data protection, model identification, data combination.
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1. Introduction

Often, data combination is a vital step in a comprehensive analysis of industrial and
government data and resulting policy decisions. Typical industrial data are contained
in large, well indexed data bases and linking multiple data sets essentially reduces to
finding the pairs of unique matching identifiers in disjoint data bases. Examples of such
data bases include the supermarket inventory and scanner data that can be linked by the
product universal product codes (UPCs), and patient records and billing data that can
be matched by name and social security number. Nonmatches can occur, for example,
due to recording errors. Given that most industrial data bases have a homogenous struc-
ture, prediction algorithms can be “trained” on a data set of manually resolved linkage
errors and then those algorithms can further be used for error control. These algorithms
stem from the long-existing literature in econometrics and statistics on validation sam-
ples. Such procedures are on the list of routine daily tasks for data base management
companies and are applied in a variety of settings, from medical to tax and employment
data bases.1

A distinctive feature of data used in economic research is that the majority of utilized
data sets are unique and, thus, any standardization of the data combination procedure
may be problematic. Moreover, many distinct data sets that may need to be combined
do not contain comprehensive unique identifiers either due to variation in data col-
lection policies or because of disclosure and privacy considerations. As a result, data
combination tasks rarely reduce to a simple merger on unique identifiers with a sub-
sequent error control. This means that in the combination of economic data sets, one
may need to use not only the label-type information (such as the social security num-
ber, patient identification, or user name), but also some variables that have an economic
and behavioral content and may be used in estimated models. In this case the error of
data combination becomes heteroskedastic with an unknown distribution and does not
satisfy the “mismatch-at-random” assumption that would otherwise allow one to me-
chanically correct the obtained estimates by incorporating a constant probability of an
incorrect match.2 In addition, economic data sets are usually more sensitive than typ-
ical industrial data, and data curators may intentionally remove potentially identifying
information from the data that further complicates combination of different data sets.

In this paper, we introduce a novel framework for the parameter identifiability anal-
ysis from linked data when individual data sets used for combination do not contain

1See, for example, Wright (2010) and Penberthy, Devers, and Holden (2010), among others.
2See, for instance, Lahiri and Larsen (2005)
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unique individual identifiers. Our framework is suited to situations when only partial
information regarding the quality of the links between the observations of separate data
sets (e.g., upper and lower bounds on these probabilities) is available, and thus, it allows
us to avoid making parametric assumptions regarding the joint distribution of com-
bined variables or the joint distribution of additional variables utilized in a data com-
bination procedure. This contrasts many existing approaches that rely on either such
parametric assumptions or assumptions about a known distribution of the data combi-
nation errors. This paper is an attempt to build a theoretical framework of how to think
about parameter identification from combined data and to conform it with the tradition
existing in the econometric literature of approaching the issue of identification from the
population perspective.

Section 2 describes the problem of econometric inference and characterizes the
structure of the data generating process.

In Section 3 we depict a class of data combination rules used in this paper. The data
combination procedures suggested in this paper are based on infrequent observations of
some numeric or string variables that are either available directly from the data or need
to be constructed by the data curator. We formalize all the conditions that this procedure
has to satisfy so as to give a meaningfully combined data set. We prove that the accuracy
of this procedure can be controlled and can vary from the “worst” (all the matches are
incorrect) to the “best” (all the matches are correct) as the sizes of split data sets increase.
We establish exactly how the control of its accuracy can be executed by a data curator.

Our framework naturally applies to the analysis of situations where the identifying
information is intentionally removed from the data by the data curators to reduce the
“sensitivity” of the data. In this case, an instance of a successful combination of two
observations from two disjoined data sets means that the variables contain enough in-
formation to attribute these two observations to the same individual. This implies that
the corresponding individual information can be “de-anonymized,” that is, the individ-
ual disclosure can occur. We demonstrate the implications of the suggested data com-
bination rules for individual identity disclosure. We introduce the notion of a bound on
disclosure risk and show that there exist data combination rules that honor this bound.

In Section 4 we analyze the identifiability of the parameter of interest from com-
bined data under restrictions on the information about the quality of the data combi-
nation rule that is released by the data curator to secondary users (researchers). Our
approach to the identification analysis is novel as we notice that the data combination
procedure in nonparametric settings can only be defined and implemented in a finite
sample and not in the population. As a result, the identification analysis has to rely on
the property of limits of sequences of data combination rules (as opposed to the prop-
erty of the population distribution as in the standard literature on identification). This is
a crucial aspect in our identification method as we provide a new approach to analyzing
model identification from combined data sets as a limiting property in the sequence of
statistical experiments.

Namely, we introduce the notion of the pseudo-identified set of model parameters
from combined data through a limit of the set of parameters inferred from the com-
bined data as the sizes of both data sets approach infinity. These sets and their limiting
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behavior depend on several factors: first, they depend on the properties of the data com-
bination procedure; second, they depend on what kind of information about this proce-
dure is provided to the researcher by the data curator; and, finally, they could depend on
the optimization criterion employed by researchers. We also study the trade-off between
disclosure limitation (defined by the probability that an individual disclosure can occur)
and the quality of identification of the parameters of interest. To our knowledge, our pa-
per is the first one to study such a trade-off. This trade-off between the identifiability
of the model and limitations on individual disclosure implies that whenever a nonzero
disclosure restriction is imposed, the parameter in the model of interest based on the
data set combined from two separate data sets is not point identified. The analysis of
pseudo-identified sets tells us what estimates, for example, a consumer behavior model
can deliver under the constraints on the identity disclosure. We note that the goal of our
work is not to demonstrate the vulnerability of online personal data but to provide a real
example of the trade-off between privacy and identification.

The importance of the risk of potential disclosure of confidential information is hard
to overstate. With advances in data storage and collection technologies, issues and con-
cerns regarding data security now generate front-page headlines. Private businesses and
government entities are collecting and storing increasing amounts of confidential per-
sonal data. This data collection is accompanied by an unprecedented increase in pub-
licly available (or searchable) individual information that comes from search traffic, so-
cial networks, and personal online file depositories (such as photo collections), among
other sources. One of the main messages of Sections 2–4 is that if one of the data cura-
tor’s objectives is to provide some privacy guarantees and prevent disclosure when con-
ducting the task of combing the data, then the issues of model identification/estimation
and the risk of disclosure should be analyzed jointly.

Sections 2–4 of the paper consider a scenario in which a data curator conducts the
data combination procedure and the researcher is given a single combined data set (with
auxiliary variables that helped combine the data removed). This combined data set is of
course not guaranteed to contain all correct matches. Moreover, if the combined data
set is randomly selected from all possible constructed combined data sets with the data
combination rule that honors the bound on the disclosure risk, there is a positive prob-
ability that all matches in this data set will be incorrect. This scenario is likely to occur
when a combined data set is released into a public domain and thus the researcher does
not bear the burden of assuring that an appropriate bound on the risk of disclosure has
been imposed.

Section 5 contains an empirical application, where we illustrate a common situation
where low resolution identifiers are removed from the data set to protect the privacy
of individuals that then inhibits the linkage of this data set with other data which can
lead to biased estimates in the models that do not use those additional linked variables.
Our application uses the data from the Russian Longitudinal Monitoring Survey (RLMS),
which is a comprehensive longitudinal survey of households in Russia. The survey is
designed to be representative on the country level and the data are collected in over
50 geographical regions. In each region the survey households are typically clustered
within small neighborhoods. The neighborhood identifiers along with demographic



Quantitative Economics 9 (2018) Identification and the risk of disclosure 399

data turned out to be sufficient to single out individual households and “de-anonymize”
them by linking the records with address data bases. In light of this finding, the neigh-
borhood identifiers were removed from the RLMS data distribution after year 2009.

In our empirical analysis we demonstrate that such an approach to privacy protec-
tion inhibits the inference of granular household-level decision models. Our main eco-
nomic question is whether religious affiliation of the household impacts the decision
to allow the children in the household to complete schooling. We are also interested in
finding out whether, in this decision, females are withdrawn from schooling on aver-
age earlier than males. We note that in the absence of neighborhood identifiers, we will
not be able to distinguish the group effects within local religious communities from the
individual decision making within households.

In our data set we do have access to the neighborhood identifiers that were sub-
sequently suppressed. Using the neighborhood identifiers, we can link the records in
the RLMS with the religious census data collected by Rosstat (the Russian equivalent of
the US Census Bureau). This allows us to estimate both the model that takes the group
effects into account and the model that does not (i.e., the model that is feasible with
the current RLMS data distribution). We find significant differences in the estimates ob-
tained in the two models and then use our approach to construct the sets of parameters
in the current data distribution that take into account the fact that the data was de-
anonymized.

To relate this paper to other privacy frameworks, we want to note that we focus on
the risk of individual disclosure as it describes the possibility of recovering the true iden-
tity of individuals in the “anonymized” data set with sensitive individual information.
However, even if the combined data set is not publicly released, the estimated model
may itself be “disclosive” in the sense that consumers’ confidential information may be-
come discoverable from the inference results based on the combined data. This situa-
tion may arise when there are no common identifiers in the combined data and only
particular individuals may qualify to be included in the combined data set. If the data
set is sufficiently small, a parametric model may give an accurate description of the in-
dividuals included in the data set. We discuss this issue in more detail in Komarova,
Nekipelov, and Yakovlev (2015), where we introduce the notion of a partial disclosure. In
this paper we deal only with the identity disclosure.

The setup of this paper can be applied to situations when there are several indepen-
dent data curators who have access to separate data sets. Private firms and large gov-
ernment agencies collect large socioeconomic data sets. The Internal Revenue Service,
Social Security Administration, and the US Census Bureau collect large comprehensive
data sets that have large or complete overlaps over individuals whose data have been
collected. Each of these agencies operates as an independent data curator, meaning
that each of them has full control over his/her data and full exclusion rights over ac-
cess to these data. Most existing data curators operate based on the vault storage model
where the data are stored locally in a secure location and raw disaggregated data cannot
be taken outside of the vault. Within their data management programs, each such data
owner allows researchers to access the data vault upon passing some clearance proce-
dure. With this data analysis model there could be many researchers who can access
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many such data vaults. However, provided that the raw data cannot be removed from
the vault, none of these researchers can combine individual data from two or more such
vaults. Thus, this is the situation where each researchers knows the marginal distribu-
tion of the data in each of the vaults. However, none of the researchers knows the joint
distribution of the data across the vaults and thus cannot estimate the model that con-
tains variables from multiple sources. Recently, several empirical researchers have been
able to obtain permissions to merge separate administrative data sources. We note that
each data curator controls her/his own data set and, in particular, control the “sensi-
tivity” of the variables contained in the data set. For instance, some variables can be
removed from researchers’ access based on disclosure risk considerations. Such a risk
cannot be controlled if the data from one source controlled by one data curator are com-
bined with the data controlled by another data curator. Provided that the marginal data
distributions from different sources are already known to the researchers, the disclosure
threat in this case comes precisely from the data combination.

Related literature

Our paper is related to several strands in the computer science literature. One of them
is on the optimal structures of linkage attacks as well as the requirements in relation
to data releases. The structure of linkage attacks is based on the optimal record linkage
results that have been long used in the analysis of data bases and data mining. To some
extent, these results have been used used in econometrics for combination of data sets
as described in Ridder and Moffitt (2007). In record linkage, one provides a (possibly)
probabilistic rule that can match the records from one data set with the records from the
other data set in an effort to link the data entries that correspond to the same individual.3

In several striking examples, computer scientists have shown that a simple removal of
personal information such as names and social security numbers does not protect data
from individual disclosure. For instance, Sweeney (2002b) identified the medical records
of William Weld, then governor of Massachusetts, by linking voter registration records
to anonymized Massachusetts Group Insurance Commission (GIC) medical encounter
data, which retained the birth date, sex, and zip code of the patient.

In relation to the security of individual data, the computer science literature (e.g.,
Samarati and Sweeney (1998), Sweeney (2002a, 2002b), Aggarwal, Feder, Kenthapadi,
Motwani, Panigrahy, Thomas, and Zhu (2005), LeFevre, DeWitt, and Ramakrishnan
(2005, 2006), Ciriani, di Vimercati, Foresti, and Samarati (2007)) has developed and im-
plemented the so-called k-anonymity approach. A data base instance is said to provide
k-anonymity, for some number k, if every way to single an individual out of the data
base returns records for at least k individuals. In other words, anyone whose informa-
tion is stored in the data base can be “confused” with k others. Under k-anonymity, a
data combination procedure will respect the required bound on the disclosure risk. We
describe this in Section 2.3 and use it in the empirical part. An alternative solution is in
the use of synthetic data and a related notion of differential privacy, for example, Dwork

3This is not what we are using in this paper as our data combination rule is deterministic.
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and Nissim (2004), Dwork (2006), and Abowd and Vilhuber (2008), as well as Duncan and
Lambert (1986), Duncan and Mukherjee (1991), Duncan and Pearson (1991), Fienberg
(1994, 2001), and Duncan, Fienberg, Krishnan, Padman, and Roehrig (2001), Abowd and
Woodcock (2001), Kinney, Reiter, Reznek, Miranda, Jarmin, and Abowd (2011), and Hu,
Reiter, and Wang (2014), among others.

We note that while the computer science literature has alluded to the point that data
protection may lead to certain trade-offs in data analysis, data protection has never been
considered in the context of model identification. For instance, a notion of “data utility”
has been introduced that characterizes the accuracy of a statistical function that can
be evaluated from the released data (e.g., see Lindell and Pinkas (2000), Karr, Kohnen,
Oganian, Reiter, and Sanil (2006), Brickell and Shmatikov (2008), Woo, Reiter, Oganian,
and Karr (2009)), and it was found that existing data protection approaches lead to a
decreasing quality of inference from the data measured in terms of this utility.

Our paper is also related to the literature on partial identification of models with
contaminated or corrupted data, even though our identification approach is new.
Manski (2003, 2007), and Horowitz and Manski (1995) note that data errors or data
modifications pose identification problems and generally result in only set identifica-
tion of the parameter of interest. Manski and Tamer (2002) and Magnac and Maurin
(2008) give examples where—for confidentiality or anonymity reasons—the data may
be transformed into interval data or some attributes may be suppressed, leading to the
loss of point identification of the parameters of interest. Consideration of the general
setup in Molinari (2008) allows one to assess the impact of some data anonymization
as a general misclassification problem. Cross and Manski (2002) and King (1997) study
the ecological inference problem where a researcher needs to use the data from several
distinct data sets to conduct inference on a population of interest. In ecological infer-
ence, several data sets, usually of aggregate data, are available. Making inferences about
micro-units or individual behavior in this case is extremely difficult because variables
that allow identification of units are not available. Cross and Manski (2002) show that
the parameters of interest are only partially identified. We note that in our case the data
contain individual observation on micro-units and there is a limited overlap between
two data sets, making the inference problem dramatically different from ecological in-
ference. Pacini (2016) considers estimation and inference on identified sets in linear re-
gression models when the dependent variable is not observed together with covariates
but some information is available on the conditional distribution of regressors condi-
tional on another variable observed together with the outcome variable.

Our analysis relies on the data combination to estimate the econometric model of
interest. A train of recent literature in statistics, including Larsen (2005), Tancredi, Liseo
et al. (2011), Chipperfield et al. (2011), and Kim and Chambers (2012), establishes con-
sistency for estimation of standard models, such as the regression model, when the data
combination procedure is defined parametrically or it is based on exactly matching ob-
servations to combine the data sets based on one or more predefined variables. Our
contribution to this literature is the development of identification properties of econo-
metric models based on combined data for a nonparametric data combination proce-
dure when a deterministic a priori criterion for matching observations is not available.
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Though less directly related to our analysis, there is also a literature within eco-
nomics that considers privacy as something that may have a subjective value for con-
sumers (see Acquisti (2004)) rather than a formal guarantee against intruders’ attacks.
Considering personal information as a “good” valued by consumers leads to impor-
tant insights in the economics of privacy. As seen in Varian (2009), this approach al-
lows researchers to analyze the release of private data in the context of the trade-off
between the network effects created by the data release and the utility loss associated
with this release. The network effect can be associated with the loss of competitive ad-
vantage of the owner of personal data, as discussed in Taylor (2004), Acquisti and Varian
(2005), and Calzolari and Pavan (2006). Consider the setting where firms obtain a com-
parative advantage due to the possibility of offering prices that are based on past con-
sumer behavior. Here, a subjective individual perception of privacy is important. This
is clearly shown in both the lab experiments in Gross and Acquisti (2005) and Acquisti
and Grossklags (2008), as well as in the real-world environment in Acquisti, Friedman,
and Telang (2006), Miller and Tucker (2009), and Goldfarb and Tucker (2010). Given all
these findings, we believe that disclosure protection is a central theme in the privacy
discourse, as privacy protection is impossible without data protection.

2. Econometric model

2.1 Model and data structure

In this section, we formalize the empirical model based on the joint distribution of the
observed outcome variable Y distributed on Y ⊂ R

m and individual characteristics X
distributed on X ⊂ R

k that needs to be estimated from the individual level data. We
assume that the parameter of interest is θ0 ∈Θ⊂R

l, whereΘ is a convex compact set.
We characterize the parameter of interest by a conditional moment restriction that,

for instance, can describe the individual demand or decision,

E
[
ρ(Y�X�θ0)|X = x]= 0� (1)

where ρ(·� ·� ·) is a known function with the values in R
p. We assume that ρ(·� ·� ·) is con-

tinuous in θ and for almost all x ∈X ,

E
[∥∥ρ(Y�X;θ)∥∥|X = x]<∞ for any θ ∈Θ�

We focus on a linear separable model for ρ(·� ·� ·) as our lead example, which can be
directly extended to monotone nonlinear models.

In a typical internet environment, the outcome variable may reflect individual con-
sumer choices by characterizing purchases in an online store, specific messages on a
discussion board, comments on a rating website, or a profile on a social networking
website. Consumer characteristics are relevant sociodemographic characteristics such
as location, demographic characteristics, and social links with other individuals. We as-
sume that if the true joint distribution of (Y�X) were available, one would be able to
point identify parameter θ0 from the condition (1). Formally we write this as the follow-
ing assumption.
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Assumption 1. Parameter θ0 is uniquely determined from the moment equation (1) and
the conditional distribution of Y |X .

As an empirical illustration, in Section 5 we estimate a model the relates the house-
hold decision to withdraw a child from schooling to the religious affiliation of the house-
hold and the child’s gender as well as the characteristics of the neighborhood. The out-
come variable corresponds to the number of completed year of schooling by each child
in the household. In this context, we are interested in separating the household-level ef-
fect from the neighborhood effect. However, the latest distribution of the survey that we
use does not have neighborhood identifiers.

In our data, however, we were able to trace back the original neighborhood identi-
fiers that were used in the early distributions of the survey that we used. That allowed
us to construct a (now infeasible) merged data set that combines individual household
characteristics with the neighborhood characteristics that we take from the Russian
Census data. In this case Y corresponds to the set of household-level variables and X
corresponds to the set of neighborhood variables. The current distribution of the survey
does not contain the neighborhood-level variables.

As a result, the variables of interest Y and X are not observed jointly. One can only
separately observe the data set containing the values of Y and the data set containing
the values ofX for subsets of the same population.

The following assumption formalizes the idea of the data sample broken into two
separate data sets.

Assumption 2.

(i) The population is characterized by the joint distribution of random vectors
(Y�W �X�V ) distributed on Y ×W ×X × V ⊂R

m ×R
q ×R

k ×R
r .

(ii) The (infeasible) data sample {yi�wi�xi� vi}N0
i=1 is a random sample from the popu-

lation distribution of the data.

(iii) The observable data are formed by two independently created random data sub-
samples from the sample of sizeN0 such that the first data subsample is Dyw = {yj�wj}Nyj=1

and the second subsample is Dxv = {xi� vi}Nxi=1.4

(iv) Any individual in Dyw is present in Dxv. In other words, for each (yj�wj) in Dyw
there exists (xi� vi) in Dxv such that (yj�wj) and (xi� vi) correspond to the same individ-
ual.5

4Our analysis applies to other frameworks of split data sets. For instance, we could consider the case
when some of the variables in x (but not all of them) are observed together with y . This is the situation we
deal with in our empirical illustration. The important requirement in our analysis is that at least some of
the relevant variables in x are not observed together with y .

5This part of the assumption can be relaxed by allowing Dyw and Dxv to overlap rather than the former
to be nested in the latter. In this case, we would replace the requirementNy → ∞ later in the paper with the
requirement that the size of the overlap goes to infinity. When there is no common individual between Dyw

and Dxv , then the procedures suggested in this paper will not work, but some ecological inference methods
can be used; see, for example, Cross and Manski (2002) and King (1997), among others.
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Assumption 2 characterizes the observable variables as independently drawn subsam-
ples of the infeasible “master” data set. This means that without any additional informa-
tion, one can only reconstruct distributions FX�V of (X�V ) and FY�W of (Y�W ), but this
is not enough to learn the joint distribution FY�X of (Y�X), even though one can use the
Fréchet sharp bounds on FY�X in terms of the marginal distributions FY and FX , or on
FY�W �X�V in terms of the distributions FY�W and FX�V .

Example 1. For linear models without any additional information, identification with
split sample data comes down to computing Fréchet bounds. For example, in a bivariate
linear regression of random variable Y on random variableX with Var[X]> 0, the slope
coefficient can be expressed as b0 = cov(Y�X)

Var[X] . Because the joint distribution of Y andX
is unknown, cov(Y�X) cannot be calculated even if the marginal distributions of Y and
X are available.

As a result, the only information that allows us to draw conclusions about the joint
moments of the regressor and the outcome can be summarized by the Cauchy–Schwarz
inequality | cov(Y�X)| ≤ √

Var[Y ]√Var[X], which gives the sharp bounds on cov(Y�X).
Therefore, we can determine the slope coefficient only up to a set:

−
√

Var[Y ]
Var[X] ≤ b0 ≤

√
Var[Y ]
Var[X] �

As we can see, the bounds on b0 are extremely wide, especially when there is not much
variation in the regressor. Moreover, we cannot even identify the direction of the rela-
tionship between the regressor and the outcome, which is of interest in many economic
applications.

The information contained in vectors V and W is not necessarily immediately use-
ful for the econometric model that is being estimated. However, this information can
help us to construct measures of similarity between observations yj in data set Dyw and
observations xi in data set Dxv. Random vectors W and V are very likely to be highly
correlated for a given individual but uncorrelated across different individuals. In our em-
pirical example, the main survey data set that we use contains the identifier for a large
geographic region in Russia (equivalent to a US state in terms of scale) as well as the
identifier for the neighborhood. The Russian Census data can be obtained on the level
of the neighborhood. Thus, if the neighborhood identifiers are available, then W and
V are perfectly matching, placing a given household in its neighborhood. However, the
neighborhood identifiers have been removed in the recent distributions of our survey.
Therefore, V are larger geographic region identifiers andW (corresponding to the iden-
tifier in the Russian Census) contains both the neighborhood identifier and the larger
region identifier. In principle, we can expand the set of variables in V and W , for in-
stance, including household demographics, income, property, and health data in V and
including the neighborhood averages contained in the Russian Census as a part of W .
Then we can use a weighted Euclidean distance between V andW as a measure of sim-
ilarity. This measure of similarity will be used to combine observations in the two data
sets.
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2.2 Identifiers and decisions rules for data combination

Our data linkage procedure is based on comparing the value of an identifier Zy con-
structed for each observation in the main data set with the value of an identifierZx con-
structed for each observation in the auxiliary data set. These identifiers are random vec-
tors that can consist of both numerical and string variables. The functionZx =Zx(X�V )
is a multivariate function of X and some auxiliary random vector V observed together
with X , whereas Zy = Zy(W ) is a multivariate function of an auxiliary random vector
W observed together with Y . Thus, identifiers constructed in the data set of outcome
variables Y are assumed not to be determined by the values of those outcomes. We sup-
pose that these identifiers Zy and Zx are constructed in such a way that they have the
same dimension and the same support. Our combination rule is based on comparing
the values of zyi and zxi for each j = 1� � � � �Ny and each i= 1� � � � �Nx.

Namely, we describe the linkage procedure employed by the data curator by means
of a binary decision rule DN(yj� zyj � xi� zxi ), whereN ≡ (Ny�Nx), such as

DN
(
yj� z

y
j � xi� z

x
i

)= {1� if zyj and zxi satisfy certain conditions�

0� otherwise�

If DN(yj� zyj � xi� zxi )= 1, this means that observations j from the main data set and i from

the auxiliary data set can potentially be linked. If DN(yj� zyj � xi� zxi ) = 0, then we do not

consider j and i to be a possible match. Conditions in the definition of DN(yj� zyj � xi� zxi )
are chosen by the data curator and in general depend onN , features of the data, and ob-
jectives on the nondisclosure guarantees discussed later in the paper. A specific feature
of such a decision rule is that these conditions do not depend on the values of yj and xi
and only depend on the values of zyj and zxi .

Decisions rules used in this paper are based on a chosen distance between zyj and zxi .
Without a loss of generality, suppose that Zy = (Zy�n�Zy�s) and Zx = (Zx�n�Zx�s), where
Zy�n andZx�n are random subvectors of the same dimension that contain all the numeric
variables in Zy and Zx, respectively, and where Zy�s and Zx�s are random subvectors of
the same dimension that contain all the string variables in Zy and Zx. Then we can
define a distance d(zyj � d

x
i ) between zyj and zxi as

d
(
z
y
j � d

x
i

)=ωn∥∥zy�nj − zx�ni
∥∥
E

+ωs
∥∥zy�sj − zx�si

∥∥
S
�

where ‖ · ‖E denotes the Euclidean distance, ‖ · ‖S stands for a distance between strings
(e.g., the edit distance), and ωn�ωs ≥ 0 are weights. Below we give some examples of
decision rules.

Notation. Letmij be the indicator of the event that j and i are the same individual.

Example 2. A decision rule can be chosen as

DN
(
yj� z

y
j � xi� z

x
i

)= 1
{
d
(
z
y
j � z

x
i

)
<αN

}
� (2)
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The properties of this decision rule, such as the behavior of probabilities of making link-
age errors asNy�Nx → ∞, would depend on the behavior of the sequence of thresholds
{αN } and the properties of the joint distribution of (Y�Zy�X�Zx).

Suppose that Zy and Zx contain a common variable (e.g., a binary variable for gen-
der). It is clear that in this case j and i can be a potential match only if the values of this
variable coincide. Let us denote this variable as Zy�g in the main data set and as Zx�g in
the auxiliary data set. Then the distance for the decision rule (2) can be defined as

d
(
z
y
j � z

x
i

)= {ωN∥∥zy�nj − zx�ni
∥∥
E

+ωs
∥∥zy�sj − zx�si

∥∥
S
� if zy�gj = zx�gi �

∞� otherwise.

This idea can be extended to any situation when data linkage is partly based on the
values of discrete variables whose values must coincide exactly for the same individual.

We focus on two types of data combination procedures. Procedures of the first type
look only at observations with infrequent values of zxi . To the best of our knowledge,
this paper offers the first formal analysis of record linkage based on infrequent obser-
vations. Procedures of the second type employ decision rules that satisfy the property of
k-anonymity suggested in the computer science literature.

2.3 Data combination from observations with infrequent values

Let us define the norm of zxi as ‖zxi ‖ = ωn‖zx�ni ‖E + ωs‖zx�si ‖S . Analogously, the norm
of zyj is ‖zyj ‖ = ωn‖zy�nj ‖E + ωs‖zy�sj ‖S . By infrequent attributes we mean the values of
identifiers in the tails.

We suppose that all the variables inZx andZy are either discrete or continuous with
respect to the Lebesgue measure. For technical simplicity, we also suppose that at least
one variable in Zx (and, analogously, in Zy ) is continuous with respect to the Lebesgue
measure, which implies that the norms ‖Zx‖ and ‖Zy‖ are continuous with respect to
the Lebesgue measure too.

Assumption 3. There exists ᾱ > 0 such that for any 0< α < ᾱ, the following statements
hold.

(i) Proximity of identifiers with extreme values:

Pr
(
d
(
Zy�Zx

)
<α|X = x�Y = y�∥∥Zx∥∥> 1

α

)
≥ 1 − α�

(ii) Nonzero probability of extreme values:

lim
α→0

sup
x�y

∣∣∣∣Pr
(∥∥Zx∥∥> 1

α
|X = x�Y = y

)/
φ(α)− 1

∣∣∣∣= 0�

lim
α→0

sup
x�y

∣∣∣∣Pr
(∥∥Zy∥∥> 1

α
|X = x�Y = y

)/
ψ(α)− 1

∣∣∣∣= 0

for some nondecreasing and positive at α> 0 functions φ(·) and ψ(·).
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(iii) Redundancy of identifiers in the full data:6

FY |X�Zx�Zy
(
y|X = x�Zx = zx�Zy = zy)= FY |X(y|X = x)�

where FY |X�Zx�Zy denotes the conditional cumulative distribution function (CDF) of Y
conditional on X , Zx, and Zy , and FY |X denotes the conditional CDF of Y conditional
onX .

(iv) Uniform conditional decay of the tails of identifiers’ densities: There exist positive
at large z functions g1(·) and g2(·) such that

lim
z→∞ sup

x

∣∣∣∣f‖Zx‖|X(z|X = x)
g1(z)

− 1
∣∣∣∣= 0�

lim
z→∞ sup

y

∣∣∣∣f‖Zy‖|Y (z|Y = y)
g2(z)

− 1
∣∣∣∣= 0�

where f‖Zx‖|X denotes the conditional density of ‖Zx‖ conditional on X , and f‖Zy‖|Y de-
notes the conditional density of ‖Zy‖ conditional on Y .

Assumption 3 implies that the ordering of the values of ‖Zy‖ and ‖Zx‖ is meaningful
and that the tails of the distributions of ‖Zx‖ and ‖Zy‖ contain extreme values. If we
considered a situation when all the variables in Zy and Zx were discrete, this would
mean that at least one of these variables has a denumerable support. Ridder and Moffitt
(2007) overview cases where a priori available numeric identifiers Zy and Zx are jointly
normally distributed random variables, but we avoid making such specific distributional
assumptions.

Assumption 3(i) states that for infrequent observations—those for which the values
of ‖Zx‖ are in the tail of the distribution f‖Zx‖|X�Y—the values of Zy and Zx are very
close, and become arbitrarily close as the mass of the tails approaches 0.

Functions φ(·) and ψ(·) in Assumption 3(ii) characterize the decay of the marginal
distributions of ‖Zx‖ and ‖Zy‖ at the tail values. The assumptions on these functions
imply that

lim
α→0

Pr
(∥∥Zx∥∥> 1

α
|X = x

)/
φ(α)= 1� lim

α→0
Pr
(∥∥Zy∥∥> 1

α
|Y = y

)/
ψ(α)= 1�

and therefore φ(·) and ψ(·) can be estimated from the split data sets. Moreover, our as-
sumption on the existence of densities for the distributions of ‖Zx‖|X and ‖Zy‖|Y im-
plies that without loss of generality, functions φ(·) and ψ(·) are absolutely continuous.

Assumption 3(iii) states that for a pair of correctly matched observations from the
two data bases, their values of identifiers Zx and Zy do not add any information regard-
ing the distribution of the outcome Y conditional on X . In other words, if the data sets

6It is enough to just impose Assumption 3(iii) under the event described in Assumption 3(i). In this case,
we can generalize the definition of Zy = Zy(W ) to a function Zy = Zy(Y�W ) that can depend on Y and
require the redundancy (conditional independence) only in those infrequent events. This kind of an ex-
tension can be important in some applications where Y directly contains some information on X , which
should help link the two data sets.
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are already correctly combined, the constructed identifiers only label observations and
do not improve any knowledge about the economic model that is being estimated. For
instance, if the data combination is based on the names of individuals, then once we
extract all model-relevant information from the name (for instance, whether a specific
individual is likely to be male or female, or white, black, or Hispanic) and combine the
information from the two data bases, the name itself will not be important for the model
and will only play the role of a label for a particular observation. Assumption 3(iii) can
be violated, for example, if Zx and Zy are proxies for a random vector Z,

Zx =Z + ux� Zy =Z + uy�
and measurement errors ux and uy are not independent ofX and Y .

Function g1(·) (g2(·)) in Assumption 3(iv) describes the uniform over x (over y) rate
of the conditional density of ‖Zx‖ conditional onX (‖Zy‖ conditional onY ) for extreme
values of ‖Zx‖ (‖Zy‖). If Assumption 3(iv) holds, then necessarily

lim
z→∞

φ′
(

1
z

)
z2g1(z)

= 1� lim
z→∞

ψ′
(

1
z

)
z2g2(z)

= 1�

We recognize that Assumption 3 puts restrictions on the behavior of infrequent (tail)
realizations of identifiers Zx and Zy . Specifically, we expect that conditional on ‖Zx‖
taking a high value, the values of identifiers constructed from two data sets must be
close. We illustrate this assumption with our empirical application, where different ge-
ographic regions in Russia have different population density. As a result, linking the
regional data with the household-level neighborhood data will lead to higher quality
matches in less populated regions.

Remark 1. Assumption 3(iii) can be relaxed to allow for situations when matching is
based on income, health, or demographic characteristics that would also be included
among the regressors. But weakening of Assumption 3(iii) has to be done together with
imposing stricter requirements on the distance function d(·� ·).

Suppose that Zy = (Z̃y� ˜̃Zy), Zx = (Z̃x� ˜̃Zx), and X = (X̃� ˜̃X), where Z̃x = X̃ , and
Z̃y in the main data set and X̃ in the auxiliary data set contain common variables (e.g.,
discrete variables for age and gender). Suppose that the distance for the decision rule is
defined in such a way that

d
(
z
y
j � z

x
i

)= ∞ if z̃
y
j �= x̃i�

that is, individuals j and i with different observations for age or gender cannot possibly
be matched. Then instead of Assumption 3(iii), we can impose the weaker restriction

F
Y |X� ˜̃Zx� ˜̃Zy

(
y|X = x� ˜̃Zx = ˜̃zx� ˜̃Zy = ˜̃zy)= FY |X(y|X = x)�

Remark 2 (k-anonymity). The description of the k-anonymity approach can be found
in Samarati and Sweeney (1998), Sweeney (2002a, 2002b), among others. We describe it
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here for the purpose of illustrating how the k-anonymity rule would translate into the
properties of the decision rule.

Given the binary decision rule DN(yj� zyj � xi� zxi ) in (5), we say that the k-anonymity
property is implemented if, for each observation j in the main data set, j = 1� � � � �Ny ,
one of the following conditions hold:

(a) We have DN(yj� zyj � xi� zxi ) = 0 for all i = 1� � � � �Nx; that is, j cannot be combined
with any individual i in the auxiliary data set.

(b) We have
∑Nx

i=1 DN(yj� z
y
j � xi� z

x
i ) ≥ k; that is, for j there are at least k equally good

matches in the auxiliary data set.

Under the rule of k-anonymity, for any j from Dy and any i from Dx,

Pr
(
mij = 1|DN

(
yj� z

y
j � xi� z

x
i

)= 1�Dy�Dx
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0� if
Nx∑
l=1

DN
(
yj� z

y
j � xl� z

x
l

)= 0�

1
Nx∑
l=1

DN
(
yj� z

y
j � xl� z

x
l

) � otherwise�

Clearly, it always holds that

Pr
(
mij = 1|DN

(
yj� z

y
j � xi� z

x
i

)= 1�Dy�Dx
)≤ 1

k
� (3)

The binary decision rule for k-anonymity does not have to be based on infrequent ob-
servations and can use much more general ideas. One only has to guarantee that (3)
holds.

3. Implementation of data combination and implications for identity

disclosure

In this section, we characterize in more detail the class of data combination procedures
that we use in this paper, introduce the formal notion of identity disclosure, and charac-
terize a subclass of data combination procedures that are compatible with a bound for
the risk of identity disclosure. We suppose henceforth that Assumptions 1–3 hold.

3.1 Implementation of data combination

In our model, the realizations of random variables Y and X are contained in disjoint
data sets. After constructing identifiers Zy and Zx, we directly observe the empiri-
cal distributions of (Y�Zy) and (X�Zx). Even though these two distributions provide
some information about the joint distribution of (Y�X), such as Fréchet bounds, they
do not fully characterize it if no data combination whatsoever is conducted, and thus,
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there are many joint distributions of (Y�X) (or, more generally, joint distributions of
(Y�Zy�X�Zx)) consistent with the observed distributions of (Y�Zy) and (X�Zx).7

We can hope to identify the econometric model only if the two data sets are com-
bined for at least some observations and thus, more information becomes available
about the dependence structure between vectors (Y�Zy) and (X�Zx), from which we
can consequently obtain more information about the dependence structure between Y
and X . The best case scenario from the identification point of view occurs if our data
combination procedure allows us to learn the copula describing the true joint distribu-
tion of (Y�Zy�X�Zx) as a function of two separate distributions of (Y�Zy) and (X�Zx).
This would automatically give us the copula describing the true joint distribution of
(Y�X) as a function of the marginal distributions of Y and X , and then we would be
able to point identify θ0 using (1). Whether this scenario will occur clearly depends on
the quality of the data combination procedure.

Now let us describe data combination procedures in more detail. Once the identi-
fiers Zy and Zx are constructed, we have the two split data sets

Dy = {yj� zyj }Nyj=1� Dx = {xi� zxi }Nxi=1� (4)

Provided that the indexes of matching entries are not known in advance, the entries with
the same index i and j do not necessarily belong to the same individual.

We base our decision rule on the postulated properties in Assumption 3,

DN
(
yj� z

y
j � xi� z

x
i

)= 1
{
d
(
z
y
j � z

x
i

)
<αN�

∥∥zxi ∥∥> 1/αN
}

(5)

for a chosen αN such that 0 < αN < ᾱ. We notice that for each rate rN → ∞ there is
a whole class of data combination rules DN(yj� zyj � xi� zxi ) corresponding to all threshold
sequences for which αNrN converges to a nonzero value asNy�Nx → ∞. As is clear from
our results later in this section, the rate rN is what determines the asymptotic properties
of the data combination procedure. Provided that the focus of this paper is on identi-
fication rather than estimation in the context of data combination, in the remainder of
the paper, our discussion about a data combination rule refers to the whole class of data
combination rules characterized by the threshold sequences with a given rate.

Consider an observation i from Dx such that ‖zxi ‖ ≥ 1/αN . If we find a data entry j
from the data set Dy such that d(zyj � z

x
i ) < αN , then we consider i and j as a potential

match. In other words, if identifiers zxi and zyj are both large and are close, then we con-

sider (xi� zxi ) and (yj� z
y
j ) as observations that possibly correspond to the same individ-

ual. This seems to be a good strategy when αN is small because, according to Assump-
tion 3, when the pair (Zx�Zy) is drawn from their true joint distribution, the conditional
probability of Zx and Zy taking proximate values when Zx is large in the absolute value
is close to 1. Even though the decision rule is independent of the values of xi and yj , the

7This means that we would have to consider all such compatible joint distributions of (Y�X)when trying
to determine the parameter of interest using (1). Intuitively, any compatible joint distribution of (Y�X)
would give us a different value of the parameter of interest, which means that the parameter of interest can
only be determined up to a set. Thus, the econometric model of interest is not identified from the available
information about the distributions of (Y�Zy) and (X�Zx).
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probability Pr(mij = 1|DN(yj�xi� zyj � zxi )�xi = x� yj = y�Dx�Dy) for a finite N = (Nx�Ny)

can depend on these values (and also depend on the sizes of data sets Dx and Dy ) and
therefore can differ across pairs of i and j.

Using the combination rule DN(·), for each j ∈ {1� � � � �Ny} from the data base Dy , we
try to find an observation i from the data base Dx that satisfies our matching criteria and
thus presents a potential match for j. We can then add the “long” vector (yj� z

y
j � xi� z

x
i )

to our combined data set if neither (yj� z
y
j ) for this specific j nor (xi� zxi ) for this spe-

cific i enters the combined data set as subvectors of other long observations. In other
words, if there are several possible matches i from Dx for some j in Dy (or several possi-
ble matches j from Dy for some i in Dx), we can put only one of them in our combined
data set. Mathematically, each combined data set GN can be described by an Ny ×Nx

matrix {dji� j = 1� � � � �Ny; i = 1� � � � �Nx} of 0s and 1s that satisfies the following condi-
tions:

(a) We have dji = 1 if observations (yj� z
y
j ) and (xi� zxi ) are matched; dji = 0 otherwise.

(b) For each j = 1� � � � �Ny ,
∑Nx

i=1 dji ≤ 1 (i.e., each j can be added to our combined data
set with at most one i).

(c) For each i= 1� � � � �Nx,
∑Ny

j=1 dji ≤ 1 (i.e., each i can be added to our combined data
set with at most one j).

Because some j in Dy or some i in Dx can have several possible matches, several dif-
ferent combined data sets GN can be constructed. The data curator decides which one
of these combined data sets to use (e.g., it can be chosen randomly or the data curator
could choose a different selection principle). Once the data curator chooses some GN ,
from this combined data set she deletes the data on zyj and zxi , leaving only the data

on linked pairs (yj�xi). This reduced data set GxyN is released to the public along with
some information about the properties of identifiers. This information is used by the re-
searchers to conduct the identification analysis. Even though the data set Dxv = {(xi� vi)}
is publicly available and, thus, the researcher can potentially construct some identifiers
(possibly similar to zxi ) from that data set, the researcher is not given any data onwj and,
thus, would not be able to construct identifiers similar to zyj (or any other identifiers for
observations yj).

Our identification approach in Section 4 takes into account all possible combined
data sets and takes into account the probabilities of making data combination errors.

Consider an observation i from Dx such that ‖zxi ‖ ≥ 1/αN . Two kinds of errors can
be made when finding entry i’s counterpart in the data set Dy .

(i) Data combination errors of the first kind occur when the decision rule links an
observation j from Dy to i, but in fact j and i do not correspond to the same individual.
For the two given split data sets, the probability of an error of this kind is

Pr
(
d
(
z
y
j � z

x
i

)
<αN |∥∥zxi ∥∥> 1/αN�xi = x� yj = y�mij = 0�Dy�Dx

)
or

Pr
(
d
(
Z̃y�Zx

)
<αN |∥∥Zx∥∥> 1/αN�X = x� Ỹ = y)�
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where (X�Zx) and (Ỹ � Z̃y) are independent random vectors with the distributions
FX�Zx and FY�Zy , respectively.

(ii) Data combination errors of the second kind occur when observations j and i do
belong to the same individual but the procedure does not identify these two observa-
tions as a potential match (we still consider i such that ‖zxi ‖ ≥ 1/αN ). For the two given
split data sets, the probability of an error of this kind is

Pr
(
d
(
z
y
j � z

x
i

)≥ αN |∥∥zxi ∥∥> 1/αN�xi = x� yj = y�mij = 1�Dy�Dx
)

or

Pr
(
d
(
Zy�Zx

)≥ αN |∥∥Zx∥∥> 1/αN�X = x�Y = y)� (6)

where (Y�X�Zx�Zy) is distributed with FY�X�Zx�Zy . Assumption 3 guarantees that (6)
converges to 0 as αN → 0.

While the second kind of error vanishes as one considers increasingly infrequent
values, the behavior of the probability of the first kind of error depends on the rate of αN
and can be controlled by the data curator. As we establish later in this section, this rate
can be chosen, for example, in such a way that the probability of the first kind of error
will be separated away from 0 even for arbitrarily large split data sets.

3.2 Risk of disclosure

What we notice so far is that given that there is no readily available completely reliable
similarity metric between the two data bases, we rely on the probabilistic properties of
the data. As a result, in estimation we have to resort to using only the pairs of combined
observations. If correct matches are made with a sufficiently high probability, this may
pose a potential problem if one of the two data sets contains sensitive individual-level
information. The only way to avoid such an information leak is to control the accuracy
of utilized data combination procedures. In particular, we consider controlling the error
of the first kind.

For technical convenience, in the remainder of the paper we consider the case when
Zy and Zx are random variables, and the distance d(Zy�Zx) is defined as |Zy − Zx|.
Then the decision rule is

DN
(
yj� z

y
j � xi� z

x
i

)= 1
{∣∣zyj − zxi

∣∣<αN� ∣∣zxi ∣∣> 1/αN
}
� (7)

Propositions 1 and 2, which appear later in this section, give conditions on the se-
quence of αN , αN → 0, that are sufficient to guarantee that the probability of the error of
the first kind vanishes as Ny → ∞. Proposition 3 give conditions on αN , αN → 0, under
which the probability of the error of the first kind is separated away from 0 asNy → ∞.

For given split data sets Dy of size Ny and sets Dx of size Nx as in (4), and given y
and x, consider the conditional probability

pNij
(
x� y�Dx�Dy

)= Pr
(
mij = 1|xi = x� yj = y� ∣∣zxi ∣∣> 1

αN
�
∣∣zyj − zxi

∣∣<αN�Dx�Dy) (8)

of a successful match of (yj� z
y
j ) from Dy with (xi� zxi ) from Dx.
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According to our discussion, potential privacy threats occur when one establishes
that a particular combined data pair (yj�xi� z

y
j � z

x
i ) is correct with a high probability.

This is the idea that we use to define the notion of the risk of identity disclosure. Our
definition of the risk of disclosure in possible linkage attacks is similar to the definition
of the pessimistic disclosure risk in Lambert (1993). We formalize the pessimistic disclo-
sure risk by considering the maximum probability of a successful linkage attack over all
individuals in a data base.

Since by Assumption 2(iv), Nx ≥Ny , all of our asymptotic results will be formulated
as those obtained whenNy → ∞ since this also implies thatNx → ∞.

Definition 1. A bound guarantee is given for the risk of disclosure if

sup
x�y

sup
Dx�Dy

sup
i�j
pNij
(
x� y�Dx�Dy

)
< 1

for allN , and there exists 0< γ ≤ 1 such that

sup
x�y

lim sup
Ny→∞

sup
Dx�Dy

sup
i�j
pNij
(
x� y�Dx�Dy

)≤ 1 − γ� (9)

The value of γ is called a bound on the disclosure risk.

Our definition of the disclosure guarantee requires, first of all, that for any two finite
data sets Dy and Dx and any matched pair, the value of pNij (x� y�Dx�Dy) is strictly less
than 1. In other words, there is always a positive probability of making a linkage mistake.
However, even if probabilities pNij (x� y�Dx�Dy) are strictly less than 1, they may turn out
to be very high when Ny is sufficiently large and αN is sufficiently small. Our definition
of the disclosure guarantee requires that such situations do not arise. The value of γ is
the extent of the nondisclosure risk guarantee.

An important practical question is whether there exist (classes of the) decision rules
that guarantee a specified bound on the disclosure risk. Below we present results that
indicate, first, that for a given bound on the disclosure risk, we can find sequences of
thresholds such that the corresponding decision rules honor this bound, and, second,
that the rates of convergence for these sequences depend on the tail behavior of identi-
fiers used in the data combination procedure. Propositions 1 and 3 give general results.

Proposition 1. Suppose Assumptions 2 and 3 hold. Suppose that for given nonde-
creasing and positive for α ∈ (0� ᾱ) functions φ(·) and ψ(·), the sequence of αN → 0 (as
Ny → ∞) is chosen in such a way that

Nx

φ(αN)

∫ ∞
1
αN

(
ψ

(
1

z− αN
)

−ψ
(

1
z+ αN

))φ′
(

1
z

)
z2 dz→ 0 (10)

asNy → ∞. Then

inf
x∈X �y∈Y

inf
Dx�Dy

inf
i�j
pNij
(
x� y�Dx�Dy

)→ 1 asNy → ∞�

The result of Proposition 1 implies the result in Proposition 2.
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Proposition 2 (Absence of nondisclosure risk guarantee). Suppose the conditions in
Proposition 1 hold. Then nondisclosure is not guaranteed.

The result of Proposition 1 is stronger than that of Proposition 2 and will provide
an important link between the absence of nondisclosure risk guarantees and the point
identification of the parameter of interest discussed in Theorem 1.

The next proposition describes instances in which nondisclosure can be guaranteed.

Proposition 3 (Nondisclosure risk guarantee). Suppose Assumptions 2 and 3 hold.
Suppose that for given nondecreasing and positive for α ∈ (0� ᾱ) functions φ(·) and ψ(·),
the sequence of αN → 0 (asNy → ∞) is chosen in such a way that

lim inf
Ny→∞

Nx

φ(αN)

∫ ∞
1
αN

(
ψ

(
1

z− αN
)

−ψ
(

1
z+ αN

))φ′
(

1
z

)
z2 dz > 0� (11)

Then nondisclosure is guaranteed.

The proofs of Propositions 1–3 are given in the Appendix.
Propositions 2 and 3 demonstrate that the compliance of the decision rule generated

by a particular threshold sequence with a given bound guarantee for the disclosure risk
depends on the rate at which the threshold sequence converges toward zero as the sizes
of Dy and Dx increase.

The decision rules that we constructed are well defined, and there exists a nonempty
class of sequences of thresholds that can be used for data combination and that guar-
antee the avoidance of identity disclosure with a given probability. The rate of these se-
quences depends on the tail behavior of the identifiers’ distributions. A more detailed
discussion of the choice of threshold sequences can be found in the Supplemental Ma-
terial, available in a supplementary file on the journal website, http://qeconomics.org/
supp/568/supplement.pdf.

4. Analysis of identifiability with combined data

In the previous section, we described the decision rule that can be used to combine data
and its implications for potential identity disclosure. In this section, we characterize the
identification of the econometric model from the combined data set constructed using
the proposed data combination procedure. We also show the implications of the bound
on the disclosure risk for identification.

We emphasize that the structure of our identification argument is nonstandard. In
fact, the most common identification argument in the econometrics literature is based
on finding a mapping between the population distribution of the data and parameters
of interest. If the data distribution leads to a single parameter value, this parameter is
called point identified. However, as we explained in the previous section, the popula-
tion distribution of the immediately available data in our case is not informative, be-
cause it consists of two unrelated marginal distributions corresponding to population

http://qeconomics.org/supp/568/supplement.pdf
http://qeconomics.org/supp/568/supplement.pdf
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distributions generating split samples Dy and Dx. Combination of these two samples
and construction of a combined subsample is only possible when these samples are fi-
nite. In other words, knowing the probability that a given household may reside in a cer-
tain neighborhood is not informative to us. For correct inference we need to make sure
that a combined observation contains the split pieces of information regarding the same
household and does not mis-assign a household to a different neighborhood within the
same region. As a result, our identification argument is based on the analysis of the lim-
iting behavior of identified sets of parameters that are obtained by applying the (finite-
sample) data combination procedure to samples of an increasing size.

The proposition below brings together the conditional moment restriction (1) de-
scribing the model and our threshold-based data combination procedure. This propo-
sition establishes that if there is a “sufficient” number of data entries that we correctly
identify as matched observations, then there is “enough” knowledge about the joint dis-
tribution of (Y�X) to point identify and estimate the model of interest.

Proposition 4. Suppose Assumption 3 holds. For any θ ∈Θ and any α ∈ (0� ᾱ),

E

[
ρ(Y�X;θ)|X = x� ∣∣Zx −Zy ∣∣<α� ∣∣Zx∣∣> 1

α

]
=E[ρ(Y�X;θ)|X = x]� (12)

The proof of this proposition is given in the Appendix.
The result in Proposition 4 is quite intuitive. Record linkage is based on Zx and

Zy , which, by Assumption 3, are unrelated to Y and, hence, unrelated to ρ(Y�X�θ)
givenX . This immediately makes E[ρ(Y�X�θ)|X] = E[ρ(Y�X�θ)|X�G(Zx�Zy)] for any
function G, so we can in particular define G to indicate a high probability of correctly
matched data. In short, we can identify the parameters in the model just by using a sub-
population with relatively infrequent characteristics because they are the observations
that are very likely to be correctly matched, and because information used for matching
is by assumption conditionally independent of the model.

Thus, if the joint distribution of Y and X is known when the constructed identifiers
are compatible with the data combination rule ({|Zx| > 1

α� |Zx − Zy | < α}), then, also
employing Assumption 1, one can conclude that θ0 can be identified and estimated from
the moment equation

E

[
ρ(Y�X;θ0)|X = x� ∣∣Zx −Zy ∣∣<α� ∣∣Zx∣∣> 1

α

]
= 0 (13)

using only observations from the combined data set. This is true even for extremely
small α > 0. Using this approach, we effectively ignore a large portion of observa-
tions of covariates and concentrate only on observations with extreme values of iden-
tifiers. For the population analysis based on (13) it does not matter how small the event
{|Zx −Zy |<α� |Zx|> 1

α } is because Assumption 3(i) and (ii) guarantee that its probabil-
ity is strictly positive. In a sample, if the set of infrequent observation turns out to be very
small, our recommendation to researchers would be to try increasing the dimension of
ZX and Zy by employing more information contained in auxiliary vectors V andW .
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A useful implication of Proposition 4 is that

lim
α↓0

E

[
ρ(Y�X;θ)|X = x� ∣∣Zx −Zy ∣∣<α� ∣∣Zx∣∣> 1

α

]
=E[ρ(Y�X;θ)|X = x]�

Example 3. Here we continue Example 1 and illustrate the identification approach
based on infrequent data attributes in a bivariate linear model. Let Y and X be two
scalar random variables, and let Var[X]> 0. Suppose the model of interest is character-
ized by the conditional mean restriction

E[Y − a0 − b0X|X = x] = 0�

where θ0 = (a0� b0) is the parameter of interest. If the joint distribution of (Y�X) was
known, then by applying the least squares approach, we would find θ0 from the follow-
ing system of equations for unconditional means implied by the conditional mean re-
striction:

0 =E[Y − a0 − b0X]�
0 =E[X(Y − a0 − b0X)

]
�

This system gives b0 = Cov(X�Y)
Var[X] and a0 =E[Y ] − b0E[X].

When using infrequent observations only, we can apply Proposition 4 and identify
θ0 from the “trimmed” moments. The solution can be expressed as

b0 =
E
[
X∗Y ∗]E[1

{∣∣Zx −Zy ∣∣<α� ∣∣Zx∣∣> 1
α

}]
−E[X∗]E[Y ∗]

E
[
X∗2]E[1

{∣∣Zx −Zy ∣∣<α� ∣∣Zx∣∣> 1
α

}]
− (E[X∗])2

a0 = E
[
Y ∗]− b0E

[
X∗]

E

[
1
{∣∣Zx −Zy ∣∣<α� ∣∣Zx∣∣> 1

α

}]1/2 �

whereX∗ = X1{|Zx−Zy |<α�|Zx|> 1
α }

E[1{|Zx−Zy |<α�|Zx|> 1
α }]1/2 and Y ∗ = Y1{|Zx−Zy |<α�|Zx|> 1

α }
E[1{|Zx−Zy |<α�|Zx|> 1

α }]1/2 .

It is worth noting that observations with more common values of identifiers (not
sufficiently far in the tail of the distribution) have a higher probability of resulting in
false matches and are thus less reliable for the purpose of model identification.

Our next step is to introduce a notion of the pseudo-identified set based on the com-
bined data. This notion incorporates several features. First, it takes into account the re-
sult of Proposition 4, which tells us that the information obtained from the correctly
linked data is enough to point identify the model. Second, it takes into consideration
the fact that it is possible to make some incorrect matches, and that the extent to which
the data are mismatched determines how much we can learn about the model. Third, it
takes into account the fact that the data combination procedure is a finite-sample tech-
nique and identification must therefore be treated as a limiting property as the sizes of
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both data sets increase. We start with a discussion of the second feature and then con-
clude this section with a discussion of the third feature.

As before, GN denotes some combined data set of (yj� z
y
j � xi� z

x
i ) constructed from

Dx of sizeNx and Dy of sizeNy by means of a chosen data combination procedure. The
joint density of observations (yj� z

y
j � xi� z

x
i ) in GN can be expressed in terms of the true

joint density of the random vector (Y�Zy�X�Zx) and the marginal densities of (Y�Zy)
and (X�Zx):

fY�Zy�X�Zx
(
yj� z

y
j � xi� z

x
i

)
1(mij = 1)+ fY�Zy

(
yj� z

y
j

)
fX�Zx

(
xi� z

x
i

)
1(mij = 0)�

In other words, if j and i correspond to the same individual, then (yj� z
y
j � xi� z

x
i ) is a draw-

ing from the distribution fY�Zy�X�Zx , whereas if j and i do not correspond to the same
individual, then the subvector (yj� z

y
j ) and the subvector (xi� zxi ) are independent and

are drawn from the marginal distributions fY�Zy and fX�Zx , respectively.
For a given value y ∈ Y and a given value x ∈X , let πN(y�x�GN) denote the propor-

tion of incorrect matches in the set

Syx(GN)= {(yj� zyj )� (xi� zxi ) : yj = y�xi = x�
(
yj� z

y
j � xi� z

x
i

) ∈ GN
}
�

If this set is empty, then πN(y�x�GN) is not defined.
By πN(y�x� {yj� zyj }N

y

j=1� {xi� zxi }N
x

i=1) let us denote the average proportion of incorrect
matches across all possible combined data sets GN that can be obtained from Dy and Dx
according to the chosen data combination. Then we find that

πN
(
y�x�

{
yj� z

y
j

}Ny
j=1�
{
xi� z

x
i

}Nx
i=1

)=
∑
GN
πN(y�x�GN)1

(
Syx(GN) �= ∅)

∑
GN

1
(
Syx(GN) �= ∅)

if
∑
GN

1
(
Syx(GN) �= ∅)> 0�

This value is not defined otherwise (that is, if (yj� z
y
j ) and (xi� zxi ) with yj = y, xi = x are

never combined). Define πN(y�x) as the mean of πN(y�x� {yj� zyj }N
y

j=1� {xi� zxi }N
x

i=1) over all

possible data sets of Ny observations of (yj� z
y
j ) and all possible data sets of Nx obser-

vations of (xi� zxi ) that contain yj that coincide with y and xi that coincide with x. It is
assumed that these data sets originated from split data sets {yj�wj}Nyj=1 and {xi� vi}Nxi=1 that
satisfy Assumption 2.

Next, we define the distribution density for an observation in a “generic” combined
data set of sizeN = (Nx�Ny),

fNY�Zy�X�Zx
(
yj� z

y
j � xi� z

x
i

) = (1 −πN(yj�xi)
)
fY�Zy�X�Zx

(
yj� z

y
j � xi� z

x
i

)
+πN(yj�xi)fY�Zy

(
yj� z

y
j

)
fX�Zx

(
xi� z

x
i

)
for any pairs (yj� z

y
j ) and (xi� zxi ) with DN(yj� zyj � xi� zxi ) = 1. Using this density we can

define the expectation with respect to the distribution of the data in the combined data
set and denote it EN [·].
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In light of the result in (13), we want to consider EN [ρ(y�x;θ)|X = x] and analyze
how close this conditional mean is to 0 and how close it gets to 0 as αN → 0. If, for in-
stance, πN(y�x) approaches 0 almost everywhere, then in the limit we expect this con-
ditional mean to coincide with the left-hand side in (13) and, thus, to take the value of 0
if and only if θ = θ0. Intuitively, the situation is going to be completely different if even
for arbitrarily small thresholds the values of πN(y�x) will be separated away from 0 for
a positive measure of (y�x).

We want to introduce a distance r(·) that measures the proximity of the conditional
moment vector EN [ρ(yj�xi;θ)|xi = x] to 0. We want this distance to take only nonneg-
ative values and to satisfy the following condition in the special case when πN(y�x) is
equal to 0 almost everywhere (a.e.):

r
(
E
[
ρ(Y�X;θ)|X = x])= 0 =⇒ θ= θ0� (14)

The distance function r(·) can be constructed, for instance, by using the idea behind
the generalized method of moments. We consider

r
(
EN
[
ρ(yj�xi;θ)|xi = x

])= gN(θ)′W0g
N(θ)�

where

gN(θ)=EX
[
h(x)EN

[
ρ(yj�xi;θ)|xi = x

]]=EN[h(xi)ρ(yj�xi;θ)]�
with a J×J positive definite matrixW0, and a chosen (nonlinear) J×p, J ≥ k instrument
h(·) such that

E
[
sup
θ∈Θ

∥∥h(X)ρ(Y�X;θ)∥∥]<∞� E∗[sup
θ∈Θ

∥∥h(X)ρ(Ỹ �X;θ)∥∥]<∞� (15)

where EX [·] denotes the expectation over the distribution of X and E∗ denotes the ex-
pectation taken over the distribution fY (̃y)fX(x).

Condition (14) is satisfied if and only if for πN(y�x)= 0 a.e.,

E
[
h(X)ρ(Y�X;θ)]= 0 =⇒ θ= θ0�

In rare situations this condition can be violated for some choices of instruments h(·),8
so h(·) has to be chosen in a way to guarantee that it holds. Hereafter we suppose that
(14) is satisfied.

For a given N and a known πN(y�x), the minimizer (or the set of minimizers) of
r(EN [ρ(yj�xi;θ)|xi = x]) is the best approximation of θ0 under the chosen r(·). The im-
portant question, of course, is how much is known (or told by the data curator) to the
researcher about the sequences of πN(y�x).

Let ΠN denote the information available to the researcher about the proportions
πN(·� ·). We can interpret ΠN as the set of all functions πN(·� ·) that are possible un-
der the information available to the researcher about the data combination procedure.

8Dominguez and Lobato (2004) give examples of situations when a chosen unconditional moment re-
striction may hold for several parameter values even if the initial conditional moment restriction holds only
for one parameter value.
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For instance, the data curator could provide the researcher with the information that
any value of πN(y�x) is between some known π1 and π2. Then any measurable func-
tion πN(·� ·) that takes values between π1 and π2 has to be considered in ΠN . The em-
pirical evidence thus generates a set of values for θ that approximate θ0. We call it the
N-identified set and denote it asΘN :

ΘN =
⋃

πN∈ΠN
Arg min
θ∈Θ

r
(
EN
[
ρ(yj�xi;θ)|xi = x

])
� (16)

The next step is to consider the behavior of setsΘN asN → ∞, which, of course, depends
on the behavior ofΠN asN → ∞.

Let Π∞ denote the set of possible uniform over all y ∈ Y and over all x ∈ X limits
of elements in ΠN . That is, Π∞ is the set of π(·� ·) such that for each N , there exists
πN(·� ·) ∈ΠN such that supy∈Y�x∈X |πN(y�x)−π(y�x)| → 0.

The fact that the data combination procedure does not depend on the values of y
and x (even though the probability of the match being correct may depend on y and x)
implies that Π∞ is a set of some constant values π. Suppose that this is known to the
researcher.

Proposition 5 below shows that in this situation the following setΘ∞ is a limit of the
sequence ofN-identified setsΘN ,

Θ∞ =
⋃

π∈Π∞
Arg min
θ∈Θ

r
(
(1 −π)E[ρ(Y�X;θ)|X = x]+πE∗[ρ(Ỹ �X;θ)|X = x])� (17)

where

r
(
(1 −π)E[ρ(Y�X;θ)|X = x]+πE∗[ρ(Ỹ �X;θ)|X = x])= gπ(θ)′W0gπ(θ)

with

gπ(θ)=EX
[
h(x)

(
(1 −π)E[ρ(Y�X;θ)|X = x]+πE∗[ρ(Ỹ �X;θ)|X = x])]

= (1 −π)E[h(X)ρ(Y�X;θ)]+πE∗[h(X)ρ(Ỹ �X;θ)]�
Proposition 5. Suppose that Π∞ consists of constant values and for any π ∈Π∞ there
exists πN(·� ·) ∈ΠN such that

sup
y∈Y�x∈X

∣∣πN(y�x)−π∣∣→ 0 asNy → ∞� (18)

Also suppose that for any π ∈ Π∞ the function gπ(θ)′W0gπ(θ) has a unique minimizer.
Consider ΘN defined as in (16) and Θ∞ defined as in (17). Then for any θ ∈ Θ∞ there
exists a sequence {θN }, θN ∈ΘN , such that θN → θ asNy → ∞.

The proof of this proposition is provided in the Supplemental Material.
Proposition 5 can be rewritten in terms of the distances between sets Π∞ and ΠN

and setsΘ∞ andΘN :

d
(
Π∞�ΠN

)= sup
π∈Π∞

inf
πN∈ΠN

sup
y∈Y�x∈X

∣∣πN(y�x)−π∣∣�
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d(Θ∞�ΘN)= sup
θ∈Θ∞

inf
θN∈ΘN

‖θN − θ‖�

Indeed, the definition of Π∞ gives that d(Π∞�ΠN)→ 0 as Ny → ∞. Proposition 5 es-
tablishes that this condition together with the condition on the uniqueness of the mini-
mizer of gπ(θ)′W0gπ(θ) for each π ∈Π∞ gives that d(Θ∞�ΘN)→ 0 asNy → ∞.

Definition 2. The setΘ∞ is what we call the pseudo-identified set or the set of param-
eter values identified from infrequent attribute values.

Obviously, the size ofΘ∞ depends on the information setΠ∞ becauseΘ∞ generally
becomes larger ifΠ∞ becomes a larger interval.

The following definition provides notions of point identification and partial pseudo-
identification.

Definition 3. We say that parameter θ0 is point identified (partially pseudo-identified)
from infrequent attribute values ifΘ∞ = {θ0} (Θ∞ �= {θ0}).

Whether the model is point identified depends on the properties of the model, the
distribution of the data, and the matching procedure. Definition 3 implies that if θ0 is
point identified, then at infinity we can construct only one combined data subset using
a chosen matching decision rule and that all the matches are correct (Π∞ = {0}). For a
chosen h(·) in the definition of the distance r(·) parameter, if θ0 is point identified in the
sense of Definition 3, then θ0 is point identified under any other choice of function h(·)
that satisfies (14), and (15).

If the parameter of interest is only partially pseudo-identified from infrequent at-
tribute values, then Θ∞ is the best approximation to θ0 in the limit in terms of the dis-
tance r(·) under a chosen h(·). In this case, Θ∞ is sensitive to the choice of h(·) and W0,
and in general will be different for different r(·) satisfying (14) and (15). In the case of
partial pseudo-identification, 0 ∈ Π∞ implies that θ0 ∈ Θ0, but otherwise θ0 does not
necessarily belong toΘ0.

Our next step is to analyze identification from combined data sets obtained using a
decision rule that honors a particular bound on the risk of individual disclosure. Hav-
ing the bound on the risk of individual disclosure does not mean that making a cor-
rect match in a particular data set is impossible. What it implies is that there will be
multiple versions of a combined data set. One of these versions can correspond to the
“true” data set for which dji = mij (using the notation from Section 3). However, as
is clear from our discussion before, in addition to this data set we can also construct
combined data sets with varying fractions of incorrect matches. This implies that for
any x and y, and any Dx = {xi� zxi }N

x

i=1 that contains x as one of the values xi and any
Dy = {yj� zyj }N

y

j=1 that contains y as one of the values yj , we have that infi�j πN(yj = y�xi =
x� {yj� zyj }N

y

j=1� {xi� zxi }N
x

i=1) > 0 if πN(yj = y�xi = x� {yj� zyj }N
y

j=1� {xi� zxi }N
x

i=1) is defined.
Condition (9) in the definition of the disclosure risk implies that

inf
x�y

lim inf
Ny→∞

πN(y�x)≥ γ�
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Taking into account Assumption 3(i) and (ii) for αN → 0 and the property of our
data combination procedure—namely, that the values of yj and xi are not taken into
account in matching (yj� z

y
j ) with (xi� zxi ) and it only matters whether identifiers satisfy

conditions |zxi − zyj |<αN and |zxi |> 1/αN—we obtain that the limit of πN(y�x) does not
depend on the value of y and x. Denote this limit as π. Uniformity over x ∈ X and y ∈ Y
in Assumption 3(i) and (ii) implies that π is the uniform limit of πN(y�x):

sup
y∈Y�x∈X

∣∣πN(y�x)−π∣∣→ 0 asNy → ∞�

If the only information released by the data curator about the disclosure risk is a
bound γ, then the researcher can only infer that π ≥ γ, that is,Π∞ = [γ�1]. This fact will
allow us to establish results on point (partial pseudo-) identification of θ0 in Theorem 1
(Theorem 2).

Theorems 1 and 2 below link point identification and partial pseudo-identification
with the risk of disclosure.

Theorem 1 (Point identification of θ0). Suppose Assumptions 1–3 hold. Let αN → 0 as
Ny → ∞ in such a way that

inf
x∈X �x∈Y

inf
Dx�Dy

inf
i�j
pNij
(
x� y�Dx�Dy

)→ 1 asNy → ∞�

Then θ0 is point identified from matches of infrequent values of the attributes.

Proof. Condition

lim
Ny→∞

inf
x∈X �y∈Y

inf
Dx�Dy

inf
i�j
pNij
(
x� y�Dx�Dy

)= 1

can equivalently be written as

lim
Ny→∞

sup
x∈X �y∈Y

sup
Dx�Dy

sup
i�j

(
1 −pNij

(
x� y�Dx�Dy

))= 0�

which means that for any ε > 0, when Nx and Ny are large enough, supx∈X �y∈Y πN(y�
x) < ε. Since ε > 0 can be chosen arbitrarily small, we obtain that

lim
Ny→∞

sup
x∈X �y∈Y

πN(y�x)= 0�

From here we can conclude thatΠ∞ = {0} and, hence,Θ∞ = {θ0}. �

As we can see, Theorem 1 provides the identification result when there is no bound
imposed on disclosure risk. The rates of the sequences of thresholds for which the con-
dition of this theorem is satisfied are established in Section 3.

Theorem 2 gives a partial pseudo-identification result when data combination rules
are restricted to those that honor a given bound on the disclosure risk and it follows from
our discussion earlier in this section.
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Theorem 2 (Absence of point identification of θ0). Suppose Assumptions 1–3 hold. Let
αN → 0 as N → ∞ in such a way that there is a bound γ > 0 imposed on the disclosure
risk. Then θ0 is only partially pseudo-identified from the combined data set that is con-
structed by applying the data combination rules that honor the bound γ > 0.

Proof. As discussed earlier in this section, in this caseΠ∞ = [γ�1] and, thus,

Θ∞ =
⋃

π∈[γ�1]
Arg min
θ∈Θ

r
(
πE
[
ρ(Y�X;θ)|X = x]+ (1 −π)E∗[ρ(Ỹ �X;θ)|X = x])�

In general, r(πE[ρ(Y�X;θ)|X = x] + (1 − π)E∗[ρ(Ỹ �X;θ)|X = x]) is minimized at dif-
ferent values for different π, meaning that generallyΘ∞ is not a singleton. �

Using the result of Theorem 2, we are able to provide a clear characterization of the
identified set in the linear case.

Corollary 1. Consider a linear model with θ0 defined by

E
[
Y −X ′θ0|X = x]= 0�

where E[XX ′] has full rank. Suppose Assumptions 2 and 3 hold, and there is a bound
γ > 0 on the disclosure risk. Then θ0 is only partially pseudo-identified from matches
on infrequent attribute values, and under the distance r(·) chosen in the spirit of least
squares, the pseudo-identified set is the collection of convex combinations of parameters
θ0 and θ1,

Θ∞ = {θπ�π ∈ [γ�1] : θπ = (1 −π)θ0 +πθ1
}
�

where θ1 is the parameter obtained under the complete independence ofX and Y .

The proof of Corollary 1 is given in the Appendix.
Note that θ0 = EX [XX ′]−1E[XY ]. The matrix E[XX ′] can be found from the

marginal distribution ofX (we write EX [ ] to emphasize this fact) and, thus, is identified
without any matching procedure. The value of E[XY ], however, can be found only if the
joint distribution of (Y�X) is known in the limit, that is, only if there is no nondisclosure
guarantee.

When we consider independent X and Y with distributions fX and fY , we have
E∗[X(Y −X ′θ)] = 0. Solving the last equation, we obtain

θ1 =EX
[
XX ′]−1

EX [X]EY [Y ]� (19)

which can be found from split samples without using any matching methodology. When
the combined data contain a positive proportion of incorrect matches in the limit, the
resulting value of θ is a mixture of two values obtained in two extreme situations: θ0
when π = 0 and θ1 when π = 1.

The next example illustrates that the pseudo-identified set Θ∞, even if θ0 /∈ Θ∞, is
informative about the true parameter value of θ0.



Quantitative Economics 9 (2018) Identification and the risk of disclosure 423

Example 4. As a special case, consider a bivariate linear regression model

E[Y − a0 − b0X|X = x] = 0�

where Var[X]> 0. Using our previous calculations, we obtain that the pseudo-identified
set for the slope coefficient is{

bπ : bπ = (1 −π)b0�π ∈ [γ�1]}
because b1 = 0. Here we can see that we are able to learn the sign of b0 and, in addition
to the sign, we can conclude that |b0| ≥ bπ

1−γ . This result is much more than we were able

to learn about b0 in Example 1.
The pseudo-identified set for the intercept is{

aπ : aπ = (1 −π)a0 +πEY [Y ]�π ∈ [γ�1]}
= {aπ : aπ =EY [Y ] − (1 −π)b0EX [X]�π ∈ [γ�1]}�

Thus far, we have shown that using a high quality data combination rule that selects
observations with infrequent values of some attributes allows us to point identify the
parameters of the econometric model. However, given that we may be using a small
subset of individuals to estimate the model, the obtained estimates may reveal sensitive
information on those individuals. To prevent this, the data curator can decide to conduct
the data linkage in a way that guarantees a bound on the risk of disclosure. As we have
seen however, in this case it is generally not possible to point identify the parameter
of interest, and the pseudo-identified set that can be obtained from the data does not
generally contain the true parameter value.

4.1 Computational illustration

Experiment 1. Consider the bivariate regression model

Y = α0 +β0X + ε�
where X ∼ N (0�1), ε ∼ N (0�1), and (α0�β0) = (1�1). Consider the original identifiers
V =W that are both generated from a Poisson distribution with parameter λ= 10 inde-
pendently ofX and ε. So in the “raw” design all matches are one-to-one.

We then split a sample into subsamples of the observations of Y in the first one and
X in the second one.

Our goal now is to construct identifiers Zx and Zy and construct approximations
for the joint distributions FN(Y�X). To do so in each simulation draw we draw the raw
sample of sizeN .

Then we consider sample {Vi}Ni=1 and split the interval [mini Vi�maxi Vi] into segments
of the same length. We consider three designs for this:

(A) The bin most to the right contains a single observation.

(B) The bin most to the right contains at least two observations.

(C) The bin most to the right contains at least three observations.
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Then we set Zxi =Zyi and equal to the average V in the bin that contains Vi.
By an infrequent event we understand the event when observation i is in the bin

most to the right. Thus, the linkage of data will be based on observations in that bin
only. We will say that the values of quasi-identifiers Zxi and Zyj are close if Zxi =Zyj . This

corresponds to considering the threshold αN = 1
mini{Vi:Vi is in the bin most to the right}−0�5 and

then using the linkage rule based on 1{|Zxi | > 1
αN
� |Zxi − Z

y
j | < αN}, as described in the

main text of the paper.
Then in each Monte Carlo drawm= 1� � � � �M , we construct the empirical joint distri-

bution FNm (y�x)= 1
Nm

∑
1{Yj ≤ y}1{Xi ≤ x} for the matched sample of pairs, and empir-

ical marginal distributions FNm�Y (y)= 1
N

∑N
j=1 1{Yj ≤ y} and FNm�X(x)= 1

N

∑N
i=1 1{Xi ≤ x}

from split data sets. The approximate joint and marginal distributions of interest are
computed from the Monte Carlo sample as simple averages

F̂N(y�x)= 1
M

M∑
m=1

FNm (y�x)� F̂NY (y)= 1
M

M∑
m=1

FNm�Y (y)� F̂NX (x)= 1
M

M∑
m=1

FNm�X(x)�

respectively. Then we construct the moment vector with two equations∫ ∫
yxF̂N(dy�dx)−

∫
yF̂NY (dy)

∫
xF̂NX (dx)∫

x2F̂NX (dx)−
(∫

xF̂NX (dx)

)2 = β̃

and ∫
yF̂NY (dy)− β̃

∫
xF̂NX (dx)= α̃�

Then we solve this system of equations for α̃ and β̃.
To construct pseudo-identified sets, in each scenario we proceed in the following

way:

(A) For each simulation we construct only one bin that is most to the right—the bin
with a single observation.9 This corresponds to the case of the lower bound guarantee
γ = 0 andΠN = {0}. This is the case when the identity disclosure is not guaranteed.

(B) For each simulation we consider a series of bins that are most to the right, start-
ing from the case when that bin contain only two observations (this corresponds to the
case γ = 1

2 ) and ending with the case when that bin contains all the observations (this
corresponds to the case γ = 1). Overall, this describes the situation of the lower bound
guarantee γ = 1

2 andΠN = [ 1
2 �1].

(C) For each simulation we consider a series of bins that are most to the right, starting
from the case when that bin contains only three observations (this corresponds to the
case γ = 2

3 ) and ending with the case when that bin contains all the observations (this

9If we draw a sample that contains several observations with maxi Vi, then we redraw this sample until
we have only one observation with the maximum value of the variable V .
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Figure 1. Monte Carlo simulation in the case of an exogenous regressor. Left-hand side, pseu-
do-identified sets; right-hand side, what can be learned about the true parameter.

corresponds to the case γ = 1). Overall, this described the situation of the lower bound
guarantee γ = 2

3 andΠN = [ 2
3 �1].

The results of the experiment are illustrated in Figure 1. The left panel in Figure 1
shows theN-pseudo-identified sets in scenarios (A), (B), and (C), respectively, obtained
for N = 1000 (with M = 200 simulations). Thus, the left panel in Figure 1 looks at the
situation from the perspective of the data curator (primary user of the data set).

The right panel in Figure 1 describes what a secondary user (that is, a researcher)
can learn about the true parameter in all three scenarios from just one combined data
set released to her, where the proportion of correct matches is between 0 and 1 − γ in
scenarios (B) and (C) (we choose this proportion randomly on [0�1−γ]). As discussed in
Example 4, we can learn the sign of b0, which in our example we learn to be positive, and
then, in addition to the sign, we can make a conclusion about the range that b0 ≥ bπ

1−γ ,

and then find a respective range for α0. Those ranges are illustrated in the second and
third graphs in the right panel in Figure 1, for scenarios (B) and (C), respectively (in that
figure the proportion of correct matches is somewhere in the middle of [0�1 − γ]).

Experiment 2. Now we analyze the extension of the regression model to the case of
instrumental variables. We consider the regression model

Y = α0 +β0X
∗ + ε�

where X∗ is not observed. What is observed is its error-ridden version X = X∗ + 0�1ξ,
where X∗ ∼ N(0�1), (ε�ξ)T ∼ N(0� I2), and (ε�ξ)T ⊥ X∗. We want to use the instru-
mental variable (IV) estimator with the excluded instrument Z = 0�8X∗ + 0�1u, where
u ∼ N(0�1), u ⊥ ε�ξ�X∗. Let (α0�β0) = (1�1). Just as in Experiment 1, we consider the
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original identifiers V =W that are both generated from a Poisson distribution with pa-
rameter λ= 10 independently of anything in the model. So in the raw design all matches
are one-to-one.

We then split a sample into subsamples of the observations of Y in the first one and
(X�Z) in the second one.

Our goal now is to construct the quasi-identifiers Zz and Zy and construct approx-
imations for the joint distribution FN(Y�Z). We consider the same three scenarios (A),
(B), and (C) as in Experiment 1, and construct blocks and quasi-identifiers in the same
way as there.

In each Monte Carlo draw m we construct the empirical distribution function
FNm (y� z) = 1

Nobs

∑
1{Yj ≤ y}1{Zi ≤ z} for the linked sample of pairs of Y and Z, and

empirical distributions FNm�Y (y) = 1
N

∑N
j=1 1{Yj ≤ y} and FNm�XZ(x�z) = 1

N

∑N
i=1 1{Xi ≤

x}1{Zi ≤ z} from split data sets. The approximate distributions of interest are computed
from the Monte Carlo sample as simple averages

F̂N(y� z)= 1
M

M∑
m=1

FNm (y� z)� F̂NY (y)= 1
M

M∑
m=1

FNm�Y (y)�

F̂NXZ(x�z)= 1
M

M∑
m=1

FNm�XZ(x�z)�

Then we construct the moment vector with two equations∫ ∫
yzF̂N(dy�dz)−

∫
yF̂NY (dy)

∫ ∫
xF̂NXZ(dx�dz)∫ ∫

xzF̂NXZ(dx�dz)−
∫ ∫

xF̂NXZ(dx�dz)

∫ ∫
zF̂NXZ(dx�dz)

= β̃

and ∫
yF̂NY (dy)− β̃

∫ ∫
xF̂NXZ(dx�dz)= α̃�

and then solve this system of equations for α̃ and β̃.
To construct pseudo-identified sets, in each scenario we proceed just as we did in

Experiment 1. The results of the experiment are illustrated in Figure 2. The left panel of
Figure 2 shows the N-pseudo-identified sets in scenarios (A), (B), and (C), respectively,
obtained for N = 1000 (with M = 200 simulations). Thus, the left panel of Figure 2 looks
at the situation from the perspective of the data curator.

The right panel of Figure 2 describes what a researcher as a secondary user of the
data can learn about the true parameter in all three scenarios from just one combined
data set released to her, where the proportion of correct matches is between 0 and 1 − γ
in scenarios (B) and (C) (we choose this proportion randomly on [0�1 −γ]). Analogously
to Experiment 1, we can learn the sign of b0, which in our example we learn to be pos-
itive, and then, in addition to the sign, we can make a conclusion about the range that
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Figure 2. Monte Carlo simulation in the case of an endogenous regressor and a strong instru-
ment. Left-hand side, pseudo-identified sets; right-hand side, what can be learned about the true
parameter.

b0 ≥ bπ�IV
1−γ , and then find a respective range for α0. These ranges are illustrated in the sec-

ond and third graphs on the right side in Figure 2, for scenarios (B) and (C), respectively
(in that figure the proportion of correct matches is close to zero).

5. Empirical example

In our theoretical analysis we focus on the trade-off between the quality of identification
of the empirical model from the combined economic data and the potential privacy
threats that arise from data linkage. If it is possible to identify the model of interest, that
means that there exist “high quality” links between the combined data sets.

In the context where one or both of the combined data sets contain sensitive infor-
mation, the combined records can be significantly more sensitive. We illustrate this idea
and demonstrate the impact of the data security constraints on the identification of the
econometric model using the example of gender-based discrimination.

Anecdotal evidence from recent news publications indicates that a common prac-
tice in the Christian Orthodox religious communities in Central Russia and in the Mus-
lim communities of the Caucasus republics of Russia is to withdraw children from
schooling (which is mandatory in Russia) and common preventive medical procedures
(such as vaccinations). The press reports that this practice is disproportionately applied
to females. Our goal is to empirically study the presence of these practices.

The clear difficulty that would arise if we were to use aggregate data to address these
questions is that there exist group effects (that are correlated with the religious affilia-
tion) that are not accounted for that can significantly bias the analysis. As a result, for
analysis we need to combine the data that contains family-level demographics with the
religious census.
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Our main source of household-level characteristics is the Russian Longitudinal
Monitoring Survey (RLMS).10 The RLMS is a nationally representative annual longitu-
dinal survey that covers more than 4000 households (that include between 1900 and
3682 children), starting from 1992; the last available year is 2014. RLMS provides a sur-
vey of a broad set of variables, including a variety of individual demographic character-
istics, health information, employment data, and income data. The data are collected
from 33 Russian regions, which include 31 large regions (equivalents of counties in the
United States), as well as the two largest cities of Moscow and St. Petersburg. The re-
ligious census (conducted by Rosstat, the equivalent of the Census Bureau in Russia)
indicates that 2 out of 33 regions are dominated by individuals who identify themselves
as Muslim, while in the remaining regions the majority of the population identify as Or-
thodox Christians.

Due to extremely low population mobility in Russia, the group effects are localized
geographically. In the context of the RLMS data this was documented in Yakovlev (2017),
where the group effects were associated with the “neighborhood” effects to indicate the
common component in the behavior and characteristics of households from the same
geographical area. To identify the neighborhood effects, we use the RLMS data on the
neighborhood identifiers that were available for researchers in the initial years the sur-
vey was conducted (also referred to as rounds). These identifiers are available until 2009,
while in the later rounds they were withheld due to privacy considerations. The RLMS
covers households within clusters of small neighborhoods (referred to as census dis-
tricts by Rosstat). The information on these small neighborhood identifiers allows one
to combine the data from the RLMS with the data from Rosstat that contains neighbor-
hood characteristics, such as the predominant religious affiliation.

The empirical question that we analyze is the impact of the religious affiliation of a
family on the number of completed classes of mandatory schooling. We are particularly
interested in whether the number of completed grades differs for males and females; in
other words, how likely it is that females may be withheld from school by their parents
for religious reasons.

From the perspective of the privacy analysis, our goal is to see how the obfuscation
of small neighborhood identifiers can impact the identification of the causal effect of
interest. First, we consider the status quo situation where the actual neighborhoods are
aggregated to regions and thus each neighborhood can be confused with 10–15 other
neighborhoods within the same region, corresponding to k-anonymity with k equal to
the total number of neighborhoods in the region. Then we consider a hypothetical situ-
ation of of k= 2-anonymity: we combine the data from individual neighborhoods into
pairs of neighborhoods within the same region.

In the context of model specification, we want to determine the importance of the
neighborhood effects and determine the extent to which the observed disparities in

10This survey is conducted by the Carolina Population Center at the University of North Carolina at
Chapel Hill and by the Higher School of Economics in Moscow. The official source name is “Russian Lon-
gitudinal Monitoring Survey, RLMS-HSE,” conducted by the Higher School of Economics and ZAO Demo-
scope jointly with Carolina Population Center, University of North Carolina at Chapel Hill and the Institute
of Sociology RAS.
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schooling are affected by differential treatment of males and females in families as op-
posed to just reflecting the difference in school attendance across different neighbor-
hoods. To do this, we estimate two empirical models where the unit of observation is
each child. The first empirical model analyzes the number of completed grades in school
as a function of child’s gender, age, and religious affiliation of the family as well as de-
mographic characteristics of the family. The second model adds neighborhood charac-
teristics to the first model.

After we estimated the “infeasible” model that uses the neighborhood identifiers,
we proceed to implement the “feasible” procedure. This application combines (i) the
actual data combination procedure and (ii) the empirical characterization of functions
and parameters used in the theorems and assumptions. For our data from the RLMS
this implies the illustration of the actual situation where the data curator suppressed
the data linkage ability of researchers due to privacy considerations.

For each household in the data we take available demographic information: size of
the household, number of children, age of the head of the household, gender of the head
of household, income, education, occupation. We take each region (oblast, republic,
etc.) at a time and perform clustering of households using the demographic variables
and known average neighborhood demographics that are delinked from the individual
demographic data. The distance function that we use for such a clustering is

d(x� y)=
√√√√ K∑
k=1

(xk − yk)2/σ2
k�

whereK is the number of demographic variables used for clustering and σ2
k is the overall

sample variance of a given variable. The points are selected into a given cluster simply
by verifying that the distance between a given household and the nearest average char-
acteristics of the neighborhood is smaller than the prespecified threshold 1/αN . We re-
strict the number of clusters to be smaller than the (“infeasibly known” to us) maximum
number of neighborhoods in a region. Each recovered cluster will be associated with the
“inferred neighborhood.”

Set constant αN such that the number of households over all clusters for which the
minimum over all neighborhoods included in the region d(x�xc) < 1/αN constitutes
fraction θ = 0�9 of the samples. We use this data-driven definition of αN to construct
a “scale-free” measure of frequency and proximity of observations. Our notion of “infre-
quent” observations is slightly changed from the theoretical definition and we now fo-
cus on the set of observations that are the closest to the mean characteristics of a given
neighborhood. To do this in practice, we drop all the points from each cluster for each
d(x�xc) > 1/αN and for each remaining household, call its cluster identifier the inferred
neighborhood. Now we rerun our main two models but using the subsample of points
that satisfy d(x�xc) < 1/αN and using their inferred neighborhoods instead of the true
neighborhoods.

Then we consider the case of k = 2-anonymity. To do that, take the neighborhood
identifiers and randomly select pairs of neighborhoods within each region without re-
placement and create a new identifier that now corresponds to the pair (rather than the
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individual neighborhoods). If there is a neighborhood left without a pair, we randomly
join it with any of the selected pairs within the region.

After that we again isolate the clusters of the neighborhoods within each aggregated
neighborhood using our distance criterion. Then we estimate our two specifications of
the econometric model using the data across all the clusters.

Estimation results for each model are presented in Table 1. In our models the re-
ligious affiliations are dummies for each household, income stands for the household
income, share college is the share of the individuals in the household who have a col-
lege degree, and city is the dummy indicating that a given neighborhood is within a city.
We notice that in the model that does not take the group effects into account, the esti-
mates indicate the potential adverse effect of both considered religious denominations
on the school completion by women. The effect appears to be stronger for Muslim fam-
ilies where a female child has a lower average number of school grades completed. The
model that does take the group effects into account shows a different picture. While the
significant effect of religious affiliation of the household on the schooling of females is
still present for Orthodox Christian households, it disappears for households that iden-
tify as Muslim. This can partly be explained by the lower overall school completion rates
in the traditionally Muslim parts of Russia. Our estimate, therefore, indicate that it is im-
portant to have neighborhood identification of households to estimate the true causal
effect in the econometric model.

In Table 1 the unit of observation is a child in a given round of the RLMS. The depen-
dent variable is the number of grades completed. Models 1, 3, and 5 are estimated with-
out accounting for the neighborhood identifiers. Models 2, 4, and 6 account for neigh-
borhoods. Model 2 uses actual neighborhoods, while Models 4 and 6 use neighborhoods
constructed from matches between the individual data and actual neighborhoods. The
sample in Models 3 and 4 is restricted to the observations where the weighted Euclidean
distance between the average neighborhood characteristic and individual households
is smaller than the threshold that eliminates 10% of the households overall that are
too distant. The sample in Models 5 and 6 is restricted to the observations where the
weighted Euclidean distance between the average neighborhood characteristic and in-
dividual households is smaller than the threshold that eliminates 10% of the households
overall that are too distant, but instead the data on grouped neighborhoods are available
that preserve 2-anonymity.

The analysis of the results for the data combination procedure with the actual data
and the case of 2-anonymity demonstrates that the previously observed pattern, where
we observe a significant negative effect of a Muslim family on the years of schooling for
females without controlling for neighborhood religious affiliation and do not observe
this effect in the case where we control for the dominating religion of the neighborhood,
remains in place. However, we also observe that the negative significant effect of the
Orthodox families (observed even controlling for the neighborhood effect in the infeasi-
ble estimation) vanishes with the use of the actual data and only becomes significant in
the case of 2-anonymity. This clearly indicates that privacy constraints can significantly
affect the model estimates (and, therefore, the policy implications).
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Table 1. The impact of religious affiliation, family characteristics, and neighborhood charac-
teristics on school completion.

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Female × Muslim −0�2464∗∗∗ −0�0491 −0�1728∗∗∗ −0�1720 −0�1333∗∗ 0�0293
(0�051) (0�104) (0�066) (0�131) (0�064) (0�126)

Female × Orthodox −0�1∗∗∗ −0�0883∗∗ −0�0699 −0�0577 −0�0949∗∗ −0�0998∗∗
(0�033) (0�037) (0�043) (0�046) (0�042) (0�045)

Female 0�1385∗∗∗ 0�1279∗∗∗ 0�1403∗∗∗ 0�1351∗∗∗ 0�1272∗∗∗ 0�1143∗∗∗
(0�018) (0�019) (0�023) (0�024) (0�022) (0�023)

Orthodox 0�0023 0�0149 0�0174 0�0060 0�0268 0�0316
(0�023) (0�026) [0�032) (0�030) (0�032)

Muslim 0�2326∗∗∗ −0�0246 0�3302∗∗∗ 0�0400 0�3319∗∗∗ −0�0063
(0�036) (0�074) (0�045) (0�091) (0�045) (0�092)

Share college 0�1566∗∗∗ 0�2163∗∗∗ 0�2052∗∗∗ 0�2391∗∗∗ 0�1901∗∗∗ 0�2206∗∗∗
(0�023) (0�024) (0�029) (0�029) (0�029) (0�029)

log(income) 0�0216∗∗∗ 0�0146∗∗∗ 0�0244∗∗∗ 0�0162∗∗∗ 0�0249∗∗∗ 0�0171∗∗∗
(0�004) (0�004) 0�004) (0�005) (0�004) (0�004)

City −0�0452∗∗∗ −0�0178 −0�0640∗∗∗ −0�0325 −0�0779∗∗∗ −0�0466∗∗
(0�017) (0�018) 0�022) (0�022) (0�021) (0�021)

Child’s age 1�0449∗∗∗ 1�0464∗∗∗ 1�0626∗∗∗ 1�0620∗∗∗ 1�0621∗∗∗ 1�0617∗∗∗
(0�003) (0�003) (0�004) (0�004) (0�004) (0�004)

Female × share college −0�0926∗∗∗ −0�1079∗∗∗ −0�1181∗∗∗ −0�1220∗∗∗ −0�1042∗∗ −0�1043∗∗∗
(0�032) (0�033) (0�042) (0�041) (0�040) (0�040)

Female × log(income) −0�0126∗∗ −0�013∗∗ −0�0127∗∗ −0�0125∗∗ −0�0089 −0�0092
(0�005) (0�005) (0�006) (0�006) (0�006) (0�006)

Female × city −0�0257 −0�0208 −0�0195 −0�0154 −0�0208 −0�0159
(0�025) (0�026) (0�031) (0�031) (0�031) (0�031)

Female × Muslim neighb −0�2171∗ −0�0054 −0�1986
(0�120) (0�151) (0�144)

Female × Orthodox neighb −0�0338 −0�0332 0�0239
(0�075) (0�092) (0�090)

Muslim neighb 0�3607∗∗∗ 0�3717∗∗∗ 0�4173∗∗∗
(0�086) (0�106) (0�106)

Orthodox neighb 0�0868∗ 0�1096∗ 0�0510
(0�052) (0�065) (0�062)

log(avg. neighb income) −0�063∗∗∗ −0�0448∗∗∗ −0�0437∗∗∗
(0�004) (0�005) (0�005)

Constant −7�6509∗∗∗ −7�6561∗∗∗ −7�7849∗∗∗ −7�7694∗∗∗ −7�7669∗∗∗ −7�7581∗∗∗
(0�035) (0�037) (0�047) (0�047) (0�045) (0�045)

Observations 13,580 12,349 8,218 8,216 8,742 8,741
R2 0�898 0�899 0�896 0�898 0�895 0�897

Note: Robust standard errors are given in parentheses. Asterisks ∗∗∗ , ∗∗ , and ∗ indicate the significance of a given variable
at the 1%, 5%, and 10% levels, respectively.

We note also that the effects of several other demographic characteristics (unrelated
to religion) remain consistent throughout the model and preserve both the sign and the
general magnitude.

Recall that we construct an adaptive clustering procedure where the threshold αN
used in our theoretical analysis is chosen such that a fraction θ of households overall are
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dropped from the sample for being too far from any average neighborhood characteris-
tics. While Table 1 reports the results for θ= 0�9, we also analyze the cases of θ= 0�5 and
θ= 0�1.

To illustrate the performance of our data combination procedure, we report the em-
pirical analog of the parameter πN corresponding to the expected fraction of the cor-
rectly identified matched observations over a distribution of combined data sets. To do
this for each inferred neighborhood, we count the number of households that indeed
belong to the same neighborhood. On Figures 3–5 we illustrate the impact of the strin-
gency of the data combination constraint and the degree of anonymity of the data on the
quality of matches by showing the distribution of the number of correct matches across
neighborhoods.

We note that, in general, with the actual data the modal number of correct matches
is 1 per neighborhood. This pattern is generally preserved for all choices of the fraction
of dropped observations. However, in the data set with 2-anonymity, the modal number
of correctly identified matches varies between 2 and 3.

Figure 3. Empirical πN for the data combination procedure (θ= 0�9): left, with the actual data;
right, with 2-anonymity.

Figure 4. Empirical πN for the data combination procedure (θ= 0�5): left, with the actual data;
right, with 2-anonymity.
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Figure 5. Empirical πN for the data combination procedure (θ= 0�1): left, with the actual data;
right, with 2-anonymity.

6. Conclusion

In this paper we analyze an important problem of identification of econometric mod-
els from the split sample data without common numeric variables. Data combination
with combined string and numeric variables requires the measures of proximity be-
tween strings, which we borrow from the data mining literature. Model identification
from combined data cannot be established using the traditional machinery as the pop-
ulation distributions only characterize the marginal distribution of the data in the split
samples without providing the guidance regarding the joint data distribution. As a re-
sult, we need to embed the data combination procedure (which is an intrinsically finite
sample procedure) into the identification argument. Then the model identification can
be defined in terms of the limit of the sequence of parameters inferred from the samples
with increasing sizes. We discover, however, that to provide identification, one needs
to establish some strong links between the two data bases. The presence of these links
means that the identities of the corresponding individuals will be disclosed with a very
high probability.

Appendix

Proof of Proposition 1. Probability pNij (x� y�Dx�Dy) in (8) is equal to

pNij
(
x� y�Dx�Dy

)
pij
(
x� y�Dx�Dy

)
pNij
(
x� y�Dx�Dy

)
pij
(
x� y�Dx�Dy

)+pN
ij

(
x� y�Dx�Dy

)(
1 −pij

(
x� y�Dx�Dy

)) � (20)

where

pij
(
x� y�Dx�Dy

)= Pr
(
mij = 1|xi = x� yj = y�Dx�Dy)�

pNij
(
x� y�Dx�Dy

)= Pr
(∣∣zyj − zxi

∣∣<αN� ∣∣zxi ∣∣> 1
αN

|mij = 1�xi = x� yj = y�Dx�Dy
)
�
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pN
ij

(
x� y�Dx�Dy

)= Pr
(∣∣zyj − zxi

∣∣<αN� ∣∣zxi ∣∣> 1
αN

|mij = 0�xi = x� yj = y�Dx�Dy
)
�

Note that Pr(mij = 1|xi = x� yj = y�Dx�Dy)= 1
Nx . By Assumption 3, for αN ∈ (0� ᾱ),

inf
Dx�Dy

inf
i�j
pNij
(
x� y�Dx�Dy

)≥ (1 − αN)
(
φ(αN)+ o(φ(αN)))�

Therefore, infDx�Dy infi�j pNij (x� y�Dx�Dy) is bounded from below by

(1 − αN)
(
φ(αN)+ o(φ(αN))) 1

Nx

(1 − αN)
(
φ(αN)+ o(φ(αN))) 1

Nx + sup
Dx�Dy

sup
i�j
pN
ij

(
x� y�Dx�Dy

) �
The last ratio will converge to 1 as Ny → ∞ if Nx

φ(αN)
supDx�Dy supi�j p

N
ij
(x� y�Dx�Dy) con-

verges to 0. Note that

pN
ij

(
x� y�Dx�Dy

)= ∫
|zxi |> 1

αN

∫ zxi +αN

zxi −αN
fZy |Y

(
z
y
j |yj = y)fZx|X(zxi |xi = x)dzyj dzxi �

From Assumption 3, for small αN ,

pN
ij

(
x� y�Dx�Dy

)= ∫
|zxi |> 1

αN

(
ψ

(
1∣∣zxi ∣∣− αN

)
−ψ
(

1∣∣zxi ∣∣+ αN
))

× (1 + oy(1)
)
g1
(∣∣zxi ∣∣)(1 + oxzx(1)

)
dzxi �

where sup|zxi |> 1
αN

supxi∈X |oxzx(1)| → 0 and supyi∈Y |oy(1)| → 0 as αN → 0. Thus, for any

x and y,

Nx

φ(αN)
sup

Dx�Dy
sup
i�j
pN
ij

(
x� y�Dx�Dy

)
≤ Nx

φ(αN)

∫
|z|> 1

αN

(
ψ

(
1

|z| − αN
)

−ψ
(

1
|z| + αN

))
g1
(|z|)dz

+
(

sup
|zxi |> 1

αN

sup
xi∈X

∣∣oxzx(1)∣∣+ sup
yi∈Y

∣∣oy(1)∣∣) Nx

φ(αN)

×
∫

|z|> 1
αN

(
ψ

(
1

|z| − αN
)

−ψ
(

1
|z| + αN

))
g1
(|z|)dz�

Taking into account the relationship between g1(z) andφ( 1
z ), we obtain the result in the

proposition. �

Proof of Proposition 2. The result of this proposition obviously follows from Propo-
sition 1 because supDx�Dy supi�j p

N
ij (x� y�Dx�Dy)≥ infDx�Dy infi�j pNij (x� y�Dx�Dy). �
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Proof of Proposition 3. From (20), using Assumption 3 we obtain that for αN ∈
(0� ᾱ),

pNij
(
x� y�Dx�Dy

)≤ 1

1 + Nx

φ(αN)+ oxy
(
φ(αN)

)(1 − 1
Nx

)
pN
ij

(
x� y�Dx�Dy

)
and, thus,

sup
Dx�Dy

sup
i�j
pNij
(
x� y�Dx�Dy

)
≤ 1

1 + Nx

φ(αN)+ oxy
(
φ(αN)

)(1 − 1
Nx

)
inf

Dx�Dy
inf
i�j
pN
ij

(
x� y�Dx�Dy

) �
Now obtain that supx�y supDx�Dy supi�j p

N
ij (x� y�Dx�Dy) will be bounded away from 1 as

Ny → ∞ if
Nx

φ(αN)
inf
x�y

inf
Dx�Dy

inf
i�j
pN
ij

(
x� y�Dx�Dy

)
is bounded away from 0 asNy → ∞, that is, if

lim inf
Ny→∞

Nx

φ(αN)
inf
x�y

inf
Dx�Dy

inf
i�j
pN
ij

(
x� y�Dx�Dy

)
> 0� (21)

Using the expression for pN
ij
(x� y�Dx�Dy) from the proof of Proposition 1, for small αN

we obtain

Nx

φ(αN)
pN
ij

(
x� y�Dx�Dy

)
≥
(

1 − sup
|zxi |> 1

αN

sup
xi∈X

∣∣oxzx(1)∣∣− sup
yi∈Y

∣∣oy(1)∣∣)

× Nx

φ(αN)

∫
|zxi |> 1

αN

(
ψ

(
1∣∣zxi ∣∣− αN

)
−ψ
(

1∣∣zxi ∣∣+ αN
))
g1
(∣∣zxi ∣∣)dzxi �

Clearly, the expression on the right-hand side of the last inequality is also a lower
bound for Nx

φ(αN)
infx�y infDx�Dy infi�j pNij (x� y�D

x�Dy). Taking into account the relation-

ship between g1(z) and φ( 1
z ), and the fact that sup|zxi |> 1

αN

supxi∈X |oxzx(1)| → 0 and

supyi∈Y |oy(1)| → 0 as αN → 0, we obtain that the condition (11) then guarantees that
(21) holds. �

Proof of Proposition 4. Using Assumption 3(iii) and the law of iterated expectations,

E

[
1
(∣∣Zx∣∣> 1

α
�
∣∣Zx −Zy ∣∣<α)ρ(Y�X;θ)|X = x

]
=E
[
E

[
1
(∣∣Zx∣∣> 1

α
�
∣∣Zx −Zy ∣∣<α)ρ(Y�X;θ)|X = x�Zx = zx�Zy = zy

] ∣∣∣∣X = x
]
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=E
[

1
(∣∣Zx∣∣> 1

α
�
∣∣Zx −Zy ∣∣<α)E[ρ(Y�X;θ)|X = x�Zx = zx�Zy = zy] ∣∣∣∣X = x

]
=E
[

1
(∣∣Zx∣∣> 1

α
�
∣∣Zx −Zy ∣∣<α)E[ρ(Y�X;θ)|X = x]|X = x

]
=E
[

1
(∣∣Zx∣∣> 1

α
�
∣∣Zx −Zy ∣∣<α)|X = x

]
·E[ρ(Y�X;θ)|X = x]�

By Assumption 3(i) and (ii),

E

[
1
(∣∣Zx∣∣> 1

α
�
∣∣Zx −Zy ∣∣<α) ∣∣∣∣X = x

]
> 0�

This implies

E

[
1
(∣∣Zx∣∣> 1

α
�
∣∣Zx −Zy ∣∣<α)ρ(Y�X;θ)|X = x

]
E

[
1
(∣∣Zx∣∣> 1

α
�
∣∣Zx −Zy ∣∣<α)|X = x

] =E[ρ(Y�X;θ)|X = x]�
which is equivalent to (12). �

Proof of Corollary 1. Here ρ(Y�X�θ)= Y −X ′θ. From the conditional moment re-
striction we obtain that E[X(Y −X ′θ0)] = 0 and, thus, θ0 = EX [XX ′]−1E[XY ]. When
Ỹ is drawn from fY (·) independently of X , then E∗[X(Ỹ − X ′θ1)] = 0 gives θ1 =
EX [XX ′]−1EX [X]EY [Ỹ ].

As established in Theorem 2, the identified set is

Θ∞ =
⋃

π∈[γ�1]
Arg min
θ∈Θ

r
(
πE
[
ρ(Y�X;θ)|X = x]+ (1 −π)E∗[ρ(Ỹ �X;θ)|X = x])�

Here ρ(Y�X�θ) = Y − X ′θ. In the spirit of least squares, let us choose instruments
h(X)=X and consider the distance

r
(
πE
[
ρ(Y�X;θ)|X = x]+ (1 −π)E∗[ρ(Ỹ �X;θ)|X = x])= gπ(θ)′gπ(θ)�

where

gπ(θ)= (1 −π)E[X(Y −X ′θ
)]+πE∗[X(Ỹ −X ′θ

)]
�

Note that

gπ(θ)= (1 −π)E[XY ] − (1 −π)EX
[
XX ′]θ+πEX [X]EY [Ỹ ] −πEX

[
XX ′]θ

= (1 −π)E[XY ] +πEX [X]EY [Y ] −EX
[
XX ′]θ

=EX
[
XX ′]((1 −π)EX

[
XX ′]−1

E[XY ] +πEX
[
XX ′]−1

EX [X]EY [Y ] − θ)
=EX

[
XX ′]((1 −π)θ0 +πθ1 − θ)�
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Clearly, gπ(θ)′gπ(θ) takes the value of 0 if and only if gπ(θ) takes the value of 0, which
happens if and only if θ= (1 −π)θ0 +πθ1. Thus, for each π ∈ [γ�1],

θπ = (1 −π)θ0 +πθ1

is the unique minimizer of r(πE[ρ(Y�X;θ)|X = x] + (1 − π)E∗[ρ(Ỹ �X;θ)|X = x]).
Therefore,

Θ∞ = {θπ�π ∈ [γ�1] : θπ = (1 −π)θ0 +πθ1
}
� �
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