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A.1. Proof of welfare-improving price discrimination

Consider an insurance market in which consumers are associated with a type z that

represents a signal of insurance valuation, conditional on marginal cost. Assume that

within potential submarkets defined by types z, both the demand and marginal cost

curves are strictly decreasing (monotonicity), that demand is more steeply sloped than

marginal costs, and that demand and marginal costs cross exactly once (single crossing).

Let the rank order of consumer valuations across types z hold conditional on any level of

costs. Heterogeneity of this form implies there is correlation between v and z conditional

on c.

Under these conditions, if the efficient take-up of insurance is strictly between 0 and

1 within each of the submarkets and if there exists some common support across the z

submarkets in the continuous distributions of marginal cost, then optimal prices differ

across types z. That is, there is welfare-improving price discrimination along the char-

acteristic z, relative to the best uniform price.

To prove welfare-improving price discrimination, define va(c) and vb(c) as

willingness-to-pay conditional on costs for a fixed contract among consumers in groups

a and b, respectively. By the assumptions above, these functions are one-to-one map-

pings of costs to valuations. Define the group z = a as the group for which willingness-

to-pay conditional on costs is higher and define z = b as the remainder of the market, so

that va(c) > vb(c) ∀c.

Except for the degenerate cases where va(c) > vb(c) > c ∀c (all enrollees in the mar-

ket efficiently insured) or where c > va(c) > vb(c) ∀c (all enrollees in the market effi-

ciently uninsured), there exists some level of costs, c, for which va(c) > c > vb(c). That

is, there exists some level of costs at which it is efficient to insure the a types but not the

b types. A simple version of this case that assumes linear v(c) functions is displayed in

Figure 2.
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For group a consumers with costs c, only prices p ≤ c sort efficiently. For group b

consumers with costs c, only prices p > c sort efficiently. Therefore, no uniform price
can sort all consumers in both groups efficiently.

Now consider setting separate prices for groups a and b. By the single-crossing
and montonicity assumptions, within groups a or b all consumers can be sorted effi-
ciently with the correct group-specific price. This within-group case is a standard case
considered in the literature (see, e.g., Einav and Finkelstein (2011)). Therefore, optimal
group-specific prices that sort all consumers efficiently are welfare-improving relative
to any uniform price because no uniform price can sort consumers with costs c effi-
ciently.

Note that the case above is constructed so that the types z break up the market into
submarkets with monotone marginal cost curves. In this case, the types with higher val-
uations optimally face lower prices. While the simplicity of this case is instructive, a
more conceptually difficult case occurs when one allows for z to be only an imperfect
signal of demand conditional on costs, so that submarkets defined by z do not contain
strictly decreasing, monotone marginal cost curves. In such cases, optimal pricing could
be higher, lower, or—in a knife-edge case—equal for z types with higher valuations, de-
pending on the exact pattern of the residual demand heterogeneity. See Figure 4 for an
example of the complex case in which optimal prices are higher for the higher-valuation
types.

A.2. Worker and firm characteristics

The firm is a manufacturer of consumer nondurables, with plant locations through-
out the United States. Files are purged of information that could be used to identify
the employer or employees, though the “anonymized” employees are traceable across
plan years. Workers are predominately male. Most are hourly. Workers who decline
coverage are not in the data. Although no information is known regarding employees
who waive coverage, data from the Kaiser Family Foundation (2007) Survey of Em-
ployer Health Benefits indicates that 15% of workers in firms of similar size and in
the same industry (consumer nondurables) around the study period waived cover-
age.

A.3. SMLE estimation details for Section 6

Simulated maximum likelihood estimation (SMLE) is used to estimate Equation (7).
Given the choice model outlined above, there is no closed-form expression for the
choice probabilities. Therefore, simulation is needed to calculate likelihood values.
Here, I assume a normal error that enters the model nonlinearly, but even if the error
structure admitted a closed-form solution to the choice probabilities (as would be the
case, for example, with an additive extreme value error, which yields logit probabilities),
simulation would still be necessary so as to numerically integrate over the risk distribu-
tion Fij(OOP).



Supplementary Material Demand heterogeneity in insurance markets 3

Estimation begins by fixing the parameter vector θ and taking Q draws from the dis-

tribution of out-of-pocket expenses, Fij(OOP), to calculate an expectation over health

risk. Conditional on a set of values from the parameter vector (including a single draw

of the error term εij), the expected utility for person i in plan j is

E
[
V r
ij

] ≈ 1
Q

Q∑
q=1

−e
γ·(Pj+OOPq−δoH−∑

a δaIa×H−δFIF×H−εrij)� (9)

The superscript r denotes a draw from the normal error term.

A basic accept–reject (AR) simulator would assign a value of 0 or 1 as the choice prob-

ability of plan j depending on whether j generated the highest utility given the simulated

value of the error, εrij . Here, I use a smoothed AR simulator. For each draw r, a smoothing

function is applied to ensure that the probability falls strictly between 0 and 1, avoiding

problems otherwise arising from flat portions of the log-likelihood function. I employ a

logit smoothing kernel that follows Train (2009):
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This smoother approaches an unsmoothed AR simulator as λ approaches 0.1 The out-

put of the smoother is the probability of selecting a plan, conditional on values from

the parameter vector, including a single draw from the normal error term. So as to cal-

culate the simulated choice probability, many draws are taken from the error (still for a

fixed parameter value of σε). Averaging the smoother values across these draws yields

the simulated probability of person i choosing plan j:

P̆ij(θ) ≡ 1
R

R∑
r=1

Srij(θ)� (11)

Finally, the simulated log-likelihood function is defined by

SLL(θ)= 1
N

N∑
i=1

J∑
j=1

dij ln P̆ij(θ)� (12)

where dij is an indicator function for the observed choice of each individual. Standard

numerical maximization routines are used to search for the maximizing parameter vec-

tor. In practice, I set Q = 50, R= 100, and λ > 5.

1The appearance of a logit formula at this step has nothing to do with assumptions on the error term: it is
purely a convenient way to ensure that choice probabilities fall strictly between 0 and 1, as in Train (2009).
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Figure A1. Model implied by the common wisdom that uniform prices can sort efficiently. The
figure illustrates the model implicit behind the common wisdom that uniform prices can achieve
an optimal allocation. Here, a single price sorts efficiently, even though types differ in their costs
on average. The common wisdom embodied in the figure implicitly relies on the assumption
that consumer types differ only because they differ in the costs they generate, but not demand
conditional on costs. See the notes to Figure 1 for additional documentation.
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Figure A2. Data: Expected costs (Ĉi) and realized costs (Ci). The figure plots scatters of real-
ized healthcare spending versus expected spending, including the insurer and consumer shares.
Each panel contains a separate age group. Expected costs are predicted by the Johns Hopkins
Adjusted Clinical Grouper (ACG) on the basis of prior year diagnoses and procedures. See the
text for full details. The dashed line indicates the intercept and slope from a log-log regression of
actual spending on expected spending.
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Figure A3. Robustness/mechanisms: Revealed demand heterogeneity, alternative cost mea-
sures. The figure plots local polynomial regressions of plan choice against expected healthcare
consumption. The dependent variable is an indicator for choosing the more generous plan, H.
Each panel of the figure exactly replicates panel A of Figure 6, except that along the horizontal
axes, alternative cost measures are used. In panel A, the current year’s actual realized costs are
the conditioning cost variable, rather than an unbiased measure of expected costs for the coming
year. This would represent perfect foresight on the part of consumers, who choose plans prior to
this realization. In panel B, last year’s actual costs are used as the conditioning variable. In the left
panels, zeros are transformed to allow taking logs. In the right panels, zeroes are dropped from
estimation. Consult the text and Figure 6 for additional details.
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Figure A4. Model fit: Simulated plan choices. The figure demonstrates the fit of the expected
utility model. The plot replicates panel of A of Figure 6 in plotting local polynomial regressions of
plan choice on expected healthcare consumption. In this figure, rather than using the observed
plan choice, the dependent variable is the simulated probability of choosing plan H. Simulated
choices are predicted by the expected utility model parameters reported in Table 6. See the notes
to Figure 6 for additional details.
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