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A note on identification of discrete choice models
for bundles and binary games
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We study nonparametric identification of single-agent discrete choice models for
bundles (without requiring bundle-specific prices) and of binary games of com-
plete information. We show that these two models are quite similar from an iden-
tification standpoint. Moreover, they are mathematically equivalent when we re-
strict attention to the class of potential games and impose a specific equilibrium
selection mechanism in the data generating process. We provide new identifica-
tion results for the two related models.
Keywords. Discrete choice, demand, binary games, identification, bundles, com-
plements, substitutes, entry games, potential games.
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1. Introduction

This paper provides identification results for both single-agent discrete choice bundle
models and binary games of complete information. We establish a tight connection be-
tween these models from the perspective of algebraic arguments for identification and
further show that the models are indeed mathematically equivalent when attention is re-
stricted to the class of potential games under a specific equilibrium selection rule. This
equivalence result allows researchers to extrapolate any further identification progress
in one of these models to the other.

We focus on the case of two goods and two players, and extend the analysis to the
case of three or more goods and players in Appendix D, available in a supplementary
file (which includes Appendixes B–D) on the journal website, http://qeconomics.org/
supp/489/supplement.pdf. The approach we provide is nonparametric and allows us to
recover the payoff relevant functions, the distribution of heterogeneous interaction ef-
fects, and the distribution of good- or player-specific unobservables. These structural
features of the models are needed to make counterfactual predictions that do not di-
rectly derive from choice data. In the single-agent choice model, our results allow us, for
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example, to forecast purchasing decisions for bundle discounts that were not previously
offered. In the case of games, we can point identify (under an assumed equilibrium se-
lection rule) or set identify (without an equilibrium selection rule) equilibrium choices
under different processes for matching players.

Our identification strategy crucially relies on exclusion restrictions. In the single-
agent choice model, each excluded variable enters the stand-alone payoff of a single
good additively. For games, each excluded variable similarly affects the stand-alone pay-
off of one player but not the payoff of the other player. We do not impose exclusion re-
strictions either for a bundle or for players’ joint action profiles. The excluded variables
play a dual role: identifying the sign of the interaction effects as well as the joint distribu-
tion of the unobservables. Indeed, we show in the supplementary appendix, via a sim-
ple example, that the joint distribution of unobservables cannot be uniquely recovered
without the excluded variables, at least in our general formulation of the model. These
results clarify the critical, if not surprising, need for choice-specific exclusion restric-
tions, something that has been exploited in some applications (e.g., Liu, Chintagunta,
and Zhu (2010)) but is absent in others (e.g., Kretchsmer, Miravete, and Pernias (2012)
and Hartman (2010)).

For the bundles model, applying previous results on nonparametric identification
requires treating the bundle as just another option in a multinomial choice model
(Thompson (1989), Matzkin (1993), Lewbel (2000)). For two goods, this amounts to hav-
ing three exclusion restrictions: one variable that shifts stand-alone payoffs for each bi-
nary choice variable and another one that shifts the payoffs of the bundle itself (Athey
and Stern (1998)). Our identification results only require exclusion restrictions at the
level of the two binary variables. We allow for correlation in the unobservable com-
ponents of the stand-alone payoffs and unobserved heterogeneity in the magnitude of
the interaction effect. Our nonparametric results follow empirical papers that have esti-
mated parametric bundles models while recognizing the intuitive gain in identification
from exclusion restrictions, such as Gentzkow (2007). Sher and Kim (2014) establish a
weak identification concept for a bundles model without data on the market shares of
bundles.

There is a growing literature on the semi- or nonparametric identification of two-
player binary games of complete information without restricting the equilibrium selec-
tion rule. The basic result is Berry and Tamer (2006, Result 4) and Ciliberto and Tamer
(2009, Theorem 2).1 We show that their algebraic steps in identification proofs are very
closely linked to those for the bundles model. We further show that the proofs are identi-
cal for the case of potential games with the equilibrium selection rule based on potential
maximizers. In addition, without imposing an equilibrium selection rule, we identify the
distribution of unobserved heterogeneity in the interaction effects, which is not present
in either of these two papers. In an entry game, we allow the reduction in profits from
monopoly to duopoly to vary across observationally identical markets. Allowing hetero-
geneous interaction effects also appeared in simultaneously circulated papers by Kline
(2015) and Dunker, Hoderlein, and Kaido (2013).

1Yildiz (2007) considers identification in cases where only equilibria in mixed strategies exist.
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Berry and Tamer (2006, Result 4) and subsequent papers assume the researcher
knows the sign of the interaction effects: the game is known to be either of strategic
substitutes or complements. Imposing the structure of potential games and its asso-
ciated equilibrium selection rule, we exploit the equivalence to the bundles model to
identify the sign of the interaction effect. This result is useful in models where offset-
ting effects mean that the sign is hard to anticipate (for example, the crimes model of
Ballester, Calvó-Armengol, and Zenou (2006)).

The supplementary appendix includes results for the case of three or more goods
and players that do not closely extend the cited papers. We do not present a non-
parametric or a semiparametric estimator; sieve maximum likelihood is one alternative
(Chen, Tamer, and Torgovitsky (2011)). All proofs are provided in the Appendix.

2. Model of bundles and games

2.1 Identification results for a general model

An agent chooses the values of two binary variables a = (a1� a2) ∈ {(0�0)� (1�0)� (0�1)�
(1�1)} so as to maximize

U(a�W �Z�ε�η)=
∑
i=1�2

(
ui(W )+Zi + εi

) · ai +η · v(W ) · a1 · a2� (1)

where Zi ∈R only affects the utility associated to the binary variable i, W ∈R
k is a vector

of explanatory variables different from Z = (Z1�Z2), and (ε�η) = (ε1� ε2�η) ∈ R
3 is a

vector that captures heterogeneous effects with distribution Fε�η|W�Z . The vector (ε�η)
is observed by the agent but not by the econometrician.

In expression (1), the utility of selecting a = (0�0) is normalized to zero. The term
ui(W ) + Zi + εi is the stand-alone utility of assigning value 1 only to binary variable
i, ai = 1 and a−i = 0.2 Finally, the utility of assigning value 1 to both binary variables,
a = (1�1), is the sum of the stand-alone utilities plus the interaction term η · v(W ). For
each W = w, the binary variables are complements if η · v(w) ≥ 0 and substitutes oth-
erwise.3 We assume η∈R+, so that η modifies the magnitude but not the sign of the
interaction effect, which therefore is given by the sign of v(W ).4 The pair ε1� ε2 captures
heterogeneity or idiosyncratic shocks at the level of each binary variable, and η reflects
heterogeneity at the bundle level.

2The term Zi enters the utility with a positive sign. We can identify the sign of Zi by seeing whether the
marginal probability of selecting variable i increases with Zi. If the sign of Zi should be negative, redefine
Zi appropriately.

3When applied to the bundles model, Gentzkow (2007) shows that this definition of complements and
substitutes is equivalent to the usual definitions based on price responses.

4We let η > 0 instead of η ≥ 0 because η = 0 is made redundant by the possibility that v(W ) = 0. If we
had an additive η+ v(W ), under similar assumptions to ours we could identify the distribution of η as long
as the support of η ensures that η + v(W ) always has the same sign conditional on W . Likewise, say η has
two components, ηa and ηb, where the total interaction effect is ηa + ηb · v(W ). We could identify v(W ) if
we similarly restrict the support of ηa so that ηa + ηb · v(W ) always has the same sign conditional on W ,
and we also assume E[ηa | W ] = 0 and E[ηb |W ] = 1.
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We use data on independent and identically distributed (i.i.d.) chosen actions and
explanatory variables (a�w�z) to identify aspects of the unknown functions
(u1(W )�u2(W )� ν(W )�Fε�η|W�Z). Our model is nonparametric as the objects of interest
are arbitrary, possibly discontinuous, functions of W .5 Note that i.i.d. sampling allows
us to nonparametrically identify the conditional choice probabilities Pr(a | w�z) with no
further assumptions. Our results rely on the next restrictions.

A1. The term Zi |W�Z−i has support on all R for i = 1�2.

A2. We have (i) Fε�η|W�Z = Fε�η|W , (ii) E(ε | W )= (0�0), and (iii) E(η |W ) = 1.

A3. The term ε | W has an everywhere positive Lebesgue density on its support.

The exclusion restrictions, captured by Z1 and Z2, play a dual role in our analysis: They
are key to identifying the sign of the interaction effects, as reflected in the proof of
Lemma 1 below. They are also needed to recover the joint distribution of unobservables,
as captured by the nonidentification result in Appendix C.

The large support restriction, A1, is a common requirement used in various ways in
the literature on binary and multinomial choice models.6 It allows us to recover the tails
of the distribution of unobservables Fε�η|W without restricting its support; we show be-
low that with mild changes, we can still identify part of the model structure without A1.

The independence assumption A2(i) allows us to trace Fε�η|W using variation in Z.
Assumption A2(ii) and (iii) provide location normalizations for ε and η, and rule
out omitted variable bias from W in identifying (u1(·)�u2(·)� ν(·)); (ε�η) can be het-
eroskedastic with respect to W .7 Assumption A3 gives probability 0 to tie events.

Our main result requires initial identification of the sign of the interaction effect.

Lemma 1. If A2(i) and A3 hold and the support of Z contains at least two points, then
the sign of v(w) is identified for each W =w.

The proof of Lemma 1 builds on monotone comparative statics methods for stochas-
tic models and crucially relies on the excluded variables Z1 and Z2. The intuition for
the identification of the sign of the interaction effect is simple. When the interaction
effect is positive, the probability of selecting a1 = 1 increases with the value of the ex-
cluded explanatory variable Z2, as the latter makes alternative 2 more valuable. Because
the opposite holds when the interaction effect is negative, whether the alternatives are
complements or substitutes can be inferred from the data. Using Lemma 1, the following
theorem states our identification result.

5We do not explore the case where W instead multiplies random coefficients, as in the follow-on work of
Dunker, Hoderlein, and Kaido (2014).

6See, for example, Manski (1975, 1985, 1988), Thompson (1989), Matzkin (1992, 1993, 2007), Ichimura
and Thompson (1998), Lewbel (1998, 2000), Berry and Haile (2010), Fox and Gandhi (2016), and Chen, Khan,
and Tang (forthcoming).

7If E(ε | W ) and E(η | W ) are nonconstant functions of W = w, the values of u1(W ), u2(W ), and v(W )

produced by the proof strategy of Theorem 1 below will suffer from omitted variable bias. If, in this case,
E(ε | T) = (0�0) and E(η | T) = 1 for some “instruments” T , one could correctly identify u1(W ), u2(W ), and
v(W ) under additional assumptions on (T�W ) and a slight modification of the proof strategy for Theorem 1.
See Lewbel (2000) for a treatment of omitted variable bias in discrete choice.
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Theorem 1. Under A1–A3, ((ui(·))i=1�2� v(·)) is identified. If, in addition, η and ε are
independent conditional on W =w, then Fε|w and Fη|w are identified.

Remark 1. When the binary choice variables are substitutes, Fε|w can be identified from
the data even if η and ε are not independently distributed.

For each W = w, our identification strategy proceeds by first learning the sign of
v(w) via Lemma 1. The reason is that for each sign of the interaction effect there are two
action profiles—the identities of which are sign dependent—that allow us to recover all
the objects of interest. When the choice variables are substitutes, so that v(w) < 0, we
use the action profile (0�0) to recover u1(·), u2(·), and Fε|W and rely on (1�1) to identify
v(·) and Fη|W . When the variables are complements, we use the action profiles (0�1) and
(1�0) to recover the objects of interest.

We finally show that we can recover part of the model structure without the large
support assumption A1. To do so, we replace A2(ii) with a location normalization that
is not as sensitive to the tails of the unobservables. The proof of this result builds on
Kline (2016), whose analysis is for a semiparametric two-player game. For each W = w,
let u1(w), u2(w), u1(w) + v(w), and u2(w) + v(w) all lie in a bounded interval Θ ⊆ R. If
the interval varies with w, let Θ be the union of all such w-specific intervals.

Theorem 2. Under the next restrictions, ((ui(·))i=1�2� v(·)) is identified.

A1′. The term Zi |W�Z−i has support on a superset of Θ for i = 1�2.

A2′. We have (i) Fε|W �Z = Fε|W , (ii) ε | W has mode (0�0), (iii) Fε|W is C2, and (iv) η= 1.

A3′. The term ε | W has an everywhere positive Lebesgue density on its support.

2.2 Two-goods bundle model

In this specification of the model, each of the binary variables represents a good. The
consumer selects the combination of goods a = (a1� a2) ∈ {0�1}2 that maximizes

U(a�W �p�ε�η) =
∑
i=1�2

(
ui(W )−pi + εi

) · ai +η · v(W ) · a1 · a2�

where ui(W )−pi + εi is the quasilinear utility from consuming good i, pi is the price of
the good, and η ·v(W ) is the extra utility the consumer gets if she acquires the two goods
together. This model is identical to the previous one if we treat prices as the excluded
variables.

Corollary 1. If Z = (−p1�−p2), identification of the bundles model follows from The-
orem 1.

We next cover different uses of our result. Bundling—the strategy of offering two
or more products as a specially priced package—is widely used by firms and has been
the focus of a large economic literature. Under mixed bundling, in addition to offering
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the two individual goods, a separate price p3 is offered for the bundle (1�1). Predicting
demand for a bundle that was not previously offered requires structural identification
of the model, as choice probabilities Pr(a | w�p1�p2) per se are not enough to infer the
counterfactual effects on sales of different p3. Moreover, Venkatesh and Mahajan (2009)
explain that one lesson from the bundling literature is that optimal strategies are very
sensitive to the details of the model. In particular, optimal bundle discounts p1 +p2 −p3

depend on the correlation between the stand-alone unobservables ε1 and ε2 as well as
on the values of the interaction effects η · v(W ). For this reason, some recent papers are
proposing new ways to estimate the copula of the unobservables (e.g., Letham, Sun, and
Sheopuri (2014)). We flexibly identify these relevant features.

As in other multinomial choice models, we can compute welfare differences across
prices. Let a∗(w�p�ε�η) and U∗(p) = U(a∗�w�p�ε�η) be the optimal choice and max-
imized utility of a consumer who faces a price vector p. As our structural model can be
used to calculate the joint distribution G(U∗(p′)�U∗(p′′)) of maximized utilities under
prices p′ and p′′, we can identify any treatment effect for moving from p′ to p′′. For ex-
ample, the median of U∗(p′′) − U∗(p′) gives the median utility loss in monetary terms
of moving from p′ to p′′.

2.3 Two-player game

Consider a binary choice game of complete information. Each player i = 1�2 chooses
an action ai ∈ {0�1}. A player’s payoff from action 0 is normalized to 0, and the payoff of
action 1 is

U1�i(a−i�W �Zi�εi�ηi) = ui(W )+Zi + εi +ηi · vi(W ) · a−i� (2)

In (2), ui(W )+Zi + εi is the stand-alone value of action 1 and ηi · vi(W ) is the effect that
the choice of the other player has on player i. Thus, (η1�η2) ∈ R

2+ has two dimensions.
Finally, Z1 and Z2 are excluded variables at the level of each player. In an entry game,
Zi might represent the distance between a geographic market and the headquarters of
chain i.

A pair a∗ = (a∗
1� a

∗
2) is a pure strategy Nash equilibrium for w�z and ε1� ε2�η1�η2 if,

for i = 1�2,

a∗
i =

⎧⎪⎪⎨
⎪⎪⎩

1 if ui(w)+ zi + εi +ηi · vi(w) · a∗
−i > 0�

0 if ui(w)+ zi + εi +ηi · vi(w) · a∗
−i < 0�

1 or 0 otherwise�

The econometrician observes the distribution of equilibrium choices, Pr(a | w�z), for
a cross section of independent games that share the same structure ((ui(·)� vi(·))i=1�2�

Fε1�ε2�η1�η2|W ).
Though this model involves strategic interactions across two agents, its identifica-

tion is quite similar, in terms of the algebra in the proofs, to the previous model. The
proof of part (i) of Theorem 3 below shows that this is true even if we do not impose an
equilibrium selection rule. Part (ii) of the theorem shows that the two models are indeed
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mathematically equivalent if we restrict attention to the class of potential games and use
a specific equilibrium selection rule motivated by theoretical and empirical findings.

In game theory, a potential function is a real-valued function defined on the space
of pure strategy action profiles of the players such that the change in any player’s payoff
from a unilateral deviation is equal to the change in the potential function. Potential
games are games that admit such a function. Monderer and Shapley (1996) show that
our game is a potential game if and only if η1 · v1(W ) = η2 · v2(W ). Letting this term be
η · v(W ), it follows by Ui (2000) that the potential function of the game is identical to the
overall utility in (1),

U(a�W �Z�ε�η)=
∑
i=1�2

(
ui(W )+Zi + εi

) · ai +η · v(W ) · a1 · a2;

we just need to interpret the single agent as a fictitious planner choosing the actions of
both players.

The assumption of equal interaction effects is often maintained in the empirical lit-
erature when players are anonymous, so that players’ indices have no particular mean-
ing. In an entry game, equal interaction effects mean that the reduction in profits from
monopoly to duopoly is the same for both players.

Potential functions were first used in economic theory to show the existence of Nash
equilibria in pure strategies. Finite potential games always have a pure strategy equi-
librium. In addition, Monderer and Shapley (1996) show that when the game admits a
potential function, this function is uniquely defined up to an additive constant. Thus, it
offers an equilibrium refinement. Subsequent work studied whether the selection rule
based on the potential maximizers is economically meaningful. Lab experiments study-
ing the so-called minimum effort games have shown that observed choices are consis-
tent with the maximization of objects close to the potential function of the game (Van
Huyck, Battalio, and Beil (1990), Goeree and Holt (2005), and Chen and Chen (2011)).
These results are remarkable because this class of games often has a large number of
equilibria. Further, Ui (2001) shows that if the potential maximizer is unique, then this
equilibrium is robust in the sense of Kajii and Morris (1997).

We next provide two sets of identifying conditions: In part (i), we do not impose an
equilibrium selection rule, but we do assume the econometrician knows the sign of the
interaction effects. An advantage of the potential game specification (with its associated
equilibrium selection rule) in part (ii) is that we can infer the sign of the interaction
effects from the data.

Theorem 3. Suppose that A1–A3 hold with E(η1�η2 | W ) = (1�1) instead of A2(iii).

(i) If, for each W = w, sign(v1(w)) = sign(v2(w)) and the econometrician knows the
sign, then (ui(·)� vi(·))i=1�2 is identified. If, in addition, (η1�η2) and ε are independent
conditional on W , then Fε|W , Fη1|W , and Fη2|W are also identified.

(ii) If η1 · v1(W ) = η2 · v2(W ) = η · v(W ) and players coordinate on the potential max-
imizer, then identification of the game follows from Theorem 1.
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Remark 2. In part (i), when the strategic interactions are negative, Fε|w can be identified
from the data even if (η1�η2) and ε are not conditionally independent. In addition, we
can also identify the joint distribution Fη1�η2|W .

We next elaborate on the meaning of an equilibrium selection rule based on poten-
tial maximizers. When η · v(w) < 0 and the game has multiple equilibria, the equilib-
rium set is {(0�1)� (1�0)}. In this case, (0�1) maximizes the potential if u2(w)+ z2 + ε2 >

u1(w)+ z1 + ε1, while (1�0) is the maximizer otherwise. This equilibrium selection rule
predicts that the player choosing action 1 is the one with the highest stand-alone value.
In an entry game, the most profitable entrant enters in the region where the identity of
the entrant is otherwise indeterminate. Alternatively, when η ·v(w) > 0 and the game has
multiple equilibria, the equilibrium set is {(0�0)� (1�1)}. In this case, (1�1) maximizes the
potential if

(−u1(w)− z1 − ε1 −η · v(w)
)(−u2(w)− z2 − ε2 −η · v(w)

)

>
(
u1(w)+ z1 + ε1

)(
u2(w)+ z2 + ε2

)
�

while (0�0) is the maximizer otherwise. In this second case, the potential maximizer is
the less risky equilibrium of Harsanyi and Selten (1988). The lab experiments cited above
have shown that the less risky equilibrium is selected even when another equilibrium
gives higher payoffs to both players, so that the latter equilibrium Pareto dominates the
less risky equilibrium.

Part (i) of Theorem 3 gives identification results for the binary game without impos-
ing an equilibrium selection rule. Instead, the researcher needs to know the sign of the
interaction effects. There are many games where theoretical arguments are compatible
with both negative and positive interaction effects (e.g., the crimes model of Ballester,
Calvó-Armengol, and Zenou (2006)). In these cases, the potential specification coupled
with the selection rule based on potential maximizers offers an alternative identification
strategy.

Recovering the structure of the game point identifies counterfactuals involving a
known equilibrium selection rule and set identifies counterfactuals that do not impose
an equilibrium selection rule. We can evaluate the impact on equilibrium choices of
changing the equilibrium selection rule. In a coordination game, this could help us to
estimate how much the players are losing by not coordinating on the Pareto optimal
equilibrium. Also, we can examine the impact on action profile probabilities from alter-
ing the underlying matching process across players by increasing the correlation in the
joint distribution of observables or unobservables, while keeping their marginals fixed;
for example, we could predict choices under assortative matching (Graham, Imbens,
and Ridder (2014) study a similar exercise). Finally, as explained before for bundles, dis-
crete choice models can be used to calculate quantiles of welfare differences across dif-
ferent values of the explanatory variables W�Z. These true counterfactuals or welfare
estimates require knowledge of the entire structure of the game and not just the choice
probabilities in the data, Pr(a | w�z).
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3. Conclusion

We explore identification of discrete choice models for bundles and binary choice games
of complete information. Identification uses similar algebraic relationships between
outcome probabilities and unknown distributions when these models include only two
goods and players, respectively. Moreover, there is an exact equivalence of identification
between bundle models and binary games of any number of goods and players when at-
tention is restricted to the class of potential games under an equilibrium selection rule
based on potential maximizers.

We show how our models are identified. Specifically, we recover from data the stand-
alone utility function of each good or each player, the interaction effects among each
bundle or set of players, the joint distribution of potentially correlated, good- or player-
specific unobservables, and, for the cases of two goods and players, the distribution of
heterogeneous interaction effects.

Appendix A: Proofs

A.1 Proof of Lemma 1

We first show that, for each W = w, the sign of η · v(w) has different observable implica-
tions. We then recover the sign of the interaction effect. Appendix B reviews some of the
concepts we use in this proof.

Step 1. If η · v(w) ≥ 0, U(a�w�z�ε�η) is supermodular in (a1� a2). In addition, it has
increasing differences in both (a1� z1) and (a2� z1). By A3, the maximizer is unique with
probability 1. Let

a∗(w�z�ε�η) ≡ (
a∗

1(w�z�ε�η)�a∗
2(w�z�ε�η)

)

≡ arg max
{
U(a�w�z�ε�η) : (a1� a2) ∈ {0�1}2}�

It follows by Topkis’ theorem that a∗(w�z�ε�η) increases (in the coordinatewise order) in
z1 with probability 1.8 By A2(i), the unobservables ε and η are independent of z1. Thus,
for all z′

1 > z1 and every upper set U in {0�1}2, we have that

Pr
(
a∗(w�z′

1� z2� ε�η
) ∈ U | w�z′

1� z2
) ≥ Pr

(
a∗(w�z1� z2� ε�η) ∈U | w�z1� z2

)
�

That is, the random vector a∗(w�z�ε�η) | w�z1� z2 increases with respect to first or-
der stochastic dominance in z1. Because stochastic dominance is preserved under
marginalization, in the data, Pr(a2 = 1 | w�z1� z2) increases in z1 (Müller and Stoyan
(2002, Theorem 3.3.10, p. 94)). Similarly, we can show that Pr(a1 = 1 | w�z1� z2) increases
in z2.

Step 2. If η · v(w) ≤ 0, U(a�w�z�ε�η) is supermodular in (a1�−a2). In addition,
U(a�w�z�ε�η) has increasing differences in both (a1� z1) and (−a2� z1). By A3, the max-
imizer is unique with probability 1. Then, by Topkis’ theorem, (a∗

1(w�z�ε�η)�−a∗
2(w�z�

8See Topkis (1998).
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ε�η)) increases in z1 with probability 1. Following similar arguments to those in Step 1,
we get that Pr(a2 = 1 | w�z1� z2) decreases in z1. Similarly, Pr(a1 = 1 | w�z1� z2) decreases
in z2.

Step 3. By A3, if η · v(w) 	= 0, then Pr(a2 = 1 | w�z1� z2) and Pr(a1 = 1 | w�z1� z2) are
not constant as functions of z1 and z2. It follows from Steps 1 and 2 that, for each W =w,
the sign of η · v(w) is identified from available data. �

A.2 Proof of Theorem 1

This proof relies on the sign of the interaction effect that we can recover using Lemma 1.
It also relies on three key results regarding characteristic functions (ϕ). Let ε1, ε2, and
η be three random variables. In addition, let us assume that ε1 and ε2 are, separately,
independent of η. Then, for each θ�θ1� θ2 ≥ 0, the next three equalities hold:

ϕεi+η(θ) = ϕεi(θ)ϕη(θ) for i = 1�2�

ϕε1+η�ε2+η(θ1� θ2) = ϕε1�ε2(θ1� θ2)ϕη(θ1 + θ2)�

ϕε1�ε2+η(θ1� θ2) = ϕε1�ε2(θ1� θ2)ϕη(θ2) and ϕε1+η�ε2(θ1� θ2)= ϕε1�ε2(θ1� θ2)ϕη(θ1)�

Substitutes (η · v(w) ≤ 0). Under A3, the probability of selecting neither of the two bi-
nary variables is

Pr
(
ε1 +u1(w) ≤ −z1� ε2 +u2(w) ≤ −z2� ε1 +u1(w)+ε2 +u2(w)+η ·v(w) ≤ −z1 −z2 | w�z

)
�

Because η · v(w) ≤ 0, the third inequality above is implied by the first two. Thus,

Pr
(
(0�0) |w�z

) = Pr
(
ε1 + u1(w) ≤ −z1� ε2 + u2(w) ≤ −z2 | w�z

)
�

Define α = (α1�α2) ≡ (ε1 + u1(w)�ε2 + u2(w)). By A2(i), the vector (ε1� ε2�η) and hence
ε are independent of Z. For an arbitrary point of evaluation α� = (α�

1�α
�
2), we have

Fα|w
(
α�

) = Pr
(
α1 ≤ α�

1�α2 ≤ α�
2 | w) = Pr(α1 ≤ −z1�α2 ≤ −z2 | w�z)= Pr

(
(0�0) | w�z

)

for excluded variable choices z1 = −α�
1 and z2 = −α�

2. Therefore, the variation in Z from
A1 and Pr((0�0) | w�z) identifies the cumulative distribution function (CDF) of α for
each W =w.

Under A3, the probability of selecting both items is

Pr
(
(1�1) | w�z

) = Pr
(
ε1 + u1(w)+ ε2 + u2(w)+η · v(w)≥ −z1 − z2�

ε1 + u1(w)+η · v(w) ≥ −z1� ε2 + u2(w)+η · v(w) ≥ −z2 | w�z
)
�

Because η · v(w) ≤ 0, the first inequality above is implied by the last two. Thus,

Pr
(
(1�1) | w�z

) = Pr
(
ε1 + u1(w)+η · v(w) ≥ −z1� ε2 + u2(w)+η · v(w)≥ −z2 | w�z

)
�

Define β = (β1�β2) ≡ (−ε1 − u1(w) − η · v(w)�−ε2 − u2(w) − η · v(w)). Given A2(i)
and using the previous logic, we can use variation in Z and Pr((1�1) | w�z) to get Fβ|w.
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By A2(ii) and (iii), ε and η have mean (0�0) and 1, respectively, conditional on W = w.
Thus,

E
[
(α1�α2) | w] = (

u1(w)�u2(w)
)
�

E
[
(β1�β2) | w] = (−u1(w)− v(w)�−u2(w)− v(w)

)
�

E
[
(α1�α2) | w] + E

[
(β1�β2) | w] = (−v(w)�−v(w)

)
�

One can see that ((ui)i≤2� v) is identified for W =w.
Once ((ui)i≤2� v) is identified, we can obtain the distribution of (ε1� ε2) from the

distribution of α using a simple location shift. Therefore, we identify Fε|W . Likewise,
we can move from the distribution of β | W = w to the distribution of (−ε1 − η ·
v(w)�−ε2 −η ·v(w)) and, by a known multiplicative change of variables, the distribution
of (ε1 + η · v(w)�ε2 + η · v(w)). Assuming that η and ε are independent conditional on
W , Fη·v(w)|w is identified from knowledge of Fε|w, given the second result we mentioned
above for characteristic functions. Finally, a known, multiplicative change of variables,
given that v(w) is known, identifies Fη|w.

Complements (η · v(w) ≥ 0). Under A3, the probability of selecting only binary vari-
able 1 is

Pr
(−ε1 −u1(w) ≤ z1� ε2 +u2(w)+η ·v(w) ≤ −z2�−ε1 −u1(w)+ε2 +u2(w) ≤ z1 −z2 | w�z

)
�

Because η · v(w) ≥ 0, the third inequality above is implied by the first two. Thus,

Pr
(
(1�0) |w�z

) = Pr
(−ε1 − u1(w) ≤ z1� ε2 + u2(w)+η · v(w)≤ −z2 | w�z

)
�

Let α = (α1�α2) ≡ (−ε1 − u1(w)�ε2 + u2(w) + η · v(w)). By A2(i), (ε1� ε2�η) is inde-
pendent of Z. Thus, for an arbitrary point of evaluation α� = (α�

1�α
�
2) of the CDF Fα|w,

Fα|w
(
α�

) = Pr
(
α1 ≤ α�

1�α2 ≤ α�
2 | w) = Pr(α1 ≤ z1�α2 ≤ −z2 | w�z)= Pr

(
(1�0) |w�z

)

for choices z1 = α�
1 and z2 = −α�

2. Therefore, the variation in Z from A1 and Pr((1�0) |
w�z) identifies the CDF of α for each W = w. Applying the same logic, we can use
variation in Z and Pr((0�1) | w�z) to recover Fβ|w, where the random vector β is β =
(β1�β2) ≡ (ε1 + u1(w)+η · v(w)�−ε2 − u2(w)). By A2(ii) and (iii), ε has (0�0) mean and
η has a mean of 1 conditional on W =w. Therefore,

E
[
(α1�α2) |w] = (−u1(w)�u2(w)+ v(w)

)
�

E
[
(β1�β2) |w] = (

u1(w)+ v(w)�−u2(w)
)
�

E
[
(α1�α2) | w] + E

[
(β1�β2) |w] = (

v(w)�v(w)
)
�

One can see that u1, u2, and v are identified for this W = w.
Once ((ui)i≤2� v) is identified, we can recover, using a multiplicative change of vari-

ables, the distribution of (ε1� ε2 + η · v(w)) from the distribution of α. Therefore, we
can also identify the distribution of ε2 + η · v(w). In addition, we can recover, using a
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multiplicative change of variables, the distribution of (ε1 + η · v(w)�ε2) from the distri-
bution of β. Thus we can also identify the distribution of ε2. Knowing the distributions
of ε2 + η · v(w) and ε2, we can use the first result we mentioned above for characteris-
tic functions to identify Fη·v(w)|w. As before, a known, multiplicative change of variables,
given that v(w) is known, identifies Fη|w.

Finally, given that we know the distributions of (ε1� ε2 +η ·v(w)) and η ·v(w), we can
use the third result we mentioned above for characteristic functions to recover Fε|W . �

A.3 Proof of Theorem 2

This proof relies on the sign of the interaction effect, which is identified by Lemma 1.

Substitutes (η · v(w) ≤ 0). Under A3′, given the proof of Theorem 1,

Pr
(
(0�0) |w�z

) = Pr
(
ε1 + u1(w) ≤ −z1� ε2 + u2(w) ≤ −z2 | w�z

)
�

By A2′(iii), we can get the density f of Fε1+u1(w)�ε2+u2(w)|W (in the support of Z) as

fε1+u1(w)�ε2+u2(w)|W (−z1�−z2) = ∂2 Pr
(
(0�0) |w�z

)
/∂z1∂z2

= ∂2 Pr
(
ε1 + u1(w) ≤ −z1� ε2 + u2(w) ≤ −z2 | w�z

)
/∂z1∂z2�

By A2′(ii), this expression has mode (u1(w)�u2(w)). By A1′, the cross-partial is maxi-
mized at z′

1 and z′
2 whenever u1(w) = −z′

1 and u2(w) = −z′
2. Thus (ui)i≤2 can be identi-

fied from the data.
Under A2′(iv) and A3′, given the proof of Theorem 1,

Pr
(
(1�1) | w�z

) = Pr
(
ε1 + u1(w)+ v(w) ≥ −z1� ε2 + u2(w)+ v(w) ≥ −z2 | w�z

)
�

Thus, by A2′(iii) we can obtain the density of Fε1+u1(w)+v(w)�ε2+u2(w)+v(w)|W (in the sup-
port of Z) by taking cross-partial derivatives of the survival function

fε1+u1(w)+v(w)�ε2+u2(w)+v(w)|W (−z1�−z2)

= ∂2 Pr
(
(1�1) | w�z

)
/∂z1∂z2

= ∂2 Pr
(
ε1 + u1(w)+ v(w)≥ −z1� ε2 + u2(w)+ v(w) ≥ −z2 |w�z

)
/∂z1∂z2�

By A2′(ii), this expression has mode (u1(w)+v(w)�u2(w)+v(w)). By A1′ the cross-partial
derivative is maximized at −z′

1�−z′
2 when u1(w) + v(w) = −z′

1 and u2(w) + v(w) = −z′
2.

It follows that v can be recovered from the data.

Complements (η · v(w)≥ 0). Under A2′(iv) and A3′, given Theorem 1’s proof, we get

Pr
(
(1�0) | w�z

) = Pr
(−ε1 − u1(w) ≤ z1� ε2 + u2(w)+ v(w) ≤ −z2 |w�z

)
�

Thus, by A2′(iii), we can get the density of F−ε1−u1(w)�ε2+u2(w)+v(w)|W (in the support of
Z) by

f−ε1−u1(w)�ε2+u2(w)+v(w)|W (z1�−z2)

= −∂2 Pr
(−ε1 − u1(w) ≤ z1� ε2 + u2(w)+ v(w) ≤ −z2 | w�z

)
/∂z1∂z2�
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By assumptions A1′ and A2′(ii), this expression has mode (−u1(w)�u2(w)+v(w)). By A1′
the cross-partial is maximized at z′

1 and −z′
2 when −u1(w) = z′

1 and u2(w)+ v(w)= −z′
2.

Thus u1 and u2 + v can be identified from the data.
We can then use Pr((0�1) | w�z) to recover u2 and u1 + v. Thus, ((ui)i≤2� v) is identi-

fied. �

A.4 Proof of Theorem 3

Part (ii) follows directly from Theorem 1. We next show, avoiding repeating all the inter-
mediate steps, that the proof for part (i) is almost identical to the one of Theorem 1.

Submodular game (η1 · v1(w) ≤ 0 and η2 · v2(w) ≤ 0). Under A3, when the game is sub-
modular and (0�0) is an equilibrium, it is unique (e.g., Tamer (2003)). The same is true
regarding (1�1). The probability that both players choose action 0, Pr((0�0) | w�z), is
identical to the probability of selecting (0�0) when the binary variables are substitutes.
In addition, the probability that both players choose action 1 simplifies to

Pr
(
(1�1) | w�z

) = Pr
(
ε1 + u1(w)+η1 · v1(w) ≥ −z1� ε2 + u2(w)+η2 · v2(w) ≥ −z2 |w�z

)
�

This expression differs from the probability of selecting (1�1) in the proof of Theorem 1
in that we have η1 · v1(w) and η2 · v2(w) instead of just η · v(w). Given the independent
variation of Z1 and Z2, the extra term does not introduce any difficulty in the identifica-
tion strategy.

Supermodular game (η1 ·v1(w) ≥ 0 and η2 ·v2(w) ≥ 0). Under A3, when (1�0) is an equi-
librium, with probability 1 it is unique (e.g., Tamer (2003)). The probability that player 1
selects action 1 and player 2 selects action 0 simplifies to

Pr
(
(1�0) | w�z

) = Pr
(−ε1 − u1(w) ≤ z1� ε2 + u2(w)+η2 · v2(w) ≤ −z2 | w�z

)
�

This expression differs from the probability of selecting only the first variable in the
proof of Theorem 1 in that now we have η2 ·v2(w) instead of η ·v(w). It follows by simple
inspection that this difference does not introduce any additional difficulty in the iden-
tification strategy, except for the fact that we need to use a slightly different property of
characteristic functions for independent variables, namely,

ϕε1+η1�ε2+η2(θ1� θ2) = ϕε1�ε2(θ1� θ2)ϕη1�η2(θ1� θ2)�
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