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FIGURE 1. Model timeline within a period

A. THE MODEL

A.1. Generalities. Let X denote the beginning-of-period vector of aggregate states. Let Γ denote

the law of motion X that agents use for form rational expectations :

X′ = Γ(X, ε′),

where ε′ is the innovation to the exogenous aggregate state. The exogenous state is Markovian

and includes a stochastic productivity trend ez, where z drifts at rate µz ≥ 0. There are Ω ∈
[0, 1) ⊂ R familes of workers and 1−Ω of firm owners, et every family has mass one. The period

utility function is u(c− hc) = limσ̃→σ
(c−hc)1−σ̃−1

1−σ̃ , σ > 0, h ∈ (0, 1), and workers and firm owners

subjective discount factors satisfy:

0 < βW < βF < e(σ−1)µz

We let cF be the consumption habit of firm owners (equal to the average consumption of firm

owners in the previous period) and cW(ℵ) the habit level of workers having been continuously

unemployed for ℵ ∈ Z+ periods.

Also, let µ̃(a,ℵ) denote the beginning of period distribution of workers over assets and periods

of unemployment when the aggregated state is X. Similarly, let µ(a,ℵ) denote the distribution of

workers after labor market transitions.

Figure 1 synthesises the time frame within a period.

A.2. Workers. Let µ̃(a,ℵ) ∈ X and µ(a,ℵ) be the economywide distributions of workers over

assets a ∈ R and length of unemployment spell ℵ ∈ Z+ at the beginning and the end of the labor

market transition rate, respectively, and ñW ≡
∫

a dµ̃(a, 0) and nW = f (1− ñW) + (1− s)ñW the

corresponding employment rates. The UI scheme is assumed to be balanced in every period, i.e.

τwnW = buez(1− nW). (A.1)
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Let µ̃(a,ℵ) and µ(a,ℵ) denote the distribution of workers by types within a representative fam-

ily of workers and ñW =
∫

R
dµ̃(a, 0) and nW = f (1− ñW) + (1− s)ñW the corresponding employ-

ment rates. The family head solves:

VW (µ, X) = max
(aW′(a,ℵ),cW(a,ℵ))ℵ∈Z+ ,a∈R

∑
ℵ∈Z+

∫
a∈R

u(cW (a,ℵ)− hcW(ℵ))dµ(a,ℵ) + βWEµ,XVW (µ′, X′
)

subject to aW′ (a,ℵ) ≥ aez and

aW′ (a,ℵ) + cW (a,ℵ) = 1ℵ=0 (1− τ)w + 1ℵ≥1buez + (1 + r)a

Due to the assumed risk-sharing arrangement, the wealth of workers who will be employed

(ℵ = 0) at the beginning of next-period consumption-saving stage will be:

A′ ≡
(1− s′)

∫
R

adµ̃′(a, 0) + f ′ ∑ℵ≥1
∫

R
adµ̃′(a,ℵ)

nW′ ,

where nW′ will be the number of employed workers at that time:

nW′ = (1− s′)
∫

R
dµ̃′(a, 0) + f ′ ∑

ℵ≥1

∫
R

dµ̃′(a,ℵ) = (1− s′)ñW′ + f ′
(

1− ñW′
)

= (1− s′)nW + f ′
(

1− nW
)

A.2.1. Restatement of workers’ problem. From Proposition 1 in Section 2.1 of the main text, we

now that the cross-sectional distribution of workers µ has a unique mass point in a for all ℵ ≥ 0.

Hence the cross-sectional distribution µ is summarized by the value of these mass points a (ℵ) and

their associated number of workers n (ℵ), where nW ≡ n (0) (i.e., the number of employed workers

in the family). It follows that the problem of the workers can be rewritten as:

V̂W ((a (ℵ) , n (ℵ))ℵ≥0 , X
)
=

max
(aW′(ℵ),cW(ℵ))ℵ∈Z+

{
∑
ℵ≥0

n (ℵ) u(cW (ℵ)− hcW(ℵ)) + βWEµ,XV̂W
((

a′ (ℵ) , n′ (ℵ)
)
ℵ≥0 , X′

)}
subject to aW′ (ℵ) ≥ aez and:

aW′ (ℵ) + cW (ℵ) = buez + (1 + r)a for ℵ ≥ 1, and

aW′ (0) + cW (0) = (1− τ)w + (1 + r)A, for ℵ = 0.

Importantly, the law of motion for µ implies that the relevant elements of µ′ in V̂W′ (·) are given

by:

For ℵ ≥ 1 :

{
a′ (ℵ) = aW′ (ℵ − 1)

n′ (1) = s′n (0), and n′ (ℵ) = (1− f ′) n (ℵ − 1) for ℵ ≥ 2

For ℵ = 0 :

 A′ = 1
n′(0)

[
(1− s′)aW′ (0) + f ′ ∑ℵ≥1 aW′ (ℵ) n (ℵ)

]
n′ (0) = (1− s′)n (0) + f ′ (1− n (0))
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The Lagrangian function is as follows:

L
(

A, n (0) , (a (ℵ) , n (ℵ))ℵ≥1 , X
)
= n (0) u(cW (0)− hc(0)) + ∑

ℵ≥1
n (ℵ) u(cW (ℵ)− hc(ℵ))

+ βWEµ,XVW
(

A′, n′ (0) ,
(
a′ (ℵ) , n′ (ℵ)

)
ℵ≥1 , X′

)
−Λ (0)

[
aW′ (0) + cW (0)− (1− τ (X))w (X)− (1 + r)A

]
− ∑
ℵ≥1

Λ (ℵ)
[

aW′ (ℵ) + cW (ℵ)− buez − (1 + r)a
]
+ ∑
ℵ≥0

Γ (ℵ)
(

aW′ (ℵ)− aez
)

A.2.2. First-order and envelope conditions. The first-order conditions are as follows. The FOCs

w.r.t the cW (ℵ)s are:

n (ℵ) uc(cW (ℵ)− hc(ℵ)) = Λ (ℵ) , for ℵ = 0, 1... (A.2)

The FOCs w.r.t. aW′ (0) is:

Λ (0)− Γ (0) = βWEµ,X

[
∂V̂W′

∂A′
∂A′

∂aW ′ (0)
+

∂V̂W′

∂a′ (1)
∂a′ (1)

∂aW ′ (0)

]
= βWEµ,X

[
∂V̂W′

∂A′
(1− s′)n (0)

n′ (0)
+

∂V̂W′

∂a′ (1)

]
(A.3)

The FOCs w.r.t. the aW′ (ℵ)s, ℵ = 1, 2... are:

Λ (ℵ)− Γ (ℵ) = βWEµ,X

[
∂V̂W′

∂A′
∂A′

∂aW ′ (ℵ)
+

∂V̂W′

∂a′ (ℵ+ 1)
∂a′ (ℵ+ 1)

∂aW ′ (ℵ)

]
= βWEµ,X

[
∂V̂W′

∂A′
f ′n (ℵ)
n′ (0)

+
∂V̂W′

∂a′ (ℵ+ 1)

]
(A.4)

We now derive the envelope conditions. The marginal value of wealth A is given by:

∂V̂W

∂A
= (1 + r)Λ (0) = (1 + r) n (0) uc(cW (0)− hc(0)) (A.5)

Similarly, the marginal value of a unit of wealth a (ℵ), ∀ℵ ≥ 1 is given by:

∂V̂W (·)
∂a (ℵ) = (1 + r)Λ (ℵ) = (1 + r) n (ℵ) uc(cW (ℵ)− hc(ℵ)). (A.6)

A.2.3. Euler conditions. We are now in a position to derive the Euler conditions for employed (ℵ =

0) and unemployed (ℵ ≥ 1) workers, depending on whether the debt limit is binding (Γ (ℵ) > 0)

or not binding (Γ (ℵ) = 0). Let us start with employed workers. First, using (A.2) and (A.3) we

get:

uc(cW (0)− hc(0)) =
Λ (0)
n (0)

= βWEµ,X

[
∂V̂W′

∂A′
× 1− s′

n′ (0)
+

1
n (0)

× ∂V̂W′

∂a′ (1)

]
+

Γ (0)
n (0)
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Now, using the envelope conditions for ∂V̂W/∂A and ∂V̂W/∂a (1) (equations (A.5) and (A.6),

respectively), with a one-period lead, we obtain:

uc(cW (0)− hc(0))− Γ (0)
n (0)

= βWEµ,X

[(
1 + r′

) ( (1− s′) n′ (0) uc(cW′ (0)− hc′(0))
n′ (0)

+
n′ (1) uc(cW′ (1)− hc(1))

n (0)

)]
= βWEµ,X

[(
1 + r′

) (
(1− s′)uc(cW′ (0)− hc′(0)) + s′uc(cW′ (1)− hc(1))

)]
We now turn to unemployed workers and follow the same steps as for employed workers. Using

(A.2) and (A.4) we get:

uc(cW (ℵ)− hc(ℵ)) = Λ (ℵ)
n (ℵ) = βWEµ,X

[
∂V̂W′

∂A′
f ′

n′ (0)
+

1
n (ℵ)

∂V̂W′

∂a′ (ℵ+ 1)

]
+

Γ (ℵ)
n (ℵ)

Again, using the envelope conditions for ∂V̂W/∂A and ∂V̂W/∂a (ℵ+ 1) (equations (A.5) and

(A.6), respectively) with a one-period lead, we obtain, ∀ℵ ≥ 1:

uc(cW (ℵ)− hc(ℵ))− Γ (ℵ)
n (ℵ)

= βWEµ,X

[(
1 + r′

) ( f ′n′ (0) uc(cW′ (0)− hcW′(0))
n′ (0)

+
n′ (ℵ+ 1) uc(cW′ (ℵ+ 1)− hcW′(ℵ+ 1))

n (ℵ)

)]
= βWEµ,X

[(
1 + r′

) (
f ′uc(cW′ (0)− hcW′(0)) +

(
1− f ′

)
uc(cW′ (ℵ+ 1)− hcW′(ℵ+ 1))

)]
Now, defining the relevant intertemporal marginal rates of substitution (IMRS) as follows:

MW′ (0) = βW (1− s′)uc(cW′ (0)− hcW′(0)) + s′uc(cW′ (1)− hcW′(1))
uc(cW (0)− hcW(0))

, (A.7)

MW′(ℵ) = βW (1− f ′)uc(cW′ (ℵ+ 1)− hcW′(ℵ+ 1)) + f ′uc(cW′ (0)− hWcW′(0))
uc(cW (ℵ)− hcW(ℵ)) , ∀ℵ ≥ 1, (A.8)

we can rewrite the Euler conditions as, ∀ℵ ∈ Z+:

Eµ,X

[
MW′(ℵ)

(
1 + r′

)]
= 1− Γ (ℵ)

uc(cW (ℵ)− hc(ℵ))n (ℵ) ≤ 1. (A.9)

When the debt limit is not binding for ℵ-type workers, then Γ (ℵ) = 0, aW′ (ℵ) > aez and

Eµ,X
[
MW′(ℵ) (1 + r′)

]
= 1. When the debt limit is binding for ℵ-type workers, then Γ (ℵ) > 0,

aW′ (ℵ) = aez and Eµ,X
[
MW′(ℵ) (1 + r′)

]
< 1 (see Proposition 2 in the main paper). The two-

wealth state case analysed from Section 2.2 of the main paper onwards corresponds to the case

where, at every point in time, Eµ,X
[
MW′(0) (1 + r′)

]
= 1 and Eµ,X

[
MW′(ℵ) (1 + r′)

]
< 1 ∀ℵ ≥ 1.

A.3. Firm owners. There is a mass 1−Ω of firm owners. In the rest of the paper, the superscript

F is assigned to the variables corresponding to the firm owner. They solve the problem

VF(nF, k, aF, i, X) = max
aF′,i′,υ,cF ,k′

{u(cF − hFcF) + βFE[VF(nF′, k′, aF′, i′, X′)]},
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subject to

k′ = (1− δ)k + eϕi(1− S(i′/i))i′

cF + i′ + aF′ = ψw(X)nF + [rk(X)υ− η(υ)]k + (1 + r(X))aF + Υ(X),

the law of motion X′ = Γ(X, ε′), and the law of motion for nF

nF′ = (1− s(X′))nF + f (X′)(1− nF).

We introduce the Lagrange coefficients ζF(nF, k, aF, i, X) and ΛF(nF, k, aF, i, X). To simplify the

notations we simply write ζF for ζF(nF, k, aF, i, X) and ΛF for ΛF(nF, k, aF, i, X). The Lagrangian is

LF(nF, k, aF, i, X) = u(cF − hFcF)

− ζF(k′ − (1− δ)k− eϕi(1− S(i′/i))i′)

−ΛF(cF + i′ + aF′ − ψw(X)nF − [rk(X)υ− η(υ)] k− (1 + r(X))aF − Υ(X))

+ βFE[VF(nF′, k′, aF′, i′, X′)].

The first order conditions, with respect to aF′, i′, υ, cF, and k′ respectively, are

ΛF = βFE[VF
aF(nF′, k′, aF′, i′, X′)],

ΛF − ζFeϕi

[
1− S

(
i′

i

)
− S′

(
i′

i

)(
i′

i

)]
= βFE[VF

i′ (n
F′, k′, aF′, i′, X′)],

rk(X) = η′(υ),

u′(cF − hFcF) = ΛF,

ζF = βFE[VF
k (n

F′, k′, aF′, i′, X′)].

The envelope conditions are

VF
k (n

F, k, aF, i, X) = ζF(1− δ) + ΛF[rk(X)υ− η(υ)],

VF
aF(nF, k, aF, i, X) = ΛF(1 + r(X)),

VF
i (n

F, k, aF, i, X) = ζFeϕi S′
(

i′

i

)(
i′

i

)2

.

As a consequence, we find

ΛF = βFE[ΛF′(1 + r(X′))],
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ΛF − ζFeϕi

[
1− S

(
i′

i

)
− S′

(
i′

i

)(
i′

i

)]
= βFE

[
ζF′eϕ′i S′

(
i′′

i′

)(
i′′

i′

)2
]

,

rk(X) =
∂η(υ)

∂υ
,

u′(cF − hFcF) = ΛF,

ζF = βFE

{
ζF′(1− δ) + ΛF′ [r′k(X′)υ′ − η(υ′)

] }
,

where i′′ is next period investment. Define

pk(nF, k, aF, i, X) =
ζF

ΛF and

MF′(nF, k, aF, i, nF′, k′, aF′, i′, X, X′) = βF ΛF′

ΛF = βF eϕ′c u′(cF′ − hFcF′)

u′(cF − hFcF)
.

We find the set of equations

1 = E[MF′(1 + r(X′))],

1 = pkeϕi

[
1− S

(
i′

i

)
− S′

(
i′

i

)(
i′

i

)]
+ E

[
MF′p′keϕ′i S′

(
i′′

i′

)(
i′′

i′

)2
]

,

rk(X) = η′(υ), and

pk = E

{
MF′[rk(X′)υ′ − η(υ′) + (1− δ)p′k]

}
where, for the sake of simplicity, we only write MF′ for MF′(nF, k, aF, i, nF′, k′, aF′, i′, X, X′). The

other conditions are

nF′ = nF(1− s(X′)) + f (X′)(1− nF),

cF + i′ + aF′ = ψw(X)nF − [rk(X)υ− η(υ)] k− (1 + r(X))aF − Υ(X),

k′ = (1− δ)k + eϕi

(
1− S

(
i′

i

))
i′.

and

MF′ = βF u′(cF′ − hcF)

u′(cF − hcF)
, (A.10)

A.4. Firms. There are four types of firms.
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A.4.1. Final goods firms. The final good is produced by a continuum of identical and competitive

producers that combine wholesale goods, uniformly distributed on the unit interval i ∈ [0, 1]

according to the production function

y =

(∫ 1

0
y(θ−1)/θ

i di
)θ/(θ−1)

, (A.11)

where θ > 1 is the cross partial elasticity of substitution between any two wholesale goods. Let pi

denote the real price of wholesale good i in terms of the final good. This price is taken as given by

final goods firms. The program of the representative final good producer is thus

max
y

{
y−

∫ 1

0
pi(X)yidi

}
.

subject to (A.11). From the optimal choices of final good firms, one can deduce the demand func-

tion for the wholesale good firms, i ∈ [0, 1]

yi(X, pi) = p−θ
i y(X),

where y(X) is the total demand for final goods, and where

1 =

(∫ 1

0
p1−θ

i (X)di
)1/(1−θ)

is the nominal price of final goods obtained from imposing zero profits on the final good producers.

A.4.2. Wholesale goods firms. Wholesale firm i ∈ [0, 1] produces with the technology

yi = xi − κyez, (A.12)

Firm i’ current real profit is given by

Ξ(pi, X) = (pi − pm(X))yi(X, pi)− pm(X)κyez, (A.13)

where pm(X) is the real price of intermediate goods in term of final goods (which is taken as given

by wholesale goods firms). The firms that do not reoptimise their price set it according to the rule

pi(X, pi,−1) ≡
(1 + π̄)1−γ(1 + π−1)

γ

1 + π(X)
pi,−1, (A.14)

where π̄ is the steady state inflation.

It follows from this price adjustment mechanism that the behaviour of a firm can be described

by two Bellman equations, corresponding to the two idiosyncratic states in which the firm can be.

The value of a firm that is allowed to reset its price is given by VR(X) and only depends on the

aggregate state. The value of a firm not allowed to reset its selling price and with last period’s

price pς,−1 is denoted as VN(pς,−1, X). The corresponding Bellman equations are:

VR(X) = max
pς

{Ξ + αEX[MF′VN(pς, X′)] + (1− α)EX[MF′VR(X′)]} and

VN(pς−1, X) = Ξ + αEX[MF′VN(pς, X′)] + (1− α)EX[MF′VR(X′)],
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where pi(X, pi,−1) is given by (A.14), and subject to X′ = Γ(X, ε′).

The policy function p∗(X) must satisfy the first-order condition for price re-optimizer as well as

the envelope condition associated with the new price of a non-reoptimise. The first order condition

is associated with the first Bellman equation is

∂VR(X)

∂pi

∣∣∣∣
pi=p∗

= Ξp(p∗, X) + αE[MF(X, X′)VN
p (p∗, X′)] = 0

where

Ξp(p∗, X) = yi(X, p∗)− (p− pm(X))
∂yi(X, pi)

∂pi

∣∣∣∣
pi=p∗

= [(1− θ)(p∗)−θ + θpm(X)(p∗)−1−θ ]y(X).

The envelope condition is

VN
p (pi,−1, X) = {Ξp(pi, X) + αE[MF(X, X′)VN

p (pi, X′)]} ∂pi

∂pi,−1

=
(1 + π̄)1−γ(1 + π−1)

γ

1 + π(X)
{Ξp(pi, X) + αE[MF(X, X′)VN

p (pi, X′)]}.

Combining those two conditions we get the usual expressions for the determination of the opti-

mal reset price

p∗ =
K
F

where Kp and Fp are defined recursively as follows

K = µpmy + αE

[
MF′

(
1 + π(X′)

(1 + π̄)1−γ(1 + π(X))γ

)θ

K′
]

and

F = y + αE

[
MF′

(
1 + π(X′)

(1 + π̄)1−γ(1 + π(X))γ

)θ−1

F′
]

where µ ≡ θ/(1− θ). Later in the empirical specification of the model, we append an exogenous

markup shock to the system eϕp , which appears in front of µ.

The relationship between optimal prince and inflation, π(X), and the price dispersion, Λ ≡∫ 1
0 p−θ

i di, are given by:

1 = (1− α)p∗(X)1−θ + α

(
(1 + π̄)1−γ(1 + π−1)

γ

1 + π(X)

)1−θ

(A.15)

Λ = (1− α)p∗(X)−θ + α

(
(1 + π̄)1−γ(1 + π−1)

γ

1 + π(X)

)−θ

Λ−1. (A.16)
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A.4.3. Intermediate goods firms. A representative intermediate goods firm produce the intermediate

goods using capital and labor services, with the following (static) program

max
n̆,k̆
{pm(X)ym −Q(X)n̆− rk(X)k̆} (A.17)

subject to

ym = (k̆)φ(ezn̆)1−φ (A.18)

where φ ∈ (0, 1) and Q(X) is the price of one unit of labor services and rk(X) that of one unit

of capital services both in units of the final good. n̆ and k̆ denote the labor and capital services,

respectively (that is, n̆ is the number of effective labor units).

The policy rules for intermediate goods firms jointly satisfy the following first-order conditions

rk(X) = pmφez(1−φ)

(
k̆
n̆

)φ−1

and (A.19)

Q(X) = pm(1− φ)ez(1−φ)

(
k̆
n̆

)−φ

. (A.20)

A.4.4. Labor intermediaries. Labor services are sold to intermediate goods firms by labor interme-

diaries, which hire raw labor in a market with search frictions. Those labor intermediaries are held

by the firm owners. For every hour of work, a worker provides one unit of effective labor but an

employer provides ψ > 1 unit of effective labor. The wage paid to a employed worker is w and

that paid to an employers is ψwF. It follows that the value to the labor intermediary of a match

with a worker and an employer are given by, respectively:

JW = Q− w + EX[(1− ρ′)MF′ JW′] and JF = ψ(Q− w) + EX[(1− ρ′)MF′ JF′]. (A.21)

In particular, we note that JF(X) = ψJW(X). Assuming that the agency cannot target a particular

skill type, the free entry condition implies

λ[ΩJW + (1−Ω)JF] = κvez, (A.22)

where λ(X) is the vacancy-filling rate.

A.5. Labor market flows. Let ñ denote the number of employed agents (workers and firm own-

ers) at the beginning of the period, before labor market transitions. The law of motion of ñ is given

by the job-separation and the vacancy filling-rate, according to

ñ′ = (1− ρ(ϕ′ρ))ñ + λ(X)v. (A.23)

The matching function yields thus

m(X) = m̄(1− (1− ρ(ϕρ))ñ)χv(X)1−χ (A.24)
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and the relevant job-finding and vacancy-filling rates are

f (X) =
m(X)

1− (1− ρ(ϕρ))ñ
and λ(X) =

m(X)

v(X)
. (A.25)

Finally, note that under our timing workers that are separated can find a job within the period.

Hence the period-to-period separation rate s(X) is given by

s(X) = ρ(ϕρ)(1− f (X)). (A.26)

A.6. Dynamics of the job-finding rate. We rewrite the recursion (A.21) as follows

κvez

Ω + (1−Ω)ψ

1
λ(X)

= Q(X)− w(X) + E

[
(1− ρ(ϕ′ρ))MF(X, X′)

κvez′

Ω + (1−Ω)ψ

1
λ(X′)

]

A.7. Wage. A simple wage equation is assumed

w =

(
w−1

1 + π

)γw
(

w̄ez+ϕw
(n

n̄

)ψn
)1−γw

, (A.27)

where n̄ is the steady-state value of n, w−1 is last period’s wage, γw ∈ [0, 1], ψn ≥ 0, and ϕw is a

wage shock.

A.8. Central Bank. The Central Bank is assumed to set the nominal interest rate R according to

the following rule:

log
(

1 + R
1 + R̄

)
= ρR log

(
1 + R−1

1 + R̄

)
+ (1− ρR)

[
aπ log

(
1 + π

1 + π̄

)
+ ay log

(
1 + g
1 + ḡ

)]
+ ϕR (A.28)

where R̄ is the steady-state nominal interest rate, ρR ∈ (0, 1) an interest rate smoothing parameter,

(aπ, ay) the reaction coefficients to inflation and output growth, g = y/y−1 − 1 the growth rate of

final output, where y−1 is last-period final output, and ϕR a monetary policy shock.

A.9. Market clearing and aggregation.

Labor services. Recall from Section ?? that all households face the same labor market transition

rates ( f , s). Hence, in the steady state the employment rates in every family of workers and firm

owners are the same. Assuming that employment is symmetric at the beginning of the date-0 labor

market transition stage, by the law of large numbers they remain symmetric at every point in time,

i.e.:

ñW = ñF = ñW = ñF ≡ ñ, nW = nF = nW = nF ≡ n. (A.29)

Because a matched firm owner provides ψ times more units of labor services than a worker, the

total supply of labor services is ΩnW + (1− Ω)ψnF = (Ω + (1− Ω)ψ)n. Denoting by n̆ firms’

demand for labor services, market clearing requires:

(Ω + (1−Ω)ψ)n = n̆. (A.30)
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Asset markets. As employers are symmetric, in measure 1−Ω and each of them supplies υ(X)k(X)

units of capital services, the total supply of capital services is (1 − Ω)υ(X)k(X). The demand

for capital services by intermediate goods firms is k̆(X). Clearing of the market for capital thus

requires

(1−Ω)υ(X)k(X) = k̆(X). (A.31)

All the households participate in the market for nominal bonds, subject to the borrowing con-

straint. Clearing of this market thus requires

(1−Ω)aF′ (X) + Ω ∑
ℵ

∫
a

aW′ (ℵ, X)dµ(a,ℵ) = 0. (A.32)

The first term on the left hand side is the saving of the firm owners. The second term is the saving

of the family. The third term is the saving of unemployed households, taking into consideration

their number of consecutive periods of unemployment.

Goods markets. The aggregate demand for final goods is made of total investment (by employers),

the consumption of all types of households (employers as well as employed and unemployed

workers), as well as capital utilisation and vacancy costs. Clearing of this market requires that

demand be equal to supply, i.e.,

(1−Ω)(cF (X) + i′ (X) + η(υ)k (X)) + Ω ∑
ℵ

∫
a

cW (ℵ, X)dµ(a,ℵ) + κvezv = y (A.33)

The supply of intermediate goods is given by (A.18), while the wholesale sector demands one

unit of intermediate goods for any unit of wholesale goods. Hence the market-clearing condition

for this market is ∫ 1

0
xidi = ym = (k̆(X))φ(ezn̆(X))1−φ. (A.34)

The total demand for wholesale goods by the final good sector is
∫ 1

0 yi(X, pi(X))di = y(X)Λ(X).

The total supply of intermediate goods is equal to
∫ 1

0 yidi =
∫ 1

0 (xi)di − κyez. Hence, clearing of

the market for wholesale goods requires

Λ(X)y(X) = (k̆(X))φ(ezn̆(X))1−φ − κyez. (A.35)

A.10. Equilibrium Definition. In general the aggregate state is then given by:

X = {µ̃(·), k, aF, i, cF, cW(ℵ)ℵ∈Z+
, ae, R−1, Λ−1, π−1, y−1, w−1, Φ}, (A.36)

where Φ ≡ {z, ϕi, ϕc, ϕs, ϕR, ϕw, ϕp} is the exogenous state.

Definition 1. A symmetric recursive equilibrium is a set of value and policy functions, a set of prices, and

labor market flows such that:

(1) Workers. Given r(X), w(X), τ(X), buez, cW(ℵ)ℵ∈N, f (X) and s(X), the value and policy func-

tions VW(µ, X), gaW (a,ℵ, X) and gcW (a,ℵ, X) solve the workers’ problem;
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(2) Firm owners. Given r(X), rk(X), wF(X), cF, Υ(X), f (X) and s(X), the value and policy func-

tions VF(nF, k, aF, i, X), gaF(X), gcF(X), gi(X), gυ(X), and gk(X) solve the firm owners’ problem;

(3) Final goods firms. Given pς, ς ∈ [0, 1], the demands for wholesale goods yς(pς, X) is optimal from

the point of view of final goods firms;

(4) Intermediate goods firms. Given pm(X), yς(pς, X), and MF(X, X′), the value functions VR(X)

and VN(pς−1, X) and the reset price p∗(X) solve the problem of intermediate goods firms;

(5) Wholesale goods firms. Given pm(X), Q(X) and rk(X), the demand for labor and capital services

n̆(X) and k̆(X) solve the problem of wholesale good firms;

(6) Labour intermediaries. Given Q(X), w(X), and MF(X, X′), the job values JW(X) and JF(X)

are given by (A.21), the free entry condition (A.22) determines the vacancy-filling rate λ(X), and

m(X), f (X), v(X) and s(X) are determined according to (A.24), (A.25), and (A.26);

(7) Profits. The profit function Υ(X) results from the optimal decision of the intermediate goods firms

and the labor intermediaries.

(8) Social contribution rate, real interest rate, stochastic discount factor, wages, and nominal

interest rate. Given y(X), π(X), and buez, the social contribution rate τ(X) is so that (A.1)

holds; the real return on nominal bond holdings r(X) follows (??); the stochastic discount factor

MF(X, X′) is given by (A.10), firm owners’ wage wF(X) is equal to ψw(X), where w(X) is given

by (A.27); the nominal interest rate R(X) is given by (A.28); .

(9) Market clearing. The market-clearing conditions (A.30) to (A.34) hold.

(10) Laws of motion. Given p∗(X), inflation π(X) and price dispersion Λ(X) evolve according (??)

and (??), respectively. Given f (X), s(X), and gaW (·) the laws of motion from µ̃ to µ, and then from

µ to µ̃′, are given by:

µ̃ to µ :


µ(a, 0) = f (X)∑ℵ≥1 µ̃(a,ℵ) + (1− s(X))µ̃(a, 0)

µ(a, 1) = s(X)µ̃(a, 0)

µ(a,ℵ) = (1− f (X))µ̃(a,ℵ − 1) for ℵ ≥ 2,

µ to µ̃′ : µ̃′(â,ℵ) =
∫

a
1gaW (a,ℵ,X)≤âdµ(a,ℵ) for ℵ ≥ 0.

(11) Habits. Given gcF(X) and gcW (·), tomorrow’s habit level of a particular household type is equal to

the average consumption of this type today, i.e.,

cF′ = gcF(X) and cW′(ℵ) =
∫

a
gcW (a,ℵ, X)dµ(a,ℵ).

Definition 2. A balanced growth path is a symmetric recursive equilibrium where:

(1) Innovations to the exogenous aggregate state (ε) are zero at every point in time;

(2) The variables w(X), cW(ℵ)ℵ∈N, wF(X), cF, Q (X) , Υ(X) k̆(X), all grow at rate µz;

(3) The variables r(X), rk(X), f (X), s(X), λ(X), m(X), ν(X), n̆(X), R (X), pm(X) and π (X) are

constant.
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B. REDUCTION OF THE EQUILIBRIUM

The reduction of the equilibrium to an equilibrium with a finite, countable number of relevant

wealth states relies on Propositions 1 to 3 in Section 2.1 of the main text. The complete proof of

Proposition 1 is provided there. A sketch of the proof of proposition 2 is also provided, and the

complete proof is given in Section 2.A above. We start the present Section by restating Propostion

3 and providing its full proof.

B.1. Proof of Proposition 3. We first restate our key assumption about the tightness of the debt

limit:

Assumption B. a > anat ≡ βFbu

βF−e(σ−1)µz .

Proposition 3. Under Assumption ??, in a BGP workers face a binding debt limit after a finite

number of unemployment periods. Formally:

∃ℵ̂ ∈ Z+, ℵ̂ < ∞ :

{
∀ℵ < ℵ̂, MW′(ℵ)

(
1 + r′

)
= 1,

∀ℵ ≥ ℵ̂, MW′(ℵ)
(
1 + r′

)
< 1.

Proof. The proof is by contradiction. In the economy without aggregate shock TFP grows de-

terministically at a rate µz, the real interest rate is given by 1 + r̄ =eσµz /βF, and we denote by

ĉW (ℵ) = cW (ℵ)e−z and âW′ (ℵ) = aW′ (ℵ)e−z the detrended consumption and assets of a type-ℵ
worker. If unemployed workers never faced a binding debt limit, their Euler equation (as written

in the proof of proposition 2 above) would always hold with equality. Noting that in the absence of

aggregate shocks we have uc(cW((ℵ)− hcW (ℵ)) = (ĉW (ℵ) (eµz − h))−σe−σz+σµz , we would thus

have the following conditions :

(ĉW (ℵ) (eµz − h))−σe−σz+σµz

= βW (1 + r̄) [ f (ĉW (0) (eµz − h))−σe−σz+σµz + (1− f ) (ĉW (ℵ) (eµz − h))−σe−σz+σµz ], ∀ℵ ≥ 1

or, using the fact that 1 + r̄ =eσµz /βF and simplifying :

ĉW (ℵ)−σ = (βW/βF)( f ĉW (0)−σ + (1− f ) ĉW (ℵ+ 1)−σ), ∀ℵ ≥ 1

On the other hand, since employed workers’ choice is interior we have:

ĉW (0)−σ = (βW/βF)((1− s)ĉW (0)−σ + sĉW (1)−σ), for ℵ = 0

We now define xk ≡ ĉW (k)−σand β̃ ≡ βW/βF. The last two conditions give rise to the following

recursion:

x0 = β̃ ((1− s)x0 + sx1)

xk = β̃ ( f x0 + (1− f ) xk+1)
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that is (for f , s, β̃1)):

x1 =
1− β̃(1− s)

β̃s
x0 and

xk+1 =
1

β̃ (1− f )
xk −

β̃ f
β̃ (1− f )

x0 for k ≥ 1

We can rewrite the last condition as follows:

xk+1 = x∗ +
1

β̃ (1− f )
(xk − x∗)

where

x∗ =
β̃ f x0

1− β̃ (1− f )
The (xk)-sequence diverges if x1 > x∗. This is equivalent to

1− β̃(1− s)
β̃s

x0 >
β̃ f

1− β̃ (1− f )
x0

or, after rearranging, (1− β̃)(1− β̃(1− s− f )) > 0. Since this is always true, we have limk→+∞ xk =

+∞ and hence ĉW (∞) = limk→+∞ ĉW (k) = 0 (i.e., the consumption of a worker remaining perma-

nently unemployed asymptotically goes to zero).

On the other hand, the budget constraint of a type-ℵ worker, expressed in detrended form, is

given by:

âW′ (ℵ) + ĉW (ℵ) = bu + (e(σ−1)µz /βF)âW (ℵ − 1) , for ℵ = 1, 2, ...

If the debt limit is never binding for unemployed workers we have aW′ (ℵ) > aez, and hence

aW′ (ℵ) > anatez for all ℵ ≥ 1 (i.e., the debt limit is strictly tighter than the natural limit, by Assump-

tion 2). This implies (in detrended form) âW′ (ℵ) > anat for all ℵ ≥ 1, and hence limk→+∞ âW′ (k) ≡
âW ′

∞ > anat. Taking the limit as ℵ → +∞ of the budget constraint above and using the fact that

ĉW (+∞) = 0 and anat = − βFbu

e(σ−1)µz−βF , we get:

âW ′
∞ = − βFbu

e(σ−1)µz − βF
= anat,

a contradiction. Hence, it cannot be that the debt limit never binds for workers remaining contin-

uously unemployed, i.e., the debt limit binds after a finite number of unemployment periods.�

We describe the equilibrium conditions characterising the model’s dynamics for any finite ℵ̂ in

Section 2.2 of the main paper. We now state those conditions for the case where ℵ̂ = 1, which

correspond to the model being estimated thereafter.
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C. THE CASE ℵ̂ = 1

C.1. Construction. In the case where ℵ̂ = 1 all unemployed workers face a binding borrowing

limit (i.e., aW′ (ℵ) = aez for ℵ ≥ 1) but none of the employed workers do (i.e., aW′ (0) > aez).

Employed workers’ budget constraint is given by:

cW (0) + aW′ (0) = (1− τ)w + (1 + r)A

where

A′ =
(1− s′) naW′ (0) + f ′ (1− n) aez

n′
,

Since the consumption level of any household depends on both beginning-of-period and end-of-

period level of nominal bonds and there can be only two types of unemployed workers. First, the

unemployed workers who were employed at the beginning of the labor market transitions stage

receive income buez + (1 + r)a during the production stage, so their budget constraint is:

cW (1) + aez = buez + (1 + r)a (1) ,

where beginning-of-period assets a results from last period’s asset accumulation, when the worker

was still employed, i.e., a′ (1) = aW′ (0) > 0 . Second, the unemployed workers who were unem-

ployed at the beginning of the labor market transitions stage receive income buez + (1+ r)a during

the production stage and thus consume:

cW (2) + aez = buez + (1 + r)a (2) ,

where in this case beginning-of-period assets a result from the binding borrowing constraint, i.e.,

a′ (2) = aW′ (1) = aez. In this equilibrium, all workers of type ℵ ≥ 2 are symmetric so that

cW (ℵ) = cW (2) and aW′ (ℵ) = aW′ (1) = aez for all ℵ ≥ 2

To summarize, in the conjectured equilibrium at every point in time there are three distinct

types of workers: ℵ = 0, ℵ = 1 and ℵ ≥ 2, with consumption levels cW (0), cW (1) and cW (2),

respectively. These types are in numbers ΩnW , ΩsñW and Ω
(
1− nW − sñW), respectively. Type

ℵ = 0 workers save aW′ (0) > aez, while types ℵ = 1 and ℵ ≥ 2 all save aez. Finally, because there

are only three workers’ types, there are only three relevant habit levels to keep track of: cW(0),

cW(1) and cW(2). Since habits levels are determined by the average consumption of the relevant

group in the previous period, we have cW′(0) = cW (0, X), cW′(1) = cW (1, X) and cW′(2) = cW (2).

C.2. Existence conditions. An equilibrium with ℵ̂ = 1 prevails if and only iff employed workers’

bond holding choice is intérior while all unemployed workers’ bond holding choices are corner.
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Since all ℵ ≥ 2 workers are identical to ℵ = 2, this is the case whenever the three following

conditions hold :

Eµ,X

[
MW′ (0) (1 + r′)

]
= 1, and

Eµ,X

[
MW′ (ℵ) (1 + r′)

]
< 1 for ℵ = 1, 2.



TECHNICAL APPENDIX 19

D. AGGREGATE DYNAMICS

We now summarize the set of equilibrium conditions, first formulated in recursive form and

then formulated in sequential form. We then induce stationarity and compute the steady state

of the model. Because the equilibrium has a particularly simple structure we can now make the

following intutive change of notation. We call ae′ = aW′ (0) and au′ = aez the end-of-period assets

of employed and unemployed workers, respectively, ce = cW (0) the consumption of employed

workers, and, in the same spirit ceu = cW (1) and cuu = cW (2) (with eu standing form “workers

falling into unemployment in the current period” and uu for “unemployed workers who where so

in the previous period”). Similarly, we use the notation neu to denote the share of workers currintly

falling into unemployment etc. Also, we define

Ae ≡ An′.

D.1. Recursive representation. To simplify notation, we eliminate all dependence with respect to

X and X′.

D.1.1. Workers. The relevant equations are :

1 + r =
1 + R−1

1 + π
eϕc , (D.1)

MF′ = βF u′(cF′ − hFcF′)

u′(cF − hFcF)
, (D.2)

E
[

MF′(1 + r′)
]
= 1, (D.3)

1 = pkeϕi

[
1− S

(
i′

i

)
− S′

(
i′

i

)
i′

i

]
+ E

[
MF′p′keϕ′i S′

(
i′′

i′

)(
i′′

i′

)2
]

, (D.4)

η′(υ) = rk, (D.5)

pk = E

{
MF′[r′kυ′ − η(υ′) + (1− δ)p′k]

}
, (D.6)

k′ = (1− δ)k + eϕi(1− S(i′/i))i′, (D.7)

cF + i′ + aF′ = ψwn− [rkυ− η(υ)]k− (1 + r)aF − Υ, (D.8)
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Me′ = βW s′u′(cu′ − hWceu′) + (1− s′)u′(ce′ − hWce′)

u′(ce − hWce)
, (D.9)

E[Me′(1 + r′)] = 1 if ae′ ≥ a), (D.10)

ae′ + ce = (1− τ)w + (1 + r)
Ae

n
, (D.11)

Ae = (1− s) ñae + f (1− ñ)aez−1 , (D.12)

ceu = buez + (1 + r)ae − aez, (D.13)

neu = sñ, (D.14)

cuu = buez + (1 + r)aez−1 − aez, (D.15)

nuu = 1− n− neu, (D.16)

ñ′ = n. (D.17)

D.1.2. Firms. The relevant equations are :

p∗ =
K
F

, (D.18)

K = µeϕp pmy + αE

[
MF′

(
1 + π′

(1 + π̄)1−γ(1 + π)γ

)θ

K′
]

, (D.19)

F = y + αE

[
MF′

(
1 + π′

(1 + π̄)1−γ(1 + π)γ

)θ−1

F′
]

, (D.20)

1 = (1− α) (p∗)1−θ + α

(
(1 + π̄)1−γ(1 + π−1)

γ

1 + π

)1−θ

, (D.21)

Λ = (1− α) (p∗)−θ + α

(
(1 + π̄)1−γ(1 + π−1)

γ

1 + π

)−θ

Λ−1, (D.22)

rk = pmφez(1−φ)

(
k̆
n̆

)φ−1

, (D.23)
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Q = pm(1− φ)ez(1−φ)

(
k̆
n̆

)−φ

, (D.24)

κvez

Ω + (1−Ω)ψ

1
λ
= Q− w + E

[
(1− ρ(ϕ′ρ))MF κvez′

Ω + (1−Ω)ψ

1
λ′

]
, (D.25)

n = (1− ρ(ϕρ)ñ + λv, (D.26)

m = m̄(1− (1− ρ(ϕρ))ñ)χv1−χ, (D.27)

f =
m

1− (1− ρ(ϕρ))ñ
, (D.28)

λ =
m
v

, (D.29)

s = ρ(ϕρ)(1− f ). (D.30)

D.1.3. Wage. The wage equation is

w =

(
w−1

1 + π

)γw
(

w̄ez+ϕw

(
n

nss

)ψn
)1−γw

. (D.31)

D.1.4. Central Bank. Ther Central Bank follows the rule

log
(

1 + R
1 + R̄

)
= ρR log

(
1 + R−1

1 + R̄

)
+ (1− ρR)

[
aπ log

(
1 + π

1 + π̄

)
+ ay log

(
1 + g
1 + ḡ

)]
+ ϕR, (D.32)

where

g = y/y−1 − 1,
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D.1.5. Aggregation and market clearing. The relevant equations are

[Ω + (1−Ω)ψ]n = n̆, (D.33)

(1−Ω)υk = k̆, (D.34)

yΛ = ((1−Ω)υk)φ(ezt [Ω + (1−Ω)ψ]n)1−φ − κyez, (D.35)

(1−Ω)(cF + i + η(υ)k) + Ω(nce + neuceu + nuucuu) + κvezv = y, (D.36)

(1−Ω)aF′ + Ω(Ae′ + (1− n)aez) = 0, (D.37)

τwn = buez(1− n). (D.38)

D.2. Sequential representation. It is now useful to introduce the time index before considering

the stationary model. We index all variables in the current period by t, and make use of the equi-

librium and symmetry conditions above to reduce the number of variables. For example, nt is the

employment rate in a particular family of workers (nW) as well as the aggregate employment rate

of workers (nW) ; it is also the corresponding rates for employers, since those face the same labor

market transitions than the workers. Similarly, current investment (i′) is denoted it, and so on.

Finally, in as much as capital in the current period is determined by investment decisions made in

the previous period, we denote it by kt−1. In particular :

ñt = nt−1

The final system is composed of the following equations:

1 + rt =
1 + Rt−1

1 + πt
eϕc,t , (D.39)

MF
t,t+1 = βF λF

t+1

λF
t

, (D.40)

λF
t = (cF

t − hFcF
t−1), (D.41)

Et{MF
t,t+1(1 + rt+1)} = 1, (D.42)
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1 = pk,teϕi,t

[
1− S

(
it

it−1

)
− S′

(
it

it−1

)
it

it−1

]
+ Et

[
MF

t,t+1 pk,t+1eϕi,t+1 S′
(

it+1

it

)(
it+1

it

)2
]

, (D.43)

η′(υt) = rk,t, (D.44)

pk,t = Et{MF
t,t+1[rk,t+1υt+1 − η(υt+1) + (1− δ)pk,t+1]}, (D.45)

kt = (1− δ)kt−1 + eϕi,t

(
1− S

(
it

it−1

))
it, (D.46)

Me
t,t+1 = βW (1− st+1)λ

e
t+1 + st+1λeu

t+1

λe
t

, (D.47)

λe
t = u′(ce

t − hWce
t−1), (D.48)

λeu
t = u′(ceu

t − hWceu
t−1), (D.49)

1 = Et
[
Me

t,t+1(1 + rt+1)
]

, (D.50)

ae
t + ce

t = (1− τt)wt + (1 + rt)
Ae

t
nt

, (D.51)

Ae
t = (1− st)nt−1ae

t−1 + ft(1− nt−1)aezt−1 , (D.52)

ceu
t = buezt + (1 + rt)ae

t−1 − aezt , (D.53)

neu
t = stnt−1, (D.54)

cuu
t = buezt + (1 + rt)aezt−1 − aezt (D.55)

nuu
t = 1− nt − neu

t , (D.56)

p∗t =
Kt

Ft
, (D.57)
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Kt = µeϕp,t pm,tyt + αEt

[
MF

t,t+1

(
1 + πt+1

(1 + π∗t )
1−γ(1 + πt)γ

)θ

Kt+1

]
, (D.58)

Ft = yt + αEt

[
MF

t,t+1

(
1 + πt+1

(1 + π∗t )
1−γ(1 + πt)γ

)θ−1

Ft+1

]
, (D.59)

1 = (1− α)(p∗t )
1−θ + α

(
(1 + π∗t )

1−γ(1 + πt−1)
γ

1 + πt

)1−θ

, (D.60)

Λt = (1− α)(p∗t )
−θ + α

(
(1 + π∗t )

1−γ(1 + πt−1)
γ

1 + πt

)−θ

Λt−1, (D.61)

rk,t = pm,tφ
ym,t

(1−Ω)υtkt−1
, (D.62)

Qt = pm,t(1− φ)
ym,t

[Ω + (1−Ω)ψ]nt
, (D.63)

κvezt

Ω + (1−Ω)ψ

1
λt

= Qt − wt + Et

[
(1− ρt+1)MF

t,t+1
κvezt+1

Ω + (1−Ω)ψ

1
λt+1

]
, (D.64)

nt = (1− ρt)nt−1 + λtvt, (D.65)

mt = m̄(1− (1− ρt)nt−1)
χv1−χ

t , (D.66)

ft =
mt

1− (1− ρt)nt−1
, (D.67)

λt =
mt

vt
, (D.68)

st = ρt(1− ft), (D.69)

wt =

(
wt−1

1 + πt

)γw
(

w̄ezt+ϕw,t

(
nt

nss

)ψn
)1−γw

, (D.70)

log
(

1 + Rt

1 + R̄

)
= ρR log

(
1 + Rt−1

1 + R̄

)
+ (1− ρR)

[
aπ log

(
1 + πt

1 + π̄

)
+ ay log

(
1 + gt

1 + ḡ

)]
+ σRεR,t,

(D.71)
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1 + gt =
yt

yt−1
, (D.72)

Λtyt = ym,t − κye−zt , (D.73)

(1−Ω)(cF + i + η(υ)k) + Ω(nce
t + (1− ft)(1− nt−1)cuu

t + stnt−1ceu
t ) + κvezvt = yt, (D.74)

(1−Ω)aF
t + Ω(Ae

t + (1− nt)aezt) = 0, (D.75)

τtwtnt = buezt(1− nt), (D.76)

ym,t = ((1−Ω)υtkt−1)
φ(ezt [Ω + (1−Ω)ψ] nt)

1−φ. (D.77)

D.3. Stationary model. Before inducing stationarity, we assume the functional forms below.

(1) The utilization cost function is of the form:

η(υ) =
η̄

ν̃υ
[exp(ν̃υ(υ− 1))− 1], η̄ > 0, ν̃υ > 0.

so that in a steady state with υ = 1, it must be the case that η(1) = 0, η′(1) = η̄. To

ensure that this condition is met for all possible MCMC draws at the estimation stage, the

parameter η̄ must be adjusted for each new parameter draw. As such, it is not included in

the list of estimated parameters. Notice also that

η′′(υ)

η′(υ)
= ν̃υ,

so that in steady state with υ = 1, the curvature of η(·) is ν̃υ. We define νυ ≡ ν̃υ/(1+ ν̃υ) and

estimate νυ rather than ν̃υ. This allows us to eliminate numerical problems at the estimation

stage.

(2) The investment adjustment cost function is of the form

S
(

it

it−1

)
=

ν̃i

2

(
it

it−1
− eµz

)2

where µz is the steady-state growth rate of technical progress, which coincides with that of

investment along a balanced-growth path. Using this functional form, it must be the case

that in a steady state with it/it−1 =eµz , S(eµz) = S′(eµz) = 0. We also define

νi ≡ ν̃ie2µz
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(3) The utility function is of the form

u(c) = lim
σ̃→σ

c1−σ̃ − 1
1− σ̃

, σ > 0

which encompasses the special case σ = 1 as the logarithmic utility function.

(4) The exogenous separation rate obeys

ρt =
1

1 + exp(−ρ̄− ϕρ,t)
,

so that (i) ρt −→ 1 as ϕρ,t −→ +∞, (ii) ρt −→ 0 as ϕρ,t −→ −∞, and ρ̄ pins down the

steady-state value of ρ, via

ρ̄ = log
(

ρ

1− ρ

)
,

We now define the stationary version of the originally trending variables as follows

ŷt = yte−zt , ŷm,t = ym,te−zt , Q̂t = Qte−zt ,

λ̂F
t = λF

t eσzt , λ̂e
t = λe

te
σzt , λ̂eu

t = λeu
t eσzt ,

ĉF
t = cF

t e−zt , ĉe
t = ce

te
−zt , ĉeu

t = ceu
t e−zt , ı̂t = ite−zt , k̂t = kte−zt ,

âe
t = ae

te
−zt , Âe

t = Ae
te
−zt , ŵt = wte−zt , F̂t = Fte−zt , K̂t = Kte−zt .

Accordingly, the normalized system rewrites

1 + rt =
1 + Rt−1

1 + πt
, (D.78)

MF
t,t+1 =

βF

eσµz
e−σϕz,t+1

λF
t+1

λ̂F
t

, (D.79)

λ̂F
t =

(
ĉF

t −
hF

eµz
ĉF

t−1e−ϕz,t

)−σ

, (D.80)

Et

[
MF

t,t+1(1 + rt+1)
]
= 1, (D.81)

1 = pk,teϕi,t

[
1− νi

2

(
ı̂teϕz,t

ı̂t−1
− 1
)2

− νi

(
ı̂teϕz,t

ı̂t−1
− 1
)

ı̂teϕz,t

ı̂t−1

]

+ Et

{
eµz MF

t,t+1 pk,t+1eϕi,t+1 νi

(
ı̂t+1eϕz,t+1

ı̂t
− 1
)(

ı̂t+1eϕz,t+1

ı̂t

)2
}

, (D.82)

η′(υt) = rk,t, (D.83)
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pk,t = Et

[
MF

t,t+1 {rk,t+1υt+1 − η(υt+1) + (1− δ)pk,t+1}
]

(D.84)

k̂t =

(
1− δ

eµz

)
k̂t−1e−ϕz,t + eϕi,t

(
1− νi

2

(
ı̂teϕz,t

ı̂t−1
− 1
)2
)

ı̂t, (D.85)

Me
t,t+1 =

βW

eσµz
e−σϕz,t+1

(1− st+1)λ̂
e
t+1 + st+1λ̂eu

t+1

λ̂e
t

, (D.86)

λ̂e
t =

(
ĉe

t −
hW

eµz
ĉe

t−1e−ϕz,t−1

)−σ

, (D.87)

λ̂eu
t =

(
ĉeu

t −
hW

eµz
ĉeu

t−1e−ϕz,t−1

)−σ

, (D.88)

1 = Et
[
Me

t,t+1(1 + rt+1)
]

, (D.89)

âe
t + ĉe

t = (1− τt)ŵt + (1 + rt)
Âe

t
nt

, (D.90)

eµz Âe
te

ϕz,t = (1− st)nt−1 âe
t−1 + ft(1− nt−1)a (D.91)

ĉeu
t = bu +

1 + rt

eµz
âe

t−1e−ϕz,t − a, (D.92)

neu
t = stnt−1, (D.93)

ĉuu
t = bu +

(
1 + rt

eµz
− 1
)

a (D.94)

nuu
t = 1− nt − neu

t , (D.95)

p∗t =
K̂t

F̂t
, (D.96)

K̂t = µeϕp,t pm,tŷt + αEt

{
eµz MF

t,t+1

(
1 + πt+1

(1 + π̄)1−γ(1 + πt)γ

)θ

K̂t+1eϕz,t+1

}
, (D.97)

F̂t = ŷt + αEt

{
eµz MF

t,t+1

(
1 + πt+1

(1 + π̄)1−γ(1 + πt)γ

)θ−1

F̂t+1eϕz,t+1

}
, (D.98)
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1 = (1− α)(p∗t )
1−θ + α

(
(1 + π̄)1−γ(1 + πt−1)

γ

1 + πt

)1−θ

, (D.99)

Λt = (1− α)(p∗t )
−θ + α

(
(1 + π̄)1−γ(1 + πt−1)

γ

1 + πt

)−θ

Λt−1, (D.100)

nt = (1− ρ)nt−1 + λtvt, (D.101)

mt = m̄eϕm,t(1− (1− ρt)nt−1)
χv1−χ

t , (D.102)

st = ρt(1− ft), (D.103)

ft =
mt

1− (1− ρt)nt−1
, (D.104)

λt =
mt

vt
, (D.105)

κv

Ω + (1−Ω)ψ

1
λt

= Q̂t − ŵt + EX

[
(1− ρt+1)MF

t,t+1
κveµz+ϕz,t+1

Ω + (1−Ω)ψ

1
λt+1

]
, (D.106)

ŷm,t =

(
(1−Ω)υt

k̂t−1

eµz
e−ϕz,t

)φ

([Ω + (1−Ω)ψ] nt)
1−φ, (D.107)

Λtŷt = ŷm,t − κy, (D.108)

(1−Ω)

(
ĉF

t + ı̂t + η(υt)
k̂t−1

eµz
e−ϕz,t

)
+ Ω(nt ĉe

t + nuu
t ĉuu

t + neu
t ĉeu

t ) + κvvt = ŷt (D.109)

(1−Ω)âF
t + Ω(Âe

t + (1− nt)a) = 0, (D.110)

τtŵtnt = bu(1− nt), (D.111)

rk,t = pm,tφeµz
ŷm,t

(1−Ω)υt k̂t−1
eϕz,t , (D.112)

Q̂t = pm,t(1− φ)
ŷm,t

[Ω + (1−Ω)ψ]nt
(D.113)
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ŵt =

(
ŵt−1e−µz−ϕz,t

1 + πt

)γw
(

w̄eϕw,t

(
nt

nss

)ψn
)1−γw

, (D.114)

log
(

1 + Rt

1 + R̄

)
= ρR log

(
1 + Rt−1

1 + R̄

)
+ (1− ρR)

1
4

[
aπ log

(
1 + πt

1 + π̄

)
+ ay log

(
ŷteϕz,t

ŷt−1

)]
+ σRεR,t, (D.115)

ρt =
1

1 + exp(−ρ̄− ϕρ,t)
. (D.116)

D.4. Steady state. Several variables have trivial steady-state values: Λ = 1, pk = 1, p∗ = 1. Once

we get rid of these, the reduced steady state is solution to the system

1 + r =
1 + R
1 + π̄

, (D.117)

MF =
βF

eσµz
, (D.118)

λ̂F =

((
1− hF

eµz

)
ĉF
)−σ

, (D.119)

MF(1 + r) = 1, (D.120)

η′(υ) = rk, (D.121)

1 = MF(rkυ + 1− δ) (D.122)[
1−

(
1− δ

eµz

)]
k̂ = ı̂, (D.123)

Me =
βW

eσµz

(1− s)λ̂e + sλ̂eu

λ̂e
, (D.124)

λ̂e =

((
1− hW

eµz

)
ĉe
)−σ

, (D.125)

λ̂eu =

((
1− hW

eµz

)
ĉeu
)−σ

, (D.126)

1 = Me(1 + r), (D.127)
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âe + ĉe = (1− τ)ŵ + (1 + r)
Âe

n
, (D.128)

eµz Âe = (1− s)nâe (D.129)

ĉeu = bu +
1 + r
eµz

âe, (D.130)

neu = sn, (D.131)

ĉuu = bu (D.132)

nuu = 1− n− neu, (D.133)

1 =
K̂
F̂

, (D.134)

K̂ = µpmŷ + αeµz MFK̂, (D.135)

F̂ = ŷ + αeµz MF F̂, (D.136)

ρn = λv, (D.137)

m = m̄(1− (1− ρ)n)χv1−χ, (D.138)

s = ρ(1− f ), (D.139)

f =
m

1− (1− ρ)n
, (D.140)

λ =
m
v

, (D.141)

κv

Ω + (1−Ω)ψ

1
λ
= Q̂− ŵ +

[
(1− ρ)MF κveµz

Ω + (1−Ω)ψ

1
λ

]
(D.142)
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ŷm =

(
(1−Ω)

k̂
eµz

)φ

([Ω + (1−Ω)ψ]n)1−φ, (D.143)

ŷ = ŷm − κy, (D.144)

(1−Ω)(ĉF + ı̂) + Ω(nĉe + (1− f )(1− n)ĉuu + snĉeu) + κvv = ŷ (D.145)

(1−Ω)âF + ΩÂe = 0, (D.146)

τŵn = bu(1− n), (D.147)

rk = pmφeµz
ŷm

(1−Ω)υk̂
, (D.148)

Q̂ = pm(1− φ)
ŷm

[Ω + (1−Ω)ψ]n
(D.149)

ŵ =

(
e−µz

1 + π

) γw
1−γw

w̄. (D.150)

There are 34 equations in the system for the 34 unknown variables: r, R, MF, Me, λ̂F, λ̂e, λ̂eu, ĉF,

ĉe, ĉeu, ĉuu, âF, âe, Âe, λ, m, v, s, f , n, neu, nuu, k̂, ı̂, υ, ŷ, ŷm, rk, ŵ, Q̂, τ, pm, K̂p, F̂p.

E. ESTIMATION AND EMPIRICAL RESULTS

Let X̂ denote the vector collecting the deviation from steady state of the normalized state vari-

ables and let ε denote the vector collecting the innovations to the aggregate shocks. The law of

motion of X̂ is of the form:

X̂′ = F(ϑ)X̂ + G(ϑ)ε′, (E.1)

where

ϑ = (Ω, σ, h, βF, βW , δ, θ, φ, κv, κy, ρ̄, χ, m̄, νi, νυ, η̄, α, γp, ψ, w̄, ψn, γw,

bu, a, π̄, ρ, aπ, ay, µz, ρxforx ∈ {c, i, w, s, p, R}, σx for x ∈ {c, i, w, s, p, R, z})

is the vector of model’s structural parameters. The matrices F(ϑ) and G(ϑ) are functions of the

model’s structural parameters.

As mentioned in the paper, the vector of structural parameters ϑ is split into two subsets ϑ1 and

ϑ2. The first one, that we call the calibrated parameters,

ϑ1 = (δ, θ, χ, m̄, Ω, a, π̄, µz, βF, βW , bu, φ, κv, ρ̄, κy, ψ, w̄),
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contains structural parameters that are not estimated using the just described bayesian estimation.

The calibrated parameters are either outright calibrated or tied to some restriction implied by the

fact that we force the steady-state to match some unconditional moments. The remaining structural

parameters, contained in ϑ2, are estimated.

E.1. Calibrated Parameters. The calibrated parameters are set to match certain calibration restric-

tions, either imposed directly at the specification stage or stemming from calibration targets (i.e. a

discipline imposed by the data). Below, we list these two sorts of restrictions.

ϑ1 = (δ, χ, m̄),

(1) Restrictions at the specification stage

• The steady-state utilization rate υ = 1, so that η̄ is not strictly speaking a free parame-

ter;

• Fixed costs are such that aggregate profits are zero in the steady state, implying ŷm =

µŷ, so that κy is not strictly speaking a free parameter;

(2) Outright and data-based restrictions

• We set δ = 0.015;

• Relative share of workers Ω = 0.6;

• The parameter m̄ is normalized to 1.

• The elasticity of the matching function with respect to vacancies is set to 0.5, so that

χ = 0.5;

• The borrowing limit a = 0;

• The price markup is set to 20%, thus restricting θ = 6;

• Vacancy posting costs are such that κvv/ŷ are equal to a 1%, which restricts κv;

• The labor share, which we will denote lsh, and is equal to ŵ[Ω + (1−Ω)ψ]n/y, is set

to 64%;

• Wage premium ψ is set so as to match the share of consumption of the 60% poorest

(denoted s60) in aggregate consumption;

• The nominal interest rate R is set to the observed average Fed Funds rate (at the esti-

mation stage);

• The inflation target π̄ is set to the observed average inflation (at the estimation stage);

• The growth rate µz is set to the observed average output growth (at the estimation

stage);

• The steady-state values of s and f are set to their observed average (at the estimation

stage), which restricts ρ̄ and w̄;
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• The consumption loss ĉeu/ĉe = 1− (1− 0.79)/0.6 so that on average (across the whole

population of employees), the consumption drop when falling into unemployment is

close to 20%, which restricts βW ;

• We also impose a replacement ratio (50%), so that bu = 0.5ŵ. In the following we

define the parameter governing the replacement ratio reprat = 0.5.

It is useful to define the above calibration restrictions in terms of a new vector ϑtarget which

simply lists them. In practice, we treat ϑtarget as the parameters and ϑ1 as the variables solving the

a system of the form

Z(ϑtarget, ϑ1, ϑ2) = 0.

Now, given ϑ2, our task is to find a one-to-one mapping between the calibration restrictions

ϑtarget and the parameters we want to pin down ϑ1. To that end, we develop the following alogrithm.

(1) From equations (D.134), (D.135), and (D.136), we obtain

1 = µpm, (E.2)

(2) Recall that κy is selected so that aggregate monopolistic profits are zero in the steady state.

The steady-state profits of firm i are given by

ŷ(i)− pm(ŷ(i) + κy).

Since µpm = 1, we obtain(
1− 1

µ

)
ŷ =

1
µ

κy =⇒ (µ− 1) ŷ = κy.

Since

ŷ = ŷm − κy

we obtain

ŷm = µŷ.

We will use this restriction repeatedly in the remainder.

(3) From (D.118), (D.120), and (D.127)

Me = MF =
βF

eσµz
, (E.3)

r =
eσµz

βF − 1, (E.4)

and from (D.117)

R =
eσµz

βF (1 + π̄)− 1. (E.5)
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In fact, since output growth, Rt and πt will be observable variables, we will directly es-

timate µz, R and π, so that βF will be deduced from the above equation. Thus, in the

preamble of the model block, we will impose

βF = eσµz
1 + π̄

1 + R
.

(4) The arbitrage condition between capital and bonds (equations D.120 and D.122, using

D.148) yields

rk − δ = pmφeµz
ŷm

(1−Ω)k̂
− δ = r

pmφeµz
ŷm

(1−Ω)k̂
=

eσµz − βF(1− δ)

βF

pmφ
ŷm

(1−Ω)k̂
=

e(σ−1)µz − βF 1−δ
eµz

βF (E.6)

so that
φ

µ

ŷm

(1−Ω)k̂
=

e(σ−1)µz − βF 1−δ
eµz

βF .

which using ŷm = µŷ simplifies to

ŷ
(1−Ω)k̂

=
e(σ−1)µz − βF 1−δ

eµz

φβF .

It follows that

rk = pmφeµz
ŷm

(1−Ω)k̂
= φeµz

ŷ
(1−Ω)k̂

=
eσµz − βF(1− δ)

βF ,

where we imposed υ = 1. Thus, through equation (D.121), this imposes the constraint

η̄ =
eσµz − βF(1− δ)

βF , (E.7)

to be added in the preamble of the model block in Dynare.

(5) From eq. (D.123), we obtain

ı̂
k̂
=

[
1−

(
1− δ

eµz

)]
,

so that

(1−Ω)
ı̂
ŷ
= (1−Ω)

k̂
ŷ

ı̂
k̂

.

Recall that

(1−Ω)
k̂
ŷ
=

φβF

e(σ−1)µz − βF 1−δ
eµz

.

Hence

(1−Ω)
ı̂
ŷ
=

φβF (1− ( 1−δ
eµz

))
e(σ−1)µz − βF 1−δ

eµz

.
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(6) Let us define aggregate consumption as

ĉ = (1−Ω)ĉF + Ω(nĉe + (1− f )(1− n)ĉuu + snĉeu)

Notice that, from (D.145), we have

ĉ
ŷ
= 1− κvv

ŷ
− (1−Ω)

ı̂
ŷ

. (E.8)

(7) We can also back out ρ from the average values of s and f obtained at the estimation stage,

through equation (D.139)

ρ =
s

1− f
, (E.9)

so that this is an additional constraint which must be imposed in the preamble of the model

block in Dynare.

(8) We now work out a restriction on φ.Using equations (D.118), (D.141), (D.142), and (D.149),

and the constraint imposed on ŵ[Ω + (1−Ω)ψ]n/y, we obtain

κv

Ω + (1−Ω)ψ

1
λ
=

Q̂− ŵ
1− (1− ρ)eµz MF (E.10)

κvv
m

=
(1− φ) ŷ

n − ŵ[Ω + (1−Ω)ψ]

1− (1− ρ)eµz MF (E.11)

κvv
m

=
ŷ
n

(1− φ)−
(

ŵ[Ω+(1−Ω)ψ]n
ŷ

)
1− (1− ρ)eµz MF (E.12)

(
κvv
ŷ

)
=

m
n

(1− φ)−
(

ŵ[Ω+(1−Ω)ψ]n
ŷ

)
1− (1− ρ)e(1−σ)µz βF

(E.13)

Also, from (D.137), we obtain

m
n

=
λv
n

=
ρn
n

= ρ.

We thus obtain(
κvv
ŷ

)
= ρ

(1− φ)−
(

ŵ[Ω+(1−Ω)ψ]n
ŷ

)
1− (1− ρ)e(1−σ)µz βF

(E.14)

⇔ (E.15)

φ = 1− 1− (1− ρ)e(1−σ)µz βF

ρ

(
κvv
ŷ

)
−
(

ŵ[Ω + (1−Ω)ψ]n
ŷ

)
(E.16)

which is an equation restricting the admissible value of φ, i.e. the value consistent with the

constraints imposed on κvv/ŷ and on the labor share. This is a restriction to be imposed in

the preamble of the model block in Dynare.
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(9) Now, notice that from equations (D.137), (D.139), (D.140), and (D.141) , we get

n =
f

s + f
, (E.17)

so that n is known when s and f are known. It follows that we can deduce the value of m

through equations (D.137) and (D.141)

ρn = λv = m, (E.18)

yielding

ρ
f

s + f
= m. (E.19)

(10) We now want to find an analytical formula for s60 = ĉ60/ĉ, where

ĉ60 ≡ Ω(nĉe + (1− f )(1− n)ĉuu + snĉeu).

For simplicity, we also define

ĉ40 ≡ (1−Ω) ĉF.

Now, we have from eqations (D.128), (D.129), and (D.130)

nĉe = (1− τ)ŵn +

[
1 + r
eµz

(1− s)n− n
]

âe, (E.20)

snĉeu = snbu +
1 + r
eµz

snâe, (E.21)

so that

nĉe + snĉeu = (1− τ)ŵn + snbu + n
[

1 + r
eµz
− 1
]

âe

and

nĉe + snĉeu + (1− n− sn)ĉuu = (1− n)bu + (1− τ)ŵn + n
[

1 + r
eµz
− 1
]

âe.

Also, we get from (D.147)

τŵn = bu(1− n)

so that

nĉe + snĉeu + (1− n− sn)ĉuu = ŵn + n
[

1 + r
eµz
− 1
]

âe.

Recall that

1− n− sn = (1− f ) (1− n)

Thus

ĉ60 = Ω
[

ŵn + n
(

1 + r
eµz
− 1
)

âe
]

.

Also, from the restriction imposed on s60, we get

ĉ60

ŷ
= s60

ĉ
ŷ

.
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Using this, we obtain

ψ =
Ω

1−Ω

[(
1 +

(
1 + r
eµz
− 1
)

âe

ŵ

)
lsh
s60

ĉ
ŷ
− 1

]
.

Now
ĉe

ŵ
=

(
1 + r
eµz

(1− s)− 1
)

âe

ŵ
+ 1− reprat

1− n
n

, (E.22)

(
ĉeu

ĉe

)
ĉe

ŵ
= reprat +

1 + r
eµz

âe

ŵ
, (E.23)

so that

âe

ŵ
=

(
ĉeu

ĉe

) (
1− reprat 1−n

n

)
− reprat( 1+r

eµz

(
1−

( ĉeu

ĉe

)
(1− s)

)
+
( ĉeu

ĉe

)) . (E.24)

Plugging this back above yields ψ.

(11) Now that we solved for n and ψ, we obtain from equations (D.131) and (D.133)

neu = sn

nuu = 1− n− neu

and from equation (D.143)

k̂ = eµz

(
µeµz

ŷ
(1−Ω)k̂

) 1
φ−1 [Ω + (1−Ω)ψ]n

(1−Ω)
(E.25)

= eµz

(
µ

eσµz − βF(1− δ)

φβF

) 1
φ−1 [Ω + (1−Ω)ψ]n

(1−Ω)
(E.26)

from which we can back out ŷm, ŷ, and thus from (D.144)

κy = (µ− 1)ŷ. (E.27)

We also obtain from equation (D.123)

ı̂ =
[

1−
(

1− δ

eµz

)]
k̂.

Finally, we can back out w̄, ŵs, Q̂s from the restrictions and equations (D.149) and (D.150).

In particular

ŷm =

(µ
eσµz − βF(1− δ)

φβF

) 1
φ−1

φ

([Ω + (1−Ω)ψ]n)

hence

ŷ =
1
µ

(µ
eσµz − βF(1− δ)

φβF

) 1
φ−1

φ

([Ω + (1−Ω)ψ]n).
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Now recall that

ŵ =

(
ŵ[Ω + (1−Ω)ψ]n

ŷ

)
ŷ

[Ω + (1−Ω)ψ]n

so that

ŵ =
1
µ

(
ŵ[Ω + (1−Ω)ψ]n

ŷ

)(
µ

eσµz − βF(1− δ)

φβF

) φ
φ−1

w̄ = ŵ
(

e−µz

1 + π

) γw
γw−1

.

Also, from equations (D.135) and (D.136), we can back out K̂ and F̂ via

K̂ =
µpmŷ

1− αeµz MF , (E.28)

F̂ =
ŷ

1− αeµz MF , (E.29)

(12) Then, imposing m̄ = 1, we can back out v from (D.138), yielding

v =
m

1
1−χ

(1− (1− ρ)n)
χ

1−χ

, (E.30)

from which we deduce κv.

(13) Finally equation (D.124), (D.125), and (D.126) imply

λ̂eu

λ̂e
=

(
ĉeu

ĉe

)−σ

=
1
s

((
βF

βW

)
− (1− s)

)
. (E.31)

From the restriction on the ratio ĉeu/ĉe, we can back out βW using

βF

βW = s
(

ĉeu

ĉe

)−σ

+ (1− s).

Equation (D.147) together with the constraint on the replacement ratio allows us to back

out

τ =
bu(1− n)

ŵn
, (E.32)

and from equation (D.132) we get

ĉuu = bu. (E.33)

(14) Then, using equations (D.128), (D.129), (D.130) we can obtain(
ĉe

ĉeu

)
ĉeu = (1− τ)ŵ +

[
1 + r
eµz

(1− s)− 1
]

eµz

1 + r
(ĉeu − bu), (E.34)

so that we can solve for ĉeu

ĉeu =
(1− τ)ŵ−

[
1− s− eµz

1+r

]
bu( ĉe

ĉeu

)
−
(
1− s− eµz

1+r

) . (E.35)

We then back out ĉe.
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(15) From equations (D.129), (D.130), and (D.146) we can back out

âe =
eµz

1 + r
(ĉeu − bu), (E.36)

Âe = e−µz(1− s)nâe, (E.37)

âF = − Ω
1−Ω

Âe, (E.38)

and finally to back out ĉF from equation (D.145)

ĉF =
1

1−Ω
[ŷ−Ω(nĉe + (1− f )(1− n)ĉuu + snĉeu)− κvv− (1−Ω)ı̂]. (E.39)

To complete the calculations, we also back out the Lagrange multipliers from equations

(D.119), (D.125), and (D.126)

λ̂F =

((
1− hF

eµz

)
ĉF
)−σ

, (E.40)

λ̂e =

((
1− hW

eµz

)
ĉe
)−σ

, (E.41)

λ̂eu =

((
1− hW

eµz

)
ĉeu
)−σ

. (E.42)

The procedure just described first imposes constraints on the parameters ψ, Ω, and a. These

restrictions are a priori independent from the MCMC draws. Then, a number of steady-state shares

are also restricted. These restrictions must hold for each possible MCMC draw. They thus yield

parameter restrictions on βF, ρ, φ, η̄, κy, κv, w̄, βW that need to readjust at each MCMC draw. The

remaining parameters can be freely estimated.

E.2. Data and Choice of Priors. The data equivalent variables used for estimation come from the

Bureau of Economic Analysis (BEA), the Federal Reserve Bank of St. Louis’ FRED II database, and

the Bureau of Labor Statistics (BLS). All the series are seasonally adjusted except for population.

Our sample runs from 1982Q1 to 2007Q4.

Consumption is defined as the sum of personal consumption expenditures on nondurable goods

and services (PCNDS) and government consumption expenditures and gross investment (GCE).

The resulting series is deflated by the implicit GDP deflator (GDPDEF). Investment is defined as

the sum of gross private domestic investment (GPDI) and personal consumption expenditures on

durable goods (PCDG). The resulting series is also deflated by the implicit GDP deflator. These

two series are converted to per-capita terms by dividing them by the civilian population, age 16

and over (CNP16OV). Inflation is calculated using the GDP deflator and the nominal interest rate

is defined as the Effective Federal Funds Rate (FEDFUNDS). Finally, we measure nominal wages
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as the average weekly earnings of production and nonsupervisory employees, fro the Current

Employment Statistics survey (CES0500000030).

For the labor-market transition probabilities, we proceed as follows. First, we compute monthly

job-finding probabilities using Current Population Survey (CPS) data on unemployment and short-

run unemployment, using the approach of Shimer (2005, 2012). We then compute monthly sepa-

ration probabilities as residuals from a monthly flow equation similar to equation (1). Using these

two series, we construct transition matrices across employment statuses for every month in the

sample, and then multiply those matrices over the three consecutive months of each quarter to

obtain quarterly transition probabilities.

To construct the consumption share of the poorest 60 percent, we first aggregate nondurable

items in the Consumer Expenditure Survey (CEX) to compute individual nondurables consump-

tion (using the same categories as Heathcote, Perri, and Violante, 2010). More precisely, non-

durable goods are defined as the sum of the vehicle services and other vehicle expenses (insur-

ance, maintenance, etc.), the housing services, the rent paid, other lodging expenses, household

equipment and entertainment. These items are deflated using the CPI. This measure corresponds

to the variable ndpnd0 in Heathcote et al. (2010). Heathcote et al. (2010) construct this variable

from 1980Q1 to 2007Q1. We use the same methodology to extend their time series from 2007Q1 to

2012Q4. Second, in each quarter we sort households by income to aggregate the consumption of

the bottom 60%, to obtain c?60,t.

For the labor-market transition probabilities, we proceed as follows. First, we compute monthly

job-finding probabilities using CPS data on unemployment and short-run unemployment, using

the two-state approach of Shimer (2005, 2012). First, using deseasonalized monthly data on em-

ployment (BLS series LNS12000000), unemployment (LNS13000000) and short-run unemployment

(LNS13008396), we construct monthly series for the unemployment and short-run unemployment

rates, and from then for the monthly job-finding and job-loss rate (following Shimer, 2012, the

short-run unemployment series is made homogenous over the entire sample by multiplying the

raw series by 1.1 from 1994M1 onwards). We then construct transition matrices across employ-

ment statuses for every month in the sample, and then multiply those matrices over the three

consecutive months of each quarter to obtain quarterly transition probabilities.

Our choice of priors is as follows. We impose Beta distributions for all the parameters which

theoretical support is the compact [0,1]. We use Gamma distributions for positive parameters.

Finally, we use Inverse Gamma distributions for the standard errors of structural shocks.

All the parameters governing the serial correlation of structural shocks have priors centred on

0.5, with standard deviation 0.1. All the standard errors of shocks have priors centred on 1, with

standard deviation set to 2. This choice is standard in the literature. The transformed curvature of

the utilisation cost νu has a prior mean of 0.5, with standard deviation equal to 0.1. The curvature
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of investment adjustment costs has a prior mean equal to 1, with standard deviation set to 0.5. The

risk-aversion parameter σ has prior mean 1, with standard deviation set to 0.5. The degree of habit

formation, the degree of price stickiness α, the degree of price indexation γp, the sensitivity of the

real wage to employment ψn, and the degree of wage indexation γw all have prior distributions

centred on 0.5, with standard deviation equal to 0.1. Finally, when it comes to the Taylor rule

coefficient, aπ has prior mean 1.5, with standard error 0.15, ay has prior mean 0.13, with standard

error 0.05, and ρ has prior mean 0.5, with standard error 0.1.

E.3. Verification that the wage rate is in the bargaining set. We have to check that given the

history of aggregate shocks and the uncertainty about the estimated parameters, workers, firm

owners and labor intermediaries all extract a positive surplus from the match in every period in

the sample. To make sure that the wage rate is indeed in the bargaining set, it must be the case that

wt − buezt > 0

and

JF
t > 0.

These are the conditions that make sure that, given the postulated wage rule, the labor contract lies

within the bounds of the bargaining set: It is profitable for a labor intermediary to post vacancies

and, at the same time, the wage rate is higher than unemployment benefits, so that an unemployed

worker will not automatically turn down a job offer.

As in the preceding section, figure 2 reports the in-sample counterpart of each of these (each

appropriately normalized), respectively, over the estimation sample, as implied by the smoothed

values of the state variables. In each panel, we also report the associated 90 percent HPD interval

(the grey area delineated by the thin, black dashed lines). Figure 2 also makes clear the posterior

probability that these conditions is indeed satisfied is close to one.

E.4. Variance decomposition. Finally, Table 1 reports the variance decomposition for output, con-

sumption, and investment growth, and for the employment rate. For each of these variables,

the table reports the portion of the variance explained by each of the seven structural shocks, εh,

h ∈ {R, c, i, w, p, , z, s}, at quarters 0, 4, 8, and 12.

Table 1 shows that when it comes to output, consumption, and investment, demand shocks, i.e.

the monetary policy shock εR, the risk-premium shock εc, and the investment shock εi (according

to the taxonomy proposed by Smets and Wouters (2007)), are significant drivers at business cycle

frequencies. Indeed, these shocks explain about or more than 60 percent of the variance on impact

and more than 40 percent at the fourth quarter. Similar to results reported in Justiniano, Primiceri,

and Tambalotti (2010), the investment shock alone is the main driver of the business cycle.
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FIGURE 2. Wage Rate in the Bargaining Set
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Note: The thick red line is the posterior mean path, the grey area is the 90 percent HPD interval

This is not to say that supply shocks, such as the markup shock εp or the technology shock εz do

not play any role. As a matter of fact, these two shocks alone explain about or more than a quarter

of the variance of output and consumption at business cycle frequencies. Their contribution to

investment fluctuations is less marked, however.

Finally, the contribution of labor market shocks, i.e. the wage shock εw and the job-separation

shock εs, is much smaller. For example, the job-separation shock never explains more than 2 per-

cent of the variance of any of the variables considered. The wage shock has a larger contribution

for employment. However, it is dwarfed by that demand or supply shocks.

E.5. Investigating the incentive compatibility of the family structure. In this sectrion, we con-

sider the following thought experiment. The economy is in its BGP. At a given period, a member

of the family (whtehr employed or unemployed) is offered the possibility to leave the family and

live on its own. This offer is under a veil of ignorance, that is, the offer is made before the agent

knows her current status in the family and initial wealth. The agent being atomistic, she takes as

given and does not affect either the labor-market transition probabilities or any of the aggregate

state variable. In addition, we assume that the agent faces the same habit stocks as members who

stayed in the family, for any employment history. Hence, there are, jst as for the family members,

only three levels of habit stocks: ĉW(0) for employed agents, ĉW(1) for agents who just fell into

unemployed at the beginning of the period, and ĉW(2) for agents who have been unemployed for

one period or more. As a consequence, there are three different value functions to be considered,

one for employed agents and two for unemployed agents. These value functions are expressed in
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TABLE 1. Variance Decomposition

Output Growth

Quarter εR εc εi εw εp εz εs

0 34.13 14.82 9.07 5.06 22.56 13.75 0.61

4 23.84 10.00 6.12 6.45 20.99 32.01 0.60

8 23.92 9.79 5.86 6.95 22.22 30.70 0.57

12 23.65 9.68 5.82 7.39 22.51 30.38 0.57

Consumption Growth

Quarter εR εc εi εw εp εz εs

0 30.95 14.11 20.09 3.15 17.12 14.53 0.04

4 23.72 10.34 19.56 3.81 17.77 24.75 0.05

8 23.10 9.84 21.84 4.08 18.04 23.05 0.05

12 22.31 9.50 23.96 4.09 17.77 22.31 0.05

Investment Growth

Quarter εR εc εi εw εp εz εs

0 16.33 6.75 53.87 3.30 12.68 5.58 1.49

4 12.04 4.85 43.80 5.00 12.31 20.67 1.33

8 12.07 4.74 43.65 5.31 13.15 19.82 1.27

12 11.69 4.59 44.40 5.69 13.11 19.29 1.23

Employment

Quarter εR εc εi εw εp εz εs

0 33.82 14.40 9.32 8.85 19.00 14.27 0.33

4 18.67 5.76 10.86 24.33 37.12 3.21 0.05

8 13.87 4.24 13.41 28.49 37.50 2.45 0.04

12 12.75 3.90 15.12 28.33 36.92 2.94 0.04

Note: The variance decomposition is obtained from the MA(∞) form of the model solution. εR, εc, εi, εw, εp, εz, εs
stand for monetary policy shocks, risk-premium shocks, investment shocks, wage shocks, markup shocks, technology
shocks, and separation shocks (respectively).

terms of normalized variables:

â = ae−z

ĉ = ce−z

ĉ (χ) = c (χ) e−z.

Formally, the value function for an employed agent outside the family is

V(â, 0) = max
{

u(ĉ− ηĉW(0)) + βe(1−σ)µz [(1− s)V(â′, 0) + sV(â′, 1)]
}

ĉ + eµz â′ = (1− τ) ŵ + (1 + r) â

â′ ≥ 0.
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Similarly, the value function of an agent outside the family, who has just fell into unemployed, is

V(â, 1) = max
{

u
(

ĉ− ηĉW(1)
)
+ βe(1−σ)µz [ f V(â′, 0) + (1− f )V(â′, 2)]

}
ĉ + eµz â′ = (1− τ) bu + (1 + r) â

â′ ≥ 0.

Finally, the value function of an agent outside the family, who has been unemployed for one period

or more, is

V(â, 2) = max
{

u(ĉ− ηĉW(2)) + βe(1−σ)µz [ f V(â′, 0) + (1− f )V(â′, 2)]
}

ĉ + eµz â′ = (1− τ) bu + (1 + r) â

a′ ≥ 0.

Note that in the above value functions, the aggregate state vector is not explicitly an argument

since it is a constant.

The ex ante welfare of an agent offered the possibility of leaving the family is

Voutside = nWV(Â, 0) + snWV(Â, 1) + (1− nW − snW)V(0, 2)

where Â = Ae−z. In words, the welfare of an employed agent who leaves the family is V(Â, 0).

This is so because such an agent would leave the family with her fair share of assets Â. There

is a proportion nW of such agents in the family. Similarly, the welfare of an agent who has just

fell into unemployment and who leaves the family is V(Â, 1). Here again, this agent would leave

the family with his fair share of assets Â. There is a proportion snW of such agents in the family.

Finally, the welfare of an agent who has been unemployed for one period or more and who leaves

the family is V(0, 2). Here, this agent leaves the family with zero assets given the distribution of

wealth within the family. There is a proportion 1− nW − snW of such agents.

By way of constrast, the ex ante welfare of an agent inside the family is the steady-state, normal-

ized value of VW(µ, X), which we denote Vinside.

Vinside = ( nW snW 1− nW − snW )

I3 − βWe(1−σ)µz


1− s s 0

f 0 1− f

f 0 1− f



−1

×


u((1− η)ĉW(0))

u((1− η)ĉW(1))

u((1− η)ĉW(2))

 . (E.43)

At the posterior mean #2 and using the calibrated values for #1, we obtain:

Vinside = 141.945 > Voutside = 141.936.
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To solve the above programs numerically, we resort to discrete value function iteration, with a

grid with 1000 exponentially spaced points and linear interpolation to obtain values outside these

grid points.

E.6. Alternative Counterfactual Simulations. In the benchmark counterfactual analysis, we com-

pared the paths of key macroeconomic variables in the perfect- and in the imperfect-insurance

models for the three recessions present in the sample. In doing so, we first ran the Kalman

smoother at the posterior mean of the parameter distribution of the imperfect-insurance model,

allowing us to back out the structural shocks. We then fed these very same shocks in the perfect-

insurance model, making sure that this was done under the same parameters as those used to back

out the shocks in the first place. In this procedure, it is clear that the dynamics in the perfect- and

imperfect-insurance models can differ first because these two economies react in different ways

to the same shocks, and, second, because these two economies may start their recessions episodes

with different state variables (and possibly react in different ways to these state variables).

In this section, we complement our results by running the same exercise except that this time

we force the state variables in each model version to zero at the start of each of the recessions

considered. The results are reported in figures (3) and (4)

F. THE PERFECT-INSURANCE MODEL

The perfect-insurance model is one where in each family of workers, the head of family is

allowed to transfer resources between employed and unemployed members. Private insurance

within the family acts as a complement to the public UI scheme, ensuring full risk sharing between

family members. However, workers, whether employed or unemployed, are still borrowing-

constrained. Because they are more impatient than firm-owners, their borrowing constraint always

binds. Imposing a = 0 as before, this implies that total revenues at the family scale are

(1− τt)ŵtnt + bu(1− nt),

where we directly state the relevant equations in normalized terms (i.e. in deviation form the

stochastic trend ezt ). As before, we assume that the UI scheme is balanced in each period, so that

τtwtnt = bu
t (1− nt).

Combining these two relations, total revenues at the family scale are

(1− τt)ŵtnt + τtŵtnt = ŵtnt.

Since all family members are ex ante alike, they all receive an equal share of the above revenues.
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FIGURE 3. The Great Recession
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F.1. The Normalized Dynamic System. Accordingly, the normalized system rewrites

1 + rt =
1 + Rt−1

1 + πt
, (F.1)

MF
t,t+1 =

βF

eσµz
e−σϕz,t+1

λF
t+1

λ̂F
t

, (F.2)

λ̂F
t =

(
ĉF

t −
hF

eµz
ĉF

t−1e−ϕz,t

)−σ

, (F.3)

Et

[
MF

t,t+1(1 + rt+1)
]
= 1, (F.4)
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FIGURE 4. The 1990Q3 and 2001Q1 Recessions
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Note: The red lines correspond to the actual paths of consumption, investment, the
job-finding rate, the job-loss rate, and the employment rate. The dashed, grey lines
correspond to the counterfactual sample paths. Consumption and investment are
reported in proportional deviation from their level at the beginning of the reces-
sion. All the other variables are expressed in level deviation from their values at the
beginning of the recession. The grey area indicates the recession dates.
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1 = pk,teϕi,t

[
1− νi

2

(
ı̂teϕz,t

ı̂t−1
− 1
)2

− νi

(
ı̂teϕz,t

ı̂t−1
− 1
)

ı̂teϕz,t

ı̂t−1

]

+ Et

{
eµz MF

t,t+1 pk,t+1eϕi,t+1 νi

(
ı̂t+1eϕz,t+1

ı̂t
− 1
)(

ı̂t+1eϕz,t+1

ı̂t

)2
}

, (F.5)

η′(υt) = rk,t, (F.6)

pk,t = Et

[
MF

t,t+1 {rk,t+1υt+1 − η(υt+1) + (1− δ)pk,t+1}
]

(F.7)

k̂t =

(
1− δ

eµz

)
k̂t−1e−ϕz,t + eϕi,t

(
1− νi

2

(
ı̂teϕz,t

ı̂t−1
− 1
)2
)

ı̂t, (F.8)

Me
t,t+1 =

βW

eσµz
e−σϕz,t+1

(1− st+1)λ̂
e
t+1 + st+1λ̂eu

t+1

λ̂e
t

, (F.9)

λ̂e
t =

(
ĉe

t −
hW

eµz
ĉe

t−1e−ϕz,t−1

)−σ

, (F.10)

λ̂eu
t =

(
ĉeu

t −
hW

eµz
ĉeu

t−1e−ϕz,t−1

)−σ

, (F.11)

1 = Et
[
Me

t,t+1(1 + rt+1)
]

, (F.12)

ĉe
t = ŵtnt, (F.13)

Âe
t = 0, (F.14)

ĉeu
t = ŵtnt, (F.15)

neu
t = stnt−1, (F.16)

ĉuu
t = ŵtnt (F.17)

nuu
t = 1− nt − neu

t , (F.18)
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p∗t =
K̂t

F̂t
, (F.19)

K̂t = µeϕp,t pm,tŷt + αEt

{
eµz MF

t,t+1

(
1 + πt+1

(1 + π̄)1−γ(1 + πt)γ

)θ

K̂t+1eϕz,t+1

}
, (F.20)

F̂t = ŷt + αEt

{
eµz MF

t,t+1

(
1 + πt+1

(1 + π̄)1−γ(1 + πt)γ

)θ−1

F̂t+1eϕz,t+1

}
, (F.21)

1 = (1− α)(p∗t )
1−θ + α

(
(1 + π̄)1−γ(1 + πt−1)

γ

1 + πt

)1−θ

, (F.22)

Λt = (1− α)(p∗t )
−θ + α

(
(1 + π̄)1−γ(1 + πt−1)

γ

1 + πt

)−θ

Λt−1, (F.23)

nt = (1− ρ)nt−1 + λtvt, (F.24)

mt = m̄eϕm,t(1− (1− ρt)nt−1)
χv1−χ

t , (F.25)

st = ρt(1− ft), (F.26)

ft =
mt

1− (1− ρt)nt−1
, (F.27)

λt =
mt

vt
, (F.28)

κv

Ω + (1−Ω)ψ

1
λt

= Q̂t − ŵt + EX

[
(1− ρt+1)MF

t,t+1
κveµz+ϕz,t+1

Ω + (1−Ω)ψ

1
λt+1

]
, (F.29)

ŷm,t =

(
(1−Ω)υt

k̂t−1

eµz
e−ϕz,t

)φ

([Ω + (1−Ω)ψ] nt)
1−φ, (F.30)

Λtŷt = ŷm,t − κy, (F.31)

(1−Ω)

(
ĉF

t + ı̂t + η(υt)
k̂t−1

eµz
e−ϕz,t

)
+ Ωŵtnt + κvvt = ŷt (F.32)

âF
t = 0, (F.33)
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τtŵtnt = bu(1− nt), (F.34)

rk,t = pm,tφeµz
ŷm,t

(1−Ω)υt k̂t−1
eϕz,t , (F.35)

Q̂t = pm,t(1− φ)
ŷm,t

[Ω + (1−Ω)ψ]nt
(F.36)

ŵt =

(
ŵt−1e−µz−ϕz,t

1 + πt

)γw
(

w̄eϕw,t

(
nt

nss

)ψn
)1−γw

, (F.37)

log
(

1 + Rt

1 + R̄

)
= ρR log

(
1 + Rt−1

1 + R̄

)
+ (1− ρR)

1
4

[
aπ log

(
1 + πt

1 + π̄

)
+ ay log

(
ŷteϕz,t

ŷt−1

)]
+ σRεR,t, (F.38)

ρt =
1

1 + exp(−ρ̄− ϕρ,t)
. (F.39)

F.2. Associated Steady State. As before, several variables have trivial steady-state values: Λ = 1,

pk = 1, p∗ = 1. Once we get rid of these, the reduced steady state is solution to the system

1 + r =
1 + R
1 + π̄

, (F.40)

MF =
βF

eσµz
, (F.41)

λ̂F =

((
1− hF

eµz

)
ĉF
)−σ

, (F.42)

MF(1 + r) = 1, (F.43)

η′(υ) = rk, (F.44)

1 = MF(rkυ + 1− δ) (F.45)

[
1−

(
1− δ

eµz

)]
k̂ = ı̂, (F.46)

Me =
βW

eσµz
, (F.47)
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λ̂e =

((
1− hW

eµz

)
ĉe
)−σ

, (F.48)

λ̂eu =

((
1− hW

eµz

)
ĉeu
)−σ

, (F.49)

âe = 0, (F.50)

ĉe = ŵn, (F.51)

Âe = 0 (F.52)

ĉeu = ŵn, (F.53)

neu = sn, (F.54)

ĉuu = ŵn (F.55)

nuu = 1− n− neu, (F.56)

1 =
K̂
F̂

, (F.57)

K̂ = µpmŷ + αeµz MFK̂, (F.58)

F̂ = ŷ + αeµz MF F̂, (F.59)

ρn = λv, (F.60)

m = m̄(1− (1− ρ)n)χv1−χ, (F.61)

s = ρ(1− f ), (F.62)
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f =
m

1− (1− ρ)n
, (F.63)

λ =
m
v

, (F.64)

κv

Ω + (1−Ω)ψ

1
λ
= Q̂− ŵ +

[
(1− ρ)MF κveµz

Ω + (1−Ω)ψ

1
λ

]
(F.65)

ŷm =

(
(1−Ω)

k̂
eµz

)φ

([Ω + (1−Ω)ψ]n)1−φ, (F.66)

ŷ = ŷm − κy, (F.67)

(1−Ω)(ĉF + ı̂) + Ω(nĉe + (1− f )(1− n)ĉuu + snĉeu) + κvv = ŷ (F.68)

(1−Ω)âF + ΩÂe = 0, (F.69)

τŵn = bu(1− n), (F.70)

rk = pmφeµz
ŷm

(1−Ω)uk̂
, (F.71)

Q̂ = pm(1− φ)
ŷm

[Ω + (1−Ω)ψ]n
(F.72)

ŵ =

(
e−µz

1 + π

) γw
1−γw

w̄. (F.73)
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F.3. Restrictions in the Perfect-Insurance Model. When comparing the imperfect-insurance model

with its perfect-insurance counterpart at the estimation stage, we have to make sure that the lat-

ter matches the same calibration constraints as the imperfect-insurance model. In this section, we

provide details as to how this is done in practice.

We use the same set of restrictions as before. More precisely, we treat ”calibration targets” as

parameters and let ”parameters” adjust endogenously to match the latter. In the contexte of the

perfect-insurance model, this requires that we adapt the algorithm to solve for the steady state

accordingly. In particular, we can no longer target a replacement ratio or an average consumption

drop in this perfect-insurance setup.

(1) As before, we obtain

1 = µpm, (F.74)

(2) Recall that κy is selected so that aggregate monopolistic profits are zero in the steady state.

The steady-state profits of firm i are given by

ŷ(i)− pm(ŷ(i) + κy).

Since µpm = 1, we obtain(
1− 1

µ

)
ŷ =

1
µ

κy =⇒ (µ− 1) ŷ = κy.

Since

ŷ = ŷm − κy

we obtain

ŷm = µŷ.

We will use this restriction repeatedly in the remainder.

(3) Following the same line of reasoning as before

MF =
βF

eσµz
, (F.75)

r =
eσµz

βF − 1, (F.76)

and

R =
eσµz

βF (1 + π̄)− 1. (F.77)

In fact, since output growth, Rt and πt will be observable variables, we will directly es-

timate µz, R and π, so that βF will be deduced from the above equation. Thus, in the

preamble of the model block, we will impose

βF = eσµz
1 + π̄

1 + R
.
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(4) The arbitrage condition between capital and bonds yields

rk − δ = pmφeµz
ŷm

(1−Ω)k̂
− δ = r

pmφeµz
ŷm

(1−Ω)k̂
=

eσµz − βF(1− δ)

βF

pmφ
ŷm

(1−Ω)k̂
=

e(σ−1)µz − βF 1−δ
eµz

βF (F.78)

so that
φ

µ

ŷm

(1−Ω)k̂
=

e(σ−1)µz − βF 1−δ
eµz

βF .

which using ŷm = µŷ simplifies to

ŷ
(1−Ω)k̂

=
e(σ−1)µz − βF 1−δ

eµz

φβF .

It follows that

rk = pmφeµz
ŷm

(1−Ω)k̂
= φeµz

ŷ
(1−Ω)k̂

=
eσµz − βF(1− δ)

βF ,

where we imposed u = 1. Thus, this imposes the constraint

η̄ =
eσµz − βF(1− δ)

βF , (F.79)

to be added in the preamble of the model block in Dynare.

(5) Also we obtain
ı̂
k̂
=

[
1−

(
1− δ

eµz

)]
,

so that

(1−Ω)
ı̂
ŷ
= (1−Ω)

k̂
ŷ

ı̂
k̂

.

Recall that

(1−Ω)
k̂
ŷ
=

φβF

e(σ−1)µz − βF 1−δ
eµz

.

Hence

(1−Ω)
ı̂
ŷ
=

φβF (1− ( 1−δ
eµz

))
e(σ−1)µz − βF 1−δ

eµz

.

(6) Let us define aggregate consumption as

ĉ = (1−Ω)ĉF + Ω(nĉe + (1− f )(1− n)ĉuu + snĉeu)

Notice that we have
ĉ
ŷ
= 1− κvv

ŷ
− (1−Ω)

ı̂
ŷ

. (F.80)
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(7) We can also back out ρ from the average values of s and f obtained at the estimation stage,

through

ρ =
s

1− f
, (F.81)

so that this is an additional constraint which must be imposed in the preamble of the model

block in Dynare.

(8) We now work out a restriction on φ. We obtain

κv

Ω + (1−Ω)ψ

1
λ
=

Q̂− ŵ
1− (1− ρ)eµz MF (F.82)

κvv
m

=
(1− φ) ŷ

n − ŵ[Ω + (1−Ω)ψ]

1− (1− ρ)eµz MF (F.83)

κvv
m

=
ŷ
n

(1− φ)−
(

ŵ[Ω+(1−Ω)ψ]n
ŷ

)
1− (1− ρ)eµz MF (F.84)

(
κvv
ŷ

)
=

m
n

(1− φ)−
(

ŵ[Ω+(1−Ω)ψ]n
ŷ

)
1− (1− ρ)e(1−σ)µz βF

(F.85)

Also we obtain
m
n

=
λv
n

=
ρn
n

= ρ.

We thus obtain(
κvv
ŷ

)
= ρ

(1− φ)−
(

ŵ[Ω+(1−Ω)ψ]n
ŷ

)
1− (1− ρ)e(1−σ)µz βF

(F.86)

⇔ (F.87)

φ = 1− 1− (1− ρ)e(1−σ)µz βF

ρ

(
κvv
ŷ

)
−
(

ŵ[Ω + (1−Ω)ψ]n
ŷ

)
(F.88)

which is an equation restricting the admissible value of φ, i.e. the value consistent with the

constraints imposed on κvv/ŷ and on the labor share. This is a restriction to be imposed in

the preamble of the model block in Dynare.

(9) Now, we get

n =
f

s + f
, (F.89)

so that n is known when s and f are known. It follows that we can deduce the value of m

through

ρn = λv = m, (F.90)

yielding

ρ
f

s + f
= m. (F.91)



56 TECHNICAL APPENDIX

(10) We now want to find an analytical formula for s60 = ĉ60/ĉ, where

ĉ60 ≡ Ω(nĉe + (1− f )(1− n)ĉuu + snĉeu).

Thus

ĉ60 = Ωŵn.

Also, from the restriction imposed on s60, we get

ĉ60

ŷ
= s60

ĉ
ŷ

.

Using this, we obtain

ψ =
Ω

1−Ω

[
lsh
s60

ĉ
ŷ
− 1

]
.

(11) Now that we solved for n and ψ, we obtain

neu = sn

nuu = 1− n− neu

and

k̂ = eµz

(
µeµz

ŷ
(1−Ω)k̂

) 1
φ−1 [Ω + (1−Ω)ψ]n

(1−Ω)
(F.92)

= eµz

(
µ

eσµz − βF(1− δ)

φβF

) 1
φ−1 [Ω + (1−Ω)ψ]n

(1−Ω)
(F.93)

from which we can back out ŷm, ŷ, and thus

κy = (µ− 1)ŷ. (F.94)

We also obtain

ı̂ =
[

1−
(

1− δ

eµz

)]
k̂.

Finally, we can back out w̄, ŵs, Q̂s. In particular

ŷm =

(µ
eσµz − βF(1− δ)

φβF

) 1
φ−1

φ

([Ω + (1−Ω)ψ]n)

hence

ŷ =
1
µ

(µ
eσµz − βF(1− δ)

φβF

) 1
φ−1

φ

([Ω + (1−Ω)ψ]n).

Now recall that

ŵ =

(
ŵ[Ω + (1−Ω)ψ]n

ŷ

)
ŷ

[Ω + (1−Ω)ψ]n
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so that

ŵ =
1
µ

(
ŵ[Ω + (1−Ω)ψ]n

ŷ

)(
µ

eσµz − βF(1− δ)

φβF

) φ
φ−1

w̄ = ŵ
(

e−µz

1 + π

) γw
γw−1

.

Also, we can back out K̂p and F̂p via

K̂ =
µpmŷ

1− αeµz MF , (F.95)

F̂ =
ŷ

1− αeµz MF , (F.96)

(12) Then, imposing m̄ = 1, we can back out v, yielding

v =
m

1
1−χ

(1− (1− ρ)n)
χ

1−χ

, (F.97)

from which we deduce κv.

(13) Finally, we impose the same βF and the same βW as in the imperfect-insurance model.

(14) We can back out

âe = 0, (F.98)

Âe = 0, (F.99)

âF = 0, (F.100)

and finally we back out ĉF

ĉF =
1

1−Ω
[ŷ−Ωŵn− κvv− (1−Ω)ı̂]. (F.101)

To complete the calculations, we also back out the Lagrange multipliers

λ̂F =

((
1− hF

eµz

)
ĉF
)−σ

, (F.102)

λ̂e =

((
1− hW

eµz

)
ĉe
)−σ

, (F.103)

λ̂eu =

((
1− hW

eµz

)
ĉeu
)−σ

. (F.104)
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The procedure just described first imposes constraints on the parameters ψ, Ω, and a. These

restrictions are a priori independent from the MCMC draws. Then, a number of steady-state shares

are also restricted. These restrictions must hold for each possible MCMC draw. They thus yield

parameter restrictions on βF, ρ, φ, η̄, κy, κv, w̄, βW that need to readjust at each MCMC draw. The

remaining parameters can be freely estimated.

F.4. Estimation Results in the Perfect-Insurance Model. In the main paper, we compared the

marginal likelihoods of the baseline model and its perfect-insurance counterpart. Recall that in

this exercise, we impose (i) the exact same calibration restriction in both model versions and (ii)

use the exact same priors as in the imperfect-insurance model.

Table 2 reports the estimation outcome under the perfect-insurance model. Overall, the posterior

mean of the parameters obtained in the perfect-insurance model do not differ much from their

imperfect-insurance counterparts. Two notable exceptions are the curvature of the utility function

σ and the degree of external habits h. In particular, σ is higher in the perfect-insurance model than

in the imperfect-insurance setup, while the converse holds for h.

F.5. Analytical steady state in perfect-insurance model. In section 5, when we simulate the perfect-

insurance model, we use it to assess what would have happened in a counterfactual setup with

perfect insurance. To make this exercise well defined, it is important to make sure that the pa-

rameters in the perfect-insurance model have the exact same values as their counterparts in the

imperfect-insurance model. In this case, we no longer impose the calibration restrictions detailed

before.

Doing so requires manipulating an analytical steady state for the perfect-insurance model. In

this section, we provide details on how we proceeded. After straigthforward manipulations, we

arrive at the following set of equations.

MF =
βF

eσµz
, (F.105)

Me =
βW

eσµz
, (F.106)

r = 1/MF − 1, (F.107)

R = (1 + r) (1 + π̄)− 1, (F.108)

η′(u) = rk ⇒ u = 1, (F.109)
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TABLE 2. Estimation Results - HM Model, Full Set of Observable Variables

Parameter Prior shape Prior Mean Prior S.D. Post. Mean Post. S.D. Low High

σ Gamma 1.50 0.20 0.83 0.10 0.66 0.99

h Beta 0.50 0.10 0.53 0.04 0.46 0.60

νi Gamma 2.00 0.20 1.88 0.19 1.57 2.20

νu Beta 0.50 0.10 0.69 0.08 0.56 0.82

α Beta 0.50 0.10 0.75 0.03 0.70 0.81

γp Beta 0.50 0.10 0.28 0.09 0.13 0.42

γw Beta 0.50 0.10 0.86 0.03 0.82 0.91

ψn Gamma 1.00 0.20 1.59 0.28 1.13 2.04

ρ Beta 0.75 0.10 0.49 0.06 0.40 0.58

aπ Gamma 1.50 0.10 1.96 0.10 1.80 2.14

ay Gamma 0.13 0.10 0.50 0.17 0.22 0.77

ρz Beta 0.20 0.10 0.51 0.07 0.40 0.61

ρc Beta 0.50 0.10 0.65 0.04 0.59 0.71

ρw Beta 0.50 0.10 0.72 0.08 0.59 0.84

ρi Beta 0.50 0.10 0.87 0.03 0.81 0.92

ρp Beta 0.50 0.10 0.89 0.04 0.84 0.95

ρs Beta 0.50 0.10 0.67 0.05 0.58 0.76

ρR Beta 0.50 0.10 0.60 0.08 0.46 0.73

ρu Beta 0.50 0.10 0.82 0.04 0.76 0.88

σc Inverted Gamma 1.00 0.20 0.63 0.08 0.51 0.76

σw Inverted Gamma 1.00 0.20 0.49 0.04 0.43 0.55

σi Inverted Gamma 1.00 0.20 2.48 0.31 1.98 2.99

σp Inverted Gamma 1.00 0.20 1.53 0.26 1.13 1.91

σz Inverted Gamma 1.00 0.20 1.19 0.08 1.06 1.32

σR Inverted Gamma 1.00 0.20 0.42 0.03 0.36 0.47

σs Inverted Gamma 1.00 0.20 6.94 0.46 6.17 7.69

σu Inverted Gamma 1.00 0.20 0.79 0.05 0.70 0.88

Note: Low and High stand for the lower and upper boundaries of the 90 percent HPD interval, respectively.

rk = 1/MF + δ− 1 (F.110)

ı̂
k̂
= 1−

(
1− δ

eµz

)
, (F.111)

pm =
1
µ

(F.112)

ŷ = µ−1ŷm (F.113)
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(1−Ω)rk

φeµz
=

ŷ
k̂

, (F.114)

ŵ =

(
e−µz

1 + π

) γw
1−γw

w̄. (F.115)

ŷ

(1−Ω) k̂
eµz

= µ

(
(1−Ω) k̂

eµz

[Ω + (1−Ω)ψ]n

)φ−1

, (F.116)

ŷ
[Ω + (1−Ω)ψ]n

= µ

(
(1−Ω) k̂

eµz

[Ω + (1−Ω)ψ]n

)φ

, (F.117)

Q̂ = (1− φ)
ŷ

[Ω + (1−Ω)ψ] n
(F.118)

κv

λ
=

(Ω + (1−Ω)ψ)
(
Q̂− ŵ

)
1− (1− ρ)MFeµz

(F.119)

λ = m̄
(

1− (1− ρ)n
v

)χ

, (F.120)

m = m̄(1− (1− ρ)n)χv1−χ, (F.121)

f = m̄
(

1− (1− ρ)n
v

)χ−1

, (F.122)

s = ρ(1− f ), (F.123)

λ =
m
v

, (F.124)

ρn = λv, (F.125)

âe = 0, (F.126)

ĉe = ŵn, (F.127)

Âe = 0 (F.128)



TECHNICAL APPENDIX 61

ĉeu = ŵn, (F.129)

neu = sn, (F.130)

ĉuu = ŵn (F.131)

nuu = 1− n− neu, (F.132)

(1−Ω)(ĉF + ı̂) + Ωŵ + κvv = ŷ (F.133)

λ̂F =

((
1− hF

eµz

)
ĉF
)−σ

, (F.134)

λ̂e =

((
1− hW

eµz

)
ĉe
)−σ

, (F.135)

λ̂eu =

((
1− hW

eµz

)
ĉeu
)−σ

, (F.136)

1 =
K̂
F̂

, (F.137)

K̂ = µpmŷ + αeµz MFK̂, (F.138)

F̂ = ŷ + αeµz MF F̂, (F.139)

ŷ = ŷm − κy, (F.140)

ŷm =

(
(1−Ω)

k̂
eµz

)φ

([Ω + (1−Ω)ψ]n)1−φ, (F.141)

âF = 0, (F.142)

τŵn = bu(1− n), (F.143)

This system is entirely recursive.
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