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This document provides auxiliary lemmas and their proofs for the main paper.

S.1. Notation

Throughout the Appendix we employ the notation defined in Appendix A in the main
paper. For the reader’s convenience, we restate Table 1, which provides the main ele-
ments.

S.2. Auxiliary theorems

Theorem S.2.1. Let Γ PR
n�F(λ) be as in Table 1 and let TPR

n (λ) be as in (4.6). Let {(λn�Fn) ∈
L0}n≥1 be a (sub)sequence of parameters such that for some (Γ PR�Ω) ∈ S(Θ × R

k[±∞]) ×
C(Θ2), (i) ΩFn

u→ Ω and (ii) Γ PR
n�Fn

(λn)
H→ Γ PR. Then there exists a further subsequence

{un}n≥1 of {n}n≥1 such that, along {Fun}n≥1,

{
TPR
un

(λun)|{Wi}ni=1
} d→ J

(
Γ PR�Ω

) ≡ inf
(θ��)∈Γ PR

S
(
vΩ(θ)+ ��Ω(θ)

)
a.s.�

where vΩ : Θ→ R
k is a tight Gaussian process with covariance (correlation) kernel Ω.

Theorem S.2.2. Let Γ PR
n�F(λ) and Γ DR

n�F (λ) be as in Table 1. Let TPR
n (λ) be as in (4.6) and

define

T̃DR
n (λ) ≡ inf

θ∈Θ(λ)∩Θlnκn
I (F)

S
(
v∗
n(θ)+ϕ∗(κ−1

n

√
nD̂

−1/2
n (θ)m̄n(θ)

)
� Ω̂n(θ)

)
� (S.1)
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Table 1. Important notation.

P0 {F ∈ P : ΘI(F) 
= ∅}
ΣF(θ) VarF (m(W �θ))

DF(θ) diag(ΣF(θ))

QF(θ) S(EF [m(W �θ)]�ΣF(θ))

Θlnκn
I (F) {θ ∈ Θ : S(√nEF [m(W �θ)]�ΣF(θ)) ≤ lnκn}

ΘI(F�λ) Θ(λ)∩ΘI(F)

Γn�F (λ) {(θ� �) ∈ Θ(λ)×R
k : �= √

nD
−1/2
F (θ)EF [m(Wi�θ)]}

Γ SS
bn�F

(λ) {(θ� �) ∈ Θ(λ)×R
k : �= √

bnD
−1/2
F (θ)EF [m(W �θ)]}

Γ PR
n�F (λ) {(θ� �) ∈ Θ(λ)×R

k : �= κ−1
n

√
nD

−1/2
F (θ)EF [m(Wi�θ)]}

Γ DR
n�F (λ) {(θ� �) ∈ Θ(λ)∩Θlnκn

I (F)×R
k : �= κ−1

n

√
nD

−1/2
F (θ)EF [m(W �θ)]}

vn�j(θ) n−1/2σ−1
F�j(θ)

∑n
i=1(mj(Wi�θ)−EF [mj(Wi�θ)]), j = 1�    �k

ṽn�j(θ) n−1/2σ̂−1
j (θ)

∑n
i=1(mj(Wi�θ)−EF [mj(Wi�θ)]), j = 1�    �k

ΩF(θ�θ
′)[j1�j2] EF [(mj1 (W �θ)−EF [mj1 (W �θ)]

σF�j1 (θ)
)(

mj2 (W �θ′)−EF [mj2 (W �θ′)]
σF�j2 (θ

′) )]

where v∗
n(θ) is as in (2.8), ϕ∗(·) is as in Assumption A.1, and Θlnκn

I (F) is as in Table 1. Let
{(λn�Fn) ∈ L0}n≥1 be a (sub)sequence of parameters such that for some (Γ DR� Γ PR�Ω) ∈
S(Θ × R

k[±∞])2 × C(Θ2), (i) ΩFn
u→ Ω, (ii) Γ DR

n�Fn
(λn)

H→ Γ DR, and (iii) Γ PR
n�Fn

(λn)
H→ Γ PR.

Then there exists a further subsequence {un}n≥1 of {n}n≥1 such that, along {Fun}n≥1,{
min

{
T̃DR
un

(λun)�T
PR
un

(λun)
}∣∣{Wi}ni=1

}
d→ J

(
Γ MR�Ω

) ≡ inf
(θ��)∈Γ MR

S
(
vΩ(θ)+ ��Ω(θ)

)
a.s.�

where vΩ : Θ →R
k is a tight Gaussian process with covariance (correlation) kernel Ω,

Γ MR ≡ Γ DR∗ ∪ Γ PR� and

Γ DR∗ ≡ {
(θ� �) ∈Θ×R

k[±∞] : �= ϕ∗(�′) for some
(
θ� �′) ∈ Γ DR}


(S.2)

Theorem S.2.3. Let Γ SS
bn�F

(λ) be as in Table 1 and let T SS
n (λ) be the subsampling test

statistic. Let {(λn�Fn) ∈ L0}n≥1 be a (sub)sequence of parameters such that for some

(Γ SS�Ω) ∈ S(Θ×R
k[±∞])×C(Θ2), (i) ΩFn

u→ Ω and (ii) Γ SS
bn�Fn

(λn)
H→ Γ SS. Then there exists

a further subsequence {un}n≥1 of {n}n≥1 such that, along {Fun}n≥1,

{
T SS
un

(λun)|{Wi}ni=1
} d→ J

(
Γ SS�Ω

) ≡ inf
(θ��)∈Γ SS

S
(
vΩ(θ)+ ��Ω(θ�θ)

)
a.s.�

where vΩ : Θ →R
k is a tight Gaussian process with covariance (correlation) kernel Ω.

Theorem S.2.4. Let Γn�F(λ) be as in Table 1 and let Tn(λ) be as in (4.1). Let {(λn�Fn) ∈
L0}n≥1 be a (sub)sequence of parameters such that for some (Γ�Ω) ∈ S(Θ × R

k[±∞]) ×
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C(Θ2), (i) ΩFn
u→ Ω and (ii) Γn�Fn(λn)

H→ Γ . Then there exists a further subsequence {un}n≥1
of {n}n≥1 such that, along {Fun}n≥1,

Tun(λun)
d→ J(Γ�Ω) ≡ inf

(θ��)∈Γ
S
(
vΩ(θ)+ ��Ω(θ)

)
�

where vΩ : Θ → R
k is a tight Gaussian process with zero mean and covariance (correla-

tion) kernel Ω.

S.3. Auxiliary lemmas

Lemma S.3.1. Let {Fn ∈ P}n≥1 be a (sub)sequence of distributions s.t. ΩFn
u→ Ω for some

Ω ∈ C(Θ2). Then the following statements hold:

(i) We have vn
d→ vΩ in l∞(Θ), where vΩ : Θ → R

k is a tight zero-mean Gaussian
process with covariance (correlation) kernel Ω. In addition, vΩ is a uniformly continuous
function, a.s.

(ii) We have Ω̂n
p→ Ω in l∞(Θ).

(iii) We have D
−1/2
Fn

(·)D̂1/2
n (·)− Ik

p→ 0k×k in l∞(Θ).

(iv) We have D̂
−1/2
n (·)D1/2

Fn
(·)− Ik

p→ 0k×k in l∞(Θ).

(v) For any arbitrary sequence {an ∈R++}n≥1 s.t. an → ∞, a−1
n vn

p→ 0k in l∞(Θ).

(vi) For any arbitrary sequence {an ∈R++}n≥1 s.t. an → ∞, a−1
n ṽn

p→ 0k in l∞(Θ).

(vii) We have {v∗
n|{Wi}ni=1}

d→ vΩ in l∞(Θ) a.s., where vΩ is the tight Gaussian process
described in part (i).

(viii) We have {ṽSS
n |{Wi}ni=1}

d→ vΩ in l∞(Θ) a.s., where

ṽSS
n (θ) ≡ 1√

bn

bn∑
i=1

D
−1/2
Fn

(θ)
(
m

(
W SS

i � θ
) − m̄n(θ)

)
� (S.3)

{W SS
i }bni=1 is a subsample of size bn from {Wi}ni=1, and vΩ is the tight Gaussian process de-

scribed in part (i).

(ix) For Ω̃SS
n (θ)≡ D

−1/2
Fn

(θ)Σ̂SS
n (θ)D

−1/2
Fn

(θ), {Ω̃SS
n |{Wi}ni=1}

p→ Ω in l∞(Θ) a.s.

Lemma S.3.2. For any sequence {(λn�Fn) ∈ L}n≥1 there exists a subsequence {un}n≥1 of

{n}n≥1 s.t. ΩFun

u→ Ω, Γun�Fun (λun)
H→ Γ , Γ PR

un�Fun
(λun)

H→ Γ PR, and Γ DR
un�Fun

(λun)
H→ Γ DR for

some (Γ�Γ DR� Γ PR�Ω) ∈ S(Θ × R
k[±∞])3 × C(Θ2), where Γn�Fn(λ), Γ DR

n�Fn
(λ), and Γ PR

n�Fn
(λ)

are defined in Table 1.

Lemma S.3.3. Let {Fn ∈ P}n≥1 be an arbitrary (sub)sequence of distributions and let

Xn(θ) :Ω → l∞(Θ) be any stochastic process such that Xn
p→ 0 in l∞(Θ). Then there exists

a subsequence {un}n≥1 of {n}n≥1 such that Xun
a.s.→ 0 in l∞(Θ).
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Lemma S.3.4. Let the set A be defined as

A≡
{
x ∈R

p
[+∞] ×R

k−p : max
{

max
j=1��p

{[xj]−}
� max
s=p+1��k

{|xs|}} = 1
}
 (S.4)

Then inf(x�Ω)∈A×Ψ S(x�Ω) > 0.

Lemma S.3.5. If S(x�Ω) ≤ 1, then there exists a constant �> 0 such that xj ≥ −� for all
j ≤ p and |xj| ≤ � for all j > p.

Lemma S.3.6. The function S satisfies the properties (i) x ∈ (−∞�∞]p × R
k−p implies

supΩ∈Ψ S(x�Ω) <∞ and (ii) x /∈ (−∞�∞]p ×R
k−p implies infΩ∈Ψ S(x�Ω) = ∞.

Lemma S.3.7. Let (Γ�Γ DR�Ω) ∈ S(Θ × R
k[±∞])2 × C(Θ2) be such that ΩFn

u→ Ω,

Γn�Fn(λn)
H→ Γ , and Γ DR

n�Fn
(λn)

H→ Γ DR for some {(λn�Fn) ∈ L0}n≥1. Then Assumptions A.1

and A.3 imply that for all (θ� �) ∈ Γ DR there exists (θ� �̃) ∈ Γ with �̃j ≥ ϕ∗
j (�j) for j ≤ p and

�̃j = �j ≡ 0 for j > p, where ϕ∗(·) is defined in Assumption A.1.

Lemma S.3.8. Let (Γ�Γ PR�Ω) ∈ S(Θ × R
k[±∞])2 × C(Θ2) be such that ΩFn

u→ Ω,

Γn�Fn(λn)
H→ Γ , and Γ PR

n�Fn
(λn)

H→ Γ PR for some {(λn�Fn) ∈ L0}n≥1. Then Assumption A.3

implies that for all (θ� �) ∈ Γ PR with � ∈ R
p
[+∞] ×R

k−p, there exists (θ� �̃) ∈ Γ with �̃j ≥ �j

for j ≤ p and �̃j = �j for j > p.

Lemma S.3.9. Let Assumptions A.3–A.5 hold. For λ0 ∈ Γ and {λn ∈ Γ }n≥1 as in As-

sumption A.5, assume that ΩFn
u→ Ω, Γn�Fn(λ0)

H→ Γ , Γ PR
n�Fn

(λ0)
H→ Γ PR, Γ SS

bn�Fn
(λ0)

H→
Γ SS, Γ PR

n�Fn
(λn)

H→ Γ PR
A , and Γ SS

bn�Fn
(λn)

H→ Γ SS
A for some (Γ�Γ SS� Γ PR� Γ SS

A �Γ PR
A �Ω) ∈

S(Θ×R
k[±∞])5 × C(Θ2). Then

c(1−α)

(
Γ PR�Ω

) ≤ c(1−α)

(
Γ SS�Ω

)


Lemma S.3.10. Let Assumptions A.3–A.7 hold. Then

lim inf
n→∞

(
EFn

[
φPR
n (λ0)

] −EFn

[
φSS
n (λ0)

])
> 0

S.4. Proofs of theorems in Section S.2

Proof of Theorem S.2.1. Step 1. To simplify expressions, let Γ PR
n ≡ Γ PR

n�Fn
(λn). Consider

the derivation

TPR
n (λn)= inf

θ∈Θ(λn)
S
(
v∗
n(θ)+μn�1(θ)+μn�2(θ)

′κ−1
n

√
nD

−1/2
Fn

(θ)EFn

[
m(W �θ)

]
�

Ω̂n(θ)
)

= inf
(θ��)∈Γ PR

n

S
(
v∗
n(θ)+μn�1(θ)+μn�2(θ)

′�� Ω̂n(θ)
)
�
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where μn(θ) = (μn�1(θ)�μn�2(θ)), μn�1(θ) ≡ κ−1
n ṽn(θ), and μn�2(θ) ≡ {σ̂−1

n�j (θ)σFn�j(θ)}kj=1.

Note that D̂−1/2
n (θ) and D

1/2
Fn

(θ) are both diagonal matrices.
Step 2. We now show that there is a subsequence {an}n≥1 of {n}n≥1 s.t.

{(v∗
an
�μan� Ω̂an)|{Wi}ani=1}

d→ (vΩ� (0k�1k)�Ω) in l∞(θ) a.s. By part (vii) in Lemma S.3.1,

{v∗
n|{Wi}ni=1}

d→ vΩ in l∞(θ). Then the result would follow from finding a subsequence

{an}n≥1 of {n}n≥1 s.t. {(μan� Ω̂an)|{Wi}ani=1} → ((0k�1k)�Ω) in l∞(θ) a.s. Since (μn� Ω̂n) is
conditionally nonrandom, this is equivalent to finding a subsequence {an}n≥1 of {n}n≥1

s.t. (μan� Ω̂an)
a.s.→ ((0k�1k)�Ω) in l∞(θ). In turn, this follows from Step 1, part (v) of

Lemma S.3.1, and Lemma S.3.3.
Step 3. Since ΘI(Fn�λn) 
= ∅, there is a sequence {θn ∈ Θ(λn)}n≥1 s.t. for �n�j ≡

κ−1
n

√
nσ−1

Fn�j
(θn)EFn [mj(W �θn)],

lim sup
n→∞

�n�j ≡ �̄j ≥ 0 for j ≤ p� and lim
n→∞|�n�j| ≡ �̄j = 0 for j > p (S.5)

By compactness of (Θ × R
k[±∞]� d), there is a subsequence {kn}n≥1 of {an}n≥1

s.t. d((θkn� �kn)� (θ̄� �̄)) → 0 for some (θ̄� �̄) ∈ Θ × R
p
+�∞ × 0k−p. By Step 2,

lim(vkn(θkn)�μkn(θkn)�Ωkn(θkn)) = (vΩ(θ̄)� (0k�1k)�Ω(θ̄)), and so

TPR
kn

(λkn) ≤ S
(
vkn(θkn)+μkn�1(θkn)+μkn�2(θkn)

′�kn�Ωkn(θkn)
)

→ S
(
vΩ(θ̄)+ �̄�Ω(θ̄)

)
�

(S.6)

where the convergence occurs by the continuity of S(·) and the convergence of its argu-
ment. Since (vΩ(θ̄)+ �̄�Ω(θ̄)) ∈ R

p
[+∞] ×R

k−p ×Ψ , we conclude that S(vΩ(θ̄)+ �̄�Ω(θ̄))

is bounded.
Step 4. Let D denote the space of functions that map Θ onto R

k × Ψ and let D0 be
the space of uniformly continuous functions that map Θ onto R

k ×Ψ . Let the sequence
of functionals {gn}n≥1 with gn :D →R be given by

gn
(
v(·)�μ(·)�Ω(·)) ≡ inf

(θ��)∈Γ PR
n

S
(
v(θ)+μ1(θ)+μ2(θ)

′��Ω(θ)
)
 (S.7)

Let the functional g : D0 → R be defined by

g
(
v(·)�μ(·)�Ω(·)) ≡ inf

(θ��)∈Γ PR
S
(
v(θ)+μ1(θ)+μ2(θ)

′��Ω(θ)
)


We now show that if the sequence of (deterministic) functions {(vn(·)�μn(·)�Ωn(·)) ∈
D}n≥1 satisfies

lim
n→∞ sup

θ∈Θ

∥∥(
vn(θ)�μn(θ)�Ωn(θ)

) − (
v(θ)� (0k�1k)�Ω(θ)

)∥∥ = 0 (S.8)

for some (v(·)�Ω(·)) ∈ D0, then limn→∞ gn(vn(·)�μn(·)�Ωn(·)) = g(v(·)� (0k�1k)�Ω(·)). To
prove this we show that lim infn→∞ gn(vn(·)�μn(·)�Ωn(·)) ≥ g(v(·)� (0k�1k)�Ω(·)). Show-
ing the reverse inequality for the lim sup is similar and therefore is omitted. Suppose not,
that is, suppose that ∃δ > 0 and a subsequence {an}n≥1 of {n}n≥1 s.t. ∀n ∈N,

gan
(
van(·)�μan(·)�Ωan(·)

)
< g

(
v(·)� (0k�1k)�Ω(·)) − δ (S.9)
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By definition, ∃{(θan� �an)}n≥1 approximates the infimum in (S.7), that is, ∀n ∈ N,
(θan� �an) ∈ Γ PR

an
and

∣∣gan(van(·)�μan(·)�Ωan(·)
) − S

(
van(θan)+μ1(θan)+μ2(θan)

′�an�Ωan(θan)
)∣∣

≤ δ/2
(S.10)

Since Γ PR
an

⊆Θ×R
k[±∞] and (Θ×R

k[±∞]� d) is a compact metric space, there exist a subse-

quence {un}n≥1 of {an}n≥1 and (θ∗� �∗) ∈ Θ×R
k[±∞] s.t. d((θun� �un)� (θ

∗� �∗)) → 0. We first
show that (θ∗� �∗) ∈ Γ PR. Suppose not, that is, (θ∗� �∗) /∈ Γ PR, and consider the argument

d
(
(θun� �un)�

(
θ∗� �∗)) + dH

(
Γ PR
un

�Γ PR)
≥ d

(
(θun� �un)�

(
θ∗� �∗)) + inf

(θ��)∈Γ PR
d
(
(θ� �)� (θun� �un)

)
≥ inf

(θ��)∈Γ PR
d
(
(θ� �)�

(
θ∗� �∗))> 0�

where the first inequality follows from the definition of Hausdorff distance and the
fact that (θun� �un) ∈ Γ PR

un
, and the second inequality follows by the triangular inequal-

ity. The final strict inequality follows from the fact that Γ PR ∈ S(Θ × R
k[±∞]), that is,

it is a compact subset of (Θ × R
k[±∞]� d), d((θ� �)� (θ∗� �∗)) is a continuous real-valued

function, and Royden (1988, Theorem 7.18). Taking limits as n → ∞ and using that

d((θun� �un)� (θ
∗� �∗)) → 0 and Γ PR

un

H→ Γ PR, we reach a contradiction.
We now show that �∗ ∈R

p
[+∞] ×R

k−p. Suppose not, that is, suppose that ∃j = 1�    �k
s.t. l∗j = −∞ or ∃j > p s.t. �∗

j = ∞. Let J denote the set of indices j = 1�    �k s.t. this

occurs. For any � ∈ R
k[±∞] define Ξ(�) ≡ maxj∈J ‖�j‖. By definition of Γ PR

un�Fun
, �un ∈ R

k

and, thus, Ξ(�un) < ∞. By the case under consideration, limΞ(�un) = Ξ(�∗) = ∞. Since
(Θ�‖ · ‖) is a compact metric space, d((θun� �un)� (θ

∗� �∗)) → 0 implies that θun → θ∗.
Then

∥∥(
vun(θun)�μun(θun)�Ωun(θun)

) − (
v
(
θ∗)� (0k�1k)�Ω

(
θ∗))∥∥

≤ ∥∥(
vun(θun)�μun(θun)�Ωun(θun)

) − (
v(θun)� (0k�1k)�Ω(θun)

)∥∥
+ ∥∥(

v(θun)�Ω(θun)
) − (

v
(
θ∗)�Ω(

θ∗))∥∥
≤ sup

θ∈Θ

∥∥(
vun(θ)�μun(θ)�Ωun(θ)

) − (
v(θ)� (0k�1k)�Ω(θ)

)∥∥
+ ∥∥(

v(θun)�Ω(θun)
) − (

v
(
θ∗)�Ω(

θ∗))∥∥
→ 0�

where the last convergence holds by (S.8), θun → θ∗, and (v(·)�Ω(·)) ∈ D0.
Since (v(·)�Ω(·)) ∈ D0, the compactness of Θ implies that (v(θ∗)�Ω(θ∗)) is

bounded. Since limΞ(�un) = Ξ(�∗) = ∞ and limvun(θun) = v(θ∗) ∈ R
k, it then
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follows that limΞ(�un)
−1‖vun(θun)‖ = 0. By construction, {Ξ(�un)

−1�un}n≥1 is s.t.
limΞ(�un)

−1[�un�j]− = 1 for some j ≤ p or limΞ(�un)
−1|�un�j| = 1 for some j > p. By this,

it follows that {Ξ(�un)
−1(vun(θun)+�un)�Ωun(θun)}n≥1 with limΩun(θun) =Ω(θ∗) ∈Ψ and

limΞ(�un)
−1[vun�j(θun)+ �un�j]− = 1 for some j ≤ p or limΞ(hun)

−1|vun�j(θun)+ �un�j| = 1
for some j > p. This implies that

S
(
vun(θun)+ �un�Ωun(θun)

) = Ξ(�un)
χS

(
Ξ(�un)

−1(vun(θun)+ �un
)
�Ωun(θun)

)
→ ∞

Since {(θun� �un)}n≥1 is a subsequence of {(θan� �an)}n≥1 that approximately achieves the
infimum in (S.7),

gn
(
vn(·)�μn(·)�Σn(·)

) → ∞ (S.11)

However, (S.11) violates Step 3 and is therefore a contradiction.
We then know that d((θan� �an)� (θ

∗� �∗)) → 0 with �∗ ∈ R
p
[+∞] × R

k−p. By re-
peating previous arguments, we conclude that lim(vun(θun)�μun(θun)�Ωun(θun)) =
(v(θ∗)� (0k�1k)�Ω(θ∗)) ∈ R

k × Ψ . This implies that lim(vun(θun) + μun�1(θun) +
μun�2(θun)

′�un�Ωun(θun)) = (v(θ∗)+ �∗�Ω(θ∗)) ∈ (Rk[±∞] ×Ψ), that is, ∃N ∈N s.t. ∀n≥N ,

∥∥S(
vun(θun)+μun�1(θun)+μun�2(θun)

′�un�Ωun(θun)
) − S

(
v
(
θ∗) + �∗�Ω

(
θ∗))∥∥

≤ δ/2
(S.12)

By combining (S.10), (S.12), and the fact that (θ∗� �∗) ∈ Γ PR, it follows that ∃N ∈ N s.t.
∀n≥N ,

gun
(
vun(·)�μun(·)�Ωun(·)

) ≥ S
(
vΩ

(
θ∗) + �∗�Ω

(
θ∗)) − δ

≥ g
(
v(·)� (0k�1k)�Ω(·)) − δ�

which is a contradiction to (S.9).
Step 5. The proof is completed by combining the representation in Step 1, the con-

vergence result in Step 2, the continuity result in Step 4, and the extended continuous
mapping theorem (see, e.g., van der Vaart and Wellner (1996, Theorem 1.11.1)). So as
to apply this result, it is important to notice that parts (i) and (v) in Lemma S.3.1 and
standard convergence results imply that (v(·)�Ω(·)) ∈D0 a.s. �

Proof of Theorem S.2.2. Step 1. To simplify expressions let Γ PR
n ≡ Γ PR

n�Fn
(λn) and Γ DR

n ≡
Γ DR
n�Fn

(λn), and consider the derivation

min
{
T̃DR
n (λn)�T

PR
n (λn)

}
= min

{
inf

θ∈Θ(λn)∩Θlnκn
I (Fn)

S
(
v∗
n(θ)+ϕ∗(κ−1

n

√
nD̂

−1/2
n (θ)m̄n(θ)

)
� Ω̂n(θ)

)
�

inf
θ∈Θ(λn)

S
(
v∗
n(θ)+ κ−1

n

√
nD̂

−1/2
n (θ)m̄n(θ)� Ω̂n(θ)

)}
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= min
{

inf
θ∈Θ(λn)∩Θlnκn

I (Fn)

S
(
v∗
n(θ)

+ϕ∗(μn�1(θ)+μn�2(θ)
′κ−1

n D
−1/2
Fn

(θ)
√
n
(
EFnm(W �θ)

))
� Ω̂n(θ)

)
�

inf
θ∈Θ(λn)

S
(
v∗
n(θ)+μn�1(θ)+μn�2(θ)

′κ−1
n D

−1/2
Fn

(θ)
√
n
(
EFnm(W �θ)

)
� Ω̂n(θ)

)}

= min
{

inf
(θ��)∈Γ DR

n

S
(
v∗
n(θ)+ϕ∗(μn�1(θ)+μn�2(θ)

′�
)
� Ω̂n(θ)

)
�

inf
(θ��)∈Γ PR

n

S
(
v∗
n(θ)+μn�1(θ)+μn�2(θ)

′�� Ω̂n(θ)
)}
�

where μn(θ) ≡ (μn�1(θ)�μn�2(θ)), μn�1(θ) ≡ κ−1
n D̂

−1/2
n (θ)

√
n(m̄n(θ) − EFnm(W �θ)) ≡

κ−1
n ṽn(θ), and μn�2(θ) ≡ {σ−1

n�j (θ)σFn�j(θ)}kj=1. Note that we used that D
−1/2
Fn

(θ) and

D̂
−1/2
n (θ) are both diagonal matrices.

Step 2. There is a subsequence {an}n≥1 of {n}n≥1 s.t. {(v̂∗
an
�μan� Ω̂an)|{Wi}ani=1}

d→
(vΩ� (0k�1k)�Ω) in l∞(Θ) a.s. This step is identical to Step 2 in the proof of Theo-
rem S.2.1.

Step 3. Let D denote the space of bounded functions that map Θ onto R
2k×Ψ and let

D0 be the space of bounded uniformly continuous functions that map Θ onto R
2k ×Ψ .

Let the sequence of functionals {gn}n≥1, {g1
n}n≥1, {g2

n}n≥1 with gn : D → R, g1
n :D →R, and

g2
n :D →R be defined by

gn
(
v(·)�μ(·)�Ω(·)) ≡ min

{
g1
n

(
v(·)�μ(·)�Ω(·))� g2

n

(
v(·)�μ(·)�Ω(·))}�

g1
n

(
v(·)�μ(·)�Ω(·)) ≡ inf

(θ��)∈Γ DR
n

S
(
v∗
n(θ)+ϕ∗(μn�1(θ)+μn�2(θ)

′�
)
�Ω(θ)

)
�

g2
n

(
v(·)�μ(·)�Ω(·)) ≡ inf

(θ��)∈Γ PR
n

S
(
v∗
n(θ)+μn�1(θ)+μn�2(θ)

′��Ω(θ)
)


Let the functionals g : D0 →R, g1 :D0 → R, and g2 :D0 → R be defined by

g
(
v(·)�μ(·)�Ω(·)) ≡ min

{
g1(v(·)�μ(·)�Ω(·))� g2(v(·)�μ(·)�Ω(·))}�

g1(v(·)�μ(·)�Ω(·)) ≡ inf
(θ��)∈Γ DR

S
(
vΩ(θ)+ϕ∗(μ1(θ)+μ2(θ)

′�
)
�Ω(θ)

)
�

g2(v(·)�μ(·)�Ω(·)) ≡ inf
(θ�l)∈Γ PR

S
(
vΩ(θ)+μ1(θ)+μ2(θ)

′��Ω(θ)
)


If the sequence of deterministic functions {(vn(·)�μn(·)�Ωn(·))}n≥1 with
(vn(·)�μn(·)�Ωn(·)) ∈ D for all n ∈N satisfies

lim
n→∞ sup

θ∈Θ

∥∥(
vn(θ)�μn(θ)�Ωn(θ)

) − (
vΩ(θ)� (0k�1k)�Ω(θ)

)∥∥ = 0

for some (v(·)� (0k�1k)�Ω(·)) ∈ D0, then limn→∞ ‖gsn(vn(·)�μn(·)�Ωn(·)) −
gs(v(·)� (0k�1k)�Ω(·))‖ = 0 for s = 1�2, respectively. This follows from similar steps to
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those in the proof of Theorem S.2.1, Step 4. By continuity of the minimum function,

lim
n→∞

∥∥gn(vn(·)�μn(·)�Ωn(·)
) − g

(
v(·)� (0k�1k)�Ω(·))∥∥ = 0

Step 4. By combining the representation of min{T̃DR
n (λn)�T

PR
n (λn)} in Step 1, the con-

vergence results in Steps 2 and 3, Theorem S.2.1, and the extended continuous mapping
theorem (see, e.g., Theorem 1.11.1 of van der Vaart and Wellner (1996)), we conclude
that

{
min

{
T̃DR
n (λn)�T

PR
n (λn)

}∣∣{Wi}ni=1
} d→ min

{
J
(
Γ DR∗ �Ω

)
� J

(
Γ PR�Ω

)}
a.s.�

where

J
(
Γ DR∗ �Ω

) ≡ inf
(θ��)∈Γ DR∗

S
(
vΩ(θ)+ ��Ω(θ)

)
= inf

(θ��′)∈Γ DR
S
(
vΩ(θ)+ϕ∗(�′)�Ω(θ)

)


(S.13)

The result then follows by noticing that

min
{
J
(
Γ DR∗ �Ω

)
� J

(
Γ PR�Ω

)}
= min

{
inf

(θ��)∈Γ DR∗
S
(
vΩ(θ)+ ��Ω(θ)

)
� inf
(θ��)∈Γ PR

S
(
vΩ(θ)+ ��Ω(θ)

)}

= inf
(θ��)∈Γ DR∗ ∪Γ PR

S
(
vΩ(θ)+ ��Ω(θ)

) = J
(
Γ MR�Ω

)


This completes the proof. �

Proof of Theorem S.2.3. This proof is similar to that of Theorem S.2.1. For the sake of
brevity, we only provide a sketch that focuses on the main differences. From the defini-
tion of T SS

n (λn), we can consider the derivation

T SS
n (λn) ≡ inf

θ∈Θ(λn)
QSS

bn
(θ)= inf

θ∈Θ(λn)
S
(√

bnm̄
SS
n (θ)� Σ̂SS

n (θ)
)

= inf
(θ��)∈Γ SS

bn�Fn
(λn)

S
(
ṽSS
n (θ)+μn(θ)+ �� Ω̃SS

n (θ)
)
�

where μn(θ) ≡ √
bnD

−1/2
Fn

(θ)(m̄n(θ) − EFn[m(W �θ)]), ṽSS
n (θ) is as in (S.3), and Ω̃SS

n (θ) ≡
D

−1/2
Fn

(θ)Σ̂SS
n (θ)D

−1/2
Fn

(θ). From here, we can repeat the arguments used in the proof of
Theorem S.2.1. The main difference in the argument is that the reference to parts (ii) and
(vii) in Lemma S.3.1 need to be replaced by parts (ix) and (viii), respectively. �

The proof of Theorem S.2.4 follows by combining arguments from the proof of The-
orem S.2.1 with those from Bugni, Canay, and Shi (2015, Theorem 3.1). It is therefore
omitted.
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S.5. Proofs of lemmas in Section S.3

We note that Lemmas S.3.2–S.3.5 correspond to Lemmas D3–D7 in Bugni, Canay, and
Shi (2015) and so we do not include the proofs of those lemmas in this paper.

Proof of Lemma S.3.1. The proof of parts (i)–(vii) follow from similar arguments to
those used in the proof of Bugni, Canay, and Shi (2015, Theorem D.2). Therefore, we
now focus on the proof of parts (viii) and (ix).

Part (viii). By the argument used to prove Bugni, Canay, and Shi (2015, Theorem D.2
(part 1)), M(F) ≡ {D−1/2

F (θ)m(·� θ) : W → R
k} is Donsker and pre-Gaussian, both uni-

formly in F ∈ P . Thus, we can extend the arguments in the proof of van der Vaart and
Wellner (1996, Theorem 3.6.13 and Example 3.6.14) to hold under a drifting sequence of
distributions {Fn}n≥1 along the lines of van der Vaart and Wellner (1996, Section 2.8.3).
From this, it follows that{√

n

(n− bn)
ṽSS
n (θ)

∣∣∣{Wi}ni=1

}
d→ vΩ(θ) in l∞(Θ) a.s. (S.14)

To conclude the proof, note that

sup
θ∈Θ

∥∥∥∥
√

n

(n− bn)
ṽSS
n (θ)− ṽSS

n (θ)

∥∥∥∥ = sup
θ∈Θ

∥∥ṽSS
n (θ)

∥∥
√

bn/n

(1 − bn/n)


To complete the proof, it suffices to show that the RHS of the previous equation
is op(1) a.s. In turn, this follows from bn/n = o(1) and (S.14) as they imply that
{supθ∈Θ ‖ṽSS

n (θ)‖|{Wi}ni=1} =Op(1) a.s.
Part (ix). This result follows from considering the subsampling analogue of the argu-

ments used to prove Bugni, Canay, and Shi (2015, Theorem D.2 (part 2)). �

Proof of Lemma S.3.6. Part (i). Suppose not, that is, suppose that supΩ∈Ψ S(x�Ω) =
∞ for x ∈ (−∞�∞]p × R

k−p. By definition, there exists a sequence {Ωn ∈ Ψ }n≥1 s.t.
S(x�Ωn) → ∞. By the compactness of Ψ , there exists a subsequence {kn}n≥1 of {n}n≥1

s.t. Ωkn → Ω∗ ∈ Ψ . By continuity of S on (−∞�∞]p × R
k−p × Ψ it then follows that

limS(x�Ωkn) = S(x�Ω∗) = ∞ for (x�Ω∗) ∈ (−∞�∞]p × R
k−p × Ψ , which is a contradic-

tion to S : (−∞�∞]p ×R
k−p →R+.

Part (ii). Suppose not, that is, suppose that supΩ∈Ψ S(x�Ω) = B < ∞ for x /∈
(−∞�∞]p ×R

k−p. By definition, there exists a sequence {Ωn ∈ Ψ }n≥1 s.t. S(x�Ωn) → ∞.
By the compactness of Ψ , there exists a subsequence {kn}n≥1 of {n}n≥1 s.t. Ωkn →Ω∗ ∈Ψ .
By continuity of S on R

k[±∞] ×Ψ it then follows that limS(x�Ωkn) = S(x�Ω∗) = B < ∞ for

(x�Ω∗) ∈ R
k[±∞] × Ψ . Let J ∈ {1�    �k} be set of coordinates s.t. xj = −∞ for j ≤ p or

|xj| = ∞ for j > p. By the case under consideration, there is at least one such coordinate.
Define M ≡ max{maxj /∈J�j≤p[xj]−�maxj /∈J�j>p |xj|} < ∞. For any C > M , let x′(C) be de-
fined as follows. For j /∈ J, set x′

j(C) = xj , and for j ∈ J, set x′
j(C) as x′

j(C) = −C for j ≤ p

and |x′
j(C)| = C for j > p. By definition, limC→∞ x′(C) = x and by continuity properties
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of the function S, limC→∞ S(x′(C)�Ω∗) = S(x�Ω∗) = B < ∞. By homogeneity properties
of the function S and by Lemma S.3.4, we have that

S
(
x′(C)�Ω∗) = CχS

(
C−1x′(C)�Ω∗) ≥ Cχ inf

(x�Ω)∈A×Ψ
S(x�Ω) > 0�

where A is the set in Lemma S.3.4. Taking C → ∞, the RHS diverges to infinity, produc-
ing a contradiction. �

The Proof of Lemma S.3.7 follows from similar steps to those in Bugni, Canay, and
Shi (2015, Lemma D.10) and is therefore omitted.

Proof of Lemma S.3.8. Let (θ� �) ∈ Γ PR with � ∈ R
p
[+∞] × R

k−p. Then there is a sub-
sequence {an}n≥1 of {n}n≥1 and a sequence {(θn� �n)}n≥1 such that θn ∈ Θ(λn), �n ≡
κ−1
n

√
nD

−1/2
Fn

(θn)EFn[m(W �θn)], limn→∞ �an = �, and limn→∞ θan = θ. Also, by ΩFn
u→ Ω

we get ΩFn(θn) →Ω(θ). By continuity of S(·) at (��Ω(θ)) with � ∈ R
p
[+∞] ×R

k−p,

κ
−χ
an an

χ/2QFan (θan)= S
(
κ−1
an

√
anσ

−1
Fan �j

(θan)EFan

[
mj(W �θan)

]
�ΩFan (θan)

)
→ S

(
��Ω(θ)

)
< ∞

(S.15)

Hence QFan (θan)= O(κ
χ
anan

−χ/2). By this and Assumption A.3(a), it follows that

O
(
κ
χ
anan

−χ/2) = c−1QFan (θan) ≥ min
{
δ� inf

θ̃∈ΘI(Fan �λan)
‖θan − θ̃‖

}χ
⇒ ‖θan − θ̃an‖ ≤O(κan/

√
an)

(S.16)

for some sequence {θ̃an ∈ ΘI(Fan�λan)}n≥1. By Assumption A.3(b) and (c), the interme-
diate value theorem implies that there is a sequence {θ∗

n ∈ Θ(λn)}n≥1 with θ∗
n in the line

between θn and θ̃n such that

κ−1
n

√
nD

−1/2
Fn

(θn)EFn

[
m(W �θn)

]
=GFn

(
θ∗
n

)
κ−1
n

√
n(θn − θ̃n)+ κ−1

n

√
nD

−1/2
Fn

(θ̃n)EFn

[
m(W � θ̃n)

]


Define θ̂n ≡ (1 − κ−1
n )θ̃n + κ−1

n θn or, equivalently, θ̂n − θ̃n ≡ κ−1
n (θn − θ̃n). We can write

the above equation as

GFn

(
θ∗
n

)√
n(θ̂n − θ̃n)

= κ−1
n

√
nD

−1/2
Fn

(θn)EFn

[
m(W �θn)

] − κ−1
n

√
nD

−1/2
Fn

(θ̃n)EFn

[
m(W � θ̃n)

]


(S.17)

By convexity of Θ(λn) and κ−1
n → 0, {θ̂n ∈ Θ(λn)}n≥1, and by (S.16),

√
an‖θ̂an − θ̃an‖ =

O(1). By the intermediate value theorem again, there is a sequence {θ∗∗
n ∈Θ(λn)}n≥1 with
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θ∗∗
n in the line between θ̂n and θ̃n such that

√
nD

−1/2
Fn

(θ̂n)EFn

[
m(W � θ̂n)

]
=GFn

(
θ∗∗
n

)√
n(θ̂n − θ̃n)+ √

nD
−1/2
Fn

(θ̃n)EFn

[
m(W � θ̃n)

]
=GFn

(
θ∗
n

)√
n(θ̂n − θ̃n)+ √

nD
−1/2
Fn

(θ̃n)EFn

[
m(W � θ̃n)

] + ε1�n�

(S.18)

where the second equality holds by ε1�n ≡ (GFn(θ
∗∗
n )−GFn(θ

∗
n))

√
n(θ̂n − θ̃n). Combining

(S.17) with (S.18) we get

√
nD

−1/2
Fn

(θ̂n)EFn

[
m(W � θ̂n)

] = κ−1
n

√
nD

−1/2
Fn

(θn)EFn

[
m(W �θn)

]
+ ε1�n + ε2�n�

(S.19)

where ε2�n ≡ (1 − κ−1
n )

√
nD

−1/2
Fn

(θ̃n)EFn[m(W � θ̃n)]. From {θ̃an ∈ ΘI(Fan�λan)}n≥1 and

κ−1
n → 0, it follows that ε2�an�j ≥ 0 for j ≤ p and ε2�an�j = 0 for j > p. Moreover, Assump-

tion A.3(c) implies that ‖GFan (θ
∗∗
an
) − GFan (θ

∗
an
)‖ = o(1) for any sequence {Fan ∈ P0}n≥1

whenever ‖θ∗
an

− θ∗∗
an

‖ = o(1). Using
√
an‖θ̂an − θ̃an‖ = O(1), we have

‖ε1�an‖ ≤ ∥∥GFan

(
θ∗∗
an

) −GFan

(
θ∗
an

)∥∥√
an‖θ̂an − θ̃an‖ = o(1) (S.20)

Finally, since (Rk[±∞]� d) is compact, there is a further subsequence {un}n≥1 of {an}n≥1

s.t.
√
unD

−1/2
Fun

(θ̂un)EFun [m(W � θ̂un)] and κ−1
un

√
unD

−1/2
Fun

(θun)EFun [m(W �θun)] converge.

Then, from (S.19), (S.20), and the properties of ε2�an we conclude that

lim
n→∞ �̃un�j ≡ lim

n→∞
√
unσ

−1
Fun �j

(θ̂un)EFun

[
mj(W � θ̂un)

]
≥ lim

n→∞κ−1
un

√
unσ

−1
Fun �j

(θun)EFun

[
mj(W �θun)

]
for j ≤ p�

lim
n→∞ �̃un�j ≡ lim

n→∞
√
unσ

−1
Fun �j

(θ̂un)EFun

[
mj(W � θ̂un)

]
= lim

n→∞κ−1
un

√
unσ

−1
Fun �j

(θun)EFun

[
mj(W �θun)

]
for j > p�

which completes the proof, as {(θ̂un� �̃un) ∈ Γun�Fun (λun)}n≥1 and θ̂un → θ. �

Proof of Lemma S.3.9. We divide the proof into four steps.
Step 1. We show that inf(θ��)∈Γ SS S(vΩ(θ)+ ��Ω(θ)) < ∞ a.s. By Assumption A.5, there

exists a sequence {θ̃n ∈ ΘI(Fn�λn)}n≥1, where dH(Θ(λn)�Θ(λ0)) = O(n−1/2). Then there
exists another sequence {θn ∈ Θ(λ0)}n≥1 s.t.

√
n‖θn − θ̃n‖ = O(1) for all n ∈ N. Since Θ is

compact, there is a subsequence {an}n≥1 s.t.
√
an(θan − θ̃an) → λ ∈R

dθ , and θan → θ∗ and
θ̃an → θ∗ for some θ∗ ∈ Θ. For any n ∈ N, let �an�j ≡ √

banσ
−1
Fan �j

(θan)EFan [mj(W �θan)] for
j = 1�    �k, and note that

�an�j =
√
banσ

−1
Fan �j

(θ̃an)EFan

[
mj(W � θ̃an)

] +Δan�j (S.21)
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by the intermediate value theorem, where θ̂an lies between θan and θ̃an for all n ∈N, and

Δan�j ≡
√
ban√
an

(
GFan�j

(θ̂an)−GFan�j

(
θ∗))√an(θan − θ̃an)

+
√
ban√
an

GFan�j

(
θ∗)√an(θan − θ̃an)

Letting Δan = {Δan�j}kj=1, it follows that

‖Δan‖ ≤
√
ban√
an

∥∥GFan (θ̂an)−GFan

(
θ∗)∥∥ × ∥∥√

an(θan − θ̃an)
∥∥

+
∥∥∥∥
√
ban√
an

GFan

(
θ∗)∥∥∥∥ × ∥∥√

an(θan − θ̃an)
∥∥

= o(1)�

(S.22)

where bn/n → 0,
√
an(θan − θ̃an) → λ,

√
banGFan (θ

∗)/√an = o(1), θ̂an → θ∗, and
‖GFan (θ̂an)−GFan (θ

∗)‖ = o(1) for any sequence {Fan ∈ P0}n≥1 by Assumption A.3(c).
Thus, for all j ≤ k,

lim
n→∞�an�j ≡ lim

n→∞

√
banσ

−1
Fan �j

(θan)EFan

[
mj(W �θan)

]
= �∗

j ≡ lim
n→∞

√
banσ

−1
Fan �j

(θ̃an)EFan

[
mj(W � θ̃an)

]


Since {θ̃n ∈ ΘI(Fn�λn)}n≥1, �∗
j ≥ 0 for j ≤ p and �∗

j = 0 for j > p. Let �∗ ≡ {�∗
j }kj=1. By def-

inition, {(θan� �an) ∈ Γ SS
ban �Fan

(λ0)}n≥1 and d((θan� �an)� (θ
∗� �∗)) → 0, which implies that

(θ∗� �∗) ∈ Γ SS. From here, we conclude that

inf
(θ��)∈Γ SS

S
(
vΩ(θ)+ ��Ω(θ)

) ≤ S
(
vΩ

(
θ∗) + �∗�Ω

(
θ∗)) ≤ S

(
vΩ

(
θ∗)�Ω(

θ∗))�
where the first inequality follows from (θ∗� �∗) ∈ Γ SS, the second inequality follows from
the fact that �∗

j ≥ 0 for j ≤ p and �∗
j = 0 for j > p, and the properties of S(·). Finally, the

RHS is bounded as vΩ(θ∗) is bounded a.s.
Step 2. We show that if (θ̄� �̄) ∈ Γ SS with �̄ ∈ R

p
[+∞] ×R

k−p, ∃(θ̄� �∗) ∈ Γ PR, where �∗
j ≥

�̄j for j ≤ p and �∗
j = �̄j for j > p. As an intermediate step, we use the limit sets under the

sequence {(λn�Fn)}n≥1, denoted by Γ SS
A and Γ PR

A in the statement of the lemma.

We first show that (θ̄� �̄) ∈ Γ SS
A . Since Γ SS

bn�Fn
(λ0)

H→ Γ SS, there exist a subsequence

{(θan� �an) ∈ Γ SS
ban �Fan

(λ0)}n≥1, θan → θ̄, and �an ≡ √
banD

−1/2
Fan

(θan)EFan [m(W �θan)] → �̄. To

show that (θ̄� �̄) ∈ Γ SS
A , we now find a subsequence {(θ′

an
� �′

an
) ∈ Γ SS

ban �Fan
(λn)}n≥1, θ′

an
→ θ̄,

and �′
an

≡ √
banD

−1/2
Fan

(θ′
an
)EFan [m(W �θ′

an
)] → �̄. Notice that {(θan� �an) ∈ Γ SS

ban �Fan
(λ0)}n≥1

implies that {θan ∈ Θ(λ0)}n≥1. This and dH(Θ(λn)�Θ(λ0)) = O(n−1/2) imply that there is
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{θ′
an

∈ Θ(λan)}n≥1 s.t.
√
an‖θ′

an
− θan‖ = O(1), which implies that θ′

an
→ θ̄. By the inter-

mediate value theorem there exists a sequence {θ∗
n ∈ Θ}n≥1 with θ∗

n in the line between
θn and θ′

n such that

�′
an

≡
√
banD

−1/2
Fan

(
θ′
an

)
EFan

[
m

(
W�θ′

an

)]
=

√
banD

−1/2
Fan

(θan)EFan

[
m(W �θan)

] +
√
banGFan

(
θ∗
an

)(
θ′
an

− θan
)

= �an +Δan → �̄�

where we have defined Δan ≡ √
banGFan (θ

∗
an
)(θ′

an
− θan) and Δan = o(1) holds by similar

arguments to those in (S.22). This proves (θ̄� �̄) ∈ Γ SS
A .

We now show that ∃(θ̄� �∗) ∈ Γ PR
A , where �∗

j ≥ �̄j for j ≤ p and �∗
j = �̄j for j > p. Us-

ing similar arguments to those in (S.15) and (S.16) in the proof of Lemma S.3.8, we
have that QFan (θ

′
an
) = O(b

−χ/2
an ) and that there is a sequence {θ̃n ∈ ΘI(Fn�λn)}n≥1 s.t.√

ban‖θ′
an

− θ̃an‖ = O(1).
Following similar steps to those leading to (S.17) in the proof of Lemma S.3.8, it fol-

lows that

κ−1
n

√
nGFn

(
θ∗
n

)
(θ̂n − θ̃n) =

√
bnD

−1/2
Fn

(
θ′
n

)
EFn

[
m

(
W�θ′

n

)]
−

√
bnD

−1/2
Fn

(θ̃n)EFn

[
m(W � θ̃n)

]
�

(S.23)

where {θ∗
n ∈ Θ(λn)}n≥1 lies in the line between θ′

n and θ̃n, and θ̂n ≡ (1 − κn

√
bn/n)θ̃n +

κn
√
bn/nθ

′
n. By Assumption A.4, θ̂n is a convex combination of θ̃n and θ′

n for n sufficiently
large. Note also that

√
ban‖θ̂an − θ̃an‖ = o(1). By doing yet another intermediate value

theorem expansion, there is a sequence {θ∗∗
n ∈Θ(λn)}n≥1 with θ∗∗

n in the line between θ̂n
and θ̃n such that

κ−1
n

√
nD

−1/2
Fn

(θ̂n)EFn

[
m(W � θ̂n)

] = κ−1
n

√
nGFn

(
θ∗∗
n

)
(θ̂n − θ̃n)

+ κ−1
n

√
nD

−1/2
Fn

(θ̃n)EFn

[
m(W � θ̃n)

]


(S.24)

Since
√
ban‖θ∗

an
− θ̃an‖ = O(1) and

√
ban‖θ̃an − θ∗∗

an
‖ = o(1), it follows that

√
ban ×

‖θ∗
an

− θ∗∗
an

‖ =O(1). Next,

κ−1
n

√
nD

−1/2
Fn

(θ̂n)EFn

[
m(W � θ̂n)

]
= κ−1

n

√
nGFn

(
θ∗
n

)
(θ̂n − θ̃n)+ κ−1

n

√
nD

−1/2
Fn

(θ̃n)EFn

[
m(W � θ̃n)

] +Δn�1

=
√
bnD

−1/2
Fn

(
θ′
n

)
EFn

[
m

(
W�θ′

n

)] +Δn�1 +Δn�2�

(S.25)

where the first equality follows from (S.24) and Δn�1 ≡ κ−1
n

√
n(GFn(θ

∗∗
n ) − GFn(θ

∗
n)) ×

(θ̂n − θ̃n), and the second equality holds by (S.23) and Δn�2 ≡ κ−1
n

√
n(1 − κn

√
bn/n)×

D
−1/2
Fn

(θ̃n)EFn [m(W � θ̃n)]. By similar arguments to those in the proof of Lemma S.3.8,

‖Δan�1‖ = o(1). In addition, Assumption A.4 and {θ̃n ∈ ΘI(Fn�λn)}n≥1 imply that Δn�2�j ≥
0 for j ≤ p and n sufficiently large, and that Δn�2�j = 0 for j > p and all n ≥ 1.
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Now define �′′
an

≡ κ−1
an

√
anD

−1/2
Fan

(θ̂an)EFn [m(W � θ̂an)] so that by compactness of

(Rk[±∞]� d) there is a further subsequence {un}n≥1 of {an}n≥1 s.t. �′′
un

= κ−1
un

√
un ×

D
−1/2
Fun

(θ̂un)EFun [m(W � θ̂un)] and Δun�1 converges. We define �∗ ≡ limn→∞ �′′
un

. By (S.25)
and properties of Δn�1 and Δn�2, we conclude that

lim
n→∞�′′

un�j
= lim

n→∞κ−1
un

√
unσ

−1
Fun �j

(θ̂un)EFun

[
mj(W � θ̂un)

]
≥ lim

n→∞

√
bunσ

−1
Fun �j

(
θ′
un

)
EFun

[
mj

(
W�θ′

un

)] = �̄j for j ≤ p�

lim
n→∞�′′

un�j
= lim

n→∞κ−1
un

√
unσ

−1
Fun �j

(θ̂un)EFun

[
mj(W � θ̂un)

]
= lim

n→∞

√
bunσ

−1
Fun �j

(
θ′
un

)
EFun

[
mj

(
W�θ′

un

)] = �̄j for j > p

Thus, {(θ̂un� �′′
un
) ∈ Γ PR

un�Fun
(λn)}n≥1, θ̂un → θ̄, and �′′

un
→ �∗, where �∗

j ≥ �̄j for j ≤ p and

�∗
j = �̄j for j > p, and (θ̄� �∗) ∈ Γ PR

A .

We conclude the step by showing that (θ̄� �∗) ∈ Γ PR. To this end, find a subsequence
{(θ†

un� �
†
un) ∈ Γ PR

bun �Fun
(λ0)}n≥1, θ†

un → θ̄, and �†
un ≡ κ−1

un

√
unD

−1/2
Fun

(θ†
un)EFun [m(W �θ†

un)] →
�∗. Notice that {(θ̂un� �′′

un
) ∈ Γ PR

un�Fun
(λn)}n≥1 implies that {θ̂un ∈ Θ(λun)}n≥1. This and

dH(Θ(λn)�Θ(λ0)) = O(n−1/2) imply that there is {θ†
un ∈ Θ(λ0)}n≥1 s.t.

√
un‖θ̂un − θ†

un‖ =
O(1), which implies that θ†

un → θ̄. By the intermediate value theorem there exists a se-
quence {θ∗∗∗

n ∈Θ}n≥1 with θ∗∗∗
n in the line between θ̂n and θ†

n such that

�†
un

≡ κ−1
un

√
unD

−1/2
Fun

(
θ†
un

)
EFun

[
m

(
W�θ†

un

)]
= κ−1

un

√
unD

−1/2
Fun

(
θ†
un

)
EFun

[
m

(
W�θ†

un

)] + κ−1
un

√
unGFun

(
θ∗∗∗
un

)(
θ†
un

− θ̂un
)

= �′′
un

+Δun → �∗�

where we have defined Δun ≡ κ−1
un

√
unGFun (θ

∗∗∗
un

)(θ†
un − θ̂un) and Δun = o(1) holds by sim-

ilar arguments to those used before. By definition, this proves that (θ̄� �∗) ∈ Γ PR.
Step 3. We show that inf(θ��)∈Γ SS S(vΩ(θ) + ��Ω(θ)) ≥ inf(θ��)∈Γ PR S(vΩ(θ) + ��Ω(θ))

a.s. Since vΩ is a tight stochastic process, there is a subset of the sample space W , de-
noted A1, s.t. P(A1) = 1 and ∀ω ∈ A1, supθ∈Θ ‖vΩ(ω�θ)‖ < ∞. By Step 1, there is a subset
of W , denoted A2, s.t. P(A2)= 1 and ∀ω ∈ A2,

inf
(θ��)∈Γ SS

S
(
vΩ(ω�θ)+ ��Ω(θ)

)
<∞

Define A ≡ A1 ∩ A2 and note that P(A) = 1. To complete the proof, it then suffices to
show that ∀ω ∈ A,

inf
(θ��)∈Γ SS

S
(
vΩ(ω�θ)+ ��Ω(θ)

) ≥ inf
(θ��)∈Γ PR

S
(
vΩ(ω�θ)+ ��Ω(θ)

)
 (S.26)

Fix ω ∈ A arbitrarily and suppose that (S.26) does not occur, that is,

Δ≡ inf
(θ��)∈Γ PR

S
(
vΩ(ω�θ)+ ��Ω(θ)

) − inf
(θ��)∈Γ SS

S
(
vΩ(ω�θ)+ ��Ω(θ)

)
> 0 (S.27)
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By definition of infimum, ∃(θ̄� �̄) ∈ Γ SS s.t. inf(θ��)∈Γ SS S(vΩ(ω�θ) + ��Ω(θ)) + Δ/2 ≥
S(vΩ(ω� θ̄)+ �̄�Ω(θ̄)), and so, from this and (S.27) it follows that

S
(
vΩ(ω� θ̄)+ �̄�Ω(θ̄)

) ≤ inf
(θ��)∈Γ PR

S
(
vΩ(ω�θ)+ ��Ω(θ)

) −Δ/2 (S.28)

We now show that �̄ ∈ R
p
[+∞] × R

k−p. Suppose not, that is, suppose that �̄j = −∞
for some j < p and |�̄j| = ∞ for some j > p. Since ω ∈ A ⊆ A1, ‖vΩ(ω� θ̄)‖ < ∞.
By part (ii) of Lemma S.3.6 it then follows that S(vΩ(ω� θ̄) + �̄�Ω(θ̄)) = ∞. By (S.28),
inf(θ��)∈Γ SS S(vΩ(ω�θ)+ ��Ω(θ)) = ∞, which is a contradiction to ω ∈ A2.

Since �̄ ∈R
p
[+∞] ×R

k−p, Step 2 implies that ∃(θ̄� �∗) ∈ Γ PR, where �∗
j ≥ �̄j for j ≤ p and

�∗
j = �̄j for j > p. By properties of S(·),

S
(
vΩ(ω� θ̄)+ �∗�Ω(θ̄)

) ≤ S
(
vΩ(ω� θ̄)+ �̄�Ω(θ̄)

)
 (S.29)

Combining (S.27), (S.28), (S.29), and (θ̄� �∗) ∈ Γ PR, we reach the contradiction

0 <Δ/2 ≤ inf
(θ��)∈Γ PR

S
(
vΩ(ω�θ)+ ��Ω(θ)

) − S
(
vΩ(ω� θ̄)+ �̄�Ω(θ̄)

)
≤ inf

(θ��)∈Γ PR
S
(
vΩ(ω�θ)+ ��Ω(θ)

) − S
(
vΩ(ω� θ̄)+ �∗�Ω(θ̄)

) ≤ 0

Step 4. Suppose the conclusion of the lemma is not true; that is, suppose that
c(1−α)(Γ

PR�Ω) > c(1−α)(Γ
SS�Ω). Consider the derivation

α< P
(
J
(
Γ PR�Ω

)
> c(1−α)

(
Γ SS�Ω

))
≤ P

(
J
(
Γ SS�Ω

)
> c(1−α)

(
Γ SS�Ω

)) + P
(
J
(
Γ PR�Ω

)
> J

(
Γ SS�Ω

))
= 1 − P

(
J
(
Γ SS�Ω

) ≤ c(1−α)

(
Γ SS�Ω

)) ≤ α�

where the first strict inequality holds by definition of quantile and c(1−α)(Γ
PR�Ω) >

c(1−α)(Γ
SS�Ω), the last equality holds by Step 3, and all other relationships are elemen-

tary. Since the result is contradictory, the proof is complete. �

Proof of Lemma S.3.10. By Theorem 4.3, lim inf(EFn[φPR
n (λ0)]−EFn[φSS

n (λ0)]) ≥ 0. Sup-
pose that the desired result is not true. Then there is a further subsequence {un}n≥1 of
{n}n≥1 s.t.

limEFun

[
φPR
un
(λ0)

] = limEFun

[
φSS
un
(λ0)

]
 (S.30)

This sequence {un}n≥1 will be referenced from here on. We divide the remainder of the
proof into steps.

Step 1. We first show that there is a subsequence {an}n≥1 of {un}n≥1 s.t.

{
T SS
an

(λ0)|{Wi}ani=1

} d→ S
(
vΩ

(
θ∗) + (g�0k−p)�Ω

(
θ∗)) a.s. (S.31)

Conditionally on {Wi}ni=1, Assumption A.7(c) implies that

T SS
n (λ0)= S

(√
bnD

−1
Fn

(
θ̂SS
n

)
m̄SS

n

(
θ̂SS
n

)
� Ω̃SS

n

(
θ̂SS
n

)) + op(1) a.s. (S.32)
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By continuity of the function S, (S.31) follows from (S.32) if we find a subsequence
{an}n≥1 of {un}n≥1 s.t.

{
Ω̃SS

an

(
θ̂SS
an

)|{Wi}ani=1

} p→ Ω
(
θ∗) a.s.� (S.33)

{√
banD

−1/2
Fan

(
θ̂SS
an

)
m̄SS

an

(
θ̂SS
an

)|{Wi}ani=1

} d→ vΩ
(
θ∗) + (g�0k−p) a.s. (S.34)

To show (S.33), note that∥∥Ω̃SS
n

(
θ̂SS
n

) −Ω
(
θ∗)∥∥ ≤ sup

θ∈Θ

∥∥Ω̃SS
n (θ�θ)−Ω(θ�θ)

∥∥ + ∥∥Ω(
θ̂SS
n

) −Ω
(
θ∗)∥∥

The first term on the RHS is conditionally op(1) a.s. by Lemma S.3.1 (part (v)) and the

second term is conditionally op(1) a.s. by Ω ∈ C(Θ2) and {θ̂SS
n |{Wi}ni=1}

p→ θ∗ a.s. Then
(S.33) holds for the original sequence {n}n≥1.

To show (S.34), note that√
bnD

−1/2
Fn

(
θ̂SS
n

)
m̄SS

n

(
θ̂SS
n

) = ṽSS
n

(
θ∗) + (g�0k−p)+μn�1 +μn�2�

where

μn�1 ≡ ṽn
(
θ̂SS
n

)√
bn/n�

μn�2 ≡ (
ṽSS
n

(
θ̂SS
n

) − ṽSS
n

(
θ∗))

+
√
bn

(
D

−1/2
Fn

(
θ̂SS
n

)
EFn

[
m

(
W� θ̂SS

n

)] −D
−1/2
Fn

(
θ̃SS
n

)
EFn

[
m

(
W� θ̃SS

n

)])
+ (√

bnD
−1/2
Fn

(
θ̃SS
n

)
EFn

[
m

(
W� θ̃SS

n

)] − (g�0k−p)
)


Lemma S.3.1 (part (vii)) implies that {ṽSS
n (θ∗)|{Wi}ni=1}

d→ vΩ(θ
∗) a.s. and so (S.34) follows

from {
μan�1|{Wi}ani=1

} = op(1) a.s.� (S.35){
μan�2|{Wi}ani=1

} = op(1) a.s. (S.36)

By Lemma S.3.1 (part (vii)), supθ∈Θ ‖ṽn(θ)‖
√
bn/n = op(1), and by taking a further

subsequence {an}n≥1 of {n}n≥1, supθ∈Θ ‖ṽan(θ)‖
√
ban/an = oas(1). Since ṽn(·) is condi-

tionally nonstochastic, this result implies (S.36).
By Assumption A.7(c), (S.36) follows from showing that {ṽSS

n (θ∗)− ṽSS
n (θ̂SS

n )|{Wi}ni=1} =
op(1) a.s., which we now show. Fixing μ> 0 arbitrarily, it suffices to show that

lim supPFn

(∥∥ṽSS
n

(
θ∗) − ṽSS

n

(
θ̂SS
n

)∥∥ > ε|{Wi}ni=1
)
<μ a.s. (S.37)

Fix δ > 0 arbitrarily. As a preliminary step, we first show that

limPFn

(
ρFn

(
θ∗� θ̂SS

n

) ≥ δ|{Wi}ni=1
) = 0 a.s.� (S.38)

where ρFn is the intrinsic variance semimetric in (A.1). Then, for any j = 1�    �k,

VFn
(
σ−1
Fn�j

(
θ̂SS
n

)
mj

(
W� θ̂SS

n

) − σ−1
Fn�j

(
θ∗)mj

(
W�θ∗)) = 2

(
1 −ΩFn

(
θ∗� θ̂SS

n

)
[j�j]

)
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By (A.1), this implies that

PFn

(
ρFn

(
θ∗� θ̂SS

n

) ≥ δ|{Wi}ni=1
)

≤
k∑

j=1

PFn

(
1 −ΩFn

(
θ∗� θ̂SS

n

)
[j�j] ≥ δ22−1k−1|{Wi}ni=1

)


(S.39)

For any j = 1�    �k, note that

PFn

(
1 −ΩFn

(
θ∗� θ̂SS

n

)
[j�j] ≥ δ22−1k−1|{Wi}ni=1

)
≤ PFn

(
1 −Ω

(
θ∗� θ̂SS

n

)
[j�j] ≥ δ22−2k−1|{Wi}ni=1

) + o(1)

≤ PFn

(∥∥θ∗ − θ̂SS
n

∥∥> δ̃|{Wi}ni=1
) + o(1) = oas(1)�

where we have used that ΩFn
u→ Ω and so supθ�θ′∈Θ ‖Ω(θ�θ′)[j�j] − ΩFn(θ�θ

′)[j�j]‖ <

δ22−2k−1 for all sufficiently large n, that Ω ∈ C(Θ2) and so ∃δ̃ > 0 s.t. ‖θ∗ − θ̂SS
n ‖ ≤ δ̃ im-

plies that 1 − Ω(θ∗� θ̂SS
n )[j�j] ≤ δ22−2k−1, and that {θ̂SS

n |{Wi}ni=1}
p→ θ∗ a.s. Combining this

with (S.39), (S.38) follows.
Lemma S.3.1 (part (i)) implies that {ṽSS

n (·)|{Wi}ni=1} is asymptotically ρF -
equicontinuous uniformly in F ∈ P (a.s.) in the sense of van der Vaart and Wellner (1996,
p. 169). Then ∃δ > 0 s.t.

lim sup
n→∞

P∗
Fn

(
sup

ρFn(θ�θ
′)<δ

∥∥ṽSS
n (θ)− ṽSS

n

(
θ′)∥∥> ε

∣∣{Wi}ni=1

)
<μ a.s. (S.40)

Based on this choice, consider the argument

P∗
Fn

(∥∥ṽSS
n

(
θ∗) − ṽSS

n

(
θ̂SS
n

)∥∥ > ε|{Wi}ni=1
)

≤ P∗
Fn

(
sup

ρFn(θ�θ
′)<δ

∥∥ṽSS
n

(
θ∗) − ṽSS

n (θ̂n)
∥∥ > ε

∣∣{Wi}ni=1

)

+ P∗
Fn

(
ρFn

(
θ∗� θ̂n

) ≥ δ|{Wi}ni=1
)


From this, (S.38), and (S.40), (S.37) follows.
Step 2. For arbitrary ε > 0 and for the subsequence {an}n≥1 of {un}n≥1 in Step 1 we

want to show that

limPFan

(∣∣cSS
an
(λ0�1 − α)− c(1−α)

(
g�Ω

(
θ∗))∣∣ ≤ ε

) = 1� (S.41)

where c(1−α)(g�Ω(θ∗)) denotes the (1 − α) quantile of S(vΩ(θ
∗) + (g�0k−p)�Ω(θ∗)).

By our maintained assumptions and Assumption A.7(b)(iii), it follows that
c(1−α)(g�Ω(θ∗)) > 0.

Fix ε̄ ∈ (0�min{ε� c(1−α)(g�Ω(θ∗))}). By our maintained assumptions,
c(1−α)(g�Ω(θ∗)) − ε̄ and c(1−α)(g�Ω(θ∗)) + ε̄ are continuity points of the CDF of
S(vΩ(θ

∗)+ (g�0k−p)�Ω(θ∗)). Then

limPFan

(
T SS
an

(λ0)≤ c(1−α)

(
g�Ω

(
θ∗)) + ε̄|{Wi}ani=1

)
= P

(
S
(
vΩ

(
θ∗) + (g�0k−p)�Ω

(
θ∗)) ≤ c(1−α)

(
g�Ω

(
θ∗)) + ε̄

)
> 1 − α�

(S.42)
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where the equality holds a.s. by Step 1, and the strict inequality holds by ε̄ > 0. By a
similar argument,

limPFan

(
T SS
an

(λ0) ≤ c(1−α)

(
g�Ω

(
θ∗)) − ε̄|{Wi}ni=1

)
= P

(
S
(
vΩ

(
θ∗) + (g�0k−p)�Ω

(
θ∗)) ≤ c(1−α)

(
g�Ω

(
θ∗)) − ε̄

)
< 1 − α�

(S.43)

where, as before, the equality holds a.s. by Step 1. Next, notice that

{
limPFan

(
T SS
an

(λ0) ≤ c(1−α)

(
g�Ω

(
θ∗)) + ε̄|{Wi}ani=1

)
> 1 − α

}
⊆ {

lim inf
{
cSS
an
(λ0�1 − α) < c(1−α)

(
g�Ω

(
θ∗)) + ε̄

}}
�

with the same result holding with −ε̄ replacing +ε̄. By combining this result with (S.42)
and (S.43), we get

{
lim inf

{∣∣cSS
an
(λ0�1 − α)− c(1−α)

(
g�Ω

(
θ∗))∣∣ ≤ ε̄

}}
a.s.

From this result, ε̄ < ε, and Fatou’s lemma, (S.41) follows.
Step 3. For an arbitrary ε > 0 and for a subsequence {wn}n≥1 of {an}n≥1 in Step 2 we

want to show that

limPFwn

(
c(1−α)

(
π�Ω

(
θ∗)) + ε ≥ cPR

wn
(λ0�1 − α)

) = 1� (S.44)

where c(1−α)(π�Ω(θ∗)) denotes the (1 − α) quantile of S(vΩ(θ∗)+ (π�0k−p)�Ω(θ∗)) and
π ∈ R

p
[+�+∞] is a parameter to be determined that satisfies π ≥ g and πj > gj for some

j = 1�    �p.
The arguments required to show this are similar to those used in Steps 1 and 2. For

any θ ∈ Θ(λ0), define T̃PR
n (θ) ≡ S(v∗

n(θ) + κ−1
n

√
nD̂

−1/2
n (θ)m̄n(θ)� Ω̂n(θ)). We first show

that there is a subsequence {wn}n≥1 of {an}n≥1 s.t.

{
T̃PR
wn

(
θ̂SS
wn

)|{Wi}wn
i=1

} d→ S
(
vΩ

(
θ∗) + (π�0k−p)�Ω

(
θ∗)) a.s. (S.45)

Consider the derivation

T̃PR
n

(
θ̂SS
n

) = S
(
v∗
n

(
θ̂SS
n

) + κ−1
n

√
nD̂

−1/2
n

(
θ̂SS
n

)
m̄n

(
θ̂SS
n

)
� Ω̂n

(
θ̂SS
n

))
= S

(
D

−1/2
Fn

(
θ̂SS
n

)
D̂

1/2
n

(
θ̂SS
n

)
v∗
n

(
θ̂SS
n

) + κ−1
n

√
nD

−1/2
Fn

(
θ̂SS
n

)
m̄n

(
θ̂SS
n

)
�

Ω̃n
(
θ̂SS
n

))


By continuity of the function S, (S.44) would follow if we find a subsequence {wn}n≥1 of
{an}n≥1 s.t.

{
Ω̃wn

(
θ̂SS
wn

)|{Wi}wn
i=1

} p→ Ω
(
θ∗) a.s.{

D
−1/2
Fwn

(
θ̂SS
wn

)
D̂

1/2
wn

(
θ̂SS
wn

)
v∗
wn

(
θ̂SS
wn

) + κ−1
wn

√
wnD

−1/2
Fwn

(
θ̂SS
wn

)
m̄wn

(
θ̂SS
wn

)|{Wi}wn
i=1

}
d→ vΩ

(
θ∗) + (π�0k−p) a.s.
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The first statement is shown as in (S.33) in Step 1. To show the second statement, note
that

D
−1/2
Fwn

(
θ̂SS
wn

)
D̂

1/2
wn

(
θ̂SS
wn

)
v∗
wn

(
θ̂SS
wn

) + κ−1
wn

√
wnD

−1/2
Fwn

(
θ̂SS
wn

)
m̄wn

(
θ̂SS
wn

)
= v∗

wn

(
θ∗) + (π�0k−p)+μwn�3 +μwn�4�

where

μwn�3 =D
−1/2
Fwn

(
θ̂SS
wn

)
D̂

1/2
wn

(
θ̂SS
wn

)
v∗
wn

(
θ̂SS
wn

) − v∗
wn

(
θ∗) + κ−1

wn
ṽwn

(
θ̂SS
wn

)
+ κ−1

wn

√
wn

× (
D

−1/2
Fwn

(
θ̂SS
wn

)
EFwn

[
m

(
W� θ̂SS

wn

)] −D
−1/2
Fwn

(
θ̃SS
wn

)
EFwn

[
m

(
W� θ̃SS

wn

)])
�

μwn�4 = (
κ−1
wn

√
wn/bwn

)√
bwnD

−1/2
Fwn

(
θ̃SS
wn

)
EFwn

[
m

(
W� θ̃SS

wn

)] − (π�0k−p)

By Lemma S.3.1 (part (ix)), we have {v∗
wn

(θ∗)|{Wi}ni=1}
d→ vΩ(θ

∗) a.s. By the same argu-
ments as in Step 1, we have that {μwn�3|{Wi}wn

i=1} = op(1) a.s. By possibly considering a

subsequence, κ−1
wn

√
wn/bwn →K−1 ∈ (1�∞] by Assumption A.7(d) and {√bnD

−1/2
Fwn

(θ̃SS
wn

)×
EFwn [m(W � θ̃SS

wn
)]|{Wi}wn

i=1} = (g�0k−p) + op(1) a.s. by Assumption A.7(c)(iii), with g ∈
R
p
[+�+∞] by Step 1. By combining these two and by possibly considering a further sub-

sequence, we conclude that {(κ−1
wn

√
wn/bwn)

√
bnD

−1/2
Fwn

(θ̃SS
wn

)EFwn [m(W � θ̃SS
wn
)]|{Wi}wn

i=1} =
(π�0k−p) + op(1) a.s., where π ∈ R

p
[+�+∞]. Since K−1 > 1, πj ≥ gj ≥ 0 for all j = 1�    �p.

By Assumption A.7(c)(iii), there is j = 1�    �p, s.t. gj ∈ (0�∞) and so πj = K−1gj > gj .
From this, we have that {μwn�4|{Wi}wn

i=1} = op(1) a.s.

Let c̃PR
n (θ�1 −α) denote the conditional (1 −α) quantile of T̃PR

n (θ). On the one hand,
(S.45) and the arguments in Step 2 imply that limPFwn (|c̃PR

wn
(θ̂SS

wn
�1 − α) −

c(1−α)(π�Ω(θ∗))| ≤ ε) = 1 for any ε > 0. On the other hand, TPR
n (λ0) = infθ∈Θ(λ0) T̃

PR
n (θ)

and {θ̂SS
n ∈ Θ(λ0)}n≥1 imply that c̃PR

n (θ̂SS
n �1 − α) ≥ cPR

n (λ0�1 − α). By combining these,
(S.44) follows.

We conclude by noticing that by c(1−α)(g�Ω(θ∗)) > 0 (by Step 2) and π ≥ g with
πj > gj for some j = 1�    �p, our maintained assumptions imply that c(1−α)(g�Ω(θ∗)) >
c(1−α)(π�Ω(θ∗)).

Step 4. We now conclude the proof. By Assumption A.7(a) and arguments similar to
Step 1 we deduce that

Twn(λ0)
d→ S

(
vΩ

(
θ∗) + (λ�0k−p)�Ω

(
θ∗)) (S.46)

Fix ε ∈ (0�min{c(1−α)(g�Ω(θ∗))� (c(1−α)(g�Ω(θ∗)) − c(1−α)(π�Ω(θ∗)))/2} (possible by
Steps 2 and 3) and note that

PFwn

(
Twn(λ0) ≤ cSS

wn
(λ0�1 − α)

)
≤ PFwn

(
Twn(λ0) ≤ c(1−α)

(
g�Ω

(
θ∗)) + ε

)
+ PFwn

(∣∣cSS
wn

(λ0�1 − α)− c(1−α)

(
g�Ω

(
θ∗))∣∣ > ε

)
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By (S.41), (S.46), and our maintained assumptions, it follows that

lim supPFwn

(
Twn(λ0) ≤ cSS

wn
(λ0�1 − α)

)
≤ P

(
S
(
vΩ

(
θ∗) + (λ�0k−p)�Ω

(
θ∗)) ≤ c(1−α)

(
g�Ω

(
θ∗)) + ε

)
�

(S.47)

lim infPFwn

(
Twn(λ0) ≤ cSS

wn
(λ0�1 − α)

)
≥ P

(
S
(
vΩ

(
θ∗) + (λ�0k−p)�Ω

(
θ∗)) ≤ c(1−α)

(
g�Ω

(
θ∗)) − ε

)


(S.48)

Since (S.47), (S.48), c(1−α)(g�Ω(θ∗)) > 0, and our maintained assumptions,

limEFwn

[
φSS
wn

(λ0)
] = P

(
S
(
vΩ

(
θ∗) + (λ�0k−p)�Ω

(
θ∗))> c(1−α)

(
g�Ω

(
θ∗))) (S.49)

We can repeat the same arguments to deduce an analogous result for the penalize re-
sampling test. The main difference is that for Test PR we do not have a characterization
of the minimizer, which is not problematic as we can simply bound the asymptotic re-
jection rate using the results from Step 3; that is,

limEFwn

[
φPR
wn

(λ0)
] ≥ P

(
S
(
vΩ

(
θ∗) + (λ�0k−p)�Ω

(
θ∗))> c(1−α)

(
π�Ω

(
θ∗))) (S.50)

By our maintained assumptions, c(1−α)(g�Ω(θ∗)) > c(1−α)(π�Ω(θ∗)), (S.49), and (S.50),
we conclude that

limEFwn

[
φPR
wn

(λ0)
] ≥ P

(
S
(
vΩ

(
θ∗) + (λ�0k−p)�Ω

(
θ∗))> c(1−α)

(
π�Ω

(
θ∗)))

> P
(
S
(
vΩ

(
θ∗) + (λ�0k−p)�Ω

(
θ∗))> c(1−α)

(
g�Ω

(
θ∗)))

= limEFwn

[
φSS
wn

(λ0)
]


Since {wn}n≥1 is a subsequence of {un}n≥1, this is a contradiction to (S.30) and concludes
the proof. �
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