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This document provides auxiliary lemmas and their proofs for the main paper.

S.1. NoTATION

Throughout the Appendix we employ the notation defined in Appendix A in the main
paper. For the reader’s convenience, we restate Table 1, which provides the main ele-
ments.

S.2. AUXILIARY THEOREMS
THEOREM S.2.1. Let Fnlf%(/\) be as in Table 1 and let T'R(\) be as in (4.6). Let (A, Fy) €
Loln>1 be a (sub)sequence of parameters such that for some (I’ PR ) e S(O x R{‘ioo]) X

C(0?), (i) QF, L 0and Gi) T nPI}n()\n) H PR Then there exists a further subsequence
{”n}nzl Of{”}nzl such that, along {Fu, }nzly

d .
{Tlff(/\un)'{m}?:l} A J(FPR, Q) = (O’ZIEEPRS(UQ(O) + E, 9(0)) a.s.,

where vg : @ — R¥ is a tight Gaussian process with covariance (correlation) kernel (2.

THEOREM S.2.2. Let I''R(\) and I'PR()) be as in Table 1. Let T'R()) be as in (4.6) and
define

TR\ = inf S(i(0) + ¢* ("D, 2 (0)ma(6)), 24(0)),  (S.1)
0€OM)NO " (F)
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TaBLE 1. Important notation.

P {F eP:0;(F)#0)
3r(0) Varg(m(W, 6))
Dr(0) diag(2r(6))
QOr () S(EFIm(W, 0)1, 3 (6))
0" (F) {0 € O : S(/REF[m(W, 0)], 37(6)) < In ky)
Or(F, \) ON)NO(F)

Lur(D) ((8,0) € ON) x R : ¢ = /nD 2 () Eplm(W;, 0)1)
I3, (\) {(6,0) € O(A) x R¥ : £ = /B, Dy > () Erlm(W, 6)1)

RO {(8,0) € O) x R¥ - £ = ;' /uD (O Eplm(W;, 0)])

PR {(6,6) € OV) N O (F) x RK - £ = i1 /nD 2 () Epm(W, 6)1}
U, (0) n= V2o (0) Sy (m (Wi, 0) — Eplm;(W, ), j=1,..., k
¥, (0) n=V2671(0) Iy omj (Wi, 0) — Eplm;(Wi, D), j=1,.... k
Qr 0,0y, 1 EF[(mfl(W,9>—Eplm;1(w,6)1)(m;2<W,6’)—Eplmj2<W,8’>J)]

ar,j, (0) TF,j, (0

where v} (0) is as in (2.8), ¢*(-) is as in Assumption A.1, and @lln “n(F) is as in Table 1. Let
{(An, Fn) € Loln=1 be a (sub)sequence of parameters such that for some (I'°R, FPR 0) e
S0 x RE_ ) x C(0%), () 2, 5 0, (i) [PR (A 2 IR, and (i) IPR (A,) - I'PE.
Then there exists a further subsequence {un}nzl of {n},>1 such that, along {Fy,}n>1,
{min{ T2R (A, T ) WYL }
LJIrMR Q)= inf

S(vn(0) +£,0(6 a.s.,
(.o (n( ) ( ))

wherevg : O — Rf isa tight Gaussian process with covariance (correlation) kernel (2,

™R = PRYTPR and

(S8.2)

I'PR=1{(6,0) e 0 x R{{ioo] 0= @*(') for some (6, ¢') e PR},

THEOREM S.2.3. Let FSSF(A) be as in Table 1 and let Tss()\) be the subsampling test
statistic. Let {(A,, F,) € Eg}n>1 be a (sub)sequence of parameters such that for some
(I'SS,0) € S(O xRK [oo]) X C(6?), (i) OF, = 0 and (ii) FbiSF,,(An) 5 I'SS. Then there exists
a further subsequence {u,},>1 of {n},>1 such that, along {F,,}n>1,

J(rS,0)= inf

ss ) 4
{ Ty u) WY} = oinf

S(vo(6) +¢,9(6,0)) a.s.,

wherevg : O — Rf isa tight Gaussian process with covariance (correlation) kernel (2.

THEOREM S.2.4. Let I, p(A) be as in Table 1 and let T, (A) be as in (4.1). Let {(A,, Fp) €
Lo}n>1 be a (sub)sequence of parameters such that for some (I, (2) € S(O x Rﬁoo]) X
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C(OYH, 1) 0 F, X Qand (i) T, w.F,(An) £ I'. Then there exists a further subsequence {u, },>1
of {n},>1 such that, along {F,, },>1,

Tur (M) 5 T, Q) = inf S(v(8) + £, 0(6)),
(0,0)el’

where v : © — R¥ is a tight Gaussian process with zero mean and covariance (correla-
tion) kernel ().

S.3. AUXILIARY LEMMAS

LEmmA S.3.1. Let {F, € P},>1 be a (sub)sequence of distributions s.t. (2, = { for some
0 € C(O?). Then the following statements hold:

(i) We have v, 4 vg in 1°°(0), where v : @ — RK is a tight zero-mean Gaussian
process with covariance (correlation) kernel (). In addition, v, is a uniformly continuous
function, a.s.

(i) We havef) 2 Qin [*(0).

(ili) We have D, 1/2( D20 =1 B0y in1°(0).

—1,2 172

(iv) WehaveD ()Dy ()—Ik—>0kxk inl*®0).

(v) For any arbitrary sequence {a, € Ry },>1 S.t. a, — 00, a;lvn £ 0y inl*(O).
(vi) For any arbitrary sequence {an € Ryt }ps1 8L ap — 00, a‘lﬁn LS 0, inl*>*(O).

(vii) We have {v;[{W:}"_;} LY v in I*°(0) a.s., where vy, is the tight Gaussian process
described in part (i).

(viii) We have {855 [{W;}1_,} 2 00 inl1®(0) as., where

B (0) = ZD V2(0)(m(WSS, 0) — ma(6)), (5.3)

"Ll

{Wiss}f is a subsample of size b, from {W;}!_,, and v is the tight Gaussian process de-
scribed in part (i).

(ix) For 255()=D ‘1/2

(O)335(0)D; " (0), (DS WiY_ ) B 2in1(0) as.

LeEmma S.3.2. For any sequence {(An, F,,) € L},>1 there exists a subsequence {u,,}”>1 of
(a1 1. 25, > O, Ty £, M) = T, TR (M) = TP, and TPR, (M) = PR for
some (I, PR, I'PR ) € SO x Rf,))* x C(O?), where T, £, (), FDR (A), and I} (V)
are defined in Table 1.

LemMaA S.3.3. Let {F, € P},>1 be an arbitrary (sub)sequence of distributions and let
Xn(60) : Q — [°°(0) be any stochastic process such that X, 2 0in [°(®). Then there exists
a subsequence {u,},>1 of {n},>1 such that X, 0in [*(0).
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LEMMA S.3.4. Let the set A be defined as

A= {xeRP

+Oo]ka*P:max{'max {[xj1-}, max {|xs|}}:1}. (S.4)

j=1,..,p s=p+1,....k
Then inf(x 0ye 4xw S(x, 2) > 0.

LeEMMA S.3.5. If S(x, 2) <1, then there exists a constant w > 0 such that x; > —w for all
j<pand|x;|<w forall j> p.

LEMMA S.3.6. The function S satisfies the properties (i) x € (—oo, 00]? x RK=P implies
SUppcy S(x, £2) < oo and (ii) x ¢ (—oo, 00]? x Rk-P implies infcy S(x, ) = 00
LEMMA s 3.7. Let (I',I'°R, .Q) € SO x R, )? x C(O%) be such that Qp, = 0,

Lr,(An) A1 and FDR (A,) 2 PR for some {(Ay, Fy) € Lo}n=1. Then Assumptions A.1
and A.3 imply that for all (0, ¢) € I'PR there exists (0, ¢) € I' with EJ > ¢; *(¢)) for j < p and
tj=1t;=0forj> p, where ¢*(-) is defined in Assumption A.1.

LEMMA S. 3 8. Let (I, T'™R (2) € SO x RE_)? x C(O%) be such that Qp, =

I r,(Ap) H I, and FP (/\ ) A PR for some {(A,, Fn) € Lo}n>1. Then Assumption A.3
implies that for all (9, Z) e 'R with ¢ e R[’;oo] x RK=P, there exists (0, 0) € I’ with {; > (;
forj<pandi;=¢;forj> p.

LEMMA S.3.9. Let Assumptions A.3-A.5 hold. For A € I’ and {/\ € I'ly>1 as in As-
sumption A.5, assume that Qp, — (, Fn F,(A0) L FP (Ao) A per FSS (A0) X

rss, I\, 2 IR, and rbiS,Fn(A”) = IS for some (I, FSS,FPR,FASS, };R,Q) €
S(0 x R[ioo])S x C(@%). Then

c-a) (I, Q) < e (I, Q).
LEMMA S.3.10. Let Assumptions A.3-A.7 hold. Then

(B, (47 00)] - B, [43500)) 0

S.4. PROOFS OF THEOREMS IN SECTION S.2

PrOOF OF THEOREM S.2.1. Step 1. To simplify expressions, let I’} = FPR (A,). Consider
the derivation

T = inf S(0)+ 11 (0) + pn2(0) sy VD, (O Ep, [m(W, 0)],

0@ (A,
2,(6))

= inf S(v;",(ﬂ)+,un,1(0)+Mn,z(0)’£,f2n(0)),
(6,0)el;PR
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where g1, (8) = (1tn,1(0), 1t 2(0)), 1 1(8) = K 52(6), and y 2(6) = 167, (O, (O},

Note that D;l/ 2(6?) and D;/ 2(19) are both diagonal matrices.

n

Step 2. We now show that there is a subsequence {a,},>1 of {n},>1 s.t
{(vzn,uan,f)an)l{W,-}?;l} —d> (v, (0, 1x), ) in [°°(0) a.s. By part (vii) in Lemma S.3.1,

W) 4 v in [*°(6). Then the result would follow from finding a subsequence
{@ntn=1 of (Mhn=1 8.t {(ta,> Qa) W} = ((0k, 1), 02) in 1°(6) a.s. Since (pn, 2n) is
conditionally nonrandom, this is equivalent to finding a subsequence {a,},>1 of {n},>1
s.t. (ia,, f)an) % (0, 1), £2) in [°°(6). In turn, this follows from Step 1, part (v) of
Lemma S.3.1, and Lemma S.3.3.

Step 3. Since O[(Fy, A,) # ¥, there is a sequence {6, € O(A,)},>1 s.t. for ¢, ; =
Ky ' nag! (0 Er,Imi(W, 6,)),

limsup¢, ;=¢;>0 forj<p, and nlingo|zn,j|52,=0 for j > p. (S.5)

n—oo

By compactness of (@ x R{‘iooj,d), there is a subsequence {k,},>1 of {an}n>1
s.t. d((0k,, k), (0,0)) — 0 for some (6,) € ® x RY | x 0r_,. By Step 2,
lim(vg, (0k,), i, (Ok,)> 2k, (0k,)) = (Vo (0), (O, 1;), 2(0)), and so

TR (k) < S (vk, (Ok,) + 1 (O,) + ey 2(0k,) Ly i, (O,))

— S(va(0) +£,02(8)),

(5.6)

where the convergence occurs by the continuity of S(-) and the convergence of its argu-
ment. Since (v (0) + £, 2(0)) € Rf’+oo] x Rk=P x ¥, we conclude that S(vo () + £, 2(9))
is bounded.

Step 4. Let D denote the space of functions that map @ onto R¥ x ¥ and let D, be
the space of uniformly continuous functions that map @ onto R¥ x ¥. Let the sequence
of functionals {g,},>1 with g, : D — R be given by

8n(v(), n(), 2()) inf PRS(U(H)+M1(0)+M2(9)/€,Q(0))- 8.7

(0,0el}

Let the functional g : Dy — R be defined by

(), n(), ()= inf | S((O) + p1(0) + ua(6)'C, 2(6)).

(b0

We now show that if the sequence of (deterministic) functions {(v,(-), un(-), 2,()) €
D},>1 satisfies

limsup|[ (v (6), wa(6), 2a(9)) — (v(6), (Ok, 1), 2(6)) | =0 (S.8)
0O

for some (v(-), 2(-)) € Dy, thenlimy—, oo 81 (Va(-), wn (), 24(-)) = g((-), (0, 1), 2(-)). To
prove this we show that liminf,,— o 2, (v, (), rn(-), 2,(-)) > g(v(-), (0, 1%), £2(-)). Show-
ing the reverse inequality for the limsup is similar and therefore is omitted. Suppose not,
that is, suppose that 36 > 0 and a subsequence {a,},>1 of {n},>1 s.t. Vn e N,

8an (Van (), ay (), 24,()) < g(v(), (O, 1x), 2()) — 5. S.9)
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By definition, 3{(6q,,¢4,)}n>1 approximates the infimum in (S8.7), that is, Vn € N,
(04, La,) € TP R and

|8an (Van (), ta, () R4, () — S (va, (0a,) + m1(0a,) + 12(04,) Cay, 2a,(0a,))|
(S.10)
<§/2.

Since I' aI;R COx R{‘iw] and (O x R{‘ oo] d) is a compact metric space, there exist a subse-
quence {u,},>1 of {a,},>1 and (6%, £*) € O x R{(ioo] s.t. d((0y,, Lu,), (0%, £*)) — 0. We first
show that (6%, ¢*) € I'’R, Suppose not, that is, (*, £*) ¢ I'’R, and consider the argument

d((eun’ ZI/l")> (0*7 Z*)) + dH(FLE;R, FPR)

Z d((eun, Eu,,), (9 H e )) + (0’2)Iéfl_vad((07 Z)a (Ouna Eu,,))

. k *
> (a,ﬁl)xéfmd((e,m, (6%, ¢%)) >0,

where the first inequality follows from the definition of Hausdorff distance and the
fact that (6,,, £,,) € I ", and the second inequality follows by the triangular inequal-
ity. The final strict inequality follows from the fact that I'™® € S(© x Rf, ), that is,
it is a compact subset of (O x R{‘ioo], d), d((6, ), (6*,¢*)) is a continuous real-valued
function, and Royden (1988, Theorem 7.18). Taking limits as » — oo and using that
d((8y,,Lu,), (0, £%)) - 0and FJ;R H I'PR we reach a contradiction.

We now show that ¢* € R

[+o0]
s.t. l;'.‘ =—ocoor 3j > ps.t E;’f = oco. Let J denote the set of indices j =1, ..., k s.t. this

x R¥=P_ Suppose not, that is, suppose that 3j =1,..., k

occurs. For any £ € Rﬁoo] define 5(¢) = max;ej ||¢/]l. By definition of szf o lu, € Rk
and, thus, Z(¢,,) < co. By the case under consideration, lim Z(¢,,,) = Z(£*) = cc. Since
(O, - ) is a compact metric space, d((0y,,%y,), (6*,£*)) — 0 implies that 0,, — 6*.
Then
| (Vi (Bu) s ey (0> 2, (8,)) — (v(6%), Ok, 110), 2(6%)) ||
< (Vi (Bu) s sty (i) Ry (01,)) — (0(O0,)5 (Opc, 1i0), 2(64,)) |
+ [ (v(8u,), 2(6u,)) — (v(67), 2(6%)) |
< sup| (vu, (0), i, (6), 24, (0)) — (v(6), (O, 1), 2(0)) |
0O
+ [ (v(8u,), 2(6u,)) — (v(67), 2(6%)) |

— 0,

where the last convergence holds by (S.8), 6, — 6%, and (v(-), £2(-)) € Dy.
Since (v(-),(-)) € Dy, the compactness of @ implies that (v(6*),2(6*)) is
bounded. Since limZ(¢,,) = Z(¢*) = co and limuv,, (0,,) = v(6*) € RK, it then
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follows that lim Z(¢,,) " vy, (84,)]l = 0. By construction, {Z(£,,) "y, }n=1 is s.t.
limE((un)*l[Zumj]_ =1 for some j < p or limE(ﬁun)*lwun,jl =1 for some j > p. By this,
it follows that {5 (£4,) " (vu, (8u,) +€u,)s Qu, (0,)}n=1 With lim £2,,(6,,,) = 2(6*) € ¥ and
lim & (¢y,) " vu,,j(0u,) + Ly, j1— = 1 for some j < p or lim = (hy,) vy, j(0u,) + €y, jl =1
for some j > p. This implies that

S(vun (eu,,) + Eun s Qun(gu,,)) = E(zun )XS(E(Kun )71 (Uun (eu,,) + gu,,), Qu,, (eun ))

|
8

Since {(0y,,, £u,)}n>1 is @ subsequence of {(6,,, £4,)}»>1 that approximately achieves the
infimum in (S.7),

8n(va (), wn (), 2 () — oo. (S.11)

However, (S.11) violates Step 3 and is therefore a contradiction.

We then know that d((64,,£4,), (6%, £%)) — 0 with ¢* € Rf, | x R*"P. By re-
peating previous arguments, we conclude that lim(v,,(0,,), ty, (0u,), 2u,(04,)) =
(v(6%), (0, 1), 2(6*)) € R x w. This implies that lim(vy,(6y,) + tu,,1(0,) +
Hay,2(010,) Uy R, (0,)) = ((6%) + €5, 0(6%)) € (RE, ., x ), thatis, 3N e Ns.t. Vn > N,

1S (Vi (Bu) + P10y 1 (B + Phaty 2(But) €y s iy (8,)) — S(v(6%) + €, 2(6%)) ||
(S.12)
<é/2.

By combining (S.10), (S.12), and the fact that (6*, ¢*) € I'’R, it follows that 9N € N s.t.
Vn> N,

8un (Vuy (s Bty (5 i, () 2 S (00 (6%) + €%, 2(6%)) - 8
Z g(v()a (Oka 1k)a ‘Q()) - 8

b

which is a contradiction to (S.9).

Step 5. The proof is completed by combining the representation in Step 1, the con-
vergence result in Step 2, the continuity result in Step 4, and the extended continuous
mapping theorem (see, e.g., van der Vaart and Wellner (1996, Theorem 1.11.1)). So as
to apply this result, it is important to notice that parts (i) and (v) in Lemma S.3.1 and
standard convergence results imply that (v(-), £(-)) € Dy a.s. O

PROOF OF THEOREM S.2.2. Step 1. To simplify expressions let IR = I} (A,) and IPR =
r nDII,fn (An), and consider the derivation

min{ 7% (), T, " (An) ]

_ min{ inf S(WEO) + ¢* (k7 Dy V2 (0)ima(0)), Q(0)),
0€OA)NOT " (Fy)

inf  S(us(0) + ;' VD, (01 (6), 0(6))}
0€O(Ay)
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- min{ inf S(vs(0)
0€O(N)NO " (Fy)

+ ¢ (1, 1(0) + n2(0) 1, D 2O (Er,m(W, 9))), 24(0)),

yint S(U(0) + 1 (6) + 1 2(0) 16, D (O (E,m(W, 0)), 0(6) )

=min| inf  S(U5(0) + ¢ (1n,1(0) + 10,2(0)'), 2 (0)),
(6,0)el;PR

inf  S(0(0) + 1, 1(8) + i 2(0)'E, Dn(8)) ],
(0,0)elR

where 11,(0) = (1,1(0), n2(0)), pn,1(0) = ;' Dy V2 (0) /(7 (0) — Ep,m(W, 0)) =
K,jlf)n(e), and w,2(0) = {a,;}(e)aFn,j(e)}le. Note that we used that D;:/Z(O) and
ﬁ;l/ 2(19) are both diagonal matrices.

Step 2. There is a subsequence {an},>1 of {n},>1 s.t. {(V} ,pa,, f)a")|{W,~}fi]} 4
(v, (0g, 1;), 2) in [°°(O) a.s. This step is identical to Step 2 in the proof of Theo-
rem S.2.1.

Step 3. Let D denote the space of bounded functions that map @ onto R* x ¥ and let
Dy be the space of bounded uniformly continuous functions that map @ onto R** x ¥,
Let the sequence of functionals {g,},>1, {g}l}nzl, {gﬁ}nzl with g, : D — R, g,lZ :D— R, and
g2 : D — R be defined by

gn(v(), n(), 2()) =minfgl (v(), (), (), g2 (v(), (), ()},
Loy, w(), 2()) = inf  S(v*(6 “(n1(0 12(0)0),0(0)),
&0, v, 00) = inf | S(L0) + @ (1n,1(0) + 1 2(0)'6), 2(6)

n

g (V) (), Q) = inf  SWEO) + 11(0) + 1 2(0)' L, (6)).

(0,0)el}

Let the functionals g: Dy — R, g' : Dy — R, and g : Dy — R be defined by

g(v(), (), () =min{g! (v(), n(), 2()), g2 (), 1), ()},

1 . . . = 1 * !
g (v, n(), 20)) = (e’el)ggDRS(vn(O) + " (11(0) + p2(0)'0), 2(9)),

inf S(v0(0) + 1(6) + p2(6)'¢, £2(6)).
(6,))elPR

(v, 1), 20))

If the sequence of deterministic functions {(v,(:), wn(-), 2,(:)}>1 Wwith
(), mn(+), 2,(-)) € D for all n € N satisfies

lim sug” (vn(6), mn(0), 2,(80)) — (va(6), (0, 1), £2(6))| =0
€

n%ooe

for some (v(-), (0, 1%),2(:)) € Doy, then limyoollg)Wn(-), wn(-), 24(-)) —
(), (0r, 1), 2(-))|| =0 for s = 1, 2, respectively. This follows from similar steps to
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those in the proof of Theorem S.2.1, Step 4. By continuity of the minimum function,
Jim g (va (), (), 2u()) = g(v(), (O, 1), 2()) | = 0.

Step 4. By combining the representation of min{7°®(,,), TPR(),)} in Step 1, the con-
vergence results in Steps 2 and 3, Theorem S.2.1, and the extended continuous mapping
theorem (see, e.g., Theorem 1.11.1 of van der Vaart and Wellner (1996)), we conclude
that

{min{ TPR(A,), TPR O (W42, } 5 min{J (PR, 0),7(I'™R, @)} ass.,
where

JIPR0)= inf  S(va(6) +¢,4(6))

(0L (S.13)
- (e,l/i;lEfFDR S(va(6) + *(¢), 2(6)).
The result then follows by noticing that
min{J(I';’R, ), J1(I''R, 0)}
_ min{(o,ei)ré%DRS(vg(O) L), it SEa0) +¢, 20))}
- (O’E)eg%g UFPRS(vQ(@) +0,0(0)) =J (IR, ).
This completes the proof. O

Proor oF THEOREM S.2.3. This proofis similar to that of Theorem S.2.1. For the sake of
brevity, we only provide a sketch that focuses on the main differences. From the defini-
tion of T55(,,), we can consider the derivation

TS = inf 035(0)= inf S(Vbm3S(6),355(0
w) = nf QJN0)= inf (Vb5 (0), 255(6))

= inf  S(B50) + pa(0) + £, 055(0)),
(0,0€l5 1 (An)

where 11,(8) = v/, D5 "> (0) (7 (8) — Er, [m(W, 0)1), 955(6) is as in (5.3), and 255(6) =
D;nl/ 2(9)525(0)D;nl/ 2(9). From here, we can repeat the arguments used in the proof of
Theorem S.2.1. The main difference in the argument is that the reference to parts (ii) and

(vii) in Lemma S.3.1 need to be replaced by parts (ix) and (viii), respectively. O

The proof of Theorem S.2.4 follows by combining arguments from the proof of The-
orem S.2.1 with those from Bugni, Canay, and Shi (2015, Theorem 3.1). It is therefore
omitted.
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S.5. PROOFS OF LEMMAS IN SECTION S.3

We note that Lemmas S.3.2-S.3.5 correspond to Lemmas D3-D7 in Bugni, Canay, and
Shi (2015) and so we do not include the proofs of those lemmas in this paper.

Proor orF LEMMA S.3.1. The proof of parts (i)—(vii) follow from similar arguments to
those used in the proof of Bugni, Canay, and Shi (2015, Theorem D.2). Therefore, we
now focus on the proof of parts (viii) and (ix).

Part (viii). By the argument used to prove Bugni, Canay, and Shi (2015, Theorem D.2
(part 1)), M(F) = {D;l/z(e)m(~, 6) : W — R¥} is Donsker and pre-Gaussian, both uni-
formly in F € P. Thus, we can extend the arguments in the proof of van der Vaart and
Wellner (1996, Theorem 3.6.13 and Example 3.6.14) to hold under a drifting sequence of
distributions {F,},> along the lines of van der Vaart and Wellner (1996, Section 2.8.3).
From this, it follows that

{/ " ﬁﬁs(m‘{m}'.;l}im(e) in 1(0) a.s. (S.14)
(n—>by) !

To conclude the proof, note that

M =SS.py _ =SS _ ~SS bu/n
ey O - )| sl O T by

To complete the proof, it suffices to show that the RHS of the previous equation
is 0p(1) a.s. In turn, this follows from b,/n = o(1) and (S.14) as they imply that
{supgee 1SS (O IV} } = O, (D) as.

Part (ix). This result follows from considering the subsampling analogue of the argu-
ments used to prove Bugni, Canay, and Shi (2015, Theorem D.2 (part 2)). O

sup
0O

ProoF oF LEMMa S.3.6. Part (i). Suppose not, that is, suppose that supg ¢ S(x, 2) =
oo for x € (—o0, 00]? x Rk—P, By definition, there exists a sequence {2, € ¥},>1 s.t.
S(x,2,) — oco. By the compactness of ¥, there exists a subsequence {k,},>1 of {n},>1
s.t. 2y, — * € V. By continuity of § on (—oo, c0]? x RK=P x ¥ it then follows that
lim S(x, 2,) = S(x, %) = oo for (x, 2*%) € (—o0, 0]? x RK=P x ¥, which is a contradic-
tionto S : (—o0, 00]? x Rk—P — R,.

Part (ii). Suppose not, that is, suppose that supg.y S(x,£2) = B < oo for x ¢
(—o0, 00]P x Rk—P, By definition, there exists a sequence {{2, € ¥},>1 s.t. S(x, {2,,) — oo.
By the compactness of ¥, there exists a subsequence {k,},>1 of {n},>1 s.t. 2y, — 2* € V.
By continuity of S on R{‘ioo] x ¥ it then follows that lim S(x, {2, ) = S(x, £2*) = B < oo for
(x,0% € R{‘ioo] x ¥. Let]J e{l,..., k} be set of coordinates s.t. x; = —oo for j < p or
|x;| = oo for j > p. By the case under consideration, there is at least one such coordinate.
Define M = max{max;gj j<,[x;]_, max;gj i~ p |X;|} < co. For any C > M, let x'(C) be de-
fined as follows. For j ¢ ], set x;.(C) = xj, and for j €], set x;.(C) as x}(C) =—Cforj<p
and |x;.(C)| = C for j > p. By definition, lim¢_, », x'(C) = x and by continuity properties
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of the function §, lim¢_, o, S(x'(C), 2*) = S(x, 2*) = B < co. By homogeneity properties
of the function § and by Lemma S.3.4, we have that

S(x'(0), %) =CXS(C X (C), )= CX  inf  S(x,0)>0,
(x,)eAxV¥

where A is the set in Lemma S.3.4. Taking C — oo, the RHS diverges to infinity, produc-
ing a contradiction. 0

The Proof of Lemma S.3.7 follows from similar steps to those in Bugni, Canay, and
Shi (2015, Lemma D.10) and is therefore omitted.

PROOF OF LEMMA $.3.8. Let (6, ¢) € I'"™® with ¢ € Rf, , x R*"7. Then there is a sub-
sequence {a,},>1 of {n},>1 and a sequence {(6,, {,)},>1 such that 6, € O(A,), £, =
kDG (00) EF, [m(W, 0,)], limy o0 £, = £, and lim,, .« 04, = 6. Also, by 25, > 0
we get (2F, (6,) — (2(6). By continuity of S(-) at (¢, £2(0)) with ¢ € Rf+oo] x Rk=P,

K;nXanX/zQFan (ean) = S(K;,} \Y an(T]Zi ,]‘(oa,, )EFan [m](W> oan)]a ‘QFan (Oa,, ))

(S.15)
— 5(¢,0(6)) < oo.
Hence Op,, (04,) = O(k4,a,~X/?). By this and Assumption A.3(a), it follows that
X . —x/2 -1 . . 1 G
O(k¥,an ) ="' Qp, (04,) > m1n[6, Cinf 64, — 9||}
001 (Fyy,,Aay) (816)

= |04, — 0a,|l < O(Ka,//an)

for some sequence {8,, € O@;(F,,, Aa,)}n>1. By Assumption A.3(b) and (c), the interme-
diate value theorem implies that there is a sequence {6} € @(A,)},>1 with 6 in the line
between 6, and 6, such that

kD2 (00 Ep, [m(W, 6,)]
= GF, (05) ki 'V (0 — On) + 13 ' /nD 2 (B) Ep, [m(W, 6,)].

Define 6, = (1 — k)8, + 16, or, equivalently, 6, — 6, = «,' (6, — 6,). We can write
the above equation as

Gr, (0:)v/n(0, — 6,)
(S.17)

= k"D 2 (00 Ep, [m(W, )] — ki '/nDy > (8 Ep, [m(W, 6)]-

By convexity of @(),) and «,;' — 0, {8, € O(Ay)}u=1, and by (S.16), /a0, — a, || =
O(1). By the intermediate value theorem again, there is a sequence {0%* € ©®(A,)},>1 with
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6** in the line between 6, and 6, such that

VD2 (B Ep, [m(W, 6,)]
= Gr, (05 )v/n(0n — ) + VuD > () Ep, [m(W, )] (5.18)

= GF, (05)v/1(n — B) + 0Dy (B0) Ep, [m(OW, 8,)] + €1,

where the second equality holds by €1 , = (G, (0;*) — GF, (0;';))ﬁ(@n —6,). Combining
(5.17) with (S.18) we get

Dy (0 Ep, [m(W, 8,)] = ki, "Dy () Er, [m(W, 6)] 519

+€1,nt+ €21,

where €, = (1 — k;)/aDg > (00)E,[m(W, 8,)1. From {84, € O7(Fa,, Aa,)}n=1 and
K;l — 0, it follows that €3 4, ; > 0 for j < p and € 4,,; = 0 for j > p. Moreover, Assump-
tion A.3(c) implies that || GF,, (63%) — Gpan (03,01 = o(1) for any sequence {Fy, € Po}u>1
whenever || — 07|l = o(1). Using muean éan” = 0O(1), we have

l€t,a,ll < |GF,, (65) — GF,, (65 )| V/anll6a, — 84,1l = o(1). (S.20)

Finally, since (Rf‘iw], d) is compact, there is a further subsequence {u,},>1 of {an},>1
s.t. /u,,D;:/z(éun )EF,, [m(W, (5un )] and K;n14 /unD;u]/z(Oun )EF,, [m(W, 6,,)] converge.
Then, from (S.19), (S.20), and the properties of €; ,, we conclude that

lim 2, J=] hm Ju,,aF (OMH)EFW [m;(W, Oun)]

n—oo

> lim «, «/unJF j(0u)EF,, [m;j(W,6,,)] forj<p,

n—oo
lim Cypj = lim 4/—una'F (ou”)Epun [m;(W, 0,)]
= lim «,, 4/_un0'F jOu)EF,, [mj(W,0,,)] forj>p,
which completes the proof, as {(éun, Eun) € Iy, F,, (Au,)}n=1 and éun — 0. O

Proor oF LEMMA S.3.9. We divide the proof into four steps.

Step 1. We show that infp p)crss S(v(0) +¢, £(0)) < oo a.s. By Assumption A.5, there
exists a sequence {0, € O;(Fy, Ay)}n=1, where dy (O(A,), O(Ag)) = O(n~1/2). Then there
exists another sequence {6, € O(Ag)},>1 s.t. V16, — 6,|l = O(1) for all n € N. Since 0 is
compact, there is a subsequence {a,},>1 S.t. \/@n (04, — 04,) — A € R%, and 0, — 6* and
04, — 0* for some 6* € @. Forany n e N, let ¢,, ; = \/Tno-F (00, EF,, Im;(W, 64,)] for
j=1,..., k, and note that

Lay,j= ba,,U'F (Ban)EFan[m](W Ba,,)] Ag,.j (8.21)
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by the intermediate value theorem, where 6,, lies between 6,, and 6,, for all n € N, and

Buyy = 2 (G Bay) = Gy (0°)) B, — D)
n
ba, -
+ T GF,,.j(0")van (64, — 04,).
n
Letting A,, ={4,,, j}j.‘zl, it follows that

ba, R .
40,1 = X2 |Gy, (Ba,) = G (6°) | < |V B, = )|
n

/ba, ) (5.22)
| G ()] ¢ |, )|
=o(1),

where b,/n — 0, /ay(04, — 0a,) = A, /ba,Gr,, (0%)//an = o(1), b,, — 6% and
|GE,, (0a,) — GF,, (6%)|l = o(1) for any sequence {F,, € Po},>1 by Assumption A.3(c).
Thus, for all j <k,

lim £, ;= nli)ngo,/bana-galn,j(ean)Epan [m;(W, 04,)]

n—oo

= ¢ = lim ,/b,, O'E‘i,j(éan)EFan [m;j(W, 84,)]-

n—oo

Since {6, € O1(Fy, Ap)}n>1, Z;‘.‘ >0forj< pand Z;f =0forj> p.Let¢*= {E;f};.‘zl. By def-
inition, {(6a,, £a,) € I,° o (A))}u=1 and d((8a,, £a,), (0%, €)) — 0, which implies that
(6*, ¢*) € I'SS. From here, we conclude that

inf _S(v(6) + £, 2(0)) < S(va(6%) + €%, 2(6%)) < S(va(6%), 2(6%)),
(0,0)eI’SS

where the first inequality follows from (6%, ¢*) e I S8 the second inequality follows from
the fact that E;f >0for j < pand K;‘ =0 for j > p, and the properties of S(-). Finally, the
RHS is bounded as v (6*) is bounded a.s.

Step 2. We show that if (6, ¢) € I'SS with £ € Rf’+oo] x Rk=P 3(0, ¢*) € I'PR, where =
¢ jforj< pand 6}‘.‘ =0 jfor j > p.As an intermediate step, we use the limit sets under the

sequence {(Ay, F)}y>1, denoted by I'S® and I'%R in the statement of the lemma.

We first show that (0, ¢) € I'S®. Since I bsns, £, (A0) 1SS, there exist a subsequence
(Bas ba) €135 . A)buz1, ba, — 0, and L, = \/ba, DF."*(84,) Er,, Im(W, 64,)] — €. To
show that (6, ¢) € I'SS, we now find a subsequence {0, ¢a,) € Fbsai,Fan (An)}n=1, 0, — 0,
and ¢, = /b, D;:”/z(gzn)EFan [m(W, 6,,)] — £. Notice that {(6a,, ta,) € Iy 1 (A)ln=1
implies that {0, € @(\g)},>1. This and dy (O(A,), O(Ag)) = O(n~1/?) imply that there is
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{0, € O\, ) n=1 St /@y, — 04,1 = O(1), which implies that 6, — 6. By the inter-
mediate value theorem there exists a sequence {6}, € 0}, with 6}, in the line between
0, and 6, such that

E/ = baﬂD;aln/z(eiln)EFan [m(W’ o;n)]

an

- banD;;n/z(ean)EFan [m(W, 64,)] ++/ba,Gr,, (65 ) (6, — 6a,)

Zzan"'Aan—)Z,

where we have defined 4,, = /b4, GF,, (6% )(0, — 04,) and A, = o(1) holds by similar
arguments to those in (S.22). This proves (8, £) € I'SS.

We now show that 3(6, £*) € I'"R, where o= ¢jfor j < p and o= ¢ for j > p. Us-
ing similar arguments to those in (S.15) and (S.16) in the proof of Lemma S.3.8, we
have that Qpan(eﬁln) = O(b;’(/z) and that there is a sequence {0, € Or(F), A)lns1 St

Vba,ll0, — 84,]=0(1).

Following similar steps to those leading to (S.17) in the proof of Lemma S.3.8, it fol-
lows that

k' VG, (07) (B — 8) = v/bu D, (6,)Er, [m(7, 6,)]

e ) (8.23)
_ \/EDF’! (0n)EF, [m(W, On)],

where {6 € ©(A,)},>1 lies in the line between 6/, and 6,, and 6, = (1 — kp\/bn/n)6, +
Kkny/bn/n6.,. By Assumption A.4, 6, is a convex combination of 6, and 6/, for n sufficiently
large. Note also that \/E ||éan — 5an | = o(1). By doing yet another intermediate value
theorem expansion, there is a sequence {6}* € @(A,)},>1 with 6}* in the line between 6,

and 6, such that
K,Il\/ﬁD;n]/z(én)EFn [m(W’ én)] = K,Il\/ﬁGFn (0:*)(911 - én) (S.24)
24
+ kDR 2 (B0 Ep, [m(W, 6,)].

Since /ba,|16%, — 04, = O(1) and /by, |64, — 605l = o(1), it follows that /b, x
6 — 6%l = O(1). Next,
-1 —1/2 .4 A
Ky 'nDy " (6,) EF, [m(W, 6,)]
= Ky "G, (65) (B — Bn) + 1 1D 2 B Ep, [m(W, 6,)] + A1 (S.25)
= VD5 (0, Er, [m(W, 0,)] + Ap 1 + Ay 2,

where the first equality follows from (S.24) and 4,1 = k;'v/n(GF,(85*) — GF,(8%)) x
(6, — 6,), and the second equality holds by (S.23) and 4,,; = K;lﬁ(l — Kn/bn/n) x
D;nl/z(én)EFn (m(W, 6,)]. By similar arguments to those in the proof of Lemma S.3.8,
|Ag, 11l = o(1). In addition, Assumption A.4 and (6, € O1(F,, An)}n=1 imply that 4,, 5 ; >
0 for j < p and n sufficiently large, and that A4, ; =0for j > pand alln > 1.
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Now define zgn = K;nl,/a,,D;al/ z(éan)EFn[m(W, @a")] so that by compactness of

(R{‘ioo d) there is a further subsequence {un},>1 of {an}y>1 s.t. £ = 1 U, X

_1/2(9un)EFun [m(W, Gun)] and 4,, 1 converges. We define ¢* = hm,HOOZ” By (S.25)
and properties of 4, | and 4, », we conclude that
nll)rrgolignjz hngox «/uno-F (Oun)EFu,, [mj(W, Hun)]

lim /b, a-F ) EF,, [mi(W, 6, )]=¢; forj<p,

n—oo

lim ¢/ .= lim k, ./_unO'F (9un)EFun [m;(W, 8u,)]

n—oo Un i~ n—oo

v

= lim bunaFl (00, EF,, [m;(W.0,,)]=¢; forj>p.

n—o0

Thus, {(6.,, €,) € FE}FW A)}n=1, 04, — 6, and ¢y, — U*, where ¢ > ¢j for j < p and
e =¢;forj> p,and (6, ¢*) e I'R.

We conclude the step by showing that (8, £*) € I'"R. To this end, find a subsequence
(0], €1,) € IR 1 (A=t 0L, — 0, and €, = i1/ D (0], ) Er,,, Im(W, 6],)] —
¢*. Notice that {(8,,,¢} ) € FPRF (An)}n=1 implies that {8, € @(Ay,)},=1. This and
di(O(An), O(Ag)) = O(n~'/2) 1mply that there is {6], € O(Ag)}y=1 S.t. /i || 6u, — 6}, | =
O(1), which implies that 6}, — . By the intermediate value theorem there exists a se-
quence {65 € @}, with %™ in the line between 6, and 0}, such that

Ezn = K_lx/u_nD 1/2( )EFun [m(W’ ozn)]

- K_lnglj/z( un)EFMn [m(W’ ein)] + K;nl\/u_nGFun (02:*)(0—1";;1 - éu?l)
= Egn + Aun - E*’

where we have defined 4, = «;, \/u_nG Fu, ( 0*’;*)((92” - éun) and 4,,, = o(1) holds by sim-
ilar arguments to those used before By definition, this proves that (6, ¢*) € I'’R,

Step 3. We show that inf, ;) pss S(vo(0) + £, £2(0)) > infy y)crrr S(vo(0) + €, 2(0))
a.s. Since vy, is a tight stochastic process, there is a subset of the sample space W, de-
noted A, s.t. P(A;) =1and Yo € Ay, supyg lva(w, 6)] < co. By Step 1, there is a subset
of W, denoted A, s.t. P(Ay) =1and Vo € Aj,

inf _S(va(w, 6) +¢,02(0)) < occ.
(6,£)eI'ss
Define A= A; N A, and note that P(A) = 1. To complete the proof, it then suffices to
show thatVw € A,

inf  S(vo(w,0)+¢,02(0) > inf S(vo(w,0)+L,02(0). (S.26)
(0,0)eI’SS (0,0)el'PR

Fix w € A arbitrarily and suppose that (5.26) does not occur, that is,

A= inf S(vg(w,0)+£,.(2(0))— inf S(vg(w,0)+£,(2(0))>0. (8.27)
(0,£)eI'’R (0,0)eI'SS
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By definition of infimum, 3(0,¢) € I'SS s.t. inf(e’z)el"ss S(wo(w, 0) + £,0(0)) + A/2 >
S(vo(w, 0) + ¢, 02(0)), and so, from this and (S.27) it follows that

S(vo(w, 0) +£,02(0)) < “mf L Solw, 0) +¢,0(0)) — A/2. (S.28)

We now show that ¢ € RP [too] X x R¥=P. Suppose not, that is, suppose that ¢ j=—00

for some j < p and |¢;| = oo for some j > p. Since w € A C A;, |vp(w, 0| < cc.
By part (ii) of Lemma S.3.6 it then follows that S(vg(w, 6) + £, 2(6)) = cco. By (S.28),
inf o 0)erss S(vo(w, 0) +£,£2(0)) = oo, which is a contradiction to w € A;.

Since ¢ R [+o0] X RX=P, Step 2 implies that 3(6, £*) € I'’R, where K* > E for j < pand

Zj = {; for j > p. By properties of S(-),
S(vo(w, 0) +€*,02(0)) < S(va(w, 6) + £, 2(0)). (S.29)
Combining (S.27), (S.28), (S.29), and (6, £*) € I'°R, we reach the contradiction

0<A/2< inf  S(vo(w,0)+¢,02(0)) — S(vo(w, ) + £, Q(6))
(6,0)eI'PR

< inf S(vo(w,0)+£,02(0) —S(vo(w, 6) +£*,02(0) <0
(0,0)el'PR

Step 4. Suppose the conclusion of the lemma is not true; that is, suppose that
c(l_a)(FPR, ) > c(l_a)(Fss, (2). Consider the derivation

a< P(J(FPR, Q) > C(1_a)(FSS, -Q))
P(J(I'%5,0) > ca_a) (%5, 0)) + P(J(I'™R, 2) > J(I'SS, 2))
=1-PI(I'*,0) <c1-o(I'™.0)) <a

where the first strict inequality holds by definition of quantile and c(_q) (I’ PR ) >
Cc—ay(I” S8 ), the last equality holds by Step 3, and all other relationships are elemen-
tary. Since the result is contradictory, the proof is complete. O

PROOF OF LEMMA $.3.10. By Theorem 4.3, liminf(Ef, [¢p R (Ag)]1— EF, [¢55(10)]) > 0. Sup-
pose that the desired result is not true. Then there is a further subsequence {u,},>1 of
{n}nzl S.t.

imEp, [$FR(Ag)] = lim Er, [¢50(A0)]- (S.30)

This sequence {u,},>1 will be referenced from here on. We divide the remainder of the
proof into steps.
Step 1. We first show that there is a subsequence {a,},>1 of {u,},>1 s.t.

(TS Q)W } > S(va(67) + (8, 0_p), 2(6%))  as. (S.31)

Conditionally on {W;}"

=1’

Assumption A.7(c) implies that

T35 (X0) = S(vbu D5 (059)m35 (65°), 253 (65%)) + 0, (1) as. (S.32)
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By continuity of the function §, (S.31) follows from (S5.32) if we find a subsequence
{antn=1 of {un}n=1 S.t.

[O5S5(65S) 1 myem ) 5 0(6%) as, (S.33)

{y/ba, D5 (B53)mSS (655) Wi, } 5 va (6%) + (8, 04—p)  as. (S.34)
To show (S.33), note that

|355(05) — 2(07)| =sup | 335(0,0) - 20, 0] + | 2B - 2(0)]

The first term on the RHS is conditionally o,(1) a.s. by Lemma S.3.1 (part (v)) and the

second term is conditionally 0,(1) a.s. by 2 € C(6?) and {655|{W;}™_,} £ ¢* a.s. Then
(8.33) holds for the original sequence {n},>1.
To show (S.34), note that

\/—D—l/z(oss) 53(055) 3(0*)+(g’0k7p)+un,1+l-bn,27
where
Mon,1 = 5n(éﬁs)\/m’
w2 = (5;°(63°) - °(67)
V(D (80 B, [m (W, 63)] = D, (63°) B, [m (W, 535)])
+ (VoD (B35) Er, [m(W, 65%)] — (8, 0k—)).

Lemma S.3.1 (part (vii)) implies that {T;>(6*)|{W;}_,} 4 00(6*) a.s. and so (S.34) follows
from

{Ma,,,lHI/Vi}?il} = Op(l) a.s., (5.35)
{Man,2|{m}?£1} = Op(l) a.s. (5.36)

By Lemma S.3.1 (part (vii)), supgycg [1U2(0)llv/bn/n = 0,(1), and by taking a further
subsequence {a},>1 Of {n}y>1, Suppce V4, (O)l\/ba,/an = 0as.(1). Since v,(-) is condi-
tionally nonstochastic, this result implies (S.36).

By Assumption A.7(c), (S.36) follows from showing that {525(6*) ~ss(oss)|{ Wit} =
0,(1) a.s., which we now show. Fixing u > 0 arbitrarily, it suffices to show that

limsup P, (|55 (6%) — 55°(855)|| > eliWiY)) <m  as. (S.37)
Fix 6 > 0 arbitrarily. As a preliminary step, we first show that

lim P, (pr, (6%, 05°) = 8|{W}1_,) =0 as., (S.38)
where pF, is the intrinsic variance semimetric in (A.1). Then, forany j=1, ..., k,

Ve (o5, 1 (000)mi (W, 03°) = o) (07 )m; (W, 67)) =2(1 = 2, (6%, 63°) . )-
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By (A.1), this implies that
Pr, (pr, (6%, 63°) = 81 (Wi}
(5.39)
= ZPFn *QFn 0* OES)U,]’] z 322_1]{_1'{%}?:1)'

Foranyj=1,..., k, note that
P, (1= g, (0%, 63°); ;= 827 kWYL,
< P, (1— (6%, 6,°) ;= 8272k "HWAL,) + o()
< Pr, (|0 = 655 = UL, ) + o(1) = 0a5.(1),

where we have used that Qp, =  and so supg g 142(0, 051 — 2F, (0,051l <
82272k~ for all sufficiently large #, that 2 € C(@?%) and so 36 > 0 s.t. [|6* — 655) < & im-
plies that 1 — Q(6*, éﬁs)”,ﬂ < 6%272k~1, and that {OSS|{W}” N £ o+ as. Combining this
with (S.39), (S.38) follows.

Lemma S.3.1 (part (i)) implies that {vss( YWY} is asymptotically pp-
equicontinuous uniformly in F € P (a.s.) in the sense of van der Vaart and Wellner (1996,
p- 169). Then 38 > 0 s.t.

limsup P}, ( sup ||vss(0) ~SS(0’)|| > e|{Wit 1) <u as. (S.40)

n—>oo " Npp (0,0)<8
Based on this choice, consider the argument
Py (132°(6%) = 523(62°) | > elWiyy)

=P;( sup  [55(6%) 9B > e WL, )
pr, (0,0')<8

+ P; (pr, (6%, 6,) = SUWL)).

From this, (S.38), and (S.40), (S.37) follows.
Step 2. For arbitrary ¢ > 0 and for the subsequence {a,},>1 of {u,},>1 in Step 1 we
want to show that

lim Pr,, (|52 (Ao, 1= &) — cai—ay (g, 2(6%))| <€) =1, (S.41)

where c¢(1_q)(g, 2(6%)) denotes the (1 — «) quantile of S(vo(6%) + (g, 0x—p), 2(6%)).
By our maintained assumptions and Assumption A.7(b)(iii), it follows that
C(1-a) (8, €2(0%)) > 0.

Fix & € (0,min{e, c1_q)(g,£2(6%))}). By our maintained assumptions,
Cl1-a) (8, 2(0%)) — & and c(1—q) (g, 2(0*)) + & are continuity points of the CDF of
S(va(0") + (g, 0x_p), 2(6%)). Then

lim Pr,,, (T3, (A0) < ca-a (8> 2(67)) + EHWIL)

= P(S(u0(6) + (.00 2(0°)) = c1-a (8. 2(6) +7) > 1 o,

(5.42)
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where the equality holds a.s. by Step 1, and the strict inequality holds by & > 0. By a
similar argument,

lim Pr,, (T55(00) = (1o (8. 2(0°)) = FIIL,) S
= P(S(ua(6) + (8,00 . 2(0) = o (8. 2(0) =) <1 -

where, as before, the equality holds a.s. by Step 1. Next, notice that

{lim Pr,,, (T3> (M) < c1—a (8- 2(6%)) + EWN2,) > 1 — )
c {liminf{c35 (Ao, 1 — @) < c1—a) (g, 2(0%)) + 8} },

with the same result holding with —& replacing +&. By combining this result with (S.42)
and (S.43), we get

{liminf{|c;5(Ao, 1 — @) — c1-a) (8, 2(6%))| < 8}} as.

From this result, £ < ¢, and Fatou’s lemma, (S.41) follows.
Step 3. For an arbitrary ¢ > 0 and for a subsequence {w;},>1 of {a,},>1 in Step 2 we
want to show that

lim Pr,, (c(—a)(m, 2(6%)) + & = chi (Ao, 1 — ) =1, (S.44)

where c(1_q) (1, 2(6%)) denotes the (1 — «) quantile of S(vo(6%) + (7, 0x_ ), £2(6%)) and
e Rf’ '+ 1oo) I8 @ parameter to be determined that satisfies 7 > g and ; > g; for some
ji=1...,p.

The arguments required to show this are similar to those used in Steps 1 and 2. For
any 6 € O()g), define TPR(9) = S(vi(0) + Kglﬁﬁgl/z(e)mn(e), 0,(0)). We first show
that there is a subsequence {wy},>1 of {a,},>1 s.t.

[TER(@BSS) Wi} S S(v0(67) + (7, 04 _), 2(6%))  as. (S.45)
Consider the derivation

TYR(8%) = S (83°) + ' VmDy 2 (03°) i (65°). 2 (69)

n

= S(Dp P (B5) DA (03°) v (85°) + ' /Dy 2 (055) i (855),

By continuity of the function S, (S.44) would follow if we find a subsequence {w,},>1 of
{an}n>1 st

{20, (B3 1wy} B 0(6%) as.
(D (B35 )AL (055) 00, (055) + st aD (855 i, (855 OV

LY vo(0%) + (m,0,_p) as.
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The first statement is shown as in (S.33) in Step 1. To show the second statement, note
that

D, (0 D (03, (030) + 0D, (85 i, (83)

= v:),, (0*) + (, Okfp) + Mw,,3 + Hw,,4

where

3= D2 (B33) DU (05505, (B55) — v, (6%) + i L, (6553

w,

+ K;}l Wy
X (D (835 )Er,, [m(W, 655)] — D 2(835 ) Er,,, [m(W, 655)]),

bt = (it 00/, ) D (B35 By [ O, 5)] = (0.

By Lemma S.3.1 (part (ix)), we have {v}, (6*){W;}]_} LY v (6%) a.s. By the same argu-
ments as in Step 1, we have that {Mw,,,3|{Wi}gl} = 0,(1) a.s. By possibly considering a
subsequence, k! /w, /by, — K~ € (1, co] by Assumption A.7(d) and {\/b—nD;if(éﬁi) x
Ep,, [m(W, 0SH1I{W:1"} = (8,0k—p) + 0p(1) a.s. by Assumption A.7(c)(iii), with g €
Rf’ + 100 DY Step 1. By combining these two and by possibly considering a further sub-
sequence, we conclude that {(xy!/wy, /bwn)\/ED;lZ Z(éﬁ,i)EFW [m(W, éﬁfr’l)]|{I/V,-};.”:"1} =
(m,0k_p) + 0p(1) a.s., where 7 € Rf)+,+oo]' Since K1 > 1, mi>gi=0forallj=1,..., p.
By Assumption A.7(c)(iii), there is j =1, ..., p, s.t. gj € (0,00) and so 7; = K‘lgj > gj.
From this, we have that {u,,, 4[{W;}"";} = 0,(1) a.s.

Let ¢ER(6, 1 — «) denote the conditional (1 — &) quantile of 7PR (). On the one hand,
(5.45) and the arguments in Step 2 imply that limPf,, (|555((§§2, 1 — a) —
C(1-a)(m, Q(6%))| < &) = 1 for any & > 0. On the other hand, TPR(Ag) = infgep(ry) TLR(6)
and {655 € @(Ag)},=1 imply that éPR(655,1 — @) > cPR(Ag, 1 — ). By combining these,
(S.44) follows.

We conclude by noticing that by c¢(1_q)(g, £2(6*)) > 0 (by Step 2) and 7 > g with
mj > gjforsome j=1,..., p, our maintained assumptions imply that ¢(1_) (g, 2(6*)) >
C1—a) (7, 02(6%)).

Step 4. We now conclude the proof. By Assumption A.7(a) and arguments similar to
Step 1 we deduce that

Ton(A0) % S(a(67) + (A, 0 ), 2(67)). (S.46)

Fix & € (0, min{c(1-a)(g, £2(0%)), (c(1-a) (8, 2(6")) — c(1-a) (7, £2(6%)))/2} (possible by
Steps 2 and 3) and note that

Pr,, (Tw,(Mo) < ¢ (Ao, 1 — @)
< Pr,,, (T, (A0) < c1-ay (8, 2(67)) + &)
+ P, (o (Mo, 1 — @) — c1-a) (8, 2(6%)) | > &)
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By (S.41), (5.46), and our maintained assumptions, it follows that
limsup Pr, (Tw,(Ao) < c5o (Ao, 1 — )
< P(S(0a(0°) + (1, 04, ©(67)) = 1 (&, 2(67)) + #),
liminf P, (Tw,(Ao) <y (Ag, 1 — a))
> P(S(00(0) + (A, 04—), 2(0")) = 1 (&, 2(07)) — o).

(5.47)

(5.48)

Since (S.47), (5.48), c(1—q)(g, £2(6%)) > 0, and our maintained assumptions,
imEg, [65 (X0)] = P(S(va(6%) + (X, 0k_p), 2(6%)) > c1-a) (g, 2(67))). (5.49)

We can repeat the same arguments to deduce an analogous result for the penalize re-
sampling test. The main difference is that for Test PR we do not have a characterization
of the minimizer, which is not problematic as we can simply bound the asymptotic re-
jection rate using the results from Step 3; that is,

imEg, [dor(A0)] = P(S(va(67%) + (A, 0x_p), 2(6%)) > c(1—a (m, 2(6%))). (S.50)

By our maintained assumptions, c¢(j_q)(g, 2(6%)) > c(1—a)(m, 2(6%)), (5.49), and (S.50),
we conclude that

tim Er,, [658 )] = P(S(u (6) + (A, 04_p), 2(67)) > 1o (m, 2(87)))
> P(S(ua(0) + (A, 0. 2(6) > 1 (. 2(67)))

= lim Er,, [ ¢y, (A0)].
Since {wy},>1 is a subsequence of {u,},>1, this is a contradiction to (5.30) and concludes
the proof. O
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