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This supplement contains some useful lemmas and their proofs and the proofs of
the theorems presented in the main paper.

USEFUL LEMMAS AND THEIR PROOFS

Let (A;) be an Ito process given by

dA
Tt’ = f,dt + g dB;,
where (By) is a Brownian motion with respect to a filtration (), to which (f;) and (g;)

are adapted. We assume

AsSUMPTIONA.1l. Forall0<s<t<T,ar(t—s) < f; gi du <by(t—s), wherear and by
are some constants depending onlyon T.

AsSUMPTION A.2. We have sup, |fi| = Op(1).

AssuMPTION A.3. We haveinf;~g A; > 0 and supy,.p A; = Op(cr), with (cr) depending
onlyonT.
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In the subsequent development of our theory, we assume that the Ito process A4 sat-
isfies Assumptions A.1-A.3.

LEMMA A.1. We have

sup |A;— As|= Op(Sl/zfeblT/ZcT)

[s—t|<é
forany e > 0, uniformlyin0 <s,t<T.

ProoF. Write
t t
A,—As=/ quudu—l—/ guAudBy
N N

for 0 <s <t < T.We may easily deduce that

t
5( sup A,)/ \ful du = O (8cr) A1)
0<t<T s

t
/ fuAydu
N

uniformly in 0 < s,¢ < T, due to Assumptions A.2 and A.3. Moreover, if we let C; =
fot gsAs dBs, then C is a continuous martingale with

t
[C], — [Cly = f g As du
s (A.2)

t
< ( sup A?) / gndu=0,(8brcy)
0<t<T s

uniformly in 0 <s, ¢t < T. Since C is a continuous martingale, we may represent it as
C,=(Do[C]), (A3)

with the DDS Brownian motion D of C, due to the celebrated theorem by Dambis, Du-
bins, and Schwarz in, for example, Revuz and Yor (1994, Theorem 5.1.6, p. 173). Now we
may deduce from (A.3), together with the modulus of continuity of Brownian motion
and (A.2), that

sup |Cr—Cs| < sup |(Do[C]),—(DoI[C])
|t—s|<é |[t—s|<é
e _ A4)

< sup |[C];—[Cls 0p(51/2_gb1T/2cT)

lt—s|=<6

for any & > 0, uniformly in 0 < 5, < T. Upon noticing that c78 = 0(8'/>~¢brcr) for any
e > 0, the stated result follows immediately from (A.1) and (A.4). The proof is therefore
complete. O

LEMMA A.2. We have

mé _
max / dds _ Ams = Aen-1s =0,(8"*brer)
(

l<m<M

m—1ys At Am-1)s

forany e > 0.



Supplementary Material Evaluating factor pricing models 3

Proor. Define

/m dA;  Ams — Am-1)s
R =
(

m—1ys At Am-1)s

ms A dA mé 4, — A (A5
_ g A )_fZ/ L 20D (£ gt 4 g, dBy).
/(ml)a( Am-1s/) As m-1s  Aum-1)s ! §r b
We have
" A= Apm-1)s 1 "o
frdt < - sup |Ar — Agn—1sl / frdt
/<m—1>a Am-vs inf 4, <(m71)35t5m8 co D ) (m-1)s"
12 (A.6)
= 0,(8*7blcr) = 0,(8'*brey)
uniformlyinm =1, ..., M, due in particular to Lemma A.1. Moreover,

t Ag— A
/ K (m—1)8 gs st
m-1s  Awm-1)s

is a continuous martingale, whose increment in quadratic variation over interval [(m —
1)6, mé] is bounded by

mé A — A
/ ( ‘ (m m)gtzdt
(m—1)5 Aim-1)s

< 1! ( sup  |Ar— A( 1)5|2)/m8 gl dt
— . m—
ung% (m—1)8<t<mé 13"

= 0,(8°*bjc7).
Consequently, we may show that

mo Ay — Ay

/ 247(’"”3 g dB,=0,(8'?brer) (A.7)
(m—1)8 (m—1)68

uniformlyinm =1, ..., M, using the same argument as in the proof of Lemma A.2. The
stated result now follows immediately from (A.5), (A.6), and (A.7). O

Subsequently, we let

dA
dF[Z ekl and dG[thdB[,
Ay
and define
Ams — Am-1)5\°
[F]° = (— ,
! Z Am-1ys

mé<t

[G]? = Z (Gm8 - G(m—1)8)2-

moé<t
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LEMMA A.3. We have

OsupTHG]? — (G| = 0,((8T)"?b7).
<t<

Proor. Under Assumption A.1, the stated result follows immediately from Lemma A3.1
of Park (2009). (]

LEMMA A.4. We have

sup |[F1° — [Gl,| = 0,(8"2~°Tb3/*2)
0<t<T

forany e > 0.

Proo¥r. Define

mdA,\
Fa]t= Z (Fms _F(m71)6)2= Z (/( —t) ,

o=t oy Wm=13s Ay
and note that
LF12 — 1G] < |tF1? — [F°],| + [F®], — 1GD?|. (A.8)
We may readily deduce from Lemmas A.1 and A.2 that

5 [(Ama - A<m1>5)2 ~ ( /'"5 dAtﬂ
Am-1)s m=1ys At

mé<t

LF17 - [F?],]

2 ( max |A;,s — A(m71)8|)

<
- lan, 1<m<M
5 (A.9)
( /m dA; Ams — A(m—1)5 )
x M| max —
1=m<M|J(m-1)s At Am-1)s

= (T/8)0,(8"274bY?cr)0, (8" *brer) = 0, (82 Th)/*c3)

forall0<¢t<T.
Moreover, it follows that

mé mé 2
[Fﬁ]t =[G1? +2 Z </( 1)6fldt>(Gm8 — Gm-1)s) + Z (/(‘ fi dt) ,

moé<t m— moé<t m—1)8

where we have

> (/(m fi dt>2 <MO,(8%) = 0,(5T)

mé<t m—1)8
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and

mé
3 ( /( i dr)(Gma — Gomd)

mé<t m—1)8
mé 24172 1/2
< [Z ( / fzdf> } [Z (Gms — G<m_1>.s>]
mo<t (m—1)8 mo<t

= 0,((8T)")0,((Tb1)'/?) = 0,(8"2TbY/?)
uniformly in 0 < < T. Note that 8T = 0(8'/2Th}/*). Consequently, we have
[F?], = [G1}] = 0y (8'*Tby%) (A.10)

uniformly in 0 < ¢ < T The stated result follows from Lemma A.3, and (A.8), (A.9), and
(A.10). Note that

812ThY2, (8T) by = 0(8"2~ThY*2),
and, therefore, the terms we consider in Lemma A.3 and (A.10) become negligible. O
In what follows, we let
H, = in(f){[G]s > t}
§>
and analogously define
H? = inf{[F1? > t}
5>0
for0 <t <[G]r.
LEMMA A.5. We have

sup |H? — H,|=0,(8"**Ta;'b}/*c})
0<t=<[Glr

forany e > 0.

Prookr. The proofis virtually identical to that of Corollary 3.3 of Park (2009) and, there-
fore, it is omitted. O

In the following lemma, we define M,, by 6M,, = HSA forn=1,...,N.

LEMMA A.6. We have

Hus g A Mn Aps — Am B
max f r Z md — Am-1)s :Op(51/4_8T1/zaT1/2b5T/4CT)
1N JH s Ac 3 Ao

forany e > 0.
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Proor. We let

anfH"A d4; _ % Ams — Am-1)s
Hons A 0= 1 Am-ns
and write
IRul < |R3| + R, (A.11)
where
RZ:/HnA %_/HSA %’
Hu—1)a Ay H<8n—1>4 Ay
HY, )4 Ay m=M,_,+1 Am-1)s

Moreover, we define
I, =min(Hy, HY,) and J, =max(Hya, H2,)
forn=1,...,N.
We have

Hya Hpy
R3] = ftdf'-i-‘/ gtde—/5 g1dBy|.

Hpa HgA
fodi —
8
H(nfl)A H H(n—l)A H(n—l)A

(n—1)A

The first term is bounded by

Jn
2 max dt<2< su ) max |H,4 — H®
12n=N J;, fedt < (JS[gT | f¢l lgnSN‘ nA nA‘
foralln=1,..., N, and the quadratic variation of the second term is bounded by

Jn
2 max 2dt <2br max |H,q — H®
g dit <2br max [Hus — Hyy|

1<n<N I,
foralln=1,..., N.Clearly, the first term is of order smaller than that of the second term.
Therefore, it follows from Lemma A.5 that
RE=0,(8V4°T"2a;' b/  cr) (A.12)
uniformlyinn=1,..., N.

Furthermore, we have

My
|Rb| < Z /mé dAt . Amﬁ - A(m—l)ﬁ
v “ alom-ns A Am-1s

‘/-mﬁ dAt Am6 - A(m—l)é
m-1ys Ai Am-1ys

) )
< max (HS, — H max
_1SHSN| nA (nfl)A}lfmSM
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foralln=1,..., N. However, we may readily deduce that

5 5 8
max H®, — H < max |Hya—H,— +2 max |H,p— H
1§n§N| nA (n-nal = 1§n§N| na (=0l t<nen! AT Hna

and

A 1
max |H,o— H,— <—=0,(a;").
1§n§N| nA (n 1)A| = ar p( T )

Consequently, it follows from Lemma A.2 that
Rl =0,(8"%az'brer) (A.13)
for any ¢ > 0, uniformlyinn =1, ..., N. Note that

12}1?N|H”A — H},| =0,(8"**Taz'bc}) = 0p(az")

due to Lemma A.5. The stated result now follows immediately from (A.11), (A.12), and
(A.13). Note that RZ is of order smaller than that of the first term of R%. O

THE PROOFS OF THEOREMS

Proor or THEOREM 3.1. Throughout the proof, we set 7,, = H, 4, where H is introduced
above Lemma A.5. Note that (Thr)~1/2 = O(N~1/2), since NA < Thy and A is constant.
The result for (¢,) may easily be obtained if we let X; = 4 and apply Lemma A.5. It
follows that

max [ef — cu| = max | (T = T) = (T, = )|
_ o
= 2123135)5\/|H"A H,Al
= Op(al/Z—ETaT—,llﬁT/Zc%) = Op((TbT)_l/z) _ OP(N_l/Z).

Similarly, we may simply apply Lemma A.6 with X; = 4 and note that

SV e 20 er ( 1
172 - 1/2,.1/2
ar TY by

)quA%

to deduce the stated result for (x,;).
The proof for (u;y,) is slightly more involved. Note that

max |u2i — um-| <2 max |U;;s — Ui, (A.14)
1<n<N 1<n=<N "

However, we have

T Ty
Uirs — Ui, =f widZy —f widZi,
0 0
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whose quadratic variation is bounded by

max |72 — T,|= max |H2, — Hua| = 0,(8"* STaf]bs/z )
1<n<N 1<n<N
uniformlyinn=1,..., N, due to Lemma A.5. It follows that
—1,3/2 2\1/2
max Uz — Uin, 1= 0,((6'%~*Tar 673 "") (15)

and, therefore,

max |u — Ui =0(N*1/2),
1<n<N

due to (A.14) and (A.15), and (8'/2-*Ta;'b)/*c2) /2 = o((Thr)~12) = o(N~1/2).
To finish the proof, we note that

J
|yo: = il < laillep — ca| + D 1Bijl|xn; — xnj| + |u; — tni
j=1
uniformlyini=1,..., I, from which, along with our previous results, we may easily de-
duce the stated result for (yy;). O

ProoFr oF COROLLARY 3.2. We may readily deduce the stated result for 3 from

1 i Y 1 i 85,6 —1/2
=Y ¥ = — ul +0,(N~17?)
Nn:l m Nn:l
1 N
:ﬁZunu;—}—Ol,(N*l/z),
n=1

due to the well known regression asymptotics and Theorem 3.1.

For the proof of our result for 3, we assume that I =J = 1, and suppress the sub-
scripts i and j for notational simplicity. The proof for the general case is essentially the
same and can easily be established as in the simple case we consider here. We write

Uns — Uim—1y5 = (Ums — Uim—1y5) — R
with

5 — Xm—-1)s

Rps = (6 — )8+ (B ﬁ)X’"
mé = — —
2 Xin-1)s

so that

(Ums — Uim-1)8)* = Ums — Uum—18)> = 2(Ums — Um—1y5) Rms (A.16)



Supplementary Material Evaluating factor pricing models 9

form=1,..., M. However, we have
M 2 M 2
1 A M 1 Xms — X(m-1)s
SN R <2a—a?l BB amd — 2 (m-1)8
~ DR = 26— )’ = +2(p B)NZ< e
m=1 m=1
(A.17)
=o(N"H)+O(NHY=0(N7")
and
| M
‘N Z(Umé - U(m—l)B)Rm8
m=l (A.18)

1 M 1/2 | M 1/2
=< |:N Z(Umﬁ - U(m—1)6)2j| |:N Z R%m{| = O(Ni]/z).
m=1

m=1

Now it follows immediately from (A.16), (A.17), and (A.18) that PSS +Op,(N —1/2y "and
the proofis complete. O

PrOOF OF COROLLARY 3.3. Let 7(a) and 7(8;) be the continuous time versions of the
Wald statistics 7°(«) and 7°(B ;) introduced in (29) and (31) of the main paper, that is,

T(a)=(cc— c’X(X’X)_lX’c)&/E_fl&,

7(Bj) = (x;.xj — x}Xj(X]{Xj)_lX]{Xj)BA}E_i][%j,

where ¢, X, &, xj, X, B j» and 3 are defined from regression (21) correspondingly as ¢?,

X9, ad, x?, th?, ,[3’;3, and 3? that are defined from regression (24). Furthermore, let § =
(&, B, where & and 8 = (BA’l, e, ,é’])’, which are, respectively, / and /J dimensional,
are the OLS estimators of e« and B = (8], ..., B})".

Define Z = (¢, X) and let R be an [ x I(J + 1)-dimensional matrix given by R =
(I1,07x17) so that we may represent the null hypothesis Hy:ay =---=ay=0as Ry=0
with y = (¢/, /). Then we may write

@) =3 -y R{R[(Z22Z) " @3]R)'R(H - ). (A.19)
However, due to Assumption 3.1, we have Z'Z/N — , A and

VN@ =y =aN0,A7" ©3),
and, therefore, it follows that

() = [RVN (¥ — w]’(R[(Z/Z

N

-1 -1
) ®§]R’> [RVN( -] —ax? (A20)

as N — oo.
Now we write

() = (3 ) R (R[(22°) " @ Z°|R) 'R - )
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analogously as in (A.19), where $° is defined similarly as ¥ from &°, and 8° = (B?, ...,
B%) and Z° = (¢®, X?). Therefore, we may easily deduce from Theorem 3.1 and Corol-
laries 3.2 and 3.3 that

(@) = 7(@) + 0,(1),
from which and (A.20) it follows that
(@) >4 X7
as N — oo. This was to be shown. The proof for 7°(3,) is entirely analogous and is omit-

ted to save space. O
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