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the theorems presented in the main paper.

Useful lemmas and their proofs

Let (At) be an Ito process given by

dAt

At
= ft dt + gt dBt�

where (Bt) is a Brownian motion with respect to a filtration (Ft ), to which (ft) and (gt)

are adapted. We assume

Assumption A.1. For all 0 ≤ s ≤ t ≤ T , aT (t − s) ≤ ∫ t
s g

2
u du≤ bT (t − s), where aT and bT

are some constants depending only on T .

Assumption A.2. We have supt≥0 |ft | = Op(1).

Assumption A.3. We have inft≥0 At > 0 and sup0≤t≤T At = Op(cT ), with (cT ) depending
only on T .
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In the subsequent development of our theory, we assume that the Ito process A sat-
isfies Assumptions A.1–A.3.

Lemma A.1. We have

sup
|s−t|≤δ

|At −As| = Op
(
δ1/2−εb

1/2
T cT

)
for any ε > 0, uniformly in 0 ≤ s� t ≤ T .

Proof. Write

At −As =
∫ t

s
fuAu du+

∫ t

s
guAu dBu

for 0 ≤ s ≤ t ≤ T . We may easily deduce that∣∣∣∣
∫ t

s
fuAu du

∣∣∣∣ ≤
(

sup
0≤t≤T

At

)∫ t

s
|fu|du=Op(δcT ) (A.1)

uniformly in 0 ≤ s� t ≤ T , due to Assumptions A.2 and A.3. Moreover, if we let Ct =∫ t
0 gsAs dBs, then C is a continuous martingale with

[C]t − [C]s =
∫ t

s
g2
uA

2
u du

(A.2)

≤
(

sup
0≤t≤T

A2
t

)∫ t

s
g2
u du= Op

(
δbT c

2
T

)
uniformly in 0 ≤ s� t ≤ T . Since C is a continuous martingale, we may represent it as

Ct = (
D ◦ [C])

t
(A.3)

with the DDS Brownian motion D of C, due to the celebrated theorem by Dambis, Du-
bins, and Schwarz in, for example, Revuz and Yor (1994, Theorem 5.1.6, p. 173). Now we
may deduce from (A.3), together with the modulus of continuity of Brownian motion
and (A.2), that

sup
|t−s|≤δ

|Ct −Cs| ≤ sup
|t−s|≤δ

∣∣(D ◦ [C])
t
− (

D ◦ [C])
s

∣∣
(A.4)

≤ sup
|t−s|≤δ

∣∣[C]t − [C]s
∣∣1/2−ε = Op

(
δ1/2−εb

1/2
T cT

)

for any ε > 0, uniformly in 0 ≤ s� t ≤ T . Upon noticing that cT δ = o(δ1/2−εbT cT ) for any
ε > 0, the stated result follows immediately from (A.1) and (A.4). The proof is therefore
complete. �

Lemma A.2. We have

max
1≤m≤M

∣∣∣∣
∫ mδ

(m−1)δ

dAt

At
− Amδ −A(m−1)δ

A(m−1)δ

∣∣∣∣ = Op
(
δ1−εbT cT

)
for any ε > 0.
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Proof. Define

Rm =
∫ mδ

(m−1)δ

dAt

At
− Amδ −A(m−1)δ

A(m−1)δ
(A.5)

=
∫ mδ

(m−1)δ

(
1 − At

A(m−1)δ

)
dAt

At
=

∫ mδ

(m−1)δ

At −A(m−1)δ

A(m−1)δ
(ft dt + gt dBt)�

We have ∫ mδ

(m−1)δ

At −A(m−1)δ

A(m−1)δ
ft dt ≤ 1

inf
t
At

(
sup

(m−1)δ≤t≤mδ

|At −A(m−1)δ|
)∫ mδ

(m−1)δ
ft dt

(A.6)
= Op

(
δ3/2−εb

1/2
T cT

) =Op
(
δ1−εbT cT

)
uniformly in m= 1� � � � �M , due in particular to Lemma A.1. Moreover,∫ t

(m−1)δ

As −A(m−1)δ

A(m−1)δ
gs dBs

is a continuous martingale, whose increment in quadratic variation over interval [(m −
1)δ�mδ] is bounded by∫ mδ

(m−1)δ

(
At −A(m−1)δ

A(m−1)δ

)
g2
t dt

≤ 1

inf
t
A2

t

(
sup

(m−1)δ≤t≤mδ

|At −A(m−1)δ|2
)∫ mδ

(m−1)δ
g2
t dt

=Op
(
δ2−εb2

T c
2
T

)
�

Consequently, we may show that∫ mδ

(m−1)δ

At −A(m−1)δ

A(m−1)δ
gt dBt =Op

(
δ1−εbT cT

)
(A.7)

uniformly in m = 1� � � � �M , using the same argument as in the proof of Lemma A.2. The
stated result now follows immediately from (A.5), (A.6), and (A.7). �

Subsequently, we let

dFt = dAt

At
and dGt = gtdBt�

and define

[F]δt =
∑
mδ≤t

(
Amδ −A(m−1)δ

A(m−1)δ

)2

�

[G]δt =
∑
mδ≤t

(Gmδ −G(m−1)δ)
2�
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Lemma A.3. We have

sup
0≤t≤T

∣∣[G]δt − [G]t
∣∣ =Op

(
(δT)1/2bT

)
�

Proof. Under Assumption A.1, the stated result follows immediately from Lemma A3.1
of Park (2009). �

Lemma A.4. We have

sup
0≤t≤T

∣∣[F]δt − [G]t
∣∣ =Op

(
δ1/2−εTb

3/2
T c2

T

)

for any ε > 0.

Proof. Define

[
Fδ

]
t
=

∑
mδ≤t

(Fmδ − F(m−1)δ)
2 =

∑
mδ≤t

(∫ mδ

(m−1)δ

dAt

At

)2

�

and note that

∣∣[F]δt − [G]δt
∣∣ ≤ ∣∣[F]δt − [

Fδ
]
t

∣∣ + ∣∣[Fδ
]
t
− [G]δt

∣∣� (A.8)

We may readily deduce from Lemmas A.1 and A.2 that

∣∣[F]δt − [
Fδ

]
t

∣∣ =
∑
mδ≤t

[(
Amδ −A(m−1)δ

A(m−1)δ

)2

−
(∫ mδ

(m−1)δ

dAt

At

)2]

≤ 2
inf
t
At

(
max

1≤m≤M
|Amδ −A(m−1)δ|

)
(A.9)

×M

(
max

1≤m≤M

∣∣∣∣
∫ mδ

(m−1)δ

dAt

At
− Amδ −A(m−1)δ

A(m−1)δ

∣∣∣∣
)

= (T/δ)Op
(
δ1/2−εb

1/2
T cT

)
Op

(
δ1−εbT cT

) =Op
(
δ1/2−εTb

3/2
T c2

T

)
for all 0 ≤ t ≤ T .

Moreover, it follows that

[
Fδ

]
t
= [G]δt + 2

∑
mδ≤t

(∫ mδ

(m−1)δ
ft dt

)
(Gmδ −G(m−1)δ)+

∑
mδ≤t

(∫ mδ

(m−1)δ
ft dt

)2

�

where we have

∑
mδ≤t

(∫ mδ

(m−1)δ
ft dt

)2

≤MOp
(
δ2) =Op(δT)
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and ∣∣∣∣ ∑
mδ≤t

(∫ mδ

(m−1)δ
ft dt

)
(Gmδ −G(m−1)δ)

∣∣∣∣
≤

[ ∑
mδ≤t

(∫ mδ

(m−1)δ
ft dt

)2]1/2[ ∑
mδ≤t

(Gmδ −G(m−1)δ)

]1/2

=Op
(
(δT)1/2)Op

(
(TbT )

1/2) = Op
(
δ1/2Tb

1/2
T

)
uniformly in 0 ≤ t ≤ T . Note that δT = o(δ1/2Tb

1/2
T ). Consequently, we have

∣∣[Fδ
]
t
− [G]δt

∣∣ =Op
(
δ1/2Tb

1/2
T

)
(A.10)

uniformly in 0 ≤ t ≤ T . The stated result follows from Lemma A.3, and (A.8), (A.9), and
(A.10). Note that

δ1/2Tb
1/2
T � (δT)1/2bT = o

(
δ1/2−εTb

3/2
T c2

T

)
�

and, therefore, the terms we consider in Lemma A.3 and (A.10) become negligible. �

In what follows, we let

Ht = inf
s>0

{[G]s > t
}

and analogously define

Hδ
t = inf

s>0

{[F]δs > t
}

for 0 ≤ t ≤ [G]T .

Lemma A.5. We have

sup
0≤t≤[G]T

∣∣Hδ
t −Ht

∣∣ =Op
(
δ1/2−εTa−1

T b
3/2
T c2

T

)

for any ε > 0.

Proof. The proof is virtually identical to that of Corollary 3.3 of Park (2009) and, there-
fore, it is omitted. �

In the following lemma, we define Mn by δMn =Hδ
nΔ for n= 1� � � � �N .

Lemma A.6. We have

max
1≤n≤N

∣∣∣∣∣
∫ HnΔ

H(n−1)Δ

dAt

At
−

Mn∑
m=Mn−1+1

Amδ −A(m−1)δ

A(m−1)δ

∣∣∣∣∣ = Op
(
δ1/4−εT 1/2a

−1/2
T b

5/4
T cT

)

for any ε > 0.
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Proof. We let

Rn =
∫ HnΔ

H(n−1)Δ

dAt

At
−

Mn∑
m=Mn−1+1

Amδ −A(m−1)δ

A(m−1)δ

and write

|Rn| ≤
∣∣Ra

n

∣∣ + ∣∣Rb
n

∣∣� (A.11)

where

Ra
n =

∫ HnΔ

H(n−1)Δ

dAt

At
−

∫ Hδ
nΔ

Hδ
(n−1)Δ

dAt

At
�

Rb
n =

∫ Hδ
nΔ

Hδ
(n−1)Δ

dAt

At
−

Mn∑
m=Mn−1+1

Amδ −A(m−1)δ

A(m−1)δ
�

Moreover, we define

In = min
(
HnΔ�H

δ
nΔ

)
and Jn = max

(
HnΔ�H

δ
nΔ

)
for n = 1� � � � �N .

We have

∣∣Ra
n

∣∣ ≤
∣∣∣∣
∫ HnΔ

H(n−1)Δ

ft dt −
∫ Hδ

nΔ

Hδ
(n−1)Δ

ft dt

∣∣∣∣ +
∣∣∣∣
∫ HnΔ

H(n−1)Δ

gt dBt −
∫ Hδ

nΔ

Hδ
(n−1)Δ

gt dBt

∣∣∣∣�
The first term is bounded by

2 max
1≤n≤N

∫ Jn

In

ft dt ≤ 2
(

sup
0≤t≤T

|ft |
)

max
1≤n≤N

∣∣HnΔ −Hδ
nΔ

∣∣
for all n = 1� � � � �N , and the quadratic variation of the second term is bounded by

2 max
1≤n≤N

∫ Jn

In

g2
t dt ≤ 2bT max

1≤n≤N

∣∣HnΔ −Hδ
nΔ

∣∣
for all n = 1� � � � �N . Clearly, the first term is of order smaller than that of the second term.
Therefore, it follows from Lemma A.5 that

Ra
n = Op

(
δ1/4−εT 1/2a

−1/2
T b

5/4
T cT

)
(A.12)

uniformly in n= 1� � � � �N .
Furthermore, we have

∣∣Rb
n

∣∣ ≤
Mn∑

m=Mn−1+1

∣∣∣∣
∫ mδ

(m−1)δ

dAt

At
− Amδ −A(m−1)δ

A(m−1)δ

∣∣∣∣
≤ max

1≤n≤N

∣∣Hδ
nΔ −Hδ

(n−1)Δ

∣∣ max
1≤m≤M

∣∣∣∣
∫ mδ

(m−1)δ

dAt

At
− Amδ −A(m−1)δ

A(m−1)δ

∣∣∣∣
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for all n= 1� � � � �N . However, we may readily deduce that

max
1≤n≤N

∣∣Hδ
nΔ −Hδ

(n−1)Δ

∣∣ ≤ max
1≤n≤N

|HnΔ −H(n−1)Δ| + 2 max
1≤n≤N

∣∣HnΔ −Hδ
nΔ

∣∣
and

max
1≤n≤N

|HnΔ −H(n−1)Δ| ≤ Δ

aT
=Op

(
a−1
T

)
�

Consequently, it follows from Lemma A.2 that

Rb
n =Op

(
δ1−εa−1

T bT cT
)

(A.13)

for any ε > 0, uniformly in n= 1� � � � �N . Note that

max
1≤n≤N

∣∣HnΔ −Hδ
nΔ

∣∣ = Op
(
δ1/2−εTa−1

T b
3/2
T c2

T

) = op
(
a−1
T

)
due to Lemma A.5. The stated result now follows immediately from (A.11), (A.12), and
(A.13). Note that Rb

n is of order smaller than that of the first term of Ra
n. �

The proofs of theorems

Proof of Theorem 3.1. Throughout the proof, we set Tn = HnΔ, where H is introduced
above Lemma A.5. Note that (TbT )−1/2 = O(N−1/2), since NΔ ≤ TbT and Δ is constant.
The result for (cn) may easily be obtained if we let X1 = A and apply Lemma A.5. It
follows that

max
1≤n≤N

∣∣cδn − cn
∣∣ = max

1≤n≤N

∣∣(Tδ
n − Tδ

n−1
) − (Tn − Tn−1)

∣∣
≤ 2 max

1≤n≤N

∣∣HnΔ −Hδ
nΔ

∣∣
= Op

(
δ1/2−εTa−1

T b
3/2
T c2

T

) = op
(
(TbT )

−1/2) = op
(
N−1/2)�

Similarly, we may simply apply Lemma A.6 with Xj =A and note that

δ1/4−εT 1/2b
5/4
T cT

a
1/2
T

= o

(
1

T 1/2b
1/2
T

)
= o

(
N−1/2)

to deduce the stated result for (xnj).
The proof for (uin) is slightly more involved. Note that

max
1≤n≤N

∣∣uδni − uni
∣∣ ≤ 2 max

1≤n≤N
|UiTδ

n
−UiTn |� (A.14)

However, we have

UiTδ
n

−UiTn =
∫ Tδ

n

0
ωit dZit −

∫ Tn

0
ωit dZit�
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whose quadratic variation is bounded by

max
1≤n≤N

∣∣Tδ
n − Tn

∣∣ = max
1≤n≤N

∣∣Hδ
nΔ −HnΔ

∣∣ = Op
(
δ1/2−εTa−1

T b
3/2
T c2

T

)
uniformly in n= 1� � � � �N , due to Lemma A.5. It follows that

max
1≤n≤N

|UiTδ
n

−UiTn | =Op
((
δ1/2−εTa−1

T b
3/2
T c2

T

)1/2)
(A.15)

and, therefore,

max
1≤n≤N

∣∣uδni − uni
∣∣ = o

(
N−1/2)�

due to (A.14) and (A.15), and (δ1/2−εTa−1
T b

3/2
T c2

T )
1/2 = o((TbT )

−1/2) = o(N−1/2).
To finish the proof, we note that

∣∣yδni − yni
∣∣ ≤ |αi|

∣∣cδn − cn
∣∣ +

J∑
j=1

|βij|
∣∣xδnj − xnj

∣∣ + ∣∣uδni − uni
∣∣

uniformly in i = 1� � � � � I, from which, along with our previous results, we may easily de-
duce the stated result for (yni). �

Proof of Corollary 3.2. We may readily deduce the stated result for Σ̂ from

1
N

N∑
n=1

ûδnû
δ′
n = 1

N

N∑
n=1

uδnu
δ′
n +Op

(
N−1/2)

= 1
N

N∑
n=1

unu
′
n +Op

(
N−1/2)�

due to the well known regression asymptotics and Theorem 3.1.
For the proof of our result for Σ̃, we assume that I = J = 1, and suppress the sub-

scripts i and j for notational simplicity. The proof for the general case is essentially the
same and can easily be established as in the simple case we consider here. We write

Ûmδ − Û(m−1)δ = (Umδ −U(m−1)δ)−Rmδ

with

Rmδ = (α̂− α)δ+ (β̂−β)
Xmδ −X(m−1)δ

X(m−1)δ
�

so that

(Ûmδ − Û(m−1)δ)
2 = (Umδ −U(m−1)δ)

2 − 2(Umδ −U(m−1)δ)Rmδ (A.16)
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for m= 1� � � � �M . However, we have

1
N

M∑
m=1

R2
mδ ≤ 2(α̂− α)2 δ

2M

N
+ 2(β̂−β)2 1

N

M∑
m=1

(
Xmδ −X(m−1)δ

X(m−1)δ

)2

(A.17)
= o

(
N−2) +O

(
N−1) =O

(
N−1)

and ∣∣∣∣∣ 1
N

M∑
m=1

(Umδ −U(m−1)δ)Rmδ

∣∣∣∣∣
(A.18)

≤
[

1
N

M∑
m=1

(Umδ −U(m−1)δ)
2

]1/2[
1
N

M∑
m=1

R2
mδ

]1/2

=O
(
N−1/2)�

Now it follows immediately from (A.16), (A.17), and (A.18) that Σ̃δ = Σ̃+Op(N
−1/2), and

the proof is complete. �

Proof of Corollary 3.3. Let τ(α) and τ(βj) be the continuous time versions of the
Wald statistics τδ(α) and τδ(βj) introduced in (29) and (31) of the main paper, that is,

τ(α)= (
c′c − c′X

(
X ′X

)−1
X ′c

)
α̂′Σ̄−1α̂�

τ(βj)= (
x′
jxj − x′

jXj

(
X ′

jXj

)−1
X ′

jxj
)
β̂′
jΣ̄

−1β̂j�

where c, X , α̂, xj , Xj , β̂j , and Σ̄ are defined from regression (21) correspondingly as cδ,
Xδ, α̂δ, xδj , Xδ

j , β̂δ
j , and Σ̄δ that are defined from regression (24). Furthermore, let γ̂ =

(α̂′� β̂′)′, where α̂ and β̂ = (β̂′
1� � � � � β̂

′
J)

′, which are, respectively, I and IJ dimensional,
are the OLS estimators of α and β = (β′

1� � � � �β
′
J)

′.
Define Z = (c�X) and let R be an I × I(J + 1)-dimensional matrix given by R =

(II�0I×IJ) so that we may represent the null hypothesis H0 :α1 = · · · = αI = 0 as Rγ = 0
with γ = (α′�β′)′. Then we may write

τ(α)= (γ̂ − γ)′R′(R[(
Z′Z

)−1 ⊗ Σ̄
]
R′)−1

R(γ̂ − γ)� (A.19)

However, due to Assumption 3.1, we have Z′Z/N →p Λ and
√
N(γ̂ − γ)→d N

(
0�Λ−1 ⊗Σ

)
�

and, therefore, it follows that

τ(α)= [
R

√
N(γ̂ − γ)

]′(
R

[(
Z′Z
N

)−1

⊗ Σ̄

]
R′

)−1[
R

√
N(γ̂ − γ)

] →d χ
2
I (A.20)

as N → ∞.
Now we write

τδ(α)= (
γ̂δ − γ

)′
R′(R[(

Zδ′Zδ
)−1 ⊗ Σ̄δ

]
R′)−1

R
(
γ̂δ − γ

)



10 Chang, Choi, Kim, and Park Supplementary Material

analogously as in (A.19), where γ̂δ is defined similarly as γ̂ from α̂δ, and β̂δ = (β̂δ′
1 � � � � �

β̂δ′
J )

′ and Zδ = (cδ�Xδ). Therefore, we may easily deduce from Theorem 3.1 and Corol-
laries 3.2 and 3.3 that

τδ(α) = τ(α)+ op(1)�

from which and (A.20) it follows that

τδ(α) →d χ
2
I

as N → ∞. This was to be shown. The proof for τδ(βj) is entirely analogous and is omit-
ted to save space. �
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