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This document includes a step-by-step proof of Theorem 2, a description of the
construction of our confidence sets (CS) based on Theorem 2, an analysis of the
uniform asymptotic properties of our CS, a description of the kernels and band-
widths used in our empirical application, a detailed discussion on identification
and nontrivial CS, a discussion of identification when there exists correlation
across players’ unobserved payoff shocks (i.e., when our assumption of indepen-
dent private shocks fails), and additional Monte Carlo experiment results when
our assumptions are violated.

Labeling conventions

Every result, equation, assumption, table, etcetera introduced in this supplement will be
labeled starting with an “S.” Specifically, equations will be labeled (S.1), (S.2), . . . . Every
equation referenced here that is not of that type refers to an equation in the main paper.
Sections in this supplement will be labeled S-A, S-B, and so on. Sections referenced here
that are not of that format refer to sections in the main paper. Similarly, all assumptions,
claims, propositions, theorems, and results introduced here will be labeled S1, S2, S3,
. . . . Any other labeling refers to the main paper.

S-A. Step-by-step proof of Theorem 2

Here we present a detailed proof of Theorem 2, which can be found in Appendix B of the
paper. Throughout the proof we will refer to the assumptions of the theorem (Assump-
tions B1, B2, B3, and B4), which are described in detail in Appendix B of the paper.

In Assumption B1 we described W as

W = {
(x� y) ∈ Supp(X�Y) : x ∈ X

}
�
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where X ⊂ Supp(X) is a prespecified set such that X ∩ Supp(Xc) ⊂ int(Supp(Xc)). We
maintain the assumption that fX(x)≥ f > 0 for all x ∈ X . We will split the proof in three
steps.

Step 1

Our first step is to show that under our assumptions, there exist D1 > 0, D2 > 0 and
D3 > 0 such that

Pr
(

sup
(x�yp)∈W�θp∈Θ

∣∣̂τp(yp|x;θp)− τp(yp|x;θp)∣∣ ≥ bn
)

≤D1 exp
{−√

nh
q
n

(
D2 · bn −D3 · hMn

)}
�

Fix yp, x, and θp and let QpFYp (y
p|x), Qλp(x;θp) and Qμp(yp|x;θp) be as defined in As-

sumption B1. We estimate these functionals with

Q̂FYp
(
yp|x) = (

nh
q
n

)−1
n∑
i=1

1
{
Y
p
i ≤ yp} ·H(Xi − x;hn)�

Q̂λp
(
x;θp) = (

nh
q
n

)−1
n∑
i=1

ηp
(
Y

−p
i ;x|θp) ·H(Xi − x;hn)�

Q̂μp
(
yp|x;θp) = (

nh
q
n

)−1
n∑
i=1

1
{
Y
p
i ≤ yp} ·ηp(Y−p

i ;x|θp) ·H(Xi − x;hn)�

Using an Mth order approximation, our smoothness restrictions in Assumption B1 im-
ply the existence of a finite constantM such that

sup
x∈X

∣∣E[f̂X(x)] − fX(x)
∣∣ ≤M · hMn �

sup
(x�yp)∈W

∣∣E[Q̂pF(yp|x)]−QFYp
(
yp|x)∣∣ ≤M · hMn �

sup
x∈X �θp∈Θ

∣∣E[Q̂λp(x;θp)]−Qλp
(
x;θp)∣∣ ≤M · hMn �

sup
(x�yp)∈W

θp∈Θ

∣∣E[Q̂μp(yp|x;θp)]−Qμp
(
yp|x;θp)∣∣ ≤M · hMn �

(S.1)

Invoking Lemma 22 in Nolan and Pollard (1987) and Lemmas 2.4 and 2.14 in Pakes and
Pollard (1989), having a kernel of bounded variation implies that the class of functions

G = {
g : g(x)= H(x− v;h) for some v ∈R

dim(X) and some h> 0
}

is Euclidean1 with respect to the constant envelope K. Lemma 2.4 in Pakes and Pollard
(1989) also implies that the class of functions

G = {
g : g(yp) = 1

{
yp ≤ v} for some v ∈R

}
1See Definition 2.7 in Pakes and Pollard (1989).
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is Euclidean with respect to the envelope 1. Combined with Assumption B4(i) and
Lemma 2.14 in Pakes and Pollard (1989) we have that the classes of functions

F1 = {
f : f (y−p�x

) = ηp(y−p;u|θp) ·H(x− u;h) for some u ∈ X and θp ∈Θ}
�

F2 = {
f : f (y�x)= 1

{
yp ≤ v} ·ηp(y−p;u|θp) ·H(x− u;h)

for some v ∈R, u ∈ X and θp ∈Θ}
are Euclidean with respect to the envelope K · ηp(·). Since this envelope has a moment
generating function by Assumption B4(i), the maximal inequality results in Chapter 7 of
Pollard (1990) combined with the bias conditions in (S.1) imply that there exist positive
constantsA1,A2, andA3 such that for any δ > 0,

Pr
(

sup
x∈X

∣∣f̂X(x)− fX(x)
∣∣ ≥ δ

)
≤A1 · exp

{−(√
n · hqn

(
A2 · δ−A3 · hMn

))2}
�

Pr
(

sup
(x�yp)∈W

∣∣Q̂FYp (yp|x)−QFYp
(
yp|x)∣∣ ≥ δ

)
≤A1 · exp

{−√
n · hqn

(
A2 · δ−A3 · hMn

)}
�

Pr
(

sup
x∈X �θp∈Θ

∣∣Q̂λp(x;θp)−Qλp
(
x;θp)∣∣ ≥ δ

)
≤A1 · exp

{−√
n · hqn

(
A2 · δ−A3 · hMn

)}
�

Pr
(

sup
(x�yp)∈W
θp∈Θ

∣∣Q̂μp(yp|x;θp)−Qμp
(
yp|x;θp)∣∣ ≥ δ

)

≤A1 · exp
{−√

n · hqn
(
A2 · δ−A3 · hMn

)}
�

(S.2)

For any x such that fX(x) > 0 define

ψFYp
(
Y
p
i �Xi� y

p�x;h) =
(
1
{
Y
p
i ≤ yp}− FYp

(
yp|x))

fX(x)
·H(Xi − x;h)�

ψλp
(
Y

−p
i �Xi�x�θ

p;h) =
(
ηp

(
Y

−p
i ;x|θp)− λp(x;θp))

fX(x)
·H(Xi − x;h)�

ψμp
(
Yi�Xi� y

p�x�θp;h)
=

(
1
{
Y
p
i ≤ yp} ·ηp(Y−p

i ;x|θp) −μp(yp|x;θp))
fX(x)

·H(Xi − x;h)�

(S.3)

and let

ζ̂FYp
(
yp�x

) =
([
Q̂FYp

(
yp|x)−QFYp

(
yp|x)] [

f̂X(x)− fX(x)
])′
�

ζ̂λp
(
x�θp

) =
([
Q̂λp

(
x;θp)−Qλp

(
x;θp)] [

f̂X(x)− fX(x)
])′
�

ζ̂μp
(
yp�x�θp

) =
([
Q̂μp

(
yp|x;θp)−Qμp

(
yp|x;θp)] [

f̂X(x)− fX(x)
])′
�
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Note that (S.2) implies that for any δ > 0,

Pr
(

sup
(x�yp)∈W

∣∣̂ζFYp (yp�x)∣∣ ≥ δ
)

≤ Pr
(

sup
(x�yp)∈W

∣∣Q̂FYp (yp|x)−QFYp
(
yp|x)∣∣ ≥ δ√

2

)

+ Pr
(

sup
x∈X

∣∣f̂X(x)− fX(x)
∣∣ ≥ δ√

2

)

≤A1 · exp
{
−
(√

n · hqn
(
A2 · δ√

2
−A3 · hMn

))2}
+A1 · exp

{
−√

n · hqn
(
A2 · δ√

2
−A3 · hMn

)}
≤ 2 ·A1 · exp

{
−√

n · hqn
(
A2 · δ√

2
−A3 · hMn

)}
�

Similarly (S.2) yields

Pr
(

sup
x∈X �θp∈Θ

∣∣̂ζλp(x�θp)∣∣ ≥ δ
)

≤ 2 ·A1 · exp
{
−√

n · hqn
(
A2 · δ√

2
−A3 · hMn

)}
�

Pr
(

sup
(x�yp)∈W
θp∈Θ

∣∣̂ζμp(yp�x�θp)∣∣ ≥ δ
)

≤ 2 ·A1 · exp
{
−√

n · hqn
(
A2 · δ√

2
−A3 · hMn

)}
�

Whenever f̂X(x) > 0 and fX(x) > 0, a second order approximation yields the results

F̂Yp
(
yp|x)− FYp

(
yp|x) = 1

nh
q
n

n∑
i=1

ψFYp
(
Y
p
i �Xi� y

p�x;hn
) + ξFYpn

(
yp�x

)
�

where ξ
FYp
n

(
yp�x

) = 1
2
ζ̂FYp

(
yp�x

)′
⎛⎜⎜⎜⎝

0 − 1

f̃ 2
X(x)

− 1

f̃ 2
X(x)

2Q̃FYp
(
yp|x)

f̃ 3
X(x)

⎞⎟⎟⎟⎠ ζ̂FYp (yp�x)�

where (f̃X(x)� Q̃FYp (y
p|x)) belongs in the line segment connecting (f̂X(x)� Q̂FYp (y

p|x))
and (fX(x)�QFYp (y

p|x));

λ̂p
(
x;θp) − λp(x;θp) = 1

nh
q
n

n∑
i=1

ψλp
(
Y

−p
i �Xi�x�θ

p;hn
)+ ξλpn

(
x�θp

)
�

where ξλ
p

n

(
x�θp

) = 1
2
ζ̂λp

(
x�θp

)′
⎛⎜⎜⎜⎜⎝

0 − 1

f̆ 2
X(x)

− 1

f̆ 2
X(x)

2Q̆λp
(
x;θp)

f̆ 3
X(x)

⎞⎟⎟⎟⎟⎠ ζ̂λp(x�θp)�
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where (f̆X(x)� Q̆λp(x;θp)) belongs in the line segment connecting (f̂X(x)� Q̂λp(x;θp))
and (fX(x)�Qλp(x;θp));

μ̂p
(
yp|x;θp) −μp(yp|x;θp)

= 1
nh

q
n

n∑
i=1

ψμp
(
Yi�Xi� y

p�x�θp;hn
)+ ξμpn

(
yp�x�θp

)
�

where

ξ
μp

n

(
yp�x�θp

) = 1
2
ζ̂μp

(
yp�x�θp

)′
⎛⎜⎜⎜⎝

0 − 1

f̈ 2
X(x)

− 1

f̈ 2
X(x)

2Q̈μp
(
yp|x;θp)
f̈ 3
X(x)

⎞⎟⎟⎟⎠ ζ̂μp(yp�x�θp)�

where (f̈X(x)� Q̈μp(yp|x;θp)) belongs in the line segment connecting (f̂X(x)� Q̂μp(yp|x;
θp)) and (fX(x)�Qμp(yp|x;θp)). Let Q be as described in Assumption B1. For any 0 <
f ∗ < f , define

D
(
f ∗) =

∥∥∥∥∥∥∥∥∥∥
0 − 1(

f ∗)2

− 1(
f ∗)2

3Q(
f ∗)3

∥∥∥∥∥∥∥∥∥∥
� (S.4)

Let 0 < f ∗ < f and D(f ∗) be as described in (S.4). Combining our previous results, for
any δ > 0,

Pr
(

sup
(x�yp)∈W

∣∣ξFYpn

(
yp�x

)∣∣ ≥ δ
)

≤ Pr
(

sup
(x�yp)∈W

∣∣Q̂FYp (yp|x)−QFYp
(
yp|x)∣∣ ≥Q

)
+ Pr

(
sup
x∈X

∣∣f̂X(x)− fX(x)
∣∣ ≥ f − f ∗)

+ Pr
(

sup
(x�yp)∈W

∣∣̂ζFYp (yp�x)∣∣ ≥
√

2δ
D
(
f ∗))

≤ 4A1 · exp
{
−√

n · hqn
(
A2 · min

{√
δ

D
(
f ∗) �Q� f − f ∗

}
−A3 · hMn

)}
�

and the same bound holds for

Pr
(

sup
x∈X �θp∈Θ

∣∣ξλpn (
x�θp

)∣∣ ≥ δ
)

and Pr
(

sup
θp∈Θ

(x�yp)∈W

∣∣ξμpn (
yp�x�θp

)∣∣ ≥ δ
)
�
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Using Assumption B4 and Lemma 2.14 in Pakes and Pollard (1989) we have that the
classes of functions

G1 = {
g : g(yp�x) =ψFYp

(
yp�x� vp�u;h) : (vp�u) ∈ W�h > 0

}
�

G2 = {
g : g(y−p�x

) =ψλp
(
y−p�x�u�θp

) : u ∈ X � θp ∈Θ�h > 0
}
�

G3 = {
g : g(y�x)=ψμp

(
y�x� vp�u�θp;h) : (vp�u) ∈ W� θp ∈Θ�h > 0

}
are Euclidean with respect to envelopes 2K

f , 2Kηp(·)
f , and 2Kηp(·)

f , respectively. The ex-

istence of moments feature of ηp(·) in Assumption B4 and the results in Chapter 7 of
Pollard (1990) combined with the bias conditions in (S.1) imply that there exist positive
constantsA′

1,A′
2, andA′

3 such that for any δ > 0, the probabilities

Pr

(
sup

(x�yp)∈W

∣∣∣∣∣ 1
nh

q
n

n∑
i=1

ψFYp
(
Y
p
i �Xi� y

p�x;hn
)∣∣∣∣∣ ≥ δ

)
�

Pr

(
sup

x∈X �θp∈Θ

∣∣∣∣∣ 1
nh

q
n

n∑
i=1

ψλp
(
Y

−p
i �Xi�x�θ

p;hn
)∣∣∣∣∣ ≥ δ

)
�

Pr

(
sup

(x�yp)∈W�θp∈Θ

∣∣∣∣∣ 1
nh

q
n

n∑
i=1

ψμp
(
Yi�Xi� y

p�x�θp;hn
)∣∣∣∣∣ ≥ δ

)
�

are bounded above by

A′
1 · exp

{−√
n · hqn

(
A′

2 · δ−A′
3 · hMn

)}
�

Let 0 < f ∗ < f and D(f ∗) be as described in (S.4). Combining our results, for any δ > 0
we have

Pr
(

sup
(x�yp)∈W

∣∣F̂Yp(yp|x)− FYp
(
yp|x)∣∣ ≥ δ

)
≤ Pr

(
sup
x∈X

∣∣f̂X(x)− fX(x)
∣∣ ≥ f − f ∗)

+ Pr

(
sup

(x�yp)∈W

∣∣∣∣∣ 1
nh

q
n

n∑
i=1

ψFYp
(
Y
p
i �Xi� y

p�x;hn
)∣∣∣∣∣ ≥ δ

2

)

+ Pr
(

sup
(x�yp)∈W

∣∣ξFYpn

(
yp�x

)∣∣ ≥ δ

2

)
≤A1 · exp

{−(√
n · hqn

(
A2 · (f − f ∗)−A3 · hMn

))2}
+A′

1 · exp
{
−√

n · hqn
(
A′

2 · δ
2

−A′
3 · hMn

)}

+ 4A1 · exp
{
−√

n · hqn
(
A2 · min

{√
δ

2D
�Q�f − f ∗

}
−A3 · hMn

)}
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≤ B1 · exp
{
−√

n · hqn
(
B2 · min

{
δ

2
�

√
δ

2D
�Q�f − f ∗

}
−B3 · hMn

)}
�

where B1 = 6 · max{A1�A
′
1}, B2 = min{A2�A

′
2}, and B3 = max{A3�A

′
3}. The same type of

bound is valid for

Pr
(

sup
x∈X �θp∈Θ

∣∣̂λp(x;θp)− λp(x;θp)∣∣ ≥ δ
)
�

Pr
(

sup
(x�yp)∈W�θp∈Θ

∣∣μ̂p(yp|x;θp)−μp(yp|x;θp)∣∣ ≥ δ
)
�

The previous results allow us now to turn our attention to τ̂p(yp|x;θp). For h> 0 let

ψτp
(
Yi�Xi� y

p�x�θp;h)
= λp(x;θp) ·ψFYp

(
Y
p
i �Xi� y

p�x;h)
+ FYp

(
yp|x) ·ψλp

(
Y

−p
i �Xi�x�θ

p;h)−ψμp
(
Yi�Xi� y

p�x�θp;h)
= [
λp

(
x;θp) · (1{Ypi ≤ yp}− FYp

(
yp|x))

+ FYp
(
yp|x) · (ηp(Ypi ;x|θp)− λp(x;θp))

− (
1
{
Y
p
i ≤ yp} ·ηp(Ypi ;x|θp)−μp(yp|x;θp))] · H(Xi − x;h)

fX(x)
�

(S.5)

From our previous results we have

τ̂p
(
yp|x;θp)− τp(yp|x;θp)

= 1
nh

q
n

n∑
i=1

ψτp
(
Yi�Xi� y

p�x�θp;hn
)+ ξτpn

(
yp�x�θp

)
�

(S.6)

where

ξτ
p

n

(
yp�x�θp

)
= λp(x;θp) · ξFYp (yp�x)+ FYp

(
yp|x) · ξλp(x�θp)− ξμpn

(
yp�x�θp

)
+ (
F̂Yp

(
yp|x)− FYp

(
yp|x)) · (̂λp(x;θp)− λp(x;θp))�

Let

sup
x∈X �θp∈Θ

∣∣λp(x;θp)∣∣ = λp�

For any δ > 0,

Pr
(

sup
(x�yp)∈W�θp∈Θ

∣∣ξτpn (
yp�x�θp

)∣∣ ≥ δ
)

≤ Pr
(

sup
(x�yp)∈W

∣∣ξFYpn

(
yp�x

)∣∣ ≥ δ

4λp

)
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+ Pr
(

sup
(x�yp)∈W�θp∈Θ

∣∣ξλpn (
x�θp

)∣∣ ≥ δ

4

)

+ Pr
(

sup
(x�yp)∈W�θp∈Θ

∣∣ξμpn (
yp�x�θp

)∣∣ ≥ δ

4

)

+ Pr
(

sup
(x�yp)∈W

∣∣F̂Yp(yp|x)− FYp
(
yp|x)∣∣ ≥

√
δ

2

)

+ Pr
(

sup
x∈X �θp∈Θ

∣∣̂λp(x;θp)− λp(x;θp)∣∣ ≥
√
δ

2

)
�

Letting 0< f ∗ < f andD(f ∗) be as described in (S.4), the previous expression is bounded
above by

4A1 exp
{
−√

nh
q
n

(
A2 min

{
1
2

√
δ

D
(
f ∗)λp �Q�f − f ∗

}
−A3 · hMn

)}

+ 8A1 exp
{
−√

nh
q
n

(
A2 min

{
1
2

√
δ

D
(
f ∗) �Q� f − f ∗

}
−A3 · hMn

)}

+ 2B1 exp
{
−√

nh
q
n

(
B2 min

{
1
2

√
δ�

1
2

δ1/4√
D
(
f ∗) �Q� f − f ∗

}
−B3h

M
n

)}
�

Let B = 1
2 · min{ 1√

Dλ
p
� 1√

D
�1�2Q�2(f − f ∗)} and define C1 ≡ 4 · B1, C2 ≡ B2 · B, and C3 ≡

B3. We have

Pr
(

sup
(x�yp)∈W�θp∈Θ

∣∣ξτpn (
yp�x�θp

)∣∣ ≥ δ
)

≤ C1 exp
{−√

nh
q
n

(
C2 · min

{
δ1/2� δ1/4�1

}−C3 · hMn
)}
�

By Assumption B4 and Lemma 2.14 in Pakes and Pollard (1989), the class of functions

G4 = {
g : g(y�x)=ψτp

(
y�x� vp�u�θp;h) : (vp�u) ∈ W� θp ∈Θ�h > 0

}
is Euclidean with respect to the envelope 2λpK

f + 4Kηp(·)
f . The existence of moments fea-

ture of ηp(·) in Assumption B4 and the results in Chapter 7 of Pollard (1990) combined
with the bias conditions in (S.1) imply that there exist positive constants C ′

1, C ′
2, and C ′

3
such that for any δ > 0,

Pr

(
sup

(x�yp)∈W�θp∈Θ

∣∣∣∣∣ 1
nh

q
n

n∑
i=1

ψτp
(
Yi�Xi� y

p�x�θp;hn
)∣∣∣∣∣ ≥ δ

)

≤ C ′
1 · exp

{−√
n · hqn

(
C ′

2 · δ−C ′
3 · hMn

)}
�
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As before, if we let 0< f ∗ < f be as described in (S.4), then

Pr
(

sup
(x�yp)∈W�θp∈Θ

∣∣̂τp(yp|x;θp)− τp(yp|x;θp)∣∣ ≥ δ
)

≤ Pr
(

sup
x∈X

∣∣f̂X(x)− fX(x)
∣∣ ≥ f − f ∗)

+ Pr

(
sup

(x�yp)∈W�θp∈Θ

∣∣∣∣∣ 1
nh

q
n

n∑
i=1

ψτp
(
Yi�Xi� y

p�x�θp;hn
)∣∣∣∣∣ ≥ δ

2

)

+ Pr
(

sup
(x�yp)∈W�θp∈Θ

∣∣ξτpn (
yp�x�θp

)∣∣ ≥ δ

2

)
�

From here, putting our results together we have that for any δ > 0,

Pr
(

sup
(x�yp)∈W�θp∈Θ

∣∣̂τp(yp|x;θp) − τp(yp|x;θp)∣∣ ≥ δ
)

≤D1 exp
{−√

nh
q
n

(
D2 · min

{
δ�δ1/2� δ1/4�1

}−D3 · hMn
)}
�

(S.7)

whereD1 = 3 · max{A1�C
′
1�C1},D2 = 1

2 · min{C ′
2�C2�2A2(f − f ∗)}, andD3 = max{A3�C3�

C ′
3}. Our results also imply

τ̂p
(
yp|x;θp) − τp(yp|x;θp)

= 1
nh

q
n

n∑
i=1

ψτp
(
Yi�Xi� y

p�x�θp;hn
)+ ξτpn

(
yp�x�θp

)
� where

sup
(x�yp)∈W�θp∈Θ

∣∣ξτpn (
yp�x�θp

)∣∣ =Op
(

log(n)2

nh
q
n

)
� and

sup
(x�yp)∈W�θp∈Θ

∣∣̂τp(yp|x;θp) − τp(yp|x;θp)∣∣ =Op
(

log(n)√
nh

q
n

)
�

(S.8)

Let bn be the sequence used in our construction. For n large enough we have min{bn�
b

1/2
n �b

1/4
n �1} = bn and therefore (S.7) yields

Pr
(

sup
(x�yp)∈W�θp∈Θ

∣∣̂τp(yp|x;θp) − τp(yp|x;θp)∣∣ ≥ bn
)

≤D1 exp
{−√

nh
q
n

(
D2 · bn −D3 · hMn

)}
�

(S.9)

This concludes Step 1 of our proof.
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Step 2

Here we use the results from Step 1 to show that

T̂
p
X
(
θp

) = 1
n

n∑
i=1

τ̂p
(
Y
p
i |Xi;θp

) · 1{τp(Ypi |Xi;θp
) ≥ 0

} · IX (Xi)+ϕpn
(
θp

)
�

where sup
θp∈Θ

∣∣ϕpn (θp)∣∣ =Op
(
n−1/2−ε) for some ε > 0.

We begin by noting that we can express

T̂
p
X
(
θp

) = 1
n

n∑
i=1

τ̂p
(
Y
p
i |Xi;θp

) · 1{τp(Ypi |Xi;θp
) ≥ 0

} · IX (Xi)+ϕpn
(
θp

)
�

where ∣∣ϕpn (θp)∣∣
≤

∣∣∣∣∣1
n

n∑
i=1

τ̂p
(
Y
p
i |Xi;θp

) · 1{−2bn ≤ τp(Ypi |Xi;θp
)
< 0

}
IX (Xi)

∣∣∣∣∣︸ ︷︷ ︸
≡|ϕp�1n (θp)|

+
∣∣∣∣∣2
n

n∑
i=1

τ̂p
(
Y
p
i |Xi;θp

) · 1{∣∣̂τp(Ypi |Xi;θp
) − τp(Ypi |Xi;θp

)∣∣ ≥ bn
} · IX (Xi)

∣∣∣∣∣︸ ︷︷ ︸
≡|ϕp�2n (θp)|

�

We begin by examining ϕp�2n . Using (S.8), sup(x�yp)∈W�θp∈Θ τ̂p(yp|x;θp) = Op(1). There-
fore,

sup
θp∈Θ

∣∣ϕp�2n

(
θp

)∣∣
≤Op(1) · sup

θp∈Θ

∣∣∣∣∣1
n

n∑
i=1

1
{∣∣̂τp(Ypi |Xi;θp

)− τp(Ypi |Xi;θp
)∣∣ ≥ bn

} · IX (Xi)
∣∣∣∣∣�

Take any α> 0 and any ε > 0. Then

Pr

(
nα · sup

θp∈Θ

∣∣∣∣∣1
n

n∑
i=1

1
{∣∣̂τp(Ypi |Xi;θp

)− τp(Ypi |Xi;θp
)∣∣ ≥ bn

} · IX (Xi)
∣∣∣∣∣> ε

)

≤ Pr
(
1
{

sup
θp∈Θ

∣∣̂τp(Ypi |Xi;θp
)− τp(Ypi |Xi;θp

)∣∣ ≥ bn
}

· IX (Xi) �= 0

for some i= 1� � � � � n
)

≤
n∑
i=1

Pr
(
1
{

sup
θp∈Θ

∣∣̂τp(Ypi |Xi;θp
)− τp(Ypi |Xi;θp

)∣∣ ≥ bn
}

· IX (Xi) �= 0
)
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≤ n · Pr
(

sup
(x�yp)∈W�θp∈Θ

∣∣̂τp(yp|x;θp) − τp(yp|x;θp)∣∣ ≥ bn
)

≤ n ·D1 exp
{
−1

2
√
nh

q
n

(
D2 · bn −D3 · hMn

)}
=D1 exp

{
−1

2
√
nh

q
n

(
D2 · bn −D3 · hMn

)+ log(n)
}

−→ 0�

Therefore, supθp∈Θ |ϕp�2n (θp)| = op(n
−α). In particular, the following much weaker (but

useful for our purposes) result holds:

sup
θp∈Θ

∣∣ϕp�2n

(
θp

)∣∣ =Op
(
n−1/2−ε) for some ε > 0�

We move on to ϕp�1n (θp). Note that

τ̂p
(
Y
p
i |Xi;θp

) =
1∑
j=0

(
τp

(
Y
p
i |Xi;θp

))1−j · (̂τp(Ypi |Xi;θp
)− τp(Ypi |Xi;θp

))j
�

Therefore,∣∣ϕp�1n

(
θp

)∣∣
≤ 1
n

n∑
i=1

[ 1∑
j=0

∣∣τp(Ypi |Xi;θp
)∣∣1−j · ∣∣̂τp(Ypi |Xi;θp

)− τp(Ypi |Xi;θp
)∣∣j]

· 1{−2bn ≤ τp(Ypi |Xi;θp
)
< 0

}
IX (Xi)

≤ 1
n

n∑
i=1

[ 1∑
j=0

|2bn|1−j · ∣∣̂τp(Ypi |Xi;θp
)− τp(Ypi |Xi;θp

)∣∣j]

· 1{−2bn ≤ τp(Ypi |Xi;θp
)
< 0

}
IX (Xi)�

Using (S.8) we have

sup
(x�yp)∈W�θp∈Θ

∣∣∣∣∣
1∑
j=0

∣∣2bn∣∣1−j · ∣∣̂τp(yp|x;θp) − τp(yp|x;θp)∣∣j∣∣∣∣∣
=

1∑
j=0

O
(
b

1−j
n

) ·Op
((

log(n)√
nh

q
n

)j)

=Op(bn)�
where the last equality follows from the bandwidth convergence restrictions in Assump-
tion B2 since they imply that log(n)√

n·hqn·bn
−→ 0. Therefore,

sup
θp∈Θ

∣∣ϕp�1n

(
θp

)∣∣ ≤Op(bn) · 1
n

n∑
i=1

1
{−2bn ≤ τp(Ypi |Xi;θp

)
< 0

}
IX (Xi)�
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For a given b > 0 denote

g
p�1
i

(
θp�b

) = 1
{−b≤ τp(Ypi |Xi;θp

)
< 0

} · IX (Xi)

and let

ν
p�1
n

(
θp

) = 1
n

n∑
i=1

(
g
p�1
i

(
θp�2bn

)−E[gp�1i

(
θp�2bn

)])
�

Let A and b be the constants described in Assumption B3. For large enough n we have
2bn ≤ b and therefore we can express

1
n

n∑
i=1

1
{−2bn ≤ τp(Ypi |Xi;θp

)
< 0

} · IX (Xi)= νp�1n

(
θp

)+ ξp�1n

(
θp

)
�

where

sup
θp∈Θ

∣∣ξp�1n

(
θp

)∣∣ = 2Abn =O(bn) and

sup
θp∈Θ

Var
(
1
{−2bn ≤ τp(Ypi |Xi;θp

)
< 0

} · IX (Xi)
) =O(bn)

by Assumption B3. Using part (ii) of Assumption B4,

sup
θp∈Θ

∣∣νp�1n

(
θp

)∣∣ =Op
(√

bn

n

)
=Op(bn)�

Combining these results, we have

sup
θp∈Θ

∣∣∣∣∣1
n

n∑
i=1

1
{−2bn ≤ τp(Ypi |Xi;θp

)
< 0

} · IX (Xi)
∣∣∣∣∣ =Op(bn)

and therefore

sup
θp∈Θ

∣∣ϕp�1n

(
θp

)∣∣ ≤O(bn)×Op(bn)=Op
(
b2
n

) =Op
(
n−1/2−ε) for some ε > 0,

where the last line follows from the bandwidth convergence restrictions in Assump-
tion B2. Combining the results for ϕp�1n and ϕp�2n ,

T̂
p
X
(
θp

) = 1
n

n∑
i=1

τ̂p
(
Y
p
i |Xi;θp

) · 1{τp(Ypi |Xi;θp
) ≥ 0

} · IX (Xi)+ϕpn
(
θp

)
�

(S.10)
where sup

θp∈Θ

∣∣ϕpn (θp)∣∣ =Op
(
n−1/2−ε) for some ε > 0.
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Step 3

This is the last step in the proof. We take the results from Step 2 to show that

1
n

n∑
i=1

(̂
τp

(
Y
p
i |Xi;θp

)− τp(Ypi |Xi;θp
)) · 1{τp(Ypi |Xi;θp

) ≥ 0
} · IX (Xi)

= 1

n2

∑
j �=i

n∑
i=1

gτp
(
Xi�Yi�Xj�Yj;θp�hn

) +�p�1n

(
θp

)
�

where sup
θp∈Θ

∣∣�p�1n

(
θp

)∣∣ =Op
(
n−1/2−ε) for some ε > 0.

We then examine the Hoeffding decomposition of the U-statistic described above and,
using our assumptions, we obtain the result in Theorem 2. We have

1
n

n∑
i=1

τ̂p
(
Y
p
i |Xi;θp

) · 1{τp(Ypi |Xi;θp
) ≥ 0

} · IX (Xi)

= 1
n

n∑
i=1

max
{
τp

(
Y
p
i |Xi;θp

)
�0

} · IX (Xi) (S.11)

+ 1
n

n∑
i=1

(̂
τp

(
Y
p
i |Xi;θp

)− τp(Ypi |Xi;θp
)) · 1{τp(Ypi |Xi;θp

) ≥ 0
} · IX (Xi)�

Let ψτp be as defined in (S.5). For any pair of observations i, j in 1� � � � � n and h> 0 let

gτp
(
Xi�Yi�Xj�Yj;θp�h

)
= 1
hq

·ψτp
(
Yj�Xj�Y

p
i �Xi�θ

p;h) · 1{τp(Ypi |Xi;θp
) ≥ 0

} · IX (Xi)�
(S.12)

Note that

sup
θp∈Θ

∣∣∣∣∣ 1

n2

n∑
i=1

gτp
(
Xi�Yi�Xi�Yi;θp�hn

)∣∣∣∣∣ =Op
(

1
nh

q
n

)
=Op

(
n−1/2−ε) for some ε > 0.

Combined with (S.8), this yields

1
n

n∑
i=1

(̂
τp

(
Y
p
i |Xi;θp

)− τp(Ypi |Xi;θp
)) · 1{τp(Ypi |Xi;θp

) ≥ 0
} · IX (Xi)

= 1

n2

∑
j �=i

n∑
i=1

gτp
(
Xi�Yi�Xj�Yj;θp�hn

)+�p�1n

(
θp

)
� where (S.13)

sup
θp∈Θ

∣∣�p�1n

(
θp

)∣∣ =Op
(

log(n)2

nh
q
n

)
+Op

(
1
nh

q
n

)
=Op

(
n−1/2−ε) for some ε > 0.
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We will examine the U-statistic in (S.13). Using (S.5) we can express

gτp
(
Xi�Yi�Xj�Yj;θp�h

) = gaτp
(
Xi�Yi�Xj�Yj;θp�h

)+ gbτp
(
Xi�Yi�Xj�Yj;θp�h

)
+ gcτp

(
Xi�Yi�Xj�Yj;θp�h

)
�

where

gaτp
(
Xi�Yi�Xj�Yj;θp�h

)
= 1
hq

· λp(Xi;θp) · (1{Ypj ≤ Ypi
}− FYp

(
Y
p
i |Xi

))
· 1{τp(Ypi |Xi;θp

) ≥ 0
} · IX (Xi) · H(Xj −Xi;h)

fX(Xi)
�

gbτp
(
Xi�Yi�Xj�Yj;θp�h

)
= 1
hq

· FYp
(
Y
p
i |Xi

) · (ηp(Y−p
j ;Xi|θp

) − λp(Xi;θp))
· 1{τp(Ypi |Xi;θp

) ≥ 0
} · IX (Xi) · H(Xj −Xi;h)

fX(Xi)
�

gcτp
(
Xi�Yi�Xj�Yj;θp�h

)
= 1
hq

· (1{Ypj ≤ Ypi
} ·ηp(Y−p

j ;Xi|θp
) −μp(Ypi |Xi;θp

))
· 1{τp(Ypi |Xi;θp

) ≥ 0
} · IX (Xi) · H(Xj −Xi;h)

fX(Xi)
�

Let γIp, γII
p , and γIII

p be as defined in Assumption B1. By the smoothness conditions in
Assumption B1, there exists a C <∞ such that

sup
(x�y)∈W�θp∈Θ

∣∣E[gaτp(x� y�X�Y ;θp�h)]∣∣ ≤C · hM�

sup
(x�y)∈W�θp∈Θ

∣∣E[gbτp(x� y�X�Y ;θp�h)]∣∣ ≤C · hM�

sup
(x�y)∈W�θp∈Θ

∣∣E[gcτp(x� y�X�Y ;θp�h)]∣∣ ≤C · hM

and

E
[
gaτp

(
X�Y�x� y;θp�h)] = (

γIp
(
yp�x;θp)− γII

p

(
x;θp)) · IX (x)+ ςap

(
y�x;θp�h)�

E
[
gbτp

(
X�Y�x� y;θp�h)]

= (
ηp

(
y−p;x|θp)− λp(x;θp)) · γII

p

(
x;θp) · IX (x)+ ςbp

(
y�x;θp�h)�

E
[
gcτp

(
X�Y�x� y;θp�h)]

= (
γIp

(
yp�x;θp) ·ηp(y−p;x|θp)− γIII

p

(
x;θp)) · IX (x)+ ςcp

(
y�x;θp�h)�
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where

sup
(x�y)∈W�θp∈Θ

∣∣ςap(y�x;θp�h)∣∣ ≤ C · hM�

sup
(x�y)∈W�θp∈Θ

∣∣ςbp(y�x;θp�h)∣∣ ≤ C · hM�

sup
(x�y)∈W�θp∈Θ

∣∣ςcp(y�x;θp�h)∣∣ ≤ C · hM�

In particular, this implies that

sup
θp∈Θ

∣∣E[gτp(Xi�Yi�Xj�Yj;θp�hn)|Xi�Yi]∣∣ ≤ C · hMn �

and if we define

ψ
p
U

(
Y�X;θp)

= [(
γIp

(
Yp�X;θp) − γII

p

(
X;θp)) · λp(X;θp)

+ (
ηp

(
Y−p;X|θp)− λp(X;θp)) · γII

p

(
X;θp)

+ (
γIp

(
Yp�X;θp) ·ηp(Y−p;X|θp)− γIII

p

(
X;θp))] · IX (X)�

(S.14)

then

E
[
gτp

(
Xi�Yi�Xj�Yj;θp�hn

)|Xj�Yj] =ψpU
(
Yj�Xj;θp

) + ςp�n
(
θp

)
� where

sup
θp∈Θ

∣∣ςp�n(θp)∣∣ =Op
(
hMn

)
�

Combining Assumptions B1, B2, and B4 we can show that the class of functions

F = {
f : W ×W → R : f (x1� y1�x2� y2)= gτp

(
x1� y1�x2� y2;θp�h

)
for some θp ∈Θ and some h> 0

}
is Euclidean with respect to an envelope with finite second moment. Combining this
with our previous results, a Hoeffding decomposition (Serfling (1980)) and Corollary 4
in Sherman (1994) imply that (S.13) can be expressed as

1
n

n∑
i=1

(̂
τp

(
Y
p
i |Xi;θp

)− τp(Ypi |Xi;θp
)) · 1{τp(Ypi |Xi;θp

) ≥ 0
} · IX (Xi)

= 1
n

n∑
i=1

ψ
p
U

(
Yi�Xi;θp

)+ϑp�n
(
θp

)
�

where

sup
θp∈Θ

∣∣ϑp�n(θp)∣∣ =Op
(

log(n)2

nh
q
n

)
+Op

(
1
nh

q
n

)
+Op

(
hMn

)
=Op

(
n−1/2−ε) for some ε > 0,
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where the last line follows from our bandwidth convergence conditions. Going back to
(S.10) and (S.11) we obtain

T̂
p
X
(
θp

) = TpX
(
θp

) + 1
n

n∑
i=1

ψp
(
Yi�Xi;θp

) + εp�n
(
θp

)
� where

ψp
(
Yi�Xi;θp

) = (
max

{
τp

(
Y
p
i |Xi;θp

)
�0

} · IX (Xi)− TpX
(
θp

))
+ψpU

(
Yi�Xi;θp

)
and

sup
θp∈Θ

∣∣εp�n(θp)∣∣ =Op
(
n−1/2−ε) for some ε > 0.

(S.15)

This concludes Step 3 and finishes the proof of Theorem 2.

Two key properties of ψp

The “influence function” ψp has two key properties:

(i) We have E[ψp(Yi�Xi;θp)] = 0 ∀θp ∈Θ.

(ii) We have ψp(Yi�Xi;θp)= 0 ∀θp: τp(Yp|X;θp) < 0 w.p.1.

Part (ii) is obvious by inspection. To see why (i) is true we can show how it holds for each
one of the summands that comprise ψp. Note first that by definition,

E
[
max

{
τp

(
Y
p
i |Xi;θp

)
�0

} · IX (X)− TpX
(
θp

)] = 0�

We will show how each of the three summands that comprise ψpU has mean zero. We
begin with the first term. Exchanging the order of integration, we have

E
[(
γIp

(
Y
p
i �Xi;θp

) − γII
p

(
Xi;θp

)) · λp(Xi;θp) · IX (Xi)
]

=EXi
[
EYj |Xj

[
EYi|Xi

[(
1
{
Y
p
i ≤ Ypj

}− FYp
(
Y
p
j |Xi

))|Xi�Yj�Xj]
· 1{τp(Ypj |Xi;θp

) ≥ 0
}|Xj =Xi�Xi

]
× λp(Xi;θp) · IX (Xi)

]
=EXi

[
EYj |Xj

[
EYi|Xi

[(
FYp

(
Y
p
j |Xi

) − FYp
(
Y
p
j |Xi

))|Xi�Yj�Xj]
· 1{τp(Ypj |Xi;θp

) ≥ 0
}|Xj =Xi�Xi

]
× λp(Xi;θp) · IX (Xi)

]
= 0�

For the second term we have

E
[(
ηp

(
Y

−p
i ;Xi|θp

)− λp(Xi;θp)) · γII
p

(
Xi;θp

) · IX (Xi)
]

=EXi
[(
λp

(
Xi;θp

)− λp(Xi;θp)) · γII
p

(
Xi;θp

) · IX (Xi)
] = 0�
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where we simply used the fact that λp(Xi;θp) = EY−p|X [ηp(Y−p
i ;Xi|θp)|Xi]. For the

third term, exchanging the order of integration we have

E
[(
γIp

(
Y
p
i �Xi;θp

) ·ηp(Y−p
i ;Xi|θp

)− γIII
p

(
Xi;θp

)) · IX (Xi)
]

=EXi
[
EYj |Xj

[
EYi|Xi

[(
1
{
Y
p
i ≤ Ypj

} ·ηp(Y−p
i ;Xi|θp

)
−μp(Yj|Xi;θp))|Xi�Yj�Xj]
× 1

{
τp

(
Y
p
j |Xi;θp

) ≥ 0
}|Xj =Xi�Xi

]× IX (Xi)
]

=EXi
[
EYj |Xj

[(
μp

(
Yj|Xi;θp

)−μp(Yj|Xi;θp))
× 1

{
τp

(
Y
p
j |Xi;θp

) ≥ 0
}|Xj =Xi�Xi

]× IX (Xi)
]

= 0�

Combining these results we have E[ψp(Yi�Xi;θp)] = 0 ∀θp ∈Θ, as claimed.

Constructing a confidence set

Let κn denote any sequence of positive numbers such that κn → 0 and nεκn → ∞ for any

ε > 0. For each θ ∈Θ define tn(θ)=
√
n·T̂X (θ)

max{κn�σ(θ)} . By Theorem 2 and (B.3),

tn(θ)=
√
n · TX (θ)

max
{
κn�σ(θ)

} + 1√
n

n∑
i=1

ψ(Yi�Xi;θ)
max

{
κn�σ(θ)

} + ςn(θ)�

By Theorem 2 and (B.3), supθ∈Θ |ςn(θ)| = op(1) since

sup
θ∈Θ

∣∣ςn(θ)∣∣ = sup
θ∈Θ

∣∣∣∣ √
n · εn(θ)

max
{
κn�σ(θ)

}∣∣∣∣ =Op
(

1
nε · κn

)
for some ε > 0

and nεκn → ∞ for any ε > 0. Let

Θ
I
X = {

θ ∈Θ : τp(Yp|X;θp)< 0 w.p.1. ∀p= 1� � � � �P
}
�

The term Θ
I
X is the collection of parameter values that satisfy our inequalities as

strict inequalities w.p.1 over our inference range. Inspecting the terms that comprise

ψ(Yi�Xi;θ), we can see that ψ(Yi�Xi;θ) = 0 w.p.1 ∀θ ∈ ΘIX . On the other hand, by in-
specting the terms that compriseψpU(Y�X;θp)we can verify that P(ψpU(Y�X;θp) �= 0) >

0 for any θ ∈ ΘIX \ΘIX and therefore σ2(θ) > 0 for any such θ. Therefore, the following
statements hold:

(i) If θ ∈Θ \ΘIX , then TX (θ) > 0 and therefore tn(θ)→ +∞ w.p.1.

(ii) If θ ∈ΘIX , then tn(θ)= op(1).
(iii) If θ ∈ΘIX \ΘIX , then tn(θ)

d−→ N (0�1).
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The term tn(θ) is unfeasible because σ2(θ) is unknown. However it can be estimated: we

use t̂n(θ)=
√
nT̂X (θ)

max{κn�σ̂(θ)} , where

ψ̂
p
U

(
Yi�Xi;θp

) = 1
(n− 1)

∑
j �=i
ĝτp

(
Xj�Yj�Xi�Yi;θp�hn

)
�

ψ̂p
(
Yi�Xi;θp

) = τ̂p(Ypi |Xi;θp
) · 1{̂τp(Ypi |Xi;θp

) ≥ −bn
} · IX (Xi)

− T̂ pX
(
θp

)+ ψ̂pU
(
Yi�Xi;θp

)
�

σ̂2(θ)= 1
n

n∑
i=1

ψ̂(Yi�Xi;θ)2�

(S.16)

The term gτp is as described in (S.12). Under our assumptions we have σ̂2(θ)
p−→ σ2(θ)

for each θ ∈Θ.

Confidence set and pointwise asymptotic properties For a desired coverage probability
1 − α, our confidence set (CS) for θ0 is of the form

CSn(1 − α)= {
θ ∈Θ : t̂n(θ)≤ c1−α

}
� (S.17)

where c1−α is the standard Normal critical value for 1 −α. By the features outlined above
our CS will have correct pointwise coverage properties, namely,

inf
θ∈Θ:θ=θ0

lim inf
n→∞ P

(
θ ∈ CSn(1 − α)) ≥ 1 − α�

and ifΘIX \ΘIX �= ∅, then

inf
θ∈Θ:θ=θ0

lim inf
n→∞ P

(
θ ∈ CSn(1 − α)) = 1 − α�

Our CS will also satisfy

lim
n→∞P

(
θ ∈ CSn(1 − α)) = 0 ∀θ ∈Θ \ΘIX �

By the design of our CS, its pointwise properties have the potential to hold uniformly
(i.e., over sequences of parameter values and distributions) under appropriate assump-
tions about the underlying space of distributions. We describe those assumptions next
and we characterize the asymptotic properties that would follow from them.

S-B. Analysis of uniform properties of our CS

Let us generalize our basic setup and assume that {((Ypi )Pp=1�Xi) : 1 ≤ i ≤ n�n ≥ 1} is
a triangular array, rowwise iid with distribution Fn ∈ F . For a given F ∈ F we will now
index all the objects that depend on the distribution of the data by F . Thus, we denote

ψ(Y�X;θ�F), σ2(θ�F), ΘIX (F), Θ
I
X (F), and so on. We assume the following conditions

about F .
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Assumption S1. The space of distributions F has common support and satisfies PF(X ∈
X )≥ p> 0 for all F ∈ F . In addition, the following statements hold:

(i) The conditions in Assumptions B1, B3, and B4 are satisfied by every F ∈ F .

(ii) For some δ > 0 and b <∞,

sup
θ∈Θ\ΘIX (F)

F∈F

EF

[∣∣ψ(Y�X;θ�F)∣∣2+δ

σ2+δ(θ�F)

]
≤ b�

S-B.1 Coverage properties

Part (i) of Assumption S1 is meant to ensure that the linear representation in (B.3) holds
uniformly over F . Part (ii) is sufficient to ensure the Lindeberg condition,

lim
λ→∞ sup

θ∈Θ\ΘIX (F)
F∈F

EF

[∣∣ψ(Y�X;θ�F)∣∣2
σ2(θ�F)

· 1
{∣∣ψ(Y�X;θ�F)∣∣

σ(θ�F)
> λ

}]
= 0�

To see why, note that for any λ̃ > 0 and δ > 0, λ̃δ ·ψ(Y�X;θ�F)2 ·1{|ψ(Y�X;θ�F)|> λ̃} ≤
|ψ(Y�X;θ�F)|2+δ. ThereforeE[ψ(Y�X;θ�F)2 ·1{|ψ(Y�X;θ�F)|> λ̃}] ≤ E[|ψ(Y�X;θ�F)|2+δ]

λ̃δ
.

The Lindeberg condition follows by using the δ described in Assumption S1, letting λ̃=
σ(θ�F), and dividing both sides of the inequality by σ2(θ�F). The kernel and bandwidth
conditions in Assumption B2(i) combined with the Lindeberg condition implied by part
(ii) of Assumption S1 imply that for any sequence (Fn�θn) such that Fn ∈ F and θn ∈
ΘIX (Fn) \ΘIX (Fn),

√
n · T̂X (θn)
σ(θn�Fn)

d−→ N (0�1)�

and for any sequence (Fn�θn) such that Fn ∈ F and θn ∈ΘIX (Fn),
√
n · T̂X (θn)

max
{
κn�σ(θn�Fn)

} p−→ 0�

Let tn(θ)=
√
nT̂X (θ)

max{κn�σ(θ�Fn)} denote the unfeasible test statistic that uses σ(θ�Fn) instead of
σ̂(θ). Combined, parts (i) and (ii) of Assumption S1 would yield

lim inf
n→∞ inf

θ∈Θ:θ=θ0
F∈F

PF
(
tn(θ)≤ c1−α

) ≥ 1 − α�
(S.18)

with

lim inf
n→∞ inf

θ∈Θ:θ=θ0
F∈F

PF
(
tn(θ)≤ c1−α

) = 1 − α

if ΘIX (F) \ΘIX (F) �= ∅ for some F ∈ F �
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Of course, our CS is based on t̂n(θ) =
√
nT̂X (θ)

max{κn�σ̂(θ)} , where σ̂2(θ) is estimated as de-
scribed in (S.16). We need to endow F with conditions that ensure that the necessary
laws of large numbers for triangular arrays hold in a way that ensures that |σ̂2(θn) −
σ2(θn�Fn)| p−→ 0 over sequences (Fn�θn) ∈ F × Θ. For this we can look at the type of
sufficient conditions found in Romano (2004, Lemma 2). To this end we impose the fol-
lowing conditions.

Assumption S2. Let ψFYp , ψλp , ψμp , and ψτp and gτp be as described in (S.3), (S.5),
and (S.12). Then, for some δ > 0 and b <∞ the following inequalities hold for each p=
1� � � � �P :

sup
F∈F

(yp�x)∈W
h>0

EF

[∣∣∣∣ 1
hq
ψFYp

(
Y
p
i �Xi� y

p�x;h�F)

−E
[

1
hq
ψFYp

(
Y
p
i �Xi� y

p�x;h�F)]∣∣∣∣1+δ]
≤ b�

sup
F∈F
x∈X
θp∈Θ
h>0

EF

[∣∣∣∣ 1
hq
ψλp

(
Y

−p
i �Xi�x�θ

p;h) −E
[

1
hq
ψλp

(
Y

−p
i �Xi�x�θ

p;h)]∣∣∣∣1+δ]
≤ b�

sup
F∈F

(yp�x)∈W
θp∈Θ
h>0

EF

[∣∣∣∣ 1
hq
ψμp

(
Yi�Xi� y

p�x�θp;h)

−E
[

1
hq
ψμp

(
Yi�Xi� y

p�x�θp;h)]∣∣∣∣1+δ]
≤ b�

sup
F∈F

(yp�x)∈W
θp∈Θ
h>0

EF

[∣∣∣∣ 1
hq
ψτp

(
Y�X�yp�x�θp;h�F)

−E
[

1
hq
ψτp

(
Y�X�yp�x�θp;h�F)]∣∣∣∣1+δ]

≤ b�

sup
F∈F

(y�x)∈W
θp∈Θ
h>0

EF
[∣∣gτp(Y�X�x� y;θp�h�F) −E[gτp(Y�X�x� y;θp�h�F)]∣∣1+δ] ≤ b�

Assumption S2 is sufficient to satisfy the conditions for the law of large numbers
for triangular arrays in Romano (2004, Lemma 2). Combined with Assumption S1, the
smoothness conditions in Assumption B1, and the linear representation in (S.6), As-
sumption S2 and Romano (2004, Lemma 2) can be used to show that for any sequence
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(Fn�θn) ∈ F ×Θ,∣∣σ̂2(θn)− σ2(θn�Fn)
∣∣ p−→ 0�

Combining Assumptions S1 and S2, our confidence sets would inherit the coverage
properties in (S.18), namely,

lim inf
n→∞ inf

θ∈Θ:θ=θ0
F∈F

PF
(
θ ∈ CSn(1 − α)) ≥ 1 − α�

with

lim inf
n→∞ inf

θ∈Θ:θ=θ0
F∈F

PF
(
θ ∈ CSn(1 − α)) = 1 − α

if ΘIX (F) \ΘIX (F) �= ∅ for some F ∈ F �

S-B.2 Power properties

The linear representation in (B.3) facilitates the study of the power features of our pro-
cedure. Take a sequence (Fn�θn) such that Fn ∈ F and θn ∈ Θ \ ΘIX (Fn). By Assump-
tion S1(ii), for any c we have

lim
n→∞PFn

(
1√
n

n∑
i=1

ψ(Yi�Xi;θn�Fn)
σ(θn�Fn)

> c

)
= 1 −Φ(c)�

The key to the power properties of our test over such a sequence is the behavior
of σ2(θn�Fn) = VarFn(ψ(Y�X;θn�Fn)). Recall that TX (θn�Fn) = ∑P

p=1E[max{τp(Yp|X;
θ
p
n �Fn)�0} · IX (X)]. By Assumption S1, limn→∞ PFn(X ∈ X ) ≥ p > 0 for any sequence
Fn ∈ F . Therefore we have TX (θn�Fn)−→ 0 if and only if PFn(τ

p(Yp|X;θn�Fn) > 0|X ∈
X )−→ 0 for each p= 1� � � � �P . If we inspect the structure of ψ(Y�X;θn�Fn) we will see
that the key will be the behavior of the sequence

PFn
(
τp

(
Yp|X;θn�Fn

) = 0 for some p= 1� � � � �P|X ∈ X
) ≡ ΔX (θn�Fn)�

The function ΔX (θn�Fn) is the probability that the inequalities are binding for some p
over our inference range. We have the following conditions:

(i) If TX (θn�Fn)→ 0 and ΔX (θn�Fn)→ 0, then σ(θn�Fn)→ 0.

(ii) If TX (θn�Fn)→ 0 but ΔX (θn�Fn)� 0, then σ(θn�Fn)� 0.

(iii) If TX (θn�Fn)� 0, then σ(θn�Fn)� 0.

The asymptotic power of our approach will be determined by the behavior of the two
sequences

s1�n(θn�Fn)= max
{
κn�σ(θn�Fn)

}
σ(θn�Fn)

and s2�n(θn�Fn)=
√
n · TX (θn�Fn)

max
{
κn�σ(θn�Fn)

} �
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Suppose s1�n(θn�Fn)→ s1 and s2�n(θn�Fn)→ s2. Note that s1 ≥ 1 by construction. If As-
sumptions S1 and S2 hold, the conditions in Romano (2004, Theorem 5) are satisfied
and we can use this to show that

lim
n→∞PFn

(̂
t(θn) > c1−α

) = 1 −Φ(
s1 · (c1−α − s2)

)
�

From here we conclude that our procedure will have asymptotic power of 1 if either of
the following statements holds:

(a) We have s2 = ∞: This includes as a special case any sequence such that TX (θn�

Fn)=O(n−α) for some α < 1/2. In this case we would have s2�n(θn�Fn)=O(n1/2−α
κn

)→ ∞
by the convergence restrictions of κn.

(b) Wen have s1 = ∞ and s2 > c1−α: First, our discussion above implies that s1 = ∞
can occur only if ΔX (θn�Fn)→ 0 and TX (θn�Fn)→ 0. The additional condition s2 > c1−α
forbids TX (θn�Fn) from converging to zero “too fast.”

Part (a) shows that our procedure will have asymptotic power of 1 whenever TX (θn�
Fn) = O(n−α) for some α < 1/2. Suppose TX (θn�Fn) = O(n−α) for some α > 1/2. Then
we have s2 = 0 by the bandwidth convergence restrictions of κn. In this case our ap-
proach will have asymptotic power of zero if s1 = ∞ (i.e., if σ(θn�Fn)/κn → 0). On the
one hand, if σ(θn�Fn)/κn → ∞, then the asymptotic power will be α. This will be the
case, for example, for any sequence such that TX (θn�Fn) = O(n−α) for some α > 1/2
but limn→∞ΔX (θn�Fn) > 0. On the other hand, our asymptotic power would be zero if
limn→∞ΔX (θn�Fn)= 0. Ifσ(θn�Fn)∝ κn, the power will be bounded between zero andα.
Finally, suppose TX (θn�Fn)= O(n−1/2). Our procedure will have asymptotic power of 1
for any such sequence as long as limn→∞ΔX (θn�Fn) = 0, as this would yield s2 = ∞.
If limn→∞ΔX (θn�Fn) �= 0, then s2 < ∞. In this case our asymptotic power will be 1 if
s2 > c1−α but it will be 0 if s2 < c1−α. Thus, our asymptotic power for any sequence
TX (θn�Fn)=O(n−1/2) will be determined by the limit of the sequence ΔX (θn�Fn). Note
that—as one should expect—choosing the maximum rate of convergence for κn that is
consistent with our assumptions is beneficial for power. Given our bandwidth conver-
gence restrictions, this rate is κn ∝ log(n). Our analysis shows the power advantages of
our approach vis-à-vis using a test statistic based on a least favorable configuration, as
this would be based on normalizing our test statistic by a standard deviation that does
not converge to zero when TX (θn�Fn)→ 0.

S-C. Kernels and bandwidths used in our empirical application

Our covariate vectorX includes q= 8 continuous random variables. The smallest kernel
orderM compatible with Assumption B2 isM = 2 ·q+1 = 17. We employed a multiplica-
tive kernel K(ψ1� � � � �ψ8) = k(ψ1) · k(ψ2) · · · k(ψ8), where each k(·) is a bias-reducing
biweight-type kernel of orderM = 18 of the form

k(u)=
9∑
j=1

cj · (1 − u2)2j · 1{|u| ≤ s}�
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where c1� � � � � c5 were chosen to satisfy the restriction of a bias-reducing kernel of order
18. As in Aradillas-López, Gandhi, and Quint (2013) we set s = 30. Following the guide-
lines in Assumption B2 we employed a bandwidth of the form hn = c · σ̂(X) · n−αh (note
that each X has its own bandwidth), where αh = 1

2M + ε and ε= 10−5. As a guidance to
selecting the constant c we used the “rule of thumb” formula (Silverman (1986)), using
the Normal distribution as the reference distribution. We set

c = 2 ·
(

π1/2(M!)3 ·Rk
(2M) · (2M)! · (k2

M

)) 1
2M+1

� where

Rk =
∫ 1

−1
k2(u)du� kM =

∫ 1

−1
uMk(u)du�

This yielded c ≈ 0�2 and therefore hn ≈ 0�16 · σ̂(X) (for our sample size n= 954). LetΩ=
maxθ∈Θ |σ̂(θ)|. We used bn = cb ·Ω · n−αb , where αb = 1

4 + ε and κn = cκ ·Ω · log(n)−1 with
cb = 10−6 and cκ = 10−8. We chose these tuning parameters proportional to Ω to ensure
our procedure is scale-invariant. These bandwidth choices satisfy Assumption B2. For
our sample size n = 954 this resulted in bn ≈ 10−5 and κn ≈ 10−7. The inference range
used was

X = {
x : f̂X(x)≥ f̂ (0�15)

X �POP< 5 million
}
�

where f̂ (0�15)
X denotes the estimated 15th percentile of the density f̂X . Our main findings

were qualitatively robust to moderate changes in these tuning parameters. Our results
were qualitatively robust to moderate changes in the constants c, cb, cκ, αh, and αb used
to construct our bandwidths.

S-D. Identification and nontrivial confidence sets

In this section we outline in more detail the type of data generating process (DGP) fea-
tures that can lead us to reject parameter values and therefore produce nontrivial confi-
dence sets (CS) of a parametric specification of the strategic index ηp(Y−p;X|θp). In an
effort to relate this to our empirical application, we focus on a game with three players
(i.e., P = 3) and on the type of parameterizations of the strategic index we used there.
Without loss of generality take player p= 1 and assume that we focus on parameteriza-
tions of the strategic index of the form

η1(y2� y3|θ1) = θ12 · y2 + θ13 · y3�

where θ12 and θ13 are constant parameters,2 with θ12

θ13 ≡ k0 <∞. Note that

Cov
(
1
{
Y 1 ≤ y1}�η1(Y 2�Y 3|θ1)|X)

= θ13 · (k0 · Cov
(
1
{
Y 1 ≤ y1}�Y 2|X) + Cov

(
1
{
Y 1 ≤ y1}�Y 3|X))

�

2If θ13 = 0, simply redefine k0 ≡ θ13

θ12 . We focus on the case ‖θ1‖ �= 0 since, as we stated previously, the case

θ12 = θ13 = 0 (i.e., the case of no strategic interaction effect) can never be rejected given our assumptions.
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As in our empirical application, suppose we maintain that actions are strategic substi-
tutes, and therefore θ12 ≥ 0 and θ13 ≥ 0. Suppose there exists a range X ∗ ⊂ Supp(X)with
Pr(X ∈ X ∗) > 0 where the possible outcomes for Y 2 and Y 3 that can be chosen by the
equilibrium selection mechanism are concentrated over a set Y∗

2�3 ⊂ A2 ×A3 that satis-
fies (

y3′ − y3

y2 − y2′
)
> k0 ∀(y2� y3) �= (

y2′
� y3′) : (y2� y3)� (y2′

� y3′) ∈ Y∗
2�3� (S.19)

Note that (S.19) implies a negative relationship between y2 and y3 everywhere in Y∗
2�3,

a natural condition in a strategic substitutes setting. If (S.19) holds, then for any pair
(y2� y3) and (y2′

� y3′
) in Y∗

2�3,

η1(y2� y3|θ1)>η1(y2′
� y3′|θ1) ⇐⇒ y2 < y2′

�

Therefore, if X ∈ X ∗ there exists a negative relationship between η1(Y 2�Y 3|θ1) and Y 2.
Note that (S.20) is entirely compatible with Y 2 being a strategic substitute of Y 1. From
this negative relationship and Theorem 1 in the paper we would obtain

X ∈ X ∗ =⇒ Cov
(
1
{
Y 1 ≤ y1}�Y 2|X)

< 0 ∀y1 ∈ A1� (S.20)

We stress once again that (S.20) is entirely compatible with Y 2 being a strategic substi-
tute3 of Y 1. It is simply the reflection of the range of values that (Y 2�Y 3) can take when
X ∈ X ∗. Now take any k̃ > k0 such that

Pr
(
k̃ · Cov

(
1
{
Y 1 ≤ y1}�Y 2|X)︸ ︷︷ ︸

<0 whenX ∈X ∗

+ Cov
(
1
{
Y 1 ≤ y1}�Y 3|X)︸ ︷︷ ︸

>0 whenX ∈X ∗

< 0|X ∈ X ∗)> 0

for some y1 ∈ A1. Then any θ̃1 ∈Θwith θ̃12

θ̃13 ≥ k̃would violate our inequalities and would
therefore be rejected. Thus, a condition like (S.19) has potential identification power to

rule out large values of k≡ θ12

θ13 . Note that (S.20) can be satisfied even if some outcomes
in Y∗

2�3 violate (S.19) as long as those outcomes that satisfy (S.19) are selected with suffi-
ciently high probability.

What restrictions does (S.19) imply on the range of equilibrium outcomes Y∗
2�3? That

depends on the value of k0. Suppose k0 = 2. Then the following set satisfies the condi-
tions in (S.19):

Y∗
2�3 = {

(1�6)� (2�3)� (3�0)
}
�

Note that in this case the range of equilibrium values that can be chosen for Y 3 is richer
than that of Y 2, since Y 3 ∈ {0�3�6} while Y 2 ∈ {0�1�2}. The degree of asymmetry in equi-
librium outcomes needed to satisfy (S.19) depends on how large k0 is.

3Recall that Yq is a strategic substitute of Yp if the index ηp(Yq�Y r |θp) is increasing in Yq keeping Yr

fixed, but Yr is not fixed when we talk about Cov(1{Yp ≤ yp}�Yq|X).
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What conditions can lead to rejecting small values of k≡ θ12

θ13 different from k0? Sup-
pose there exist X ∗∗ with Pr(X ∈ X ∗∗) > 0 such that, whenever X ∈ X ∗∗ the equilibrium
selection mechanism concentrates over a set Y∗∗

2�3 ⊂ A2 ×A3 such that(
y2′ − y2

y3 − y3′
)
>

1
k0

∀(y2� y3) �= (
y2′
� y3′) : (y2� y3)� (y2′

� y3′) ∈ Y∗∗
2�3� (19′)

Under (19′) there would now exist a negative relationship betweenη1(Y 2�Y 3|θ1) andY 3

wheneverX ∈ X ∗∗. By Theorem 1, this would now yield

X ∈ X ∗∗ =⇒ Cov
(
1
{
Y 1 ≤ y1}�Y 3|X)

< 0 ∀y1 ∈ A1� (20′)

While (S.19)–(S.20) can help us reject values of k≡ θ12

θ13 larger than k0, (19′)–(20′) can help

us reject values smaller than k0. Take any k̃ < k0 such that

Pr
(
k̃ · Cov

(
1
{
Y 1 ≤ y1}�Y 2|X)︸ ︷︷ ︸

>0 whenX ∈X ∗∗

+ Cov
(
1
{
Y 1 ≤ y1}�Y 3|X)︸ ︷︷ ︸

<0 whenX ∈X ∗∗

< 0|X ∈X ∗∗)> 0

for some y1 ∈ A1. Then any θ̃1 ∈Θwith θ̃12

θ̃13 ≤ k̃would violate our inequalities and would
therefore be rejected.

What restrictions does (19′) imply on the range of equilibrium outcomes Y∗∗
2�3? Once

again suppose k0 = 2. Then the following set satisfies (20′):

Y∗∗
2�3 = {

(0�3)� (1�2)� (2�1)� (3�0)
}
�

Let us compare this set with the example given above for Y∗
2�3. In both instances we have

a negative relationship between y2 and y3 (a natural condition with strategic substi-
tutes), but while Y∗

2�3 required a fundamentally richer range of equilibrium outcomes

for Y 3 compared with Y 2, this is not the case in Y∗∗
2�3 (both Y 2 and Y 3 can take on the

values {0�1�2�3}). It is easy to anticipate that this comparison would be reversed if we
had k0 < 1. The main insight of this example is that, if k0 is “large” (larger than 1), reject-

ing false values of θ1 where θ12

θ13 is larger than k0 requires the existence of regions where
equilibrium outcomes are fundamentally asymmetric between players 2 and 3, while

this may not be required to reject false values of θ1 where θ12

θ13 is smaller than k0. This
qualitative feature would be reversed if k0 < 1. The main insight however is that having
two-sided identification power for k0 would require some degree of asymmetry in the
range of equilibrium outcomes available to the players, and the extent of this asymme-
try would depend on the specific value of k0.

Note that if we have a more general form of the strategic index,

η1(y2� y3|X;θ1) =φ12(X;θ12) · y2 +φ13(X;θ13) · y3�

where φ12(·;θ12)≥ 0 and φ13(·;θ13)≥ 0 (pairwise strategic substitutes once again), then
the results in (S.20) and (20′) could be obtained even under weaker conditions than
(S.19) and (19′), respectively, since the relative strategic effects would now be allowed
to vary withX .
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Table S1. The difference DISTp − DISTq in distance (mea-
sured in miles) between the market and the nearest distribu-
tion center for firms p and q.

DIST1 − DIST2 DIST1 − DIST3 DIST2 − DIST3

5th quantile −469 −117 −202
10th quantile −358 −91 −114
90th quantile 121 300 445
95th quantile 380 376 511

Median −21 10 41

Note: Player 1 = CVS, 2 = Rite Aid, and 3 = Walgreens.

S-D.1 The presence of player-specific payoff shifters

In principle, a condition like (S.19) could arise entirely from the properties of the under-
lying equilibrium selection mechanism. However, an argument in favor of (S.19) would
be stronger if there exist elements inX that shift individual players’ payoffs asymmetri-
cally in such a way that can generate intrinsically different ranges of equilibrium choices
across players over certain regions of X . One natural way this can occur is when X in-
cludes player-specific payoff shifters, such as in our empirical application. In this con-
text, (S.19) is more plausible to hold in markets where the nearest distribution center of
player 3 (Walgreens) is much closer than that of player 2 (Rite Aid), and the regions X ∗
could be (partially) characterized by this feature. Here we are thinking of markets where
this difference in relative distance is such that the range of profitable number of stores
is fundamentally different for players 2 and 3. Table S1 describes the difference in dis-
tance between pairs of firms in our empirical example in an effort to illuminate whether
markets with marked asymmetries are prevalent in our data.

As we can see in Table S1, there exists a nontrivial proportion of markets with sig-
nificant asymmetries in relative distance; this is true for each pair of firms and in each
direction. For example, the difference DISTCVS − DISTWalgreens is at least 30 times greater
than its median value in 10% of the markets in our sample, and at least 42 times greater
in 5% of markets. The availability of player-specific payoff shifters in our data, and the
richness of such data lead us to believe that conditions such as the one described in
(S.19) are plausible for the underlying DGP. As we outlined previously, depending on the
true parameter values, conditions like (S.19) or (19′) can hold without any significant de-
gree of asymmetry, and nontrivial confidence sets (CS) can result even without player-
specific payoff shifters. Nevertheless, the availability of player-specific payoff shifters in
our specific application and the richness displayed by such data lead us to believe that
conditions such as the one described in (S.19) and (19′) are very plausible for the under-
lying DGP in our application and can help explain why we obtained nontrivial4

4For example, the relatively large prevalence of markets where the distribution center of Walgreens was
much closer than that of CVS may help explain why the CS obtained for Rite Aid was more informative than
those of the two other firms.
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S-E. Nonzero correlation across players’ unobserved payoff shocks

Independent private shocks (Assumption 3) is a condition widely imposed in economet-
ric work on incomplete information games. Nevertheless, it is an important restriction
whose validity depends on the richness of the observable covariates X present in the
data. It can be violated in many ways, but one that is particularly interesting is the case
where there exist market-level unobserved shocks. In our context, we can model their
presence by partitioning X as X = (XO�XU), where XO denotes the elements in X ob-
served by the econometrician andXU denotes the unobserved market-level shocks. For
simplicity suppose XU ∈ R and also suppose that the strategic index ηp does not de-
pend directly on XU and is correctly specified by the econometrician. Also, maintain
that, conditional on the entire vectorX , our assumptions hold and therefore,

Cov
(
1
{
Yp ≤ yp}�ηp(Y−p;XO

)|X) ≥ 0 w.p.1 inX. (S.21)

In this scenario the econometrician effectively misspecifies the model, excluding XU

from the vector of covariates X and using only the incomplete vector XO , basing infer-
ence on the (possibly incorrect) restriction

Cov
(
1
{
Yp ≤ yp}�ηp(Y−p;XO

)|XO
) ≥ 0 w.p.1 inX. (21′)

Our results would be inconsistent5 if the above inequality is violated with positive prob-
ability at the true strategic index function. Using the so-called law of total covariance,

Cov
(
1
{
Yp ≤ yp}�ηp(Y−p;XO

)|XO
)

=E[Cov
(
1
{
Yp ≤ yp}�ηp(Y−p;XO

)|X)|XO
]︸ ︷︷ ︸

≥0 from (S.21)

+ Cov
(
E
[
1
{
Yp ≤ yp}|X]

�E
[
ηp

(
Y−p;XO

)|X]|XO
)︸ ︷︷ ︸

sign undetermined

�

(S.22)

Our results would be inconsistent only if the second term is negative. This, in turn, will
be determined by the way in which the unobserved shockXU shifts players’ payoff func-
tions and by the properties of the equilibrium selection mechanism. Suppose the com-
mon shock XU shifts all players’ payoffs in the same direction. To make matters more
precise, suppose all players’ equilibrium choices are almost surely nondecreasing in XU

(the conclusion to follow will also hold if equilibrium choices are nonincreasing in XU ;
all that matters is that they are all affected in the same direction). Then the presence
of XU will have very different implications if actions are strategic complements versus
substitutes. Suppose all actions Y−p are strategic complements of Yp. Then, for almost
every (a.e.) XO , both E[1{Yp ≤ yp}|XU�XO] and E[ηp(Y−p;XO)|XU�XO] are nonin-
creasing inXU , which would lead to Cov(E[1{Yp ≤ yp}|X]�E[ηp(Y−p;XO)|X]|XO) be-
ing nonnegative. In this scenario (21′) would be true and our results would not be in-
consistent. On the other hand, if all actions Y−p are strategic substitutes of Yp, then

5Inconsistency here occurs when our CS excludes the true strategic index function.
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E[ηp(Y−p;XO)|XU�XO] would be nondecreasing inXU , leading to the possibility that
Cov(E[1{Yp ≤ yp}|X]�E[ηp(Y−p;XO)|X]|XO) is negative. This in turn could lead to a
violation of (21′) and inconsistency of our results.

In the presence of an unobserved common shock that shifts all payoffs in the same
direction, a game of strategic complements has a better possibility of preserving con-
sistency. In general, one way to guard against inconsistency would be to choose an in-
ference range for the observable covariates where the magnitude of the second term in
(S.22) may be mitigated. While the functional form of the strategic index can help guide
the choice of such a range, it would also require, in general, more precise assumptions
about the direction in which payoff functions shift with the observable covariates in-
cluded.

S-F. Monte Carlo experiments continued: Performance under violations to

our assumptions

Our last goal in this section is to investigate the extent to which the properties of our
CS break down when some of our key assumptions are violated. Specifically we want to
study what happens when two key conditions are violated:

(i) Violations to Assumption 3 introduce correlation in players’ private shocks.

(ii) Violations to Assumption 1. Specifically, to the assumption that the strategic index
ηp can be expressed as a function solely of observable payoff shiftersX .

To modify our design in a way that violates both assumptions, the demand system is
now given by

P1 = ζ1 ·Xa − (
λ1 + δ1 ·Xb

) ·Y 1 − (
β12 + γ12 ·Xb + ρ · ζ) ·Y 2

− (
β13 + γ13 ·Xb + ρ · ζ) ·Y 3�

P2 = ζ2 ·Xa − (
λ2 + δ2 ·Xb

) ·Y 2 − (
β21 + γ21 ·Xb + ρ · ζ) ·Y 1

− (
β23 + γ23 ·Xb + ρ · ζ) ·Y 3�

P3 = ζ3 ·Xa − (
λ3 + δ3 ·Xb

) ·Y 3 − (
β31 + γ31 ·Xb + ρ · ζ) ·Y 1

− (
β32 + γ32 ·Xb + ρ · ζ) ·Y 2�

where ζ is unobserved by the econometrician but perfectly observed by all three firms
and ρ is a parameter that measures the importance of ζ as a payoff shifter. Since the lat-
ter is a common component of players’ private shocks, ρ also provides a measure of the
correlation between players’ private shocks. We generate ζ ∼U[0�1], independent of all
other covariates in the model. With this to the demand system, it is no longer possible to
express the strategic index ηp as a function only of observables. There is also correlation
in payoff shocks unobserved by the econometrician, violating Assumption 3. As a result
of these violations, the main result in Theorem 1 is no longer valid. For finite samples,
our a priori conjectures are the as follows:
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Table S2. Observed frequency with which θ0 was INCLUDED in our CS when Assumptions 1
and 3 are violated.

95th Percentile Maximum
Target Target Observed Observed

Coverage: 95% Coverage: 99% Value of Value of
Value of ρ (c1−α = 1�645) (c1−α = 2�33) Test Statistic Test Statistic

ρ= 0�25 95�2% 100% 1�627 2�216
ρ= 0�50 83�3% 96�2% 2�142 3�398
ρ= 1 48�3% 66�3% 4�686 7�638
ρ= 2 30% 40�9% 8�082 13�965

Note: 1000 simulated samples of size n= 2000.

Table S3. Observed frequency with which θb was EXCLUDED from our CS when Assumptions
1 and 3 are violated.

95th Percentile Maximum
Target Target Observed Observed

Coverage: 95% Coverage: 99% Value of Value of
Value of ρ (c1−α = 1�645) (c1−α = 2�33) Test Statistic Test Statistic

ρ= 0�25 77�1% 70�4% 14�693 22�551
ρ= 0�50 71�5% 64�3% 13�292 24�154
ρ= 1 79�6% 74�5% 15�951 21�753
ρ= 2 85�4% 81�4% 20�797 29�267

Note: 1000 simulated samples of size n= 2000.

(a) The asymptotic predictions of our approach should retain some of their validity
for small values of ρ (i.e., small correlation between private shocks).

(b) For increasingly larger values of ρ (i.e., larger correlation between players’ private
shocks), our approach has the potential to produce empty confidence sets, which would
in turn reveal that the model is misspecified.

To investigate the validity of our conjectures we repeat two of the exercises done previ-
ously in Tables 3 and 4. We generated 1000 samples of size n= 2000 and we tried different
values of ρ. For each one we computed the frequency with which our CS included θ0 and
excluded θb (as defined above). According to our conjectures, our approach should still
lead us to reject the fake value θb and, for increasingly larger values of ρ, it should also
lead us to reject θ0. Our results are summarized in Tables S2 and S3, and are directly
comparable to those in Table 3 and in the second panel in Table 4.

The results in Tables S2 and S3 are in line with our previous conjectures. First, the
ability of our approach to reject the false value θb is not affected by misspecification
(if anything, the propensity to reject θb is increased by the misspecification). Regarding
the inclusion of θ0 in our CS, when our model is only slightly misspecified and ρ is rel-
atively small, our results remain very much in line with the asymptotic predictions. As
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the model becomes increasingly misspecified and ρ is larger, our procedure rejects θ0

because Theorem 1 is no longer true.
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