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Response mode and stochastic choice together explain
preference reversals

Sean M. Collins
Economics Department, Fordham University

Duncan James
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Informed by Grether and Plott (1979) and Cox and Grether (1996), we imple-
ment various preference elicitation procedures over a parameter grid. First, we
find a lower incidence of preference reversals for probability equivalents from
the dual-to-selling version of Becker, Degroot, and Marschak (1964; BDM) than
for certainty equivalents from traditional BDM—consistent with conjectures re-
garding response mode. Second, the Blavatskyy (2009, 2012) model of probabilis-
tic choice can explain the incidence of preference reversals when using proba-
bility equivalents. Thus, between response mode (outside the Blavatskyy model)
and stochastic choice (as per Blavatskyy), preference reversals in the original cer-
tainty equivalent case seem to be explained. We also present estimates for risk
and stochasticity parameters; the former are not correlated across mechanisms,
but the latter are. Finally, relatively more error-laden behavior (based on within-
mechanism checks) can be associated with fewer reversals across mechanisms.
The data make clear, empirically, the logical proposition that reducing reversals
requires only a better “match” with binary choice, not necessarily rational behav-
ior at any deeper level.

Keywords. Preference reversals, probabilistic choice, mechanism design, institu-
tions.

JEL classification. C91, D47, D81.

The preference reversal phenomenon has been resistant to solution for decades.
Lichtenstein and Slovic (1971, 1973) defined the field. They found that, for a given sub-
ject, there is a substantial likelihood that the subject’s responses regarding a set of lot-
teries will differ across mechanisms. Furthermore, those responses will not be rational-
izable by a single set of expected utility preferences. There, as in subsequent research,
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the two mechanisms usually juxtaposed are binary (either/or) choice and the selling
version of the Becker, Degroot, and Marschak (1964) procedure (hereafter BDM).

The existence of the preference reversal phenomenon was found to be robust to the
methodological variations implemented by Grether and Plott (1979). Cox and Grether
(1996) succeeded in reducing the incidence of preference reversals, but did so by re-
placing BDM with various multiperson markets as the valuation task. This changed one
aspect of the problem from an individual decision-making setting to a market setting.
In this paper, we seek to determine whether one can reduce the incidence of preference
reversals while remaining entirely within the realm of individual decision-making. In
particular, we set out to see whether using a form of BDM that has as its response mode
not currency, but probability, reduces the incidence of preference reversals. That this
might be possible is suggested by a discussion in Grether and Plott, based on work by
Slovic (1975). There it is conjectured that information processing, as influenced by re-
sponse mode, might play a role in generating preference reversals (a conjecture that has
also received some follow-up study, notably by Tversky, Slovic, and Kahneman (1990)).

In the data reported in this paper, we find that between (a) changing response mode
from currency to probabilities and (b) allowing for stochastic choice (as per Blavatskyy
(2009, 2012)), one is able to account for the preference reversal phenomenon.

As an adjunct to this, we present parametric estimates from the data generated
within the preference reversal experiments, something notably absent from the previ-
ous 40+ years of research on the topic. This allows cross-mechanism comparisons for
risk preference parameters (analogous to Isaac and James (2000) and Berg, Dickhaut,
and McCabe (2005)) and similarly for the parameter governing stochasticity-in-choice
(as per Blavatskyy). We find that risk preference parameters are uncorrelated across
mechanisms, but that the stochasticity parameters are correlated across mechanisms.
This further supports the explanation that mechanism-specific mapping of stochastic
choice to asymmetric deviations in valuation (relative to risk neutrality) is responsible
for generating preference reversals. That is to say, that the operational mechanics of each
procedure, notably including response mode, seem to channel stochastic choice by sub-
jects in aggregate patterns characteristic to each procedure.

1. Background

Lichtenstein and Slovic (1971) pioneered the study of preference reversals: the juxtapo-
sition of elicited certainty equivalence responses from the selling version of the BDM
procedure with the results of either/or binary choice.1 The principle is elegantly sim-
ple: optimizing agents who prefer lottery A to lottery B in a direct comparison should
place a higher valuation on lottery A than lottery B and vice versa. Furthermore, the pre-
scription of standard decision theories (such as expected utility, and many relaxations
thereof) is clear: failure to assign valuations in the same ranking as binary expressions
of preference allows for cycling in choice; cycling in choice might allow for the agent to
be systematically fleeced via a “Dutch book.”

1There is earlier work on intransitive choice, such as Tversky (1969).
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The existence of preference reversals in experimental data tells us there has to be a
problem somewhere, whether for the interpretation of such decision theories as being
descriptive of human behavior, or for the subjects who might be prone to having Dutch
books made against them, or within the complex of mechanisms, procedures, and pa-
rameters used in the experiments in question. Follow-up efforts in the literature have
sorted through a wide range of experimental design features and alternative descrip-
tive decision theories in an attempt to eliminate the discrepancy between (arguably still
prescriptive) decision theory and subject behavior.2

Grether and Plott (1979) attempt to eliminate candidate explanations including in-
come effects and hypothetical incentives. Preference reversals continued to be observed
nonetheless. Cox and Epstein (1989) set out to see whether a different valuation mech-
anism might eliminate reversals. They replace BDM with a procedure wherein a given
subject states valuations for each of two gambles in a pair; the gamble on which a higher
value is placed is then played out by the subject, while the other gamble is bought from
the subject by the experimenters for a flat fee. This procedure eliminates the multiple
random draws involved in running BDM. But preference reversals are still observed,
suggesting that the conjunction of violation of the independence axiom by subjects and
use of BDM by experimenters need not be responsible for the occurrence of preference
reversals.

Slovic (1975) initiated research investigating the possibility that differences in re-
sponse mode—the units in which responses are communicated—sets up the condi-
tions for preference reversals to occur. Tversky, Slovic, and Kahneman (1990) present
evidence, consistent with that in Cox and Epstein, that changing from BDM to another
mechanism that is ordinal in operation does not eliminate preference reversals. The
Tversky, Slovic, and Kahneman (1990) procedure uses “prices” only as a way for subjects
to indicate preference, not as costs incurred in trade. Specifically, the subject is asked
to place a minimum selling price on each of two lotteries; the subject is then asked to
express direct preference for one lottery or the other; the subject knows that one of the
two preceding tasks will subsequently be selected for actual payment, at which point
either the higher “priced” lottery (if the first task is randomly drawn) or the directly pre-
ferred lottery (if the second task is randomly drawn) will be played out for money. The
authors point out that use of BDM in the presence of violation of the independence
axiom cannot explain all preference reversals, as they are still observed when using the
mechanism just described. In contrast, both scale compatibility and prominence receive
some support as possible contributing factors. Scale (in)compatibility refers to the im-
perfect correspondence between the units in which information is denoted in (a) the
attributes of an object being evaluated and (b) the response mode afforded the sub-
ject. The application to preference reversals is that asking for currency-denominated
certainty equivalents as responses in one mechanism, but in another asking for direct

2Seidl (2002) provides a thorough survey of earlier work on the preference reversal phenomenon. He
claims that the preference reversal phenomenon has been explained to be caused by three determinants:
the elicitation mode of certainty equivalents, intransitivity of preferences, and over- and/or underpricing of
lotteries. (He also considers nonlinear probabilities, as these apply to discount reversals.) We address how
our findings relate to Seidl’s survey in footnote 22.
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choice between pie charts with probability-denominated areas may initiate different
information-processing sequences in a given subject. Prominence refers to the relative
salience of attributes of a good or lottery; for instance, probability-area pie charts might
make probability more prominent in the sense that probability is considered before cur-
rency in an effectively lexicographic manner. The two explanations are not necessarily
mutually exclusive.

Another line of inquiry developed around noise-based explanations of preference
reversals. These studies also started using probability equivalents (as opposed to just
certainty equivalents, as in the original studies). MacCrimmon and Smith (1986), Cubitt,
Munro, and Starmer (2004), and Butler and Loomes (2007) all pursue versions of this
approach. However, none of them uses probability equivalents elicited in an analo-
gous manner to the way in which certainty equivalents were elicited in the original
Lichtenstein and Slovic (1971) study.

New developments in mechanism design and in the modeling of probabilistic choice
allow us to revisit this problem with new hope of finding a solution. First, instead of run-
ning the original selling version of BDM, which elicits currency-denominated certainty
equivalents, one could run a dual version of it. Relative to selling BDM, the dual-to-
selling version reverses the direction of trade (cash for lottery instead of lottery for cash)
and the response mode (probability instead of cash).3

The dual-to-selling version of BDM endows the subject with a cash amount instead
of a lottery. Subject response takes the form of a probability that is compared to a ran-
dom draw. The object obtainable by the subject in place of the initial cash endowment
is a lottery with dollar amounts of two end states disclosed at the start of the period,
but with probabilities established by the aforementioned draw. The subject exchanges
the cash amount for the lottery only if the terms she states are less favorable to her than
those established by the random draw (though in the event of an exchange, the ran-
dom draw becomes the probability used to parameterize the lottery). Thus one can elicit
probability equivalents in the same operational manner as traditional elicitation of cer-
tainty equivalents (James (2011)).

Second, there is also now available an axiomatically derived model that allows for a
particular type of probabilistic choice, can accommodate von Neumann–Morgenstern
(VNM) preference structures, and can allow for preference reversals: the stochastic pref-
erence model of Blavatskyy (2009, 2012).4 The Blavatskyy model is constructed so as
to be consistent with two main stylized facts regarding empirical studies of decision-
making under risk: (a) revealed choice appears probabilistic in nature but (b) seldom
violates stochastic dominance.

3The dual-to-selling version of BDM differs from the buying version of BDM in that the buying version
(a) still has cash as its response mode and (b) does not allow construction of intransitive cycles, as it gener-
ates noncomparable wealth positions. The dual-to-selling version both reverses the direction of trade (like
the buying version) and switches the response mode to probability. It also preserves the ability to construct
intransitive cycles, as with the selling version.

4The Blavatskyy (2009, 2012) model is within the class of models originally proposed by Luce (1959).
Blavatskyy (2014) also augments the Fechner model to allow for better correspondence with empirical ob-
servations concerning preference reversals.
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2. Research questions

The overarching concern with preference reversals is that they should not exist, at least
in a world of deterministic application of expected utility theory. Given that their exis-
tence has proven robust and durable, natural questions then present themselves: Can
preference reversals be reduced or eliminated? How do preference reversals happen in
the first place? Answering the first question might provide evidence that at least narrows
down the possible answers to the second question, and answering that first question
might be possible through systematic investigation, and variation, of the operational
mechanics of the elicitation procedures.

A possible variation could involve changing the response mode through which sub-
jects express their decisions. Slovic (1975) (and Grether and Plott (1979), citing Slovic)
raise the possibility that in asking subjects to (a) nominate currency-denominated cer-
tainty equivalents for lotteries and then (b) engage in pairwise choice between pie
chart representations of lotteries, wherein the area within each chart is probability-
denominated, experimenters might be setting subjects up to fail. The process of formu-
lating and giving a response requires information processing, and different formats for
informational input might cue up different, informal “calculational” approaches, which
might then reach different conclusions even when the algebraic substance of the input
is the same.

A natural progression within the preference reversal literature would then be to alter
BDM so as to elicit responses denominated in terms not of currency, but of probability.
This might eliminate at least some of the mismatch in media that earlier researchers hy-
pothesized might be creating the conditions for preference reversals. The dual-to-selling
version of BDM (James (2011)) is exactly suited to carrying out this perturbation (and will
be discussed further in Section 3).

Another possible cause of preference reversals is stochastic choice. It is not necessar-
ily a substitute for, but perhaps rather a complement to, the information processing con-
jecture just discussed. For example, consider the stochastic choice model of Blavatskyy
(2012). It is a system within which the probability that the decision-maker will respond
with an incorrect expression of his or her “true preference” varies as a function of the
magnitudes of the probabilities and currency amounts associated with lottery objects
being compared. This model does not incorporate a role for response mode; such con-
siderations are outside the scope of the Blavatskyy model. As such it may be possible
that both stochasticity in expression of preference, as per Blavatskyy, and dependence
of human calculation on the format of informational inputs, as per Slovic or Grether and
Plott, might each have a role in generating preference reversals.

Preference reversals are not the only possible violation of standard decision theory
that might be observed using the mechanisms employed in preference reversal stud-
ies. Observing violation of dominance in a given round is also possible. This could
take place when eliciting the certainty equivalent for a degenerate lottery. Across-round
(“chained”) dominance violations may also be observed when one provides a higher
valuation for one lottery than another, despite the former being dominated by the latter.
(This is discussed further in Section 3.) Do these other forms of “choice pathology” allow
us to further allocate the responsibility for preference reversals?
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In the results section, we will address all of these possibilities. We will also present
parametric estimates of both risk preference parameters and stochasticity parameters,
jointly estimated. These estimates also shed light on the sources—and it seems there are
no less than two—of preference reversals.

3. Design

We face a number of constraints in our design. For instance, we are compelled to use the
original mechanisms: binary choice and the selling version of BDM (Lichtenstein and
Slovic (1971, 1973)). We do also use the dual-to-selling version of BDM (James (2011)) to
systematically vary response mode while remaining in the same family of mechanisms
as the selling version of BDM.5 We thus remain entirely within the sphere of individual
decision-making mechanisms, rather than using multiperson markets. For purposes of
comparability with Grether and Plott (1979), we use what is now often referred to as the
pay one randomly (POR) payment protocol, wherein a single round from a multiround
experiment is chosen for payment.6 Additionally, our desire to implement a systematic
and broad-based set of comparison lotteries leads us to implement a parameter grid
in the spirit of Butler and Loomes (2007). We interpret this grid in the context of the
probabilistic choice model of Blavatskyy (2009, 2012).

The preference reversal literature has typically paired a p bet (with a relatively higher
probability of a lower upstate payoff) and a $ bet (with a relatively lower probability of a
higher upstate payoff). Because the grid design we employ contains multiple such pairs,
we denote the p bet and the $ bet in a given pair of gambles, i, as Pi and Di, respectively.
The grid first presented in Figure 1 graphically illustrates the probabilities and paired
outcomes of lotteries with dichotomous outcomes. Each lottery has a $0 down-state out-
come. The grid then organizes ordered pairs of probabilities and dollar amounts, which
are in turn representative of different gambles (including degenerate gambles, already
familiar to economists as certainty equivalents, along the top boundary of the grid).

In traditional preference reversal studies, the numerical elicitation task (BDM) asks
the subject to evaluate a gamble located in the interior of the grid, by nominating a dollar
amount on the upper boundary of the grid that is acceptable in place of the gamble. This
task is then repeated for another such gamble. In the binary choice task, an either/or
choice takes place between these two “interior” gambles.

The dual-to-selling BDM mechanism reverses the action over the grid. Using it for
probability elicitation in the “down” direction, the subject starts out with a currency
amount on the upper boundary of the grid, then nominates probability equivalents that
complete the parameterization of lotteries in the grid below.

5Bohnet and Zeckhauser (2004) and Bohnet, Greig, Herrmann, and Zeckhauser (2008) present a mecha-
nism with similar incentive properties but different operational mechanics. Andreoni and Sprenger (2011)
use a related list mechanism.

6The pay one randomly incentive system has been proven by Azrieli, Chambers, and Healy (2012) to be
the only incentive compatible payment protocol over multiple rounds, given a hypothesis that any “under-
lying” preferences are monotonic. A recent study by Cox, Sadiraj, and Schmidt (2014) examines the impact
of payment protocol experimentally.
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Figure 1. Grid of lotteries around the Butler and Loomes (2007) points.

The dual-to-selling procedure works in the following manner. The subject is en-
dowed with a cash amount and is asked to nominate the probability of the high state
outcome that would make the latter gamble acceptable in place of that which the sub-
ject was endowed with initially. Naturally, the subject is “kept honest” in this endeavor
by comparing the probability they nominate to a draw from a uniform distribution over
[0�1], with the subject only making the exchange if the number they nominate is less
than the number drawn from the uniform distribution. Suppose the exchange is made;
a second draw then takes place to determine the realization of the end states in the gam-
ble. That draw is from a uniform [0�1], but the mapping of the second draw to the occur-
rence of either the high or low end state is governed by the realization of the first draw. If
the second draw is equal to or less than (resp. greater than) the first draw, the high pay-
off end state (resp. low state) is realized. This is a dual to the selling version of BDM, the
traditional mechanism of the preference reversal literature, with response mode now in
probability, rather than currency.

This procedure was used as described above for elicitation of probability equiva-
lents in the down direction in the grid; that is, when the subject was initially endowed
with cash. It was also used for elicitation of probability equivalents when the possible ex-
change was lottery for lottery. These rounds were run as a check/calibration with respect
to Butler and Loomes’ study, and not as natural pairs or mirror images to the original
elicitation task. Instructions detailing both the dual-to-selling version of BDM and the
selling version of BDM may be found in Appendix C, available in a supplementary file on
the journal website, http://qeconomics.org/supp/437/supplement.pdf. (Appendix B is
also available in the supplementary file. Code and data are available in another supple-

http://qeconomics.org/supp/437/supplement.pdf
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mentary file on the journal website, http://qeconomics.org/supp/437/code_and_data.
zip.)

It should also be noted that the nature of the dual-to-selling mechanism imposes
constraints on the ordering of rounds within an experiment. Since the lotteries in dual-
to-selling are not fully specified initially, binary choice involving these lotteries must
take place after subjects have specified probability equivalents. This in turn necessitated
checks against subjects being able to manipulate this aspect of the design. Subjects did
not have any way to know that subsequent binary choices would be related to earlier
responses, and binary choice did not involve the exact probability numbers subjects had
submitted, but rather lottery probabilities generated by adding a small masking layer to
their original answers (drawn from either a discrete uniform distribution over {0�01�0�02}
or over {−0�01�−0�02}). This also eliminated the possibility of indifference between the
pair of lotteries presented in the binary choice phase. Note also that Cox and Grether
(1996, p. 385) employed endogeneity of a similar kind.7

Finally, we should note that earlier work on imprecision and preference reversals
by MacCrimmon and Smith (1986) and by Butler and Loomes (2007) explores whether
imprecision in preference over certainty equivalents can lead to certainty equivalents
that are higher (resp. lower) for the gamble otherwise revealed in binary choice to be
dispreferred (resp. preferred). Butler and Loomes (2007) graphically represent the range
of valuation responses under the imprecision by cones emanating from the gambles
being valued.

The gambles used in Butler and Loomes, for example, are P4 and D4 (only) in the
grid.8 But might not the incidence of reversals change as one varies the Pi and Di pairs
being valued and ranked? The axiomatically derived theory of probabilistic choice pro-
posed by Blavatskyy (2012) can be used to make just such a prediction about the inci-
dence/frequency of occurrence of preference reversals at different locations within the
design grid.

In brief, Blavatskyy (2009, 2012) conjectures that an individual chooses some lottery
A over B with probability

p(A�B)= ϕ(u(A)− u(A∧B))

ϕ(u(A)− u(A∧B))+ϕ(u(B)− u(A∧B))
� (1)

7The same process of improvement or worsening was applied across all mechanism pairings and rounds.
That is to say, it was applied to binary choice even to lotteries that were fully specified at the outset, as with
certainty equivalence. The lottery associated with higher upfront cash value in dual-to-selling BDM or the
higher certainty equivalent in selling BDM was always improved. The lottery with the higher probability of
the reference lottery outcome was improved in the “projecting left” and “projecting right” cases. The other
lottery in that binary choice pair always worsened. All numerical computations in this paper accurately
reflect these adjustments.

8While we used U.S. dollar (USD) denominations that were half as great as Butler and Loomes’s (2007)
denominations in Australian dollars, the Australian dollar bought a little more than half as much USD at
the time Butler and Loomes ran their experiments. We return to this point in footnote 17. However, the
primary purpose in varying parameters across the grid is to vary the “relative” distance of the gambles to
the boundaries in question, and not to exactly recreate the conditions under which the Butler and Loomes
study was conducted.

http://qeconomics.org/supp/437/code_and_data.zip
http://qeconomics.org/supp/437/code_and_data.zip
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where u(·) is the von Neumann–Morgenstern expected utility function, ϕ : R+ → R+ is
a nondecreasing function with ϕ(0) = 0, and A∧B denotes the greatest lower bound on
A and B in terms of weak stochastic dominance. The Blavatskyy model makes distinct
predictions for “either/or” binary choice and for valuation elicitation procedures such
as BDM and dual-to-selling BDM.

Blavatskyy (2009) offers a means by which this model can allow for preference re-
versals. In the model, the certainty and probability equivalents of a lottery are random
variables. For instance, the certainty equivalent of lottery A is a cumulative distribution
function (c.d.f.) CEA = p(x�A), where x is the dollar amount of the certainty equiva-
lent (i.e., a degenerate lottery). The observed certainty equivalent is one possible draw
from this distribution. The probability that an individual states a higher certainty equiv-
alent for lottery B than lottery A is p(CEB > CEA). Thus, the probability that one form
of preference reversal is observed is p(A�B) ·p(CEB > CEA). A mathematically detailed
description of the Blavatskyy model may be found in Appendix A.

An application of the Blavatskyy model to the grid-like design we implement is illus-
trated in Figure 2. Illustrated in the figure are the lower and upper bounds of the 35%
confidence intervals for cash equivalents as predicted by a two-parameter Blavatskyy
model fitted for a selected subject.9 The illustrated case focuses solely on the possible
role of stochasticity in certainty equivalents elicited via BDM. The Blavatskyy model also

Figure 2. Example of Blavatskyy model 35% confidence intervals for gambles P4 and D4 and
gambles P1 and D1.

9Subject 19 was selected for the confidence intervals illustrated in Figures 2 and 3 because the subject
is “typical”—the subject’s two estimated parameters have the lowest Euclidean distance to the median of
those estimated within the sample.
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predicts a certain probability of choosing either P4 or D4 in binary choice.10 Assuming
for the moment that stochasticity in binary choice does not contribute to reversals, one
would expect to see a lower incidence of reversals in the cross section of results com-
paring gambles P1 and D1 than in the cross section of results comparing P4 and D4,
all else constant. In this specific example, the lack of overlap between the confidence
intervals associated with P1 and D1 on the upper boundary signifies that variation in
certainty equivalent response is less likely to reverse the ordering of the certainty equiv-
alents than for P4 and D4, for which the confidence intervals do overlap on the upper
boundary.

For other elicitation procedures and types of exchange, the Blavatskyy model makes
analogous predictions to those just described. Figure 3 illustrates the four cases we con-
sider in this study: project up, project down, project left, and project right.

Table 1 describes the treatments in the experimental design and details the parame-
terization of the p-bet and $-bet pairs.11 For all treatments, the distance to the “bound-

Figure 3. Example of Blavatskyy model 35% confidence intervals by treatment for gambles P4
and D4.

10For the gambles illustrated in Figure 2, the fitted model predicts that the subject has an approximately
49% chance of selecting gamble P4 over D4 and a 26% chance of selecting P1 over D1 in binary choice.

11Experiments were computerized with z-Tree (Fischbacher (2007)). Subjects were invited from a
database of volunteers over e-mail using ORSEE (Greiner (2004)) and by manually sent e-mails from the
database when ORSEE was unavailable.
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Table 1. Treatments and parameters defining the p-bet and $-bet grid.

Treatment Name Elicitation Mechanism Elicited Value p Bets $ Bets

Project up Selling BDM Certainty P1: 0�93 ◦ $12 D1: 0�48 ◦ $40
(up) (lottery for cash) equivalent (CE) P2: 0�85 ◦ $12 D2: 0�40 ◦ $40

P3: 0�78 ◦ $12 D3: 0�33 ◦ $40
Project down Dual-to-selling BDM Probability P4: 0�70 ◦ $12 D4: 0�25 ◦ $40

(down) (cash for lottery) equivalent (PE) P5: 0�62 ◦ $12 D5: 0�17 ◦ $40

Project left Dual-to-selling BDM Probability P6: 0�70 ◦ $2 D6: 0�25 ◦ $30
(left) (lottery for lottery) equivalent (PE) P4: 0�70 ◦ $12 D4: 0�25 ◦ $40

P7: 0�70 ◦ $22 D7: 0�25 ◦ $50
Project right Dual-to-selling BDM Probability P8: 0�70 ◦ $32 D8: 0�25 ◦ $60

(right) (lottery for lottery) equivalent (PE) P9: 0�70 ◦ $42 D9: 0�25 ◦ $70

Note: The p bets (high probability bets) and the $ bets (high up-state payoff bets) in italics were repeated as an ordering
control. The down-state outcome of all bets is $0. The points evaluated in Butler and Loomes (B&L) are P4 and D4. Certainty
equivalents for the vertical p bets (P6, P4, P7, P8, and P9) were also collected, as were certainty equivalents and probability
equivalents for 0 ◦ $12 and 1 ◦ $12.

ary” of the grid is varied. For up and down, we collect responses for the vertical pairs of
p bets and $ bets (P1–P5 and D1–D5) in the grid. For left and right, we collect responses
for the horizontal pairs of gambles (P6–P9 and D6–D9).

The remaining details of the design are then as follows: 60 subjects participated in
the experiment, each making 90 incentivized decisions producing a total of 5400 ob-
servations. A single round was randomly selected for payment, as in Grether and Plott
(1979). Of the 90 decisions, each subject made 48 selling/dual-to-selling BDM deci-
sions followed by 25 binary choice decisions and 17 additional selling/dual-to-selling
BDM decisions as an ordering control. The first block of 48 was divided into 16 cer-
tainty equivalent elicitations (projecting up to the upper boundary, using the selling
version of BDM), 12 probability elicitations (projecting down to interior gambles, us-
ing the dual-to-selling version of BDM), 10 probability elicitations (projecting left from
boundary gambles to interior gambles, using the dual), and 10 more probability elici-
tations (projecting right from interior gambles to boundary gambles, using the dual).12

Within blocks, ordering of tasks was varied as a further control.13

12The reader may wonder why the number of observations varies for each direction/mechanism combi-
nation. For all treatments, numerical responses were elicited for 10 grid points (P1–P5 and D1–D5 for up
and down or P6–P9 and D6–D9 for left and right) listed in Table 1. For each of up and down, two dominance
checks (detailed in the text) were conducted; these checks relied on degenerate gambles, but were not con-
ducted in left or right, as these latter two treatments did not involve either the upper or lower boundaries
of the grid. For up (the “traditional” preference reversal treatment), we provided for violation patterns in
certainty equivalents technically possible for certainty equivalent elicitation only by also eliciting P6–P9,
omitting P4 as it was elicited previously.

13Within the first block, there were a roughly similar number of observations for all six permutations of
lottery for cash, cash for lottery, and lottery for lottery. The second block consisted of binary choice. The
third block replicated the ordering of the first block and consisted of a subset of the p bets and $ bets in
the first block as an ordering control (as noted in Table 1). We find that there is no statistical difference
between the frequency of reversals due to order within the sequence of the treatments by a subject-level
Mann–Whitney test on number of reversals (p ≈ 0�3952 for up and p ≈ 0�09915 for right, with no in-sample
difference for down and left; see Table 3).
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“Dominance checks” were employed for each version of BDM. One check was the
inclusion of rounds employing degenerate lotteries, for which the response required
by the dominant strategy of truthful revelation is known to the experimenter. Note
that the Blavatskyy model does not allow for violation of dominance in this form: the
probabilities assigned by the Blavatskyy model in this case are themselves degenerate,
and thus do not allow for any response other than the surplus-maximizing dominant
strategy.

Another kind of check was formed by the nature of the grid itself: in the absence
of probabilistic choice, but assuming choice respects first-order stochastic dominance,
as one descends vertically from Pi to Pi + 1 or from Di to Di + 1, the “true” valua-
tion one places on gamble i + 1 should necessarily be lower than the true valuation
placed on gamble i, as both gambles have the same end states but gamble i + 1 awards
less probability mass to the high-state outcome. We denote placing a higher valuation
on gamble i + 1 (or i + 2, i + 3, . . . ) than gamble i in the grid a chained dominance
violation.

The Blavatskyy model allows for violation of these orderings and can offer predic-
tions as to the frequency of such occurrences. How? It is true that for binary choice be-
tween any two lotteries, the Blavatskyy model implies that choice must satisfy first-order
stochastic dominance; that is, an individual always prefers A to B if A stochastically
dominates B (in which case, B = A ∧ B) and vice versa. But for numerical valuations,
such as those elicited by BDM, the model does allow for a stochastically dominated lot-
tery to be assigned a higher valuation than that assigned to the lottery that dominates
it. This is possible because in Blavatskyy’s theory of how valuation is arrived at in BDM,
the p(A�B) function at the heart of the Blavatskyy model is applied repeatedly; that is,
the subject is conjectured to behave as if facing a continuum of binary choices between
(a) the lottery being valued and (b) a continuum of certainty dollar amounts. The sub-
ject is modeled as (i) making a p(A�B) assessment between each such “pair.” Then (ii) a
c.d.f. is formed from the continuum of p(A�B) assessments (i.e., assigning probability
mass to the events, which in this case are particular dollar amounts for the certainty
equivalent). Finally, (iii) a draw is made from this c.d.f. This draw is the subject’s re-
sponse, which is what would ultimately be observed by the experimenter. A certainty
equivalent arrived at by this process is the outcome of a process including and reflecting
stochastic choice, and two such certainty equivalents may be observed in the reverse
order to that suggested by first-order stochastic dominance. Analogous misalignment in
numerical responses may also be observed for probability equivalents.

4. Results

4.1 Preview of findings

We find that the incidence of preference reversals can be explained by two factors, which
are uncovered in two steps. First, switching the numerical elicitation procedure from
traditional BDM to dual-to-selling BDM, thus altering response mode, reduces the fre-
quency of reversals. Second, such reversals as remain at that point can then by explained
by stochastic choice as per the Blavatskyy model.
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Table 2. Proportion of the subject pool exhibiting a given number of reversals.

Percent of Subject Pool

Number of Reversals Project Up Project Down Project Left Project Right

0 (Minimum possible) 0�1167 0�2000 0�1000 0�1833
1 0�2167 0�4500 0�2167 0�3167
2 0�1667 0�1833 0�3333 0�3333
3 0�2333 0�1167 0�2667 0�0833
4 0�1500 0�0500 0�0833 0�0667
5 (Maximum possible) 0�1167 0�0000 0�0000 0�0167

Additionally, we find that this lower incidence of reversals for comparisons of dual-
to-selling BDM and binary choice is not necessarily evidence of either greater subject
rationality or a better elicitation procedure. This is made clear by the fact that fewer re-
versals are observed when using the dual-to-selling version of BDM, but more violations
of prescribed decision-theoretic behavior are observed internal to this version than in-
ternal to the traditional version of BDM.

4.2 Role of the elicitation procedure and of the response mode inherent in each

First of all, we find fewer reversals in the project down treatment than in the project up.
Table 2 summarizes results across all mechanism/parameterizations, presenting them
on a proportion frequency basis.

There are clear differences in prevalence of reversals across treatments. The up treat-
ment (the original Lichtenstein and Slovic preference reversal comparison) exhibits by
far the greatest proportion of occurrences, followed by left; right is associated with a still
lower incidence of reversals, while down exhibits the lowest. A χ2 test of homogeneity
rejects that the up and down columns of Table 2 are the same (p ≈ 0�0023); obviously
down has more subjects who exhibit few or no reversals.

This finding suggests that changing to a different valuation mechanism with a dif-
ferent response mode has some efficacy in eliminating reversals. As such, it seems that
scale incompatibility might be a cause of at least some of the up reversals.14

4.3 Blavatskyy model predictions and fit

The portion of preference reversals that is not eliminated with a change in response
mode appears to be explained by stochasticity-in-choice, as per the Blavatskyy model.

14Suppose one were to raise the question, “Is endogenization of the lotteries to be used in binary choice
sufficient in itself to change the rate of reversals?” To begin with, it is not obvious a priori that we would
expect such to be the case. Also, the similar approach used by Cox and Grether (1996) did not appear to have
any such effect. Furthermore, empirically we see that there is not a consistent, across-the-board effect of
that sort in our data. Left, using endogenized lotteries, exhibits significantly different (p< 0�0001 in a χ2 test
over proportions) and greater incidence of reversal than its paired treatment, right, which has initially fully
specified lotteries as the basis for binary choice. Down, using endogenized lotteries, exhibits a significantly
different (p≈ 0�0046) and lower rate of reversals than its paired treatment, up.



838 Collins and James Quantitative Economics 6 (2015)

That is to say, the Blavatskyy model can explain the frequency of preference reversals
observed with the dual-to-selling version of BDM, but cannot explain the frequency of
reversals observed with the selling version of BDM. Conversely, the response mode can
explain the reduction in frequency of preference reversals in changing from certainty
equivalents to probability equivalents, but cannot explain the continued, albeit dimin-
ished, existence of preference reversals under the latter.

Table 3 presents, for each treatment, for each comparison pair of lotteries, both
the raw frequency of reversals and the fitted frequency from the Blavatskyy model. It
does so for what have been termed in the literature standard and nonstandard types
of reversal.15 Standard reversals involve selection of the p bet over the $ bet in binary
choice, while nonstandard reversals involve a choice of the $ bet over the p bet in binary
choice (each contravening their respective certainty equivalent orderings). 16 Fitting of
the model is done on the individual level and employs joint maximum likelihood esti-
mation using data from the selling version of BDM, the dual-to-selling version of BDM,
and binary choice. The estimation procedures are detailed in Appendix A.7.

The results provide constructive, specific feedback concerning the Blavatskyy model.
The fitted model works well throughout most of the design space—with the notable ex-
ception of the traditional juxtaposition of BDM certainty equivalents and binary choice.
In each of treatments left and right, the fitted Blavatskyy model appears to miss in
a roughly symmetrical manner, and the overall averages of predicted and actual are
close (see the “Total” row). Down, however, shows a systematic tendency by the fitted
Blavatskyy model applied in this setting to overpredict standard reversals and in the
one possible instance of nonstandard reversal, underprediction. By far the worst perfor-
mance of the fitted Blavatskyy model in predicting reversals is the up treatment, as the
model systematically underpredicts standard reversals and overpredicts nonstandard
reversals in this case.17 This opposite-in-sign performance, compared to that in down,
also exhibits far greater magnitudes in terms of the size of the misses. This supports
the multicausal (response mode and probabilistic choice) explanation of preference
reversals, as the “odd pairing out” in terms of excess reversals is the one with the “mis-
matched units”: BDM, eliciting dollar-denominated certainty equivalents, juxtaposed
with probability-area pie charts.

15The Blavatskyy model also predicts the incidence of “strong reversals” discussed in Fishburn (1988)
and Butler and Loomes (2007). An analysis of strong reversals is presented in Appendix B.3.

16In down, it is possible to observe a standard reversal (only) when the upfront value of the $ bet exceeds
that of the p bet; it is possible to observe a nonstandard reversal (only) when the upfront value of the p bet
exceeds the upfront value of the $ bet. In left, a reversal is held to have occurred when, in binary choice, a
lottery constructed to be dispreferred to that boundary lottery having a small probability of the high-state
outcome ($80) is chosen over a lottery constructed to be preferred to that boundary lottery having a large
probability of the high-state outcome ($80); as elsewhere, standard reversals involve selection of the p bet
over the $ bet in binary choice, while nonstandard involves a choice of the $ bet over the p bet in binary
choice.

17Given the differences in exchange rates (discussed in footnote 8) and other factors, one might argue
that the bets P9 and D9 are closest to the incentives used by Butler and Loomes (2007). For bets P9 and D9,
our data also exhibit more nonstandard than standard reversals in right, consistent with the findings of
Butler and Loomes.
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Table 3. Observed and predicted frequencies of types of reversals by p-bet and $-bet pair.

Project Up Project Down Project Left Project Right

Pair of Bets Standard Nonstandard Standard Nonstandard Standard Nonstandard Standard Nonstandard

P1 ◦D1 or P6 ◦D6 Observed 0�3167 0�0333 0�1833 – – 0�5000 0�1667 0�0500
(Closest) Predicted 0�1710 0�1796 0�2274 0�7466 0�1283 0�1153

P2 ◦D2 or P7 ◦D7 Observed 0�4667 0�0667 0�2167 – – 0�4833 0�1500 0�0833
Predicted 0�1892 0�1974 0�2537 0�6209 0�1623 0�1322

P3 ◦D3 or P8 ◦D8 Observed 0�4500 0�0167 0�2167 – – 0�6500 0�1833 0�1667
Predicted 0�2004 0�2172 0�3009 0�4734 0�2024 0�1832

P4 ◦D4 Observed 0�4833 0�0667 0�2333 – 0�3500 – 0�2167 0�1500
(B&L points) Predicted 0�2278 0�2237 0�3627 0�1930 0�2176 0�2412

P5 ◦D5 or P9 ◦D9 Observed 0�5333 0�0000 – 0�5167 0�0333 – 0�0667 0�3500
(Farthest) Predicted 0�2397 0�1973 0�4813 0�0357 0�0727 0�1522

Total Observed 0�4500 0�0267 0�1700 0�1033 0�0767 0�3267 0�1567 0�1600
Predicted 0�2056 0�2031 0�2289 0�0963 0�0457 0�3682 0�1557 0�1648

P2 ◦D2 or P7 ◦D7 Observed 0�4667 0�0333 0�2167 – – 0�4833 0�1167 0�1000
(Order control)

P4 ◦D4 Observed 0�4667 0�0167 0�2333 – 0�3500 – 0�1333 0�1000
(Order control)

P4 ◦D4 Observed 0�5018 0�0075 – – – – 0�0524 0�1798
B&L (2007)

Note: Reported values are observed and predicted frequencies (by the two-parameter fitted Blavatskyy model) of preference reversal by type (standard and nonstandard) as a proportion
of total possible reversals pooled across all subjects. Frequencies in boldface are outside of the 95% confidence interval. “Closest” and “farthest” refer to the relative distance to the relevant
boundary. Dashes indicate that it not possible to observe a particular type of reversal for the given parameterization, as discussed in footnote 16. Related p-values are reported in Table 12
in Appendix B.
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4.4 Chained dominance violations

In Section 3 it was noted that while the Blavatskyy model does not admit violations of
first-order stochastic dominance in the binary choice over two gambles, this does not
imply that two BDM elicitations of numerical responses must be ordered in a way that is
consistent with first-order stochastic dominance. Indeed, the model makes explicit pre-
dictions as to the frequency with which numerical responses might be out of alignment
in this fashion. Table 4 compares predictions from the fitted model to the violations that
occurred in the data.18

The raw observed frequency of chained dominance violation is lowest in up, higher
in down, and highest in right. Also, we see that by this measure the responses from up
are less “irrational” than predicted and right more so. This occurs despite the fact that
down and right are the treatments for which the fitted Blavatskyy model does its best
job of explaining preference reversals, while for up it does the worst. That is to say, the
mechanism in which subjects violate chained dominance least, the selling version of
BDM, is at the same time part of the most egregious pattern of cross-mechanism in-
consistency when paired with binary choice. In contrast, when using the dual-to-selling
version of BDM, for which subjects violate chained dominance more often, there is less
inconsistency with binary choice. We will return to this seemingly paradoxical point in
the conclusion. It turns out to prompt reconsideration of the interpretation of prefer-
ence reversals.

4.5 Single-round dominance violations

Again, we note that a testable implication of the Blavatskyy model is that subjects en-
gaged in binary choice cannot violate first-order stochastic dominance (FOSD). A fur-
ther nuance to this is that an elicited certainty or probability equivalent may never
first-order-stochastically dominate the lottery being valued, nor may it be dominated
by that lottery. Thus, certainty equivalents cannot be lower than the low-state or
higher than the high-state dollar outcomes, respectively, and analogously for probability
equivalents.

When faced with the task of assigning a certainty or probability equivalent to a
degenerate lottery, for a given mechanism there is only one response consistent with
the Blavatskyy model. For instance, nonviolation of FOSD, applied to a degenerate
lottery of $12 received with probability 1 necessarily maps to a certainty equivalent
of $12 in selling BDM. Analogously, a lottery with end states of $0 and $12, and an
upfront cash endowment of $12 necessarily maps to a probability equivalent of 1 in
dual-to-selling BDM. In other words, observing a response other than $12 in the first
case, or a probability other than 1 in the second case, is impossible in the Blavatskyy
model.

18Observation of chained dominance violation across p bets or $ bets is not possible in the left treatment
as it is in the other treatments. To change the design parameter environment so as to be able to make this
evaluation, one would also have to change the elicitation mechanism in a way that would make it no longer
directly comparable in operation to that used in the right treatment.
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Table 4. Observed and predicted frequencies of chained dominance violations across p-bet and $-bet pairs.

Panel A. p Bets Project Up Project Down Project Right

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4
(FA) (CT) (FA) (CT) (FA) (CT)

P5 (FA) Observed 0�1000 0�1333 0�1451 0�1167 0�2167 0�1451 0�2833 0�2500 0�1500 0�2500 0�5000 0�5000
Predicted 0�1106 0�1417 0�1977 0�2798 0�1120 0�1421 0�1977 0�2798 0�0377 0�1425 0�2459 0�3639

P4 Observed 0�1500 0�1833 0�2833 – 0�2000 0�2167 0�2667 – 0�1667 0�2167 0�3500 –
Predicted 0�2077 0�2714 0�3693 0�2107 0�2740 0�3693 0�0541 0�2070 0�3517

P3 Observed 0�1333 0�2167 – – 0�2833 0�2833 – – 0�1500 0�2167 – –
Predicted 0�2947 0�3810 0�2982 0�3831 0�0814 0�3094

P2 (CT) Observed 0�2500 – – – 0�3833 – – – 0�2000 – – –
Predicted 0�3973 0�3997 0�1412

Panel B. $ Bets Project Up Project Down Project Right

D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4
(FA) (CT) (FA) (CT) (FA) (CT)

D5 (FA) Observed 0�1333 0�1333 0�1667 0�2167 0�1667 0�2333 0�2333 0�1667 0�4333 0�3167 0�3500 0�3667
Predicted 0�1709 0�2461 0�3283 0�4061 0�1811 0�2559 0�3356 0�4102 0�0875 0�1259 0�1827 0�2817

D4 Observed 0�1833 0�2167 0�3167 – 0�2500 0�3167 0�3667 – 0�4667 0�3500 0�3333 –
Predicted 0�2181 0�3131 0�4124 0�2299 0�3224 0�4169 0�1631 0�2366 0�3411

D3 Observed 0�1833 0�1833 – – 0�0667 0�3167 – – 0�4500 0�3667 – –
Predicted 0�2734 0�3885 0�2855 0�3950 0�2525 0�3614

D2 (CT) Observed 0�2333 – – – 0�1333 – – – 0�4667 – – –
Predicted 0�3631 0�3724 0�3630

Note: Reported values are observed and predicted (by the two-parameter fitted Blavatskyy model) frequencies of chained violations as proportion of the total possible such violations
pooled across all subjects. Frequencies in boldface are outside of the 95% confidence interval. The acronym FA stands for “further apart” and CT stands for “closer together” on the grid in
Figure 1. Chained dominance violations cannot be observed in left, as elaborated upon in footnote 18. Related p-values are reported in Table 12 in Appendix B.
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Table 5. Percent of subject pool exhibiting a given number of dominance violations.

Percent of Subject Pool Percent of Subject Pool
All Violations Excluding Violations by 1¢ or 1%

Number of Dominance Violations Project Up Project Down Project Up Project Down

0 (Minimum possible) 0�2333 0�1500 0�3833 0�5000
1 0�5500 0�4667 0�4500 0�2000
2 (Maximum possible) 0�2167 0�3833 0�1667 0�3000

Table 5 reports the frequency with which single-round dominance violations are ob-
served in the rounds of up and down. For the undivided data set, we are unable to re-
ject the hypothesis that the distribution of violations is the same across up and down
(with p ≈ 0�1180 in a χ2 test for homogeneity). However, for direct revelation mecha-
nisms, it is typical to present a sorting of the data excluding violations of $0�01 or 1%
(Franciosi, Isaac, Pingry, and Reynolds (1993), Isaac and James (2000)). In this case, the
distribution of violations in down is statistically different from (and greater than) that of
up (p ≈ 0�0112). Thus, subjects perform no worse, and possibly better, in up rather than
down in terms of this particular measure of “rationality.”

For completeness, the analogous results for left and right, and for binary choice
are as follows. Single round dominance violations were also possible in left and right,
which involve the use of the dual-to-selling mechanism in an environment consisting of
lottery-for-lottery exchange. The possibilities for violating single-round dominance are
different in these cases. In right, FOSD is violated when a subject responds with a higher
probability equivalent on the up-state of the lottery on the right boundary of the grid
than is present on the up-state of the lottery interior to the grid. In left, responding with
a lower probability equivalent on the up-state of the interior lottery likewise constitutes
a violation of FOSD.

Unlike say, in down, in left and right, violation of dominance is in principle some-
thing that the subject can commit, and the experimenter can infer, in every round. The
proportion of responses that violated dominance in left and right are 16% and 34%, re-
spectively.

In binary choice, dominance violations were also possible. Every subject was asked,
as an exogenous design parameterization, to make an either/or choice between P9 and
D4 (P9 dominates D4). Across the entire cross section of subjects, 6�7% of subject re-
sponses violated dominance for the choice between P9 and D4.19

19Dominance violations in binary choice are observed elsewhere in the preceding literature in similarly
frequencies. For instance, Loomes, Moffatt, and Sugden (2002) observe a dominance violation incidence of
1�4% under their parameterization. Note also that within the course of our experiment, instances of domi-
nance violation could be created endogenously and were not limited to the choice between P9 and D4. This
functioned in the following manner: in down and left, subjects respond with probability equivalents; lot-
teries would then be constructed in a manner informed by these probability equivalent responses. Later, in
binary choice, situations in which one lottery dominated the other could thus be parameterized (endoge-
nously) by a subject’s earlier probability equivalent responses. This situation occurred 57 and 91 times, for
down and left, respectively. In these situations, subjects violated dominance 5�3% of the time in down and
3�3% of the time in left.
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Table 6. Intratreatment correlations between reversals, chained violations, and single-round
dominance violations.

Spearman Rank Correlation Coefficient

Project Up Project Down Project Left Project Right

Number of reversals −0�0194 0�1279 – 0�1754
and chained dominance violations

Number of reversals 0�0011 0�0471 −0�1551 0�1511
and single-round dominance violations

Number of single-round dominance violations 0�2586∗∗ 0�4098∗∗∗ – 0�3740∗∗∗
and chained dominance violations

Note: Reported values are Spearman rank correlation coefficients. The reported coefficients are intratreatment correlations
(e.g., the first cell is the correlation between the number of reversals in up and the number of chained dominance violations in
up). Chained dominance violations cannot be observed in left, as elaborated upon in footnote 18.
∗∗∗Significant at the 1% level.
∗∗Significant at the 5% level.

4.6 Correlations between preference reversals, chained dominance violations, and
single-round dominance violations

Table 6 reports the correlation between the number of preference reversals, number of
chained dominance violations, and the number of single-round dominance violations.
Looking at correlations between single-round dominance and other features of the data
is especially interesting because one is looking at a clear marker of subject mistakes
(used also by James (2007), Cason and Plott (2014)) that is outside the purview of the
Blavatskyy model. Furthermore, the presence or absence of correlation between viola-
tions of single-round dominance, which the Blavatskyy model holds to be impossible,
and the phenomena that the Blavatskyy model does attempt to explain might provide
stylized facts for the development of the next-generation models of decision-making.

As it turns out, the two different measures of within-mechanism “irrationality”—
chained dominance and single-round dominance—are significantly correlated. But
these measures of within-mechanism irrationality and that of cross-mechanism incon-
sistency, in the form of preference reversals, are not significantly correlated in cross
section. As we shall discuss further in the conclusion, within-mechanism irrationality
need not produce a preference reversal across mechanisms as long as the decisions
made in the presence of that irrationality are consistent with the decisions made in the
other mechanism. Further clues as to how this might come about are presented in the
next section, wherein parametric estimates for both risk preference and stochasticity-
in-choice are obtained.

4.7 Parametric estimates and their comparison across mechanisms

Preference reversals have been studied for over 40 years, but so far no one has con-
currently estimated risk preference parameters from such data. We do that and esti-
mate jointly the stochasticity-in-choice parameter allowed by the Blavatskyy model. It
turns out that in doing so, key evidence for explaining preference reversals is obtained.
Specifically, it appears that the stochasticity-in-choice parameter, αi, has some predic-
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tive power across mechanisms, but at the same time, the risk parameter, ρi, does not.
This suggests two things. First, subjects with fairly reliable propensities toward stochas-
ticity might be mapped differently by different mechanisms in terms of propensity to
take on risk. Second, the correspondence between the opposite mechanics of the two
BDM mechanisms and the opposite medians of each distribution of risk parameter esti-
mates (relative to risk neutrality) appears to be consistent with a role for response modes
that is outside the scope of the Blavatskyy model. The clash in response modes between
the selling version of BDM and binary choice (over probability-area pie charts) is not in-
consistent with there being different instances of scale incompatibility for each mecha-
nism, each instance possibly imparting its own asymmetry to responses made with re-
spect to given lotteries. Conversely, the relative lack of conflict between responses from
the dual-to-selling version of BDM and those from binary choice seems to result from
greater similarity of their respective mappings of subject stochasticity (in ways both
within and without the Blavatskyy model) to observable data. This is possibly because
the response modes for these two mechanisms are not at odds in the same manner as
the response modes for the selling version of BDM and for binary choice.

Let us now go into more detail about the process of estimation. So as to make the
Blavatskyy (2009, 2012) model estimable, it is necessary to choose a parametric form for
the VNM utility and ϕ(·) functions. For the utility function, we employ the constant rel-
ative risk aversion (CRRA) specification u(x) = (x1−ρi)/(1 − ρi), where ρi is the measure
of relative risk aversion. An individual is considered risk averse for ρi > 0, risk neutral for
ρi = 0, and risk loving for ρi < 0.

For ϕ(·), the function that governs the transformation between the utility of a lot-
tery and its greatest lower bound in terms of weak dominance, there exists no a priori
reason to select a particular specification. Thus we employ a power function ϕ(x) = xai ,
as suggested by Blavatskyy (2009), with αi ≥ 0. Under this specification, αi may be inter-
preted as a stochasticity parameter, since it measures the level of stochasticity (or lack
thereof) in an individual’s choices. If αi = 0, choice is entirely random (with selection of
either gamble equally likely), and as αi → ∞, choice becomes deterministic (the deci-
sion maker necessarily choosing the highest VNM-expected-utility gamble).

Figure 4 illustrates the distribution of these parameters when estimated for each
mechanism separately, using certainty equivalent, probability equivalent, and binary
choice data, respectively. As such, each histogram represents within-mechanism fit
rather than out-of-mechanism prediction. As one can see, the shape and location of the
distribution of parameter estimates appear to differ from one mechanism to the next. Is
this in fact the case? And to what extent are estimates from one mechanism consistent
with another, in that behavior in one mechanism can thus be used to predict behavior
in another mechanism? We turn next to answer those questions.

In round-robin estimation and prediction, estimates based on data from one mecha-
nism are then tested for their potential to explain the estimates based on data from each
of the other mechanisms. Figure 5 illustrates all possible cross-mechanism comparisons
of parameter estimates. The three panels on the left plot individual-level constant rel-
ative risk aversion (CRRA) parameters compared across mechanisms, while the three
panels on the right plot stochasticity parameters. All parameters were generated by max-
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Figure 4. Histogram of estimated risk preference (ρi) and stochasticity (αi) parameters.

imum likelihood (ML) estimation of the Blavatskyy model, with each subject’s parame-
ter estimate for a mechanism generated using data from that mechanism only. Identical
numerical estimates across mechanisms (i.e., preservation of cardinality) would pro-
duce a data plot that follows an upward-sloping 45 degree line. Similarly ordered, but
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Figure 5. Cross sections of estimated risk preference (ρi) and stochasticity (αi) parameters.
Note: Both the (thicker) 45 degree line and the (thinner) line of best fit, constrained to a zero
intercept, are illustrated. The latter is for the purpose of illustration of the trend and is not in-
tended for statistical interpretation.
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Table 7. The p-values of bootstrapped statistical tests on the estimated Blavatskyy parameters.

Kolmogorov–Smirnov Tests Spearman Correlation Tests

Treatment PE BC PE BC

Estimated Blavatskyy risk aversion parameters (ρ̂i)
CE < 0�0001 < 0�0001 0�8865 0�5822
PE < 0�0001 0�6824

Estimated Blavatskyy stochasticity parameters (α̂i)
CE 0�2664 0�0860 < 0�0001 0�0013
PE 0�0605 0�0035

Note: Parametric bootstraps employed 9999 replications and used the estimated parameters from the rows in generating
data from the null hypothesis. The details of the bootstrap procedure and alternative approaches are described in Appendix B.2.

not numerically identical, estimates across mechanisms (i.e., preservation of ordinality)
would produce a data plot that follow an upward-sloping pattern, but not necessarily
the 45 degree line.

Table 7 reports the results of six Kolmogorov–Smirnov and six Spearman correla-
tion coefficient tests on the distributions of estimates of ρi and αi. The reported corre-
lations are between the estimated parameters, but the calculated p-values have been
bootstrapped for the bias otherwise inherent in conducting tests on fitted parameters.
We made the following findings.

1. Individual risk preference parameter estimates from one mechanism do not in
general carry over in even ordinal terms to those of other mechanisms. That is to say,
knowing a subject’s risk aversion parameter in one mechanism will not help one predict
that subject’s risk aversion parameter in any other of these mechanisms. (This might be
thought of as a kind of preference reversal in itself.)

2. Mechanism-level regularities regarding the distributions of ρi estimates do exist,
however. Changes in the overall location and/or shape of the distributions of ρ̂i may be
predictable based on a change of mechanism in use.

3. Estimates of the αi parameter do display some cross-mechanism predictive ability
at the individual level. Specifically, the ordering across individuals of the αi estimates
largely carries over between dual-to-selling BDM, selling BDM, and binary choice.

Mechanisms matter for the overall pattern of results, but at the same time individual
subjects’ risk parameter estimates do not have any discernible ability to predict across
mechanisms.20 As noted, however, the αi parameter estimates appear to offer some pre-
dictive power across mechanisms. This may indicate that relative individual propensi-

20Consider estimates of the risk aversion parameters, ρi . First, for all pairwise comparisons of distribu-
tions of ρ̂i from treatments, according to the Kolmogorov–Smirnov test we must reject the null hypothesis
that the parameters were drawn from the same distribution. Thus, it would appear that different mech-
anisms systematically alter the distributions of estimated ρi parameters. Second, given a null hypothesis
that the true Spearman rank coefficient is equal to zero in any pairwise treatment, we are unable to reject
(Spearman rank coefficient test) that the true Spearman rank coefficient is equal to zero in any pairwise
treatment comparison. (Indeed, the within-sample coefficients are all small and negative, as reported in
Table 8.)
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Table 8. Spearman rank correlation coefficient estimates.

Risk Aversion Parameters (ρ̂i) Stochasticity Parameters (α̂i)

Treatment PE BC PE BC

CE −0�1593 −0�0297 0�6366 0�3841
PE −0�0621 0�3479

Note: Unadjusted Spearman rank correlation coefficient estimates are reported. Bootstrapped measures of bias and stan-
dard error are reported in Table 16 in Appendix B.

ties to stochasticity in choice might have some stability across mechanisms, though the
magnitude of stochasticity in choice may depend upon the mechanism.21

This fits well with the literature on the role of cognitive capacity in risky choice. There
the finding is that subject mistakes, a function of cognitive ability, generate much of
what appears to be violation of risk neutrality at small stakes (Benjamin, Brown, and
Shapiro (2013)). Cognitive ability would be carried from one mechanism to another by
the subject, though the kind of mistakes one can make (and the magnitude with which
one can make them) will differ from one mechanism to the next. Analogous findings,
on iterations of reasoning in games (Carpenter, Graham, and Wolf (2013)) and on time
preferences (Frederick (2005)) also exist.

Overall, these results might offer further support for the response mode explana-
tion for preference reversals. The same stochastic choice process on the part of a subject
might be mapped to responses differently across mechanisms. Conditions for this could
be put in place by different response modes in each mechanism. This difference in re-
sponse modes could lead to different characteristic mistakes across mechanisms.

Binary choice and the dual-to-selling version of BDM might just happen to map
stochastic decision-making to a more overlapping range of observed responses, on av-
erage across subjects, and thus reduce the incidence of preference reversals. This may
be aided by the commonality in units across probability-area pie charts and probabil-
ity equivalents. This would also be consistent with the observation that the frequency
of standard and nonstandard reversals are here observed to be symmetric in dual-to-
selling BDM, while standard reversals outnumber nonstandard reversals in BDM.

That this happens need not be a function of whether the mechanisms in question
are necessarily “good” or “bad” in the sense of not fostering any other choice patholo-
gies, for example, violation of dominance. Indeed, the dual-to-selling version of BDM
is worse than the selling version of BDM on several such scores, and yet it is in greater
agreement with the results coming from binary choice. All that is needed for greater
agreement across mechanisms might be for them to channel stochastic choice in a suf-
ficiently similar range.

21First, we cannot reject the null hypothesis that the distributions of αi estimates are the same for up and
down, but not between binary choice and the others (Kolmogorov–Smirnov test). Thus, at the aggregate
level we find that the distributions of α̂i display similar shape and location across mechanisms within the
BDM family, but not between binary choice and either BDM family mechanism. Second, the ordering of
individuals’ αi estimates are significantly and positively correlated between all mechanisms (Spearman
rank coefficient test).
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5. Discussion

Overall, switching from certainty equivalent elicitation to probability equivalent elici-
tation reduces the frequency of preference reversals in raw data and also reduces them
to a level that is predicted by the (fitted) Blavatskyy model—the latter suggesting that a
portion of reversals are due to general stochasticity in choice and would be present even
given a response mode that is less prone to generating preference reversals.22

Our systematic collection of data is summarized as follows:

• When comparing the up (certainty equivalent) and down (probability equivalent)
treatments, we see that the dual-to-selling version of BDM usually reduces the frequency
of reversals (see Table 2 in Section 4.2).

• At the same time, however, up (certainty equivalent) data usually show a lower rate
of chained dominance violations than do down (probability equivalent) data (see Table 4
in Section 4.4).

• There are also interesting regularities viewed in terms of the performance of the
fitted Blavatskyy model. It predicts reversals between binary choice and a range of nu-
merical elicitation alternatives very well in right and down, and poorly in up (see Table 3
in Section 4.3).

• Behavior not permitted by the Blavatskyy model is observed. Violations of domi-
nance in a single round are observed in selling BDM, dual-to-selling BDM, and binary
choice. This type of violation is at least as prevalent in dual-to-selling BDM as in selling
BDM.

How might one put all of this together? Of particular note is the seeming incongruity
between the data on internal-to-mechanism rationality checks and the data on across-
mechanism preference reversal. Consider the following scenario: the up treatment (us-
ing the selling version of BDM) generates chained dominance violations (a) at a low rate
within the raw data and (b) at a rate that is less than that which would be predicted by
the fitted Blavatskyy model. Indeed, subject behavior is less often in violation of chained
dominance and of single-round dominance in the up treatment than in the down treat-
ment (the latter using the dual-to-selling version of BDM), yet the greatest frequency of
preference reversals in raw data and the greatest fitted-Blavatskyy-model underpredic-
tion of preference reversals takes place for the juxtaposition of certainty equivalents and

22In the context of Seidl’s (2002) analysis (previously mentioned in footnote 2), we note the following.
First, we find support for the claim that at least one specific aspect of the elicitation mode—response mode
within the BDM mechanism—contributes to reversals. Second we find that a model of probabilistic choice
(Blavatskyy (2012)) is one way in which realized subject responses can exhibit intransitivity that can explain
the general prevalence of reversals once the response mode is accounted for. Third, we do not find evidence
of systematic over- and/or underpricing of lotteries manifested in the types of reversals observed across all
combinations of mechanism and environment (i.e., we observe that standard reversals predominate in up,
but a roughly symmetric tendency toward standard and nonstandard reversal predominate in right). In
light of this, we believe that we have been able to tie together, in a single study, an explanation of preference
reversals that may need only two factors instead of the at least three (not necessarily mutually consistent)
factors compiled by Seidl in a survey of many papers.
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binary choice data (the up pairing), and the lowest frequency of reversals for the pairing
of probability equivalents and binary choice (the down pairing).

This suggests that behavior in one mechanism that might variously be described as
irrational, mistaken, or costly according to one or another measure, such as chained or
single-round dominance violations, is not necessarily incapable of being consistent with
choices from another mechanism. Conversely, while consistency in responses across
mechanisms is necessary for a finding of rationality, it may not be sufficient.

Preference reversals might conceivably be reduced, or perhaps even eliminated, by
using numerical evaluations with nothing more to recommend them that they express
any underlying irrational behavior by subjects in a manner congruent to that in binary
choice. This is not inconsistent with the notion (Grether and Plott (1979, 1975)) that ask-
ing subjects (a) for dollar valuations of gambles and (b) to choose between probability-
area pie charts is in a sense setting subjects up to fail. The mistakes they make, or the
heuristics they employ, could well fall in different directions across the two response
media: one dollar denominated and the other arguably probability denominated. The
superior performance of down in terms of reduced preference reversals might really
be more of a superior “match,” and the basis for this match might yet turn out to be
in shared irrationality. Here, the notion of “constructed preferences” (Lichtenstein and
Slovic (2006)) might be a good conceptual basis for exploring what subjects might go
through so as to respond in a task: they must establish where their interests lie and how
to craft a response that best serves those interests in highly, if subtly, structured tasks.
Put this way, it seems natural that various tasks, each with its own structure, might each
generate their own respective scatters of responses. Some pairs of these scatters might
overlap more than others.23

Overall, between switching the response mode from certainty equivalent elicita-
tion to probability equivalent elicitation (physically changing the possibilities for scale
incompatibility) and then allowing for stochastic choice as per the Blavatskyy model,
one arrives at a situation in which the frequency of preference reversals is no longer
at odds with model predictions. That this occurs in those two steps suggests a role for
response mode and stochastic choice in generating the preference reversals observed
in traditional settings, as in Lichtenstein and Slovic (1971, 1973) and Grether and Plott
(1979).

23Focusing on the pairing that reduces reversals, one possibility might be that binary choice and dual-
to-selling might have more in common, in terms of channeling error-prone subjects, than would seem to
be the case based solely on within-mechanism dominance violations. Binary choice does exhibit very infre-
quent dominance violations internally. But this makes it all the more strange that it accords best with the
alternative mechanism exhibiting the most frequent dominance violations internally. Maybe a way to come
to grips with this is to consider the possibility that in binary choice the error-proneness of the subjects may
not just disappear. Rather, it might manifest itself—be channeled by the mechanism—in other, less obvious
ways than dominance violations. One possibility is that it manifests itself instead as more pronounced ap-
parent risk aversion. A wider overlap between dual-to-selling and binary choice in this regard would help
reduce reversals, even while the prevalence of dominance violations in dual-to-selling seems not to matter
for purposes of not contradicting binary choice.
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Appendix A: Details and estimation of the Blavatskyy model

A.1 Probabilistic choice in the Blavatskyy model

As noted in Section 3, the Blavatskyy (2009, 2012) model predicts that an individual
chooses some lottery A over B with probability p(A�B), where

p(A�B)= ϕ(u(A)− u(A∧B))

ϕ(u(A)− u(A∧B))+ϕ(u(B)− u(A∧B))
� (2)

where u(·) is the von Neumann–Morgenstern expected utility function, ϕ :R+ →R+ is a
nondecreasing function with ϕ(0) = 0, and A∧B denotes the greatest lower bound on A

and B in terms of weak stochastic dominance. That is, A∧B is a lottery that is dominated
both by lottery A and by lottery B for which there is no other lottery dominated both by
A and B that stochastically dominates A∧B.

Preference reversals involve two decision tasks: a binary choice between lotteries
and a valuation task. The valuation task may elicit either a certainty or a probability
equivalent; in this paper, these are elicited by the selling and the dual-to-selling versions
of BDM, respectively. In the Blavatskyy model, the certainty equivalent (CE) of lottery A

is a random variable. The observed CE is thus one possible draw from a distribution.
That cumulative distribution function is

CEA(x) = p(x�A) = 1 −p(A�x)� (3)

where x is the dollar amount of the CE, a degenerate lottery. Similarly, the observed
probability equivalent (PE) of a lottery A is a draw from the c.d.f.

PEA(q) = p(Q�A)= 1 −p(A�Q)� (4)

where q is the probability of a benchmark dollar amount ($80) in lottery Q(q).
The valuation tasks thus defined, its is possible to calculate the probability of a pref-

erence reversal. A standard preference reversal occurs when the p bet is chosen over the
$ bet in binary choice, but the $ bet is valued higher than the p bet. Alternatively, a non-
standard preference reversal occurs when the $ bet is chosen over the p bet in binary
choice, but the p bet is valued higher than the $ bet.

A.2 Preference reversals in project up

Let lottery P denote the p bet and lottery D denote the $ bet. The probability that an
individual selects P over D in binary choice is p(P�D). The probability that the same
individual states a higher certainty equivalent for D than P is

p(CED > CEP) =
∫

CEP(x)dCED(x)� (5)

Thus, the probability that standard reversal occurs (in the project up treatment) is
p(P�D) · p(CED > CEP). The probability that the same individual states a higher cer-
tainty equivalent for P than D is p(CEP > CED) = 1 −p(CED > CEP). The probability of
a nonstandard reversal in up is thus p(D�P) ·p(CEP > CED).
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A.3 Preference reversals in project right

The probability that an individual states a higher probability equivalent for P than D is

p(PEP > PED)=
∫

PED(q)dPEP(q) (6)

for a particular benchmark lottery. The probability that the individual states a higher
probability equivalent for D than P is p(PED > PEP) = 1 − p(PEP > PED) for the same
benchmark lottery. Therefore, a standard reversal occurs in the project right treatment
with probability p(P�D) ·p(PED > PEP) and a nonstandard reversal occurs with proba-
bility p(D�P) ·p(PEP > PED).

A.4 Preference reversals in project down

In the project down treatment, a probability equivalent is elicited for a two cash amounts
(degenerate lotteries), and then a binary choice is made between the p bet and the $ bet
constructed from those elicited valuations (with up-states of $12 and $40, respectively).
The decision regarding the cash amounts is arbitrary, so we selected the risk-neutral cer-
tainty equivalents for a particular p bet and $ bet pair, denoted as CEP and CED, respec-
tively. The dominance relationship between two lotteries is exogenously determined: if
CED > CEP , a standard reversal is said to occur if a subject selects the p bet over the $
bet constructed with the observed probability equivalents of the respective lotteries; if
CED > CEP , a nonstandard reversal occurs if a subject selects the $ bet over the p bet.
(It is not possible to observe a nonstandard reversal if CED > CEP or a standard reversal
if CEP > CED.) Since p(P�D) is a function of two independent continuous random vari-
ables, PEP and PED, in expectation the probability that an individual will choose the p

bet over the $ bet in PE is

E
[
p(P�D)

] =
∫ ∫

p
(
P(qP)�D(qP)

)
PE′

P(qP)PE′
D(qD)dqP dqD� (7)

where PE′
P and PE′

D are the probability density functions (p.d.f.s) of the p bet and $ bet
probability equivalents, respectively. The probability in expectation that an individual
will choose the $ bet over the p bet is simply 1 −E[p(P�D)].

A.5 Preference reversals in project left

The project left treatment uses the same general method for determining whether a re-
versal has occurred as the PE treatment. For the left treatment in our design, the higher
outcomes of the alternative lotteries ($12 for the p bet, $40 for the $ bet) are both lower
than the higher outcome of the initial lottery ($80), and it is trivial to show that PE(1) < 1
for both the p bet and the $ bet. Consequently, the probability equivalents in left are
truncated at the top of the distribution, with the associated p.d.f.

PE′
A(q|q̃ ≤ 1) = PE ′

A(q)

PEA(1)
� (8)
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where PE ′
A(q) takes the value PE′

A(q) for 0 < q ≤ 1 and 0 everywhere else. Using the
truncated distribution, the approach outlined for calculating the expected probability
of reversal in down may then be applied to left.

In the project left treatment, probability equivalents of two “initial” lotteries are used
to construct the p bet and the $ bet (with up-states of $12 and $40, respectively), and
then a binary choice is made between them. As in down, there is no reason a priori to
select a particular initial lottery, so we chose the risk-neutral probability equivalent of
an $80 up-state for the p bet and $ bet, denoted as PEP and PED respectively. Then, if
PED > PEP , it is possible to observe a standard reversal, and if PEP > PED, it is possible
to observe a nonstandard reversal. In expectation, the probability that an individual will
choose the p bet over the $ bet in left is

E
[
p(P�D)

] =
∫ ∫

p
(
P(qP)�D(qP)

)
PE′

P(qP |q̃P)PE′
D(qD|q̃D)dqP dqD� (9)

and the expected probability that an individual will choose the $ bet over the p bet is
simply 1 −E[p(P�D)].

A.6 Chained dominance violations

In Section 3, it is also noted that it is possible for lottery A to stochastically dominate
lottery B, but for an individual to report a valuation for B that exceeds that of A. In the
up treatment, this occurs with probability p(CEB > CEA) for any such pair of lotteries.
Similarly, in the down and right treatments, this occurs with probability p(PEB > PEA).

A.7 Maximum likelihood estimation of Blavatskyy model parameters

As discussed in Section 4.7, to make the Blavatskyy model tractable, parametric specifi-
cations must be chosen for u(·) and ϕ(·). Following the suggestion of Blavatskyy (2009),
we impose neoclassical CRRA utility such that ui(x) = (x1−ρi)/(1 −ρi) and a power form
of the curvature function such that ϕi(x) = xαi .

The parameters to be estimated for subject i are {αi�ρi}. Define all variables as in
Appendix A.1 and, further, let ζij take on the value 1 if, for lottery pair i, the subject se-
lects lottery Ai in binary choice, and the value 0 if Bi is selected. Then, for each subject i,
there are NBC binary choice observations {ζij�Aij�Bij}NBC

j=1 , NCE certainty equivalent ob-

servations {xji�Aij}NCE
j=1 , and NPE probability equivalent observations {Qji�Aij}NPE

j=1 . The
joint log likelihood function is then

lnL(ρi�αi) =
NBC∑
j=1

(
ζij lnp(Aij�Bij|ρi�αi)

+ (1 − ζij) ln
(
1 −p(Aij�Bij|ρi�αi)

))
(10)

+
NCE∑
j=1

lnp′(xij�Aij|ρi�αi)+
NPE∑
j=1

lnp′(Qij�Aj|ρi�αi)�
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where p′(·) are the p.d.f.s of the c.d.f.s from which the certainty and probability equiva-
lents are drawn. Likelihood maximization was conducted using the L-BFGS-B algorithm
of Byrd, Lu, Nocedal, and Zhu (1995).24

The likelihood function does not admit data that have a probability of 0 or 1. In our
case, this implies that dominance checks and subject responses that violate dominance
cannot be used in estimation. In up and down, the data are generally well behaved, but
in left and right, a large portion of the data exhibits dominance violations inadmissible
by the Blavatskyy model (as discussed in Section 4.4). The Blavatskyy model does not
allow for such violations, and so we must conclude that some unknown process deter-
mines whether a dominance violation has occurred (as discussed in Section 5). We can-
not assume out-of-hand that this unknown process is orthogonal to the data-generating
process in the Blavatskyy model, so we elected not to include any data from the left and
right treatments in the estimation of the subject-level parameters.25
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