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1. Introduction

Empirical models of dynamic games of incomplete information are an important frame-
work within which to study firms’ strategic behavior. In the past decade, developing
econometric methods to estimate these models has become an active research topic in
the empirical industrial organization and applied econometrics literatures. As models
of dynamic games become increasingly sophisticated, estimating the underlying struc-
tural parameters and decision policies adopted by firms becomes increasingly chal-
lenging computationally. For example, Igami (2013, 2014) both estimate a dynamic
oligopoly game using a nested fixed-point algorithm that could easily take a few weeks
to compute.

The high computational costs of solving dynamic games during the estimation stage
has motivated researchers to propose econometric methods that provide consistent es-
timates in large-sample theory, and that are computationally light and easy to imple-
ment in practice. Most of these computationally simple methods belong to the class
of two-step estimators. For example, see Bajari, Benkard, and Levin (2007), Pakes, Os-
trovsky, and Berry (2007), Pesendorfer and Schmidt-Dengler (2008), Arcidiacono and
Miller (2011), and Srisuma (2013) as well as Sanches, Silva, and Srisuma (2013). The po-
tential drawbacks of two-step estimators are that their estimates can have large biases
in finite samples because insufficient data exist to obtain precise estimates in the first
step, and that researchers might not use an appropriate criterion function in the second
step; see the discussion in Pakes, Ostrovsky, and Berry (2007).1 To address these issues,
Aguirregabiria and Mira (2007) have proposed the nested pseudo-likelihood (NPL) esti-
mator and the NPL algorithm to compute the NPL estimator. Using Monte Carlo experi-
ments, Aguirregabiria and Mira demonstrated that the NPL estimator is less biased than
the two-step pseudo-maximum-likelihood (2S-PML) estimator.

Pakes, Ostrovsky, and Berry (2007), Pesendorfer and Schmidt-Dengler (2008, 2010),
and Su (2014) have shown that the NPL algorithm can frequently fail to converge. Even
worse, the NPL algorithm may not provide consistent estimates. Kasahara and Shimotsu
(2012) analyzed the convergence properties of the NPL algorithm and suggested modifi-
cations in implementing the NPL algorithm to improve its convergence. Using a simpli-
fied version of a dynamic game model derived from Aguirregabiria and Mira (2007), they
illustrated that their modified NPL (NPL-Λ) algorithm indeed converged and performed
well in a Monte Carlo experiment, while the original NPL algorithm failed.

Su and Judd (2012) have proposed a constrained optimization approach to estimat-
ing structural models, while Dubé, Fox, and Su (2012) applied the constrained optimiza-
tion approach to the estimation of random-coefficients logit demand models, success-
fully solving examples having tens of thousands of variables and constraints. Su (2014) il-
lustrated that the constrained optimization approach can be applied to estimating static
games of incomplete information with multiple equilibria (under the assumption that

1In their Monte Carlo experiments, Pakes, Ostrovsky, and Berry (2007) find that two-step estimators can
be biased in small samples although these biases shrink rapidly as sample size increases. Further, they find
that the simplest criterion function performs best. These results are further supported by Pesendorfer and
Schmidt-Dengler (2008), who find that biases for two-step estimators are relatively small with sample size
T = 1000, but not for T = 100.
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only one equilibrium is played in each market in the data) and that it performed better
than the NPL estimator in Monte Carlo experiments. Even so, some researchers remain
unsure whether the constrained optimization approach is practical to estimate dynamic
games because it requires solving high-dimensional optimization problems, which can
be computationally demanding.

Following Su and Judd (2012) as well as Su (2014), we have formulated the maximum-
likelihood (ML) estimation problem of dynamic discrete-choice games of incomplete
information as a constrained optimization problem. Using the dynamic game provided
by the entry/exit model of Aguirregabiria and Mira (2007), we have conducted Monte
Carlo experiments to investigate the finite-sample properties and the numerical per-
formance of the 2S-PML estimator, the NPL estimator implemented by the NPL and
NPL-Λ algorithms, and the ML estimator implemented by the constrained optimization
approach. Our Monte Carlo results suggest that the constrained optimization approach
is more robust and reliable than both the NPL and the NPL-Λ algorithms. Indeed, the
constrained approach converged for all data sets in all experiments, while the perfor-
mance of the NPL and NPL-Λ algorithms varied. In some cases, the NPL and NPL-Λ
algorithms failed to converge. The constrained optimization approach also works well
when the size of the state space in the model increases, but the state transition matrix re-
mains sparse. Although the 2S-PML estimator always converged in our experiments, this
estimator is much less accurate than the ML estimator under the constrained optimiza-
tion approach. Overall, when compared to alternative estimators, using the constrained
optimization approach to ML estimation offers valuable returns: reliable convergence,
computational speed, and accurate estimates.

We have organized the remainder of the paper as follows: In Section 2, we describe
the dynamic model of the entry/exit game as proposed by Aguirregabiria and Mira
(2007), while in Section 3, we present the constrained optimization formulation for
the ML estimation of these games and discuss alternative likelihood-based estimators
and their associated estimation algorithms. In Section 4, we describe the design of our
Monte Carlo experiments, present numerical results, and conduct additional robustness
checks. We summarize our conclusions in Section 5 and briefly describe potential future
work. An Appendix and replication files, which also include equilibrium solutions, are
available in supplementary files on the journal website, http://qeconomics.org/supp/
430/supplement.pdf and http://qeconomics.org/supp/430/code_and_data.zip.

2. Model

We consider a model of discrete-time, infinite-horizon dynamic games based on the re-
search of Aguirregabiria and Mira (2007). In each period t = 1�2� � � � �∞, N potential en-
trants exist, each indexed by i ∈ I = {1� � � � �N}; these players operate in a market char-
acterized by size st ∈ S = {s1� � � � � sL}. We assume that market size is observed by all play-
ers and evolves according to the exogenous stationary transition probability fS(st+1|st),
where st� st+1 ∈ S .

At the beginning of each period t, player i observes a vector of common-knowledge
state variables xt and private shocks εti . Players then simultaneously choose whether to
be active in the market. Let ati ∈ A = {0�1} denote player i’s action in period t and let

http://qeconomics.org/supp/430/supplement.pdf
http://qeconomics.org/supp/430/code_and_data.zip
http://qeconomics.org/supp/430/supplement.pdf
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at = (at1� � � � � a
t
N) denote the collection of all players’ actions. The common-knowledge

state variables xt consist of market size and all players’ actions in the previous pe-
riod, namely, xt = (st�at−1) ∈ X = {S × {×i∈IA}}. Each player i also privately observes
εti = {εti(ati)}ati∈A, a vector of choice-contingent shocks to per-period payoffs. We assume

that εti(a
t
i) has a type-I extreme value distribution that is independent and identically

distributed across actions and players as well as over time, and that opposing players do
not observe the realization of εti , but know only its probability density function g(εti).

The state variables (xt �εti) evolve after the decisions at have been made, so their evo-
lution is described by the exogenous probability distribution function p(xt+1�εt+1

i |xt �
εti�at ). We further impose the conditional independence assumption. That is,

p
[
xt+1 = (s′�a′)�εt+1

i |xt = (s� ã)�εti�at
]= fS

(
s′|s)1{a′ = at

}
g
(
εt+1
i

)
� (1)

where 1 is the indicator function.
Denote by θ the vector of structural parameters and by at

−i = (at1� � � � � a
t
i−1� a

t
i+1� � � � �

atN) the current actions of all players other than i in period t. We specify player i’s per-
period payoff function as Π̃i(a

t
i�at

−i�xt �εti;θ) = Πi(a
t
i�at

−i�xt;θ) + εti(a
t
i), which is ad-

ditively separable in a common-knowledge component and a private shock. Here, the
common-knowledge component Πi(a

t
i�at

−i�xt;θ) depends on the current actions of all
players at , publicly observed state variables xt , and θ. Let β ∈ (0�1) denote the discount
factor. Given the current state (xt �εti), player i chooses a sequence of decisions to maxi-
mize the total expected discounted payoff

max
{ati �at+1

i �at+2
i ����}

E

[ ∞∑
τ=t

βτ−tΠ̃i

(
aτi �aτ

−i�xτ�ετi ;θ
) ∣∣∣ (xt �εti)

]
�

where the expectation is taken over the state evolution p(xt+1�εt+1
i |xt �εti�at ) given in

equation (1) and beliefs about how other players choose their actions.
Since state transition is stationary, we adopt Markov perfect equilibrium as the equi-

librium concept. Thus, we can drop the time index t. It is also convenient to characterize
the equilibrium in terms of the observed state x. Let Pi(ai|x) be the conditional choice
probability of player i choosing action ai ∈ A at state x. Given Pj(aj|x) ∀j �= i, the ex-
pected payoff of the common-knowledge component Πi(ai�a−i�x;θ) for player i from
choosing action ai at state x is

πi(ai|x�θ) =
∑

a−i∈AN−1

{[ ∏
aj∈a−i

Pj(aj|x)
]
Πi(ai�a−i�x;θ)

}
� (2)

We denote by Vi(x) the expected value function for player i at state x and define
P = {Pi(ai|x)}ai∈A�i∈I�x∈X and V = {Vi(x)}i∈I�x∈X . A Markov perfect equilibrium for this
game is a tuple (V�P) that satisfies the following two systems of nonlinear equations.

I. Bellman Optimality. For all i ∈ I , x ∈ X ,

Vi(x) =
∑
ai∈A

Pi(ai|x)
[
πi(ai|x�θ)+ eP

i (ai�x)
]+β

∑
x′∈X

Vi
(
x′)fP

X
(
x′|x)

(3)
= ΨV

i (x; V�P�θ)�
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The first system of nonlinear equations specifies that for each i and x, given condi-
tional choice probabilities of all players P, the expected value function Vi(x) satisfies the
Bellman equation. Here, fP

X (x′|x) denotes the state transition probability of x, given P.
Specifically,

fP
X
[
x′ = (s′�a′)|x = (s� ã)

]= [ N∏
j=1

Pj

(
a′
j|x
)]

fS
(
s′|s)� (4)

Given the assumption that εi(ai) follows a type-I extreme value distribution with the
scale parameter σ , we have2

eP
i (ai�x) = Euler’s constant − σ log

[
Pi(ai|x)

]
� (5)

II. Conditional Choice Probability Equation. The second system of equations char-
acterizes conditional choice probabilities (CCP) P. First, we define player i’s conditional
choice-specific expected value function as

vi(ai|x) = πi(ai|x�θ)+β
∑

x′∈X
Vi
(
x′)fP

i

(
x′|x� ai

)
� (6)

where fP
i (x′|x� ai) denotes the state transition probability conditional on the current

state x, player i’s action ai, and his beliefs P over the conditional choice probabilities
of all other players. Specifically,

fP
i

[
x′ = (s′�a′)|x = (s� ã)�ai

]= fS
(
s′|s)1{a′

i = ai
} ∏
j∈I\i

Pj

(
a′
j|x
)
� (7)

After the private shocks εi = [εi(0)�εi(1)] are observed, player i chooses action ai = j

if and only if

j ∈ arg max
k∈A

{
vi(ai = k|x)+ εi(ai = k)

}
�

The conditional choice probability is then defined as

Pi(ai = j|x) = Pr
[
εi
∣∣vi(ai = j|x)+ εi(ai = j) > max

k∈A\j
{
vi(ai = k|x)+ εi(ai = k)

}]
�

The assumption of a type-I extreme value distribution for εi yields the closed-form ex-
pression to characterize conditional choice probabilities P,

Pi(ai = j|x) = exp[vi(ai = j|x)]∑
k∈A

exp[vi(ai = k|x)]
(8)

= ΨP
i (ai = j|x; V�P�θ) ∀i ∈ I� j ∈ A�x ∈ X �

2For additional details, see the discussion on page 10 of Aguirregabiria and Mira (2007).
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where vi(ai = j|x) is defined in equation (6). In what follows, we refer to equation (8) as
the CCP equation.

This second system of nonlinear equations specifies that across all states, players’
conditional choice probabilities are in mutual best response, given that each player’s
beliefs are consistent with the choice-specific expected value functions of all players.

To simplify the notation, we define ΨP(V�P�θ) = {ΨP
i (ai = j|x; V�P�θ)}ai∈A�i∈I�x∈X

and ΨV(V�P�θ) = {ΨV
i (x; V�P�θ)}i∈I�x∈X . We denote the two systems of equations (3)

and (8) that characterize a Markov perfect equilibrium at a given vector of parameters θ
by

V =ΨV(V�P�θ)�
(9)

P =ΨP(V�P�θ)�

In a dynamic game, multiple Markov perfect equilibria can exist. For a given θ, we
denote the set of all Markov perfect equilibria that satisfy equation (9) by

SOL(Ψ�θ) =
{
(P�V)

∣∣∣∣ V =ΨV(V�P�θ)
P =ΨP(V�P�θ)

}
�

3. Estimation

In this section, we first describe the data generating process and then present a con-
strained optimization approach for ML estimation of this dynamic game. Finally, we
discuss other likelihood-based estimators proposed in the literature.

3.1 Data generating process

The data consist of observations from M independent markets over T periods. We as-
sume these M markets follow the same exogenous process fS(s′|s) for the market-size
transitions and that players’ decisions are independent across these markets. In each
market m and time period t, researchers observe the common-knowledge state variables
x̄mt and players’ actions āmt = (āmt

1 � � � � � āmt
N ). Let Z = {āmt� x̄mt}m∈M�t∈T denote the col-

lection of data observed across markets and time.
Denote by θ0 the true value of structural parameters in the population. The vector

(V0�P0) contains the corresponding expected value functions and conditional choice
probabilities that simultaneously solve equation (9) at θ0. If multiple equilibria exist
at θ0, then we assume that only one equilibrium is played across all markets in the
data, a common assumption in the literature; see Aguirregabiria and Mira (2007), Bajari,
Benkard, and Levin (2007), and Pakes, Ostrovsky, and Berry (2007) as well as Pesendorfer
and Schmidt-Dengler (2008).3 Thus, the data Z = {āmt� x̄mt}m∈M�t∈T are generated from
only one Markov perfect equilibrium (V0�P0) at the true parameter values θ0.

3Moment inequality estimators, such as those investigated in Ciliberto and Tamer (2009) or Pakes, Porter,
Ho, and Ishii (2011) or Tamer (2003), do not require this assumption.
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3.2 ML estimation

In this subsection, we define the ML estimator and present an equivalent reformulation
of the ML estimator as a constrained optimization problem.

For a given vector θ, let (P(θ)�V(θ)) ∈ SOL(Ψ�θ) be an equilibrium that satisfies
equation (9). Given data Z = {āmt� x̄mt}m∈M�t∈T , the logarithm of the likelihood of ob-
serving data Z at the parameters θ is

L(Z;θ)= max
(P(θ)�V(θ))∈SOL(Ψ�θ)

1
M

N∑
i=1

M∑
m=1

T∑
t=1

logPi

(
āmt
i |x̄mt

)
(θ)�

The ML estimator is then defined as

θML = arg max
θ

L(Z;θ)
(10)

= arg max
θ

{
max

(P(θ)�V(θ))∈SOL(Ψ�θ)

1
M

N∑
i=1

M∑
m=1

T∑
t=1

logPi

(
āmt
i |x̄mt

)
(θ)

}
�

This formulation motivates researchers to apply the nested fixed-point algorithm of
Rust (1987) to compute a solution of the ML estimator: in the outer loop, choose θ to
maximize the logarithm of the likelihood function L(Z;θ); in the inner loop, for a given
θ, find all Markov perfect equilibria (P(θ)�V(θ)) ∈ SOL(Ψ�θ) to correctly evaluate the
objective function L(Z;θ) at θ.

Researchers face two computational challenges when they apply the nested fixed-
point algorithm. First, one has to solve for all the Markov perfect equilibria at each can-
didate of the structural parameter vector when computing a ML estimator; see Aguirre-
gabiria and Mira (2007, p. 16) as well as Kasahara and Shimotsu (2012). Second, the ob-
jective function L(Z;θ) can be a discontinuous function in θ; see Su (2014) for such an
example in static discrete-choice games. In what follows, we reformulate the ML estima-
tor (10) as a constrained optimization problem that overcomes these two computational
challenges: we do not need to solve for all Markov perfect equilibria, and the objective
function and constraints in our reformulation are smooth functions.

Suppose that with data Z = {āmt� x̄mt}m∈M�t∈T , observed actions āmt at observed
state x̄mt are generated by some choice probabilities P for all m and t. We then define
the logarithm of the augmented likelihood function as

L(Z; V�P�θ) =
N∑
i=1

M∑
m=1

T∑
t=1

logΨP
i

(
āmt
i |x̄mt; V�P�θ

)
� (11)

To ensure that the conditional choice probabilities P and expected value functions V are
consistent with a Markov perfect equilibrium at the given structural parameters θ, we
impose equation (9) as constraints. Thus, a constrained optimization formulation of the
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ML estimation problem of this dynamic game is

max
(θ�P�V)

1
M

L(Z; V�P�θ)

subject to V =ΨV(V�P�θ)� (12)

P = ΨP(V�P�θ)�

The equivalence of the two optimization problems (10) and (12) in the optimal ob-
jective value and the optimal solution immediately follows from Proposition 1 in Su and
Judd (2012). Aitchison and Silvey (1958) have demonstrated that the ML estimator for-
mulated in (12) is consistent as well as asymptotically normal; see also Section 10.3 in
Gourieroux and Monfort (1995). We state this result and the proof in Section S1 of the
supplement.

It is easy to verify that the objective function and constraints in (12) are smooth
functions of (θ�P�V) and, hence, Newton-based optimization methods can be applied.
When solving the constrained optimization problem (12), one does not need to solve
for all Markov perfect equilibria at every guess of the structural parameters. Two rea-
sons exist: first, modern constrained optimization solvers do not force the constraints
to be satisfied during the iteration process; constraints are satisfied (and an equilibrium
solved) only when the iterates converge to a (local) solution; second, the constrained
optimization approach only needs to find those equilibria together with structural pa-
rameters that are local solutions and satisfy the corresponding first-order conditions of
the constrained optimization problem (12). Any pair of a vector of structural parame-
ters and a corresponding equilibrium that does not satisfy the first-order conditions of
(12) is not a solution to the ML estimation problem. This characterization permits one
to eliminate a large set of equilibria and structural parameters that do not need to be
solved by the constrained optimization approach.

3.3 Alternative dynamic games estimators

Hotz and Miller (1993) proposed a two-step estimation strategy within the context of
single-agent dynamic models. The main insight of Hotz and Miller was to estimate
the expected value function directly from the data without solving the Bellman equa-
tion, hence reducing the computational burden of estimating dynamic models. Subse-
quently, researchers have generalized this idea to estimate multi-agent dynamic games
and have developed various two-step estimators that are computationally light and easy
to implement. For example, see Bajari, Benkard, and Levin (2007) and Pakes, Ostrovsky,
and Berry (2007) as well as Pesendorfer and Schmidt-Dengler (2008). A potential draw-
back of two-step estimators is that they can be more biased than the ML estimator in
finite samples, particularly when the first-step estimates are imprecise or if a suitable
criterion function is not used in the second step; see the discussion in Pakes, Ostrovsky,
and Berry (2007).

In an effort to reduce finite-sample bias associated with two-step estimators,
Aguirregabiria and Mira (2007) proposed the NPL estimator and the NPL algorithm,
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a recursive computational procedure over the 2S-PML estimator, to compute the NPL
estimator. While the NPL estimator performed well in their Monte Carlo experiments,
convergence of the NPL algorithm can be a problem. Furthermore, the NPL algorithm
may converge to the wrong estimates if the data are generated by an equilibrium that
is unstable under best response iterations; see Pesendorfer and Schmidt-Dengler (2010)
for such an example and Su (2014) on the performance of the NPL algorithm in a static
discrete-choice game. Kasahara and Shimotsu (2012) provided theoretical analysis of
the convergence of the NPL algorithm and proposed modified NPL algorithms to allevi-
ate the convergence issue of the NPL algorithm.

We describe three approaches to estimating dynamic games: the 2S-PML estima-
tor, the NPL algorithm of Aguirregabiria and Mira (2007), and the NPL-Λ algorithm of
Kasahara and Shimotsu (2012) for computing the NPL estimator.4 We do not discuss
other two-step estimators such as those of Bajari, Benkard, and Levin (2007), Pakes,
Ostrovsky, and Berry (2007), and Pesendorfer and Schmidt-Dengler (2008). Instead,
we focus on comparing the performance of the ML estimator with that of alternative
likelihood-based estimators in our Monte Carlo experiments.

3.3.1 Two-step pseudo-maximum likelihood In the first step of a two-step estimator,
one can nonparametrically estimate the conditional choice probabilities from the ob-
served data Z using, for example, the frequency estimator. Denote by P̂ a consistent esti-
mator of the true conditional choice probabilities P0. This nonparametric estimate P̂ is
then fixed and used to evaluate the right-hand side of the Bellman optimality equation
in (9):5

V = ΨV(V� P̂�θ)�

The second step of the 2S-PML estimator involves solving the optimization problem

max
(θ�V)

1
M

L(Z; V� P̂�θ)

(13)
subject to V = ΨV(V� P̂�θ)�

From equation (3), we can see that once P is fixed at P̂, the variables V and θ are addi-
tively separable. Define Vi = [Vi(x)]x∈X ∈ R

|X |, FP̂
X = [f P̂

X (x′|x)]x�x′∈X ∈ R
|X |×|X |, P̂i(ai) =

[P̂i(ai|x)]x∈X ∈ R
|X |, eP̂

i (ai) = [eP̂
i (ai�x)]x∈X ∈ R

|X |, and πi(ai�θ) = [πi(ai|x�θ)]x∈X ∈
R

|X |. Equation (3) can then be rewritten in matrix notation as[
I −βFP̂

X
]
Vi =

∑
ai∈A

[
P̂i(ai) ◦πi(ai�θ)

]+ ∑
ai∈A

[
P̂i(ai) ◦ eP̂

i (ai)
]
�

4Kasahara and Shimotsu (2012) also proposed a recursive projection method and a q-NPL algorithm.
These two methods are more computationally demanding and we do not consider them in this paper.

5This requires researchers to evaluate fP
X (x′|x), eP

i (ai�x), and fP
i (x′|x� ai) using P̂ in equations (4), (5),

and (7), respectively.
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where I is an identity matrix in R
|X |×|X | and the notation A ◦ B denotes the Hadamard

product of two matrices A and B. Thus, one can explicitly express Vi in terms of struc-
tural parameters θ,

Vi =
[
I −βFP̂

X
]−1
{∑
ai∈A

[
P̂i(ai) ◦πi(ai�θ)

]+ ∑
ai∈A

[
P̂i(ai) ◦ eP̂

i (ai)
]} ∀i ∈ I� (14)

or in a compact notation

V = Γ (θ� P̂)� (15)

By replacing the constraint in problem (13) with equation (15), through a simple elimi-
nation of variables V, the optimization problem (13) is equivalent to the unconstrained
optimization problem

max
θ

1
M

L
(
Z;Γ (θ� P̂)� P̂�θ

)
�

The 2S-PML estimator is then defined as

θ2S-PML = arg max
θ

1
M

L
(
Z;Γ (θ� P̂)� P̂�θ

)
� (16)

The 2S-PML estimator is considered to be computationally light because it avoids
solving the CCP equation in (9); researchers estimate P̂ directly from the data. Neverthe-
less, solving the optimization problem (16) or, equivalently, solving problem (13) in the
second step, although easier than problem (12) for the ML estimator, may not be trivial.
Researchers still need to solve the Bellman equation for each player as constraints in (13)
or invert the matrix [I − βFP̂

X ] in (14) for every guess of structural parameters θ in solv-
ing the unconstrained optimization problem (16), a task that can be computationally
expensive when the size of the state space |X | is large.

Note, too, that at the solution θ2S-PML, the first-step estimate P̂ may not satisfy the
CCP equation in (9) and, hence is not a Markov perfect equilibrium. In finite samples,
the bias in the first-step estimate P̂ can potentially lead to large biases in parameter
estimates θ2S-PML in the second step, particularly when the pseudo-likelihood function
is used as the criterion function; see the discussion in Pakes, Ostrovsky, and Berry (2007).

3.3.2 NPL estimator Aguirregabiria and Mira (2007) proposed an NPL estimator for es-
timating dynamic discrete-choice games. Any point (θ̃� P̃) that satisfies the following
conditions is called an NPL fixed point:

θ̃= arg max
θ

1
M

L
(
Z;Γ (θ� P̃)� P̃�θ

)
�

(17)
P̃ =ΨP(Γ (θ̃� P̃)� P̃� θ̃

)
�

In principle, more than one NPL fixed point can exist. An NPL estimator (θNPL�PNPL)

is the NPL fixed point that yields the highest objective value in (17). Note that the NPL
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estimator satisfies the CCP equation in (9). Thus, one would expect it to perform better
than the 2S-PML estimator in finite samples.

Aguirregabiria and Mira (2007) also proposed a computational procedure referred to
as the NPL algorithm to find an NPL fixed point. The NPL algorithm recursively iterates
over the 2S-PML estimator and is described as follows. First, choose an initial guess of
equilibrium probabilities P̃0. For K ≥ 1, the NPL algorithm iterates the following steps
until convergence or until the maximum number of iterations K̄ is reached.

Step 1. Given P̃K−1, solve

θ̃K = arg max
θ

1
M

L
(
Z;Γ (θ� P̃K−1)� P̃K−1�θ

)
�

Step 2. Given θ̃K , update P̃K by

P̃K =ΨP(Γ (θ̃K� P̃K−1)� P̃K−1� θ̃K
);

increase K by 1.
To declare convergence of the NPL algorithm, the condition∥∥(θ̃K� P̃K)− (θ̃K−1� P̃K−1)

∥∥≤ tolNPL� (18)

needs to be satisfied, where tolNPL is the convergence tolerance and is chosen to be
a small number, for example, 1�0e−6. If the NPL algorithm converges after K itera-
tions with K ≤ K̄, then (θ̃K� P̃K−1) approximately satisfies the NPL fixed-point condi-
tions (17). If the maximum number of iterations K̄ is reached before the NPL algorithm
converges, then we declare a failed run and restart with a new initial guess.

Researchers have expressed concerns involving the convergence properties of the
NPL algorithm. For example, see Pakes, Ostrovsky, and Berry (2007), Pesendorfer and
Schmidt-Dengler (2010), and Su (2014). While Aguirregabiria and Mira (2007) reported
that they always obtained convergence of the NPL algorithm in their Monte Carlo exper-
iments, examples in Su (2014) indicate that the NPL algorithm often fails to converge,
even in static discrete-choice games. Even worse, Pesendorfer and Schmidt-Dengler
(2010) demonstrated in a stylized example and Su (2014) demonstrated in Monte Carlo
experiments of static discrete-choice games that NPL can converge to the wrong esti-
mates. In a recent paper, Kasahara and Shimotsu (2012) demonstrated that the NPL al-
gorithm will converge, provided that a local stability condition is satisfied at the solution.
Without knowing the true parameter values, however, this local stability condition can-
not be verified. Therefore, in practice, the theoretical analysis provided by Kasahara and
Shimotsu does not inform researchers a priori whether the NPL algorithm will converge
or whether it converges to the correct estimates. In summary, while the NPL estimator
is well defined, the NPL algorithm may fail to converge; even if the NPL algorithm con-
verges, in some cases, it may fail to recover the true values of the underlying primitives,
and using different initial guesses will not help to alleviate this problem.
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3.3.3 A modified NPL algorithm To improve the convergence properties of the NPL
algorithm, Kasahara and Shimotsu (2012) introduced the NPL-Λ algorithm to compute
an NPL estimator. The NPL-Λ algorithm alters the updating of P̂K in Step 2 of the NPL
algorithm to

P̃K = (ΨP(Γ (θ̃K� P̃K−1)� P̃K−1� θ̃K
))λ

(P̃K−1)
1−λ� (19)

where λ is chosen to be between 0 and 1. Note that when λ = 1, the NPL-Λ algorithm is
identical to the NPL algorithm; when λ= 0, P̃K is not updated by the algorithm, and the
NPL-Λ algorithm solves the 2S-PML estimator (16).

The idea behind modifying the second step of the NPL algorithm is similar to that of
the successive over- and underrelaxation methods in numerical analysis. Such methods
are used to improve the contraction rate of diverging iterative processes; see Ortega and
Rheinboldt (1970). The scalar λ represents a partial step length used in the dampening
procedure. Ideally, the choice of λ depends on the spectral radius of a Jacobian matrix
at the solution θNPL. In practice, since θNPL is unknown prior to estimation, the choice
of the value of λ becomes a delicate issue. If λ is chosen to be close to 1, then the NPL-
Λ algorithm may not converge (if the NPL algorithm does not converge); if λ is chosen
to be close to 0, then the NPL-Λ algorithm takes small incremental steps and may need
many iterations and, hence, much longer computational time to converge. Kasahara and
Shimotsu proposed computing the spectral radius of the Jacobian matrix evaluated at
the two-step estimator or, if it is computationally demanding to calculate all eigenvalues
of the Jacobian matrix, using a small value of λ. However, as discussed earlier, using a
small value of λ will lead to more iterations and longer computational time before the
NPL-Λ algorithm converges.

The convergence criterion for the NPL-Λ algorithm also warrants some discussion.
If researchers simply use criterion (18) to determine the convergence of the NPL-Λ al-
gorithm, there is no guarantee that the CCP equation in (17) will be satisfied with the
desired accuracy, tolNPL, when the NPL-Λ algorithm converges. In fact, one can show
that when the NPL-Λ algorithm declares criterion (18) to be satisfied, the error of the
CCP equation in (17) can remain as large as tolNPL

λ ; that is,

∥∥ΨP(Γ (θ̃K� P̃K−1)� P̃K−1� θ̃K
)− P̃K−1

∥∥≤ tolNPL

λ
� (20)

If researchers choose a very small value for λ (for example, λ = 1�0e−5) but use the
convergence criterion (18) with tolNPL = 1�0e−6, then the NPL-Λ algorithm may de-
clare convergence quickly but the error of the CCP equation in (17) can be as large as
tolNPL

λ = 1�0e−1.
In determining the convergence of the NPL-Λ algorithm, we use the condition∥∥∥∥ (θ̃K� P̃K)− (θ̃K−1� P̃K−1)

ΨP(Γ (θ̃K� P̃K−1)� P̃K−1� θ̃K
)− P̃K−1

∥∥∥∥≤ tolNPL� (21)

If this condition is met after K iterations with K ≤ K̄, then we declare the convergence
of the NPL-Λ algorithm and use (θ̃K� P̃K−1) as a solution to the NPL fixed point (17).
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This convergence criterion (21) ensures that when the NPL-Λ algorithm converges, the
iterate (θ̃K� P̃K−1) approximately satisfies the CCP equation in (17) with an error that is
at most tolNPL.

3.4 Scalability of the constrained optimization approach

Since the constrained optimization approach requires optimizing over a much larger
number of dimensions, one potential concern is its capability to estimate empirically
relevant dynamic games; see Aguirregabiria and Nevo (2013) as well as Kasahara and
Shimotsu (2012). To address this concern, we demonstrate below that the constraint Ja-
cobian and the Hessian of the Lagrangian of the constrained optimization problem (12)
are sparse under certain modeling specifications. State-of-the-art constrained optimiza-
tion solvers use sparse matrix routines to exploit this sparsity. Consequently, the solvers
can accelerate the computations, economize on memory usage, and permit users to
solve high-dimensional optimization problems, those on the order of 100,000 variables
and constraints.6

As discussed in Section 3.3, the size of the optimization problem (13) in the second
step of the 2S-PML estimator as well as the NPL and NPL-Λ algorithms is half the size of
the constrained optimization problem (12) for ML estimation. For large-scale dynamic
games, the problem (13) will be high dimensional as well. Without utilizing sparse matrix
techniques, researchers will not be able to solve a high-dimensional problem like (13) or
invert the high-dimensional matrix [I −βFP̂

X ] in R
|X |×|X | in equation (14).

We derive an upper bound on the density of the constraint Jacobian and Hessian
of the Lagragian, denoted by DJ and DH , respectively, of the constrained optimization
problem (12).7 Recall that |S| is the number of grid points in the market-size state space
and |θ| is the number of structural parameters. Let δs denote the maximum incremental
change in market size in one period; for example, given st , the market size in the next
period is st+1 ∈ {st − δs� s

t − δs + 1� � � � � st� � � � � st + δs − 1� st + δs}.

Proposition 1 (Density Bounds).

(a) Given a binary action space A = {0�1}, we have

DJ ≤ 2
9

(
2δs + 1
N · |S| + |θ| + 1

N · |S| · 2N
+ 1

|S| · 2N−1

)
�

DH ≤ 1
9

(
2δs + 1
N · |S| + 4

|S| · 2N
+ 4 · (2δs + 1)

|S| + 6 · |θ|
N · |S| · 2N

+
( |θ|
N · |S| · 2N

)2)
�

(b) The upper bounds on DJ and DH are decreasing in |S| and N .

(c) For fixed |S| and N , the upper bounds on DJ and DH decrease when δs decreases.

6All researchers need to do is provide sparsity information to optimization solvers, although insuffi-
cient computer memory may continue to limit applications involving more than 100,000 variables and con-
straints.

7The density of a matrix is the ratio between the number of nonzero elements and the total number of
elements in the matrix.
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(a) Constraint Jacobian (b) Hessian of the Lagrangian function

Figure 1. Sparsity pattern of constraint matrices with |S| = 5 and N = 5.

The proof is provided in Appendix A. Proposition 1 states that as the size of the state
space grows large, the number of nonzero elements in the constraint Jacobian and Hes-
sian matrices grow more slowly than the total number of elements. Even though the to-
tal number of nonzero elements still grows, the constraint Jacobian and Hessian matri-
ces become more sparse, which helps to alleviate the increase in computational burden
arising from having more variables and constraints. We calculate the density of the con-
straint Jacobian and Hessian matrices for different values of |S|, N , and |θ| in Table 14 in
Appendix B. Figure 1 illustrates the sparsity pattern of the constraint Jacobian and the
Hessian for an example with N = 5, |S| = 5, and δs = 1, which results in a constrained
optimization problem with 2400 constraints and 2408 variables. The densities of the cor-
responding constraint Jacobian and Hessian matrices for this example are around 2�7
percent and 23 percent, respectively.

4. Monte Carlo experiments

We conducted Monte Carlo experiments to investigate the performance of the ML es-
timator, the 2S-PML estimator, and the NPL estimator implemented by both the NPL
algorithm and the NPL-Λ algorithm. We describe the experimental design in Section 4.1
and report the Monte Carlo results in Section 4.2.

4.1 Experimental design

We considered three experiment specifications, with two cases in each experiment. In
the first experiment, we used the example of Kasahara and Shimotsu (2012), which is a
simplified version of the example of Aguirregabiria and Mira (2007). In the second exper-
iment, we used the example of Aguirregabiria and Mira (2007). In the third experiment,
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we increased the set of possible market-size values used in the second experiment. We
describe the details of our experimental design below.

Experiment 1 (Kasahara and Shimotsu (2012) Example). This example has N = 3 play-
ers. The set of possible values for market size is S = {2�6�10} and the total number of
grid points in the state space is |X | = |S| × |A|N = 3 × 23 = 24. The common-knowledge
component of the per-period payoff Πi is given as

Πi

(
ati�at

−i�xt;θ)=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θRS log

(
st
)− θRN log

(
1 +

∑
j �=i

atj

)
−θFC

i − θEC
(
1 − at−1

i

)
� if ati = 1�

0� if ati = 0�

where θ= (θRS� θRN�θFC� θEC) is the vector of structural parameters with θFC = {θFC
i }Ni=1.

For this experiment, the ML estimator solves the constrained optimization problem (12)
with 216 constraints and 218 variables.

Following Kasahara and Shimotsu (2012), we chose the discount factor β = 0�96 and
the scale parameter of the type-I extreme value distribution σ = 1. We fixed the values of
structural parameters θFC = (1�0�0�9�0�8) and θEC = 1, and estimated only θRS and θRN.

We considered two sets of parameter values for θRS and θRN in this experiment:

Case 1:
(
θRN� θRS)= (2�1);

Case 2:
(
θRN� θRS)= (4�1)�

Experiment 2 (Aguirregabiria and Mira (2007) Example). This example has N = 5 play-
ers and five possible values for market size, S = {1�2� � � � �5}. The number of points in the
state space is |X | = |S| × |A|N = 5 × 25 = 160. The function Πi is given as8

Πi

(
ati�at

−i�xt;θ)=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θRSst − θRN log

(
1 +

∑
j �=i

atj

)
−θFC

i − θEC
(
1 − at−1

i

)
� if ati = 1�

0� if ati = 0�

Following Aguirregabiria and Mira (2007), we fixed β = 0�95 and σ = 1. In this experi-
ment, we estimated all the structural parameters θ. For this experiment, the ML esti-
mator solves the constrained optimization problem (12) with 2400 constraints and 2408
variables.

We chose θFC = (1�9�1�8�1�7�1�6�1�5) and θEC = 1 as true parameter values. For θRN

and θRS, we considered two cases:

Case 3:
(
θRN� θRS)= (2�1);

Case 4:
(
θRN� θRS)= (4�2)�

8The first term in Πi is given as θRS log(st) in equation (48) of Aguirregabiria and Mira (2007); however,
their Gauss code am_econometrica_2007_montecarlo.prg used the term θRSst . Thus, we decided to
follow the specification in their code.
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Note that the choices of parameter values in Case 3 are the same as those in Experiment 3
in Aguirregabiria and Mira (2007).

Experiment 3 (Examples With Increasing |S|, the Number of Market-Size Values). In
this experiment, we considered two sets of market size values:

Case 5: |S| = 10 with S = {1�2� � � � �10};
Case 6: |S| = 15 with S = {1�2� � � � �15}�

All other specifications remain the same as those in Case 3 in Experiment 2. Our pur-
pose is to investigate the performance of these estimators when estimating games with
a larger number of states. For this experiment, the ML estimator solves the constrained
optimization problem (12) with 4800 constraints and 4808 variables for |S| = 10, and 7200
constraints and 7208 variables for |S| = 15.

In all three experiments, the market-size transition probabilities are given by the
|S| × |S| matrix

fS
(
st+1|st)=

⎛⎜⎜⎜⎜⎝
0�8 0�2 0 · · · 0 0
0�2 0�6 0�2 · · · 0 0
���

���
� � �

� � �
���

���

0 0 · · · 0�2 0�6 0�2
0 0 · · · 0 0�2 0�8

⎞⎟⎟⎟⎟⎠ �

Finding an equilibrium used in the data generating process Given the model primi-
tives, we solved equation (9) for (V�P) by using AMPL as the programming language
and KNITRO, a nonlinear optimization solver, at the structural parameter values spec-
ified in each of the six cases above. For each case, we used 100 different starting values
to search for multiple equilibria. The starting values for P and V at each state are chosen
from equally spaced grid points from 0�1 to 1 and from 0 to 20, respectively. We found
only a single equilibrium for each case from those 100 starting values. Hence, we do not
consider equilibrium selection issues in the data generating process. The equilibrium
solutions for all six cases from our implementation are available in the folder with the
replication files.

When we changed the support of market size from S = {1�2� � � � �5} in Case 3 to
S = {1�2� � � � �10} and S = {1�2� � � � �15} in Case 5 and 6, respectively, we do not change
the nature of equilibria in these models. In fact, further examining the equilibrium so-
lutions for Cases 3, 5, and 6 as reported in the supplement indicate that the equilibrium
strategies (or conditional-choice probabilities Pi(ai|x)) are almost identical across these
three cases for market size smaller than or equal to 5.

In their Monte Carlo experiments, Aguirregabiria and Mira (2007) and Kasahara and
Shimotsu (2012) also stated that they found a unique equilibrium at the true parame-
ter values for the examples in Cases 1 and 3, respectively. Furthermore, the equilibrium
we found in those two cases is identical to the equilibrium reported by Kasahara and
Shimotsu (2012) and Aguirregabiria and Mira (2007).9

9We confirmed this finding by checking the output of the Matlab code provided by Kasahara and Shi-
motsu (2012) for Case 1 and the equilibrium solution reported on Aguirregabiria’s website for Case 3.
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Data simulation As in Aguirregabiria and Mira (2007) and Kasahara and Shimotsu
(2012), we draw the initial observations (t = 1) for each market (m = 1� � � � �M) from the
steady state distribution implied by the equilibrium computed above. For the subse-
quent observations (t = 2� � � � �T ), we then simulated the observed market size st and
observed actions at using draws based on market-size transition probabilities fS and
the equilibrium conditional choice probabilities P, respectively.

For each case in Experiments 1 and 2, we constructed data sets of three sizes with
M = 400 markets and T = 1, 10, and 20 periods. For each T , we simulated 100 data sets.
For Cases 5 and 6 in Experiment 3, we constructed 50 data sets with M = 400 markets
and T = 10 periods.

Algorithm implementation We used AMPL and KNITRO to solve the constrained opti-
mization problem (12) for the ML estimator and the optimization problem (13) for the
second step of the 2S-PML, NPL, and NPL-Λ algorithms.10 In solving these optimization
problems, we used the default relative optimality and feasibility tolerance of 1�0e−6 in
the KNITRO solver.

In determining the convergence of the NPL and the NPL-Λ algorithms using crite-
rion (18) and (21), respectively, we chose tolNPL = 1�0e−6 as the convergence toler-
ance. If the difference of parameter values and equilibrium probabilities in successive
iterates is less than the chosen tolerance before the maximum number of iterations K̄ is
reached, then we declared that the NPL or the NPL-Λ algorithm converges; otherwise,
we declared that they failed to converge in that run. For Experiment 1, we set the maxi-
mum number of NPL and NPL-Λ iterations to be K̄ = 250. For Experiments 2 and 3, we
set K̄ to 100. For updating P̃K in equation (19) in the NPL-Λ algorithm, we chose λ = 0�5
for all three experiments.

Since the optimization problems (12) and (13) are nonconvex programs, we used
multiple starting values to find a better local solution for each estimator. For Experi-
ments 1 and 2, we used 10 starting values for each of the 100 data sets when imple-
menting each estimator; for Experiment 3, we used 5 starting values for each of the 50
data sets. For the starting values of θ, we used 10 equally spaced grid points for Exper-
iments 1 and 2, and 5 equally spaced grid points for Experiment 3, ranging from zero
to three times the true parameter values. For the starting values in P and V, we used
the frequency estimator and the mean value of V0 over all players and states from the
equilibrium, respectively.

In reporting summary statistics, the average time per run was computed by taking
an average over all runs, including those that failed to converge. However, in computing
the mean estimates and standard deviations of the sampling distributions, we ignore
data sets that failed to converge.

10KNITRO uses sparse matrix techniques to solve the resulting Karush–Kuhn–Tucker system of linear
equations of the optimization problems (12) and (13). In our implementation, we use an interior-point
method that directly solves the primal-dual KKT matrix at each step; if the direct approach for a certain
step cannot be guaranteed to be of good quality, then KNITRO switches to a projected conjugate gradient
approach. In our implementation of the 2S-PML, NPL, and NPL-Λ algorithms, we solve the optimization
problem (13); we do not directly invert the matrix in (14).
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4.2 Numerical results

In this subsection, we discuss the results of our Monte Carlo experiments.

Experiment 1. In Table 1, we have collected the results for Case 1, with (θRN� θRS) =
(2�1). In this case, all estimation algorithms converged for all data sets. All estimators
produced fairly precise estimates, except for the 2S-PML estimator with T = 1. As ex-
pected, these estimates become more precise as T increases. Recall that for each data
set, we used 10 starting values. The constrained optimization approach converged for
around 920 runs for T = 1 and 980 runs for T = 20; all the other algorithms converged in
all 1000 runs. Note that the 2S-PML estimator was around 2–25 times faster than the con-
strained optimization approach. However, the constrained approach was faster than ei-
ther NPL or NPL-Λ; with T = 1, the constrained approach took only 0�27 seconds per run
compared to 0�45 seconds per run for NPL, a factor of about 1�6. The speed advantage
increases as T increases. With T = 20, the constrained approach took only 0�15 seconds
per run compared to 1�01 seconds per run for NPL, a factor of more than 6.

Table 1. Monte Carlo results for Case 1.

Estimates
Data Sets Runs CPU Time Avg. NPL(-Λ)

M T Estimator θRN θRS Converged Converged (in Sec.) Iter.

Truth 2 1 – – – –

400 1 MLE 1�895 0�961 100 917 0�27 –
(0�580) (0�156)

400 1 2S-PML 1�134 0�753 100 1000 0�02 –
(0�616) (0�171)

400 1 NPL 1�909 0�964 100 1000 0�45 30
(0�628) (0�168)

400 1 NPL-Λ 1�909 0�964 100 1000 0�42 28
(λ = 0�5) (0�628) (0�168)

400 10 MLE 1�970 0�992 100 964 0�16 –
(0�158) (0�042)

400 10 2S-PML 1�819 0�951 100 1000 0�03 –
(0�236) (0�062)

400 10 NPL 1�963 0�991 100 1000 0�61 22
(0�191) (0�050)

400 10 NPL-Λ 1�963 0�991 100 1000 0�56 20
(λ = 0�5) (0�191) (0�050)

400 20 MLE 2�001 1�000 100 979 0�15 –
(0�118) (0�033)

400 20 2S-PML 1�923 0�979 100 1000 0�06 –
(0�158) (0�042)

400 20 NPL 1�999 0�999 100 1000 1�01 22
(0�129) (0�036)

400 20 NPL-Λ 1�999 0�999 100 1000 0�91 20
(λ = 0�5) (0�129) (0�036)
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Table 2. Monte Carlo results for Case 2.

Estimates
Data Sets Runs CPU Time Avg. NPL(-Λ)

M T Estimator θRN θRS Converged Converged (in Sec.) Iter.

Truth 2 1 – – – –

400 1 MLE 4�055 1�003 100 735 0�61 –
(0�613) (0�158)

400 1 2S-PML 3�107 0�839 100 1000 0�02 –
(0�442) (0�099)

400 1 NPL N/A N/A 0 0 4�07 250
(N/A) (N/A)

400 1 NPL-Λ 3�986 0�990 100 1000 1�50 93
(λ = 0�5) (0�143) (0�059)

400 10 MLE 4�003 1�000 100 767 0�50 –
(0�039) (0�016)

400 10 2S-PML 3�902 0�983 100 1000 0�04 –
(0�099) (0�025)

400 10 NPL N/A N/A 0 0 7�61 250
(N/A) (N/A)

400 10 NPL-Λ 4�006 1�001 100 1000 2�34 79
(λ = 0�5) (0�047) (0�018)

400 20 MLE 4�003 1�001 100 820 0�47 –
(0�032) (0�011)

400 20 2S-PML 3�954 0�992 100 1000 0�06 –
(0�084) (0�019)

400 20 NPL N/A N/A 0 0 12�38 250
(N/A) (N/A)

400 20 NPL-Λ 4�002 1�001 100 1000 3�50 72
(λ = 0�5) (0�035) (0�011)

In Table 2, we have collected the results for Case 2, with (θRN� θRS) = (4�1). In this
case, the NPL algorithm failed to converge before reaching the maximum number of
iterations K̄ = 250 for all data sets. In contrast, both the constrained approach and 2S-
PML converged for all 100 data sets, although the constrained optimization approach
converged for only 735 out of 1000 runs for T = 1 and 820 runs for T = 20. The con-
strained approach also yielded more precise estimates than the 2S-PML estimator. With
T = 1, the constrained approach yielded mean estimates of 4�055 for θRN (standard de-
viation 0�613) and 1�003 for θRS (standard deviation 0�158), while 2S-PML gave imprecise
mean estimates of 3�107 for θRN (standard deviation 0�442) and 0�839 for θRS (standard
deviation 0�099).

Experiment 2. In Tables 3 and 4, we have collected the results of the experiment for
Case 3. In this case, NPL converged for only 53 data sets for T = 1� � � � �67 data sets for
T = 20.11 The NPL-Λ algorithm worked quite well in this experiment. It significantly im-

11In contrast to our findings, Aguirregabiria and Mira (2007) reported that the NPL algorithm converged
for all runs in their experiments for Case 3. The most plausible explanation for this difference in findings
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Table 3. Convergence results and computational time for Case 3.

Data Sets Runs CPU Time Avg. NPL(-Λ)
M T Estimator Converged Converged (in Sec.) Iter.

400 1 MLE 100 736 216�31 –
400 1 2S-PML 100 1000 1�34 –
400 1 NPL 53 530 45�85 64
400 1 NPL-Λ (λ = 0�5) 90 882 36�78 49

400 10 MLE 100 995 32�11 –
400 10 2S-PML 100 1000 1�40 –
400 10 NPL 58 580 52�39 72
400 10 NPL-Λ (λ = 0�5) 100 1000 24�31 33

400 20 MLE 100 999 29�74 –
400 20 2S-PML 100 1000 1�54 –
400 20 NPL 67 664 55�27 71
400 20 NPL-Λ (λ = 0�5) 100 1000 23�75 32

Table 4. Monte Carlo results on parameter estimates for Case 3.

Estimates

M T Estimator θFC�1 θFC�2 θFC�3 θFC�4 θFC�5 θEC θRN θRS

True Value 1�9 1�8 1�7 1�6 1�5 1 2 1

400 1 MLE 1�941 1�847 1�765 1�656 1�570 0�959 2�485 1�139
(0�272) (0�251) (0�260) (0�266) (0�279) (0�201) (1�542) (0�425)

400 1 2S-PML 1�608 1�496 1�425 1�306 1�196 1�174 0�162 0�433
(0�222) (0�213) (0�214) (0�210) (0�187) (0�141) (0�295) (0�093)

400 1 NPL 1�907 1�815 1�716 1�573 1�473 1�074 1�413 0�843
(0�217) (0�201) (0�203) (0�196) (0�189) (0�111) (0�484) (0�137)

400 1 NPL-Λ 1�923 1�830 1�740 1�619 1�528 0�997 2�077 1�027
(λ = 0�5) (0�241) (0�231) (0�235) (0�237) (0�238) (0�145) (0�994) (0�282)

400 10 MLE 1�895 1�794 1�697 1�597 1�495 0�990 2�048 1�011
(0�077) (0�078) (0�075) (0�074) (0�073) (0�046) (0�345) (0�095)

400 10 2S-PML 1�884 1�774 1�662 1�548 1�425 1�040 0�805 0�671
(0�066) (0�069) (0�065) (0�062) (0�057) (0�039) (0�251) (0�068)

400 10 NPL 1�894 1�788 1�688 1�581 1�478 1�010 1�812 0�946
(0�075) (0�077) (0�069) (0�071) (0�073) (0�041) (0�213) (0�061)

400 10 NPL-Λ 1�896 1�795 1�697 1�597 1�495 0�991 2�039 1�008
(λ = 0�5) (0�077) (0�079) (0�076) (0�074) (0�073) (0�044) (0�330) (0�091)

400 20 MLE 1�903 1�801 1�701 1�600 1�502 0�996 2�020 1�005
(0�056) (0�050) (0�050) (0�049) (0�050) (0�028) (0�241) (0�067)

400 20 2S-PML 1�902 1�795 1�684 1�572 1�459 1�027 1�210 0�785
(0�052) (0�046) (0�042) (0�042) (0�043) (0�025) (0�198) (0�052)

400 20 NPL 1�909 1�805 1�704 1�600 1�498 1�006 1�879 0�969
(0�055) (0�048) (0�050) (0�050) (0�049) (0�028) (0�169) (0�051)

400 20 NPL-Λ 1�903 1�801 1�701 1�600 1�501 0�996 2�014 1�004
(λ = 0�5) (0�055) (0�050) (0�049) (0�048) (0�050) (0�029) (0�250) (0�069)
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proved the convergence properties of the NPL algorithm, converging in 90 data sets for
T = 1 and all 100 data sets for T = 10 and T = 20. The NPL-Λ algorithm also obtained
more accurate estimates in θRN and θRS than those of the NPL algorithm for T = 20. The
mean estimates of the 2S-PML estimator for parameters θRN and θRS are quite biased for
T = 1 and T = 10, and are more than 2 standard deviations away from the true param-
eter values. The constrained optimization approach converged for all 100 data sets for
each T . Its computational time and accuracy of estimates are comparable to those of the
NPL-Λ algorithm for T = 10 and T = 20. For T = 1, however, the constrained optimiza-
tion approach was slow, needing 216 seconds per run, on average; its mean estimates
are more biased than those of the NPL-Λ algorithm.

While it might seem surprising that the constrained optimization approach pro-
duced worse finite-sample properties than the NPL or NPL-Λ algorithm for T = 1, fur-
ther inspection of the converged likelihood values revealed that the constrained opti-
mization approach yielded higher likelihood values than both the NPL and NPL-Λ algo-
rithms. This indicates that for all 100 data sets with T = 1, the constrained optimization
approach found a better solution (in terms of the objective value) than the NPL or NPL-
Λ algorithm.

In Tables 5 and 6, we have collected the results for Case 4. NPL converged for only 2
out of 100 data sets for T = 1 and failed to converge for all 100 data sets for T = 10 and
T = 20. NPL-Λ performed reasonably well in this case: It performed better than the NPL
algorithm, but failed more frequently than it did in Case 3, converging in 84 out of 100
data sets for T = 1 and only in 53 data sets for T = 20. Similar to the findings in Case 3,
the 2S-PML estimator produced inaccurate estimates of parameters θRN and θRS, par-
ticularly for T = 1 and T = 10; for instance, with T = 1, the mean 2S-PML estimates of
θRN and θRS are 0�624 (standard deviation 0�393) and 0�759 (standard deviation 0�150),

Table 5. Convergence results and computational time for Case 4.

Data Sets Runs CPU Time Avg. NPL(-Λ)
M T Estimator Converged Converged (in Sec.) Iter.

400 1 MLE 100 582 273�88 –
400 1 2S-PML 100 1000 1�71 –
400 1 NPL 2 20 103�77 99
400 1 NPL-Λ (λ = 0�5) 84 840 74�22 70

400 10 MLE 100 812 149�65 –
400 10 2S-PML 100 1000 1�59 –
400 10 NPL 0 0 102�69 100
400 10 NPL-Λ (λ = 0�5) 63 630 78�12 77

400 20 MLE 100 871 121�71 –
400 20 2S-PML 100 1000 1�67 –
400 20 NPL 0 0 107�07 100
400 20 NPL-Λ (λ = 0�5) 53 530 84�30 79

is probably due to the choice of convergence tolerance; they used 1�0e−5 as the convergence tolerance in
their implementation, while we used 1�0e−6.
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Table 6. Monte Carlo results on parameter estimates for Case 4.

Estimates

M T Estimator θFC�1 θFC�2 θFC�3 θFC�4 θFC�5 θEC θRN θRS

True Value 1�9 1�8 1�7 1�6 1�5 1 4 2

400 1 MLE 1�923 1�830 1�723 1�613 1�508 1�023 3�898 1�974
(0�267) (0�265) (0�252) (0�245) (0�246) (0�140) (0�680) (0�246)

400 1 2S-PML 1�681 1�595 1�474 1�319 1�073 1�369 0�624 0�759
(0�255) (0�241) (0�241) (0�227) (0�208) (0�144) (0�393) (0�150)

400 1 NPL 1�997 1�891 1�747 1�676 1�389 1�481 1�958 1�340
(0�115) (0�175) (0�230) (0�129) (0�134) (0�069) (0�142) (0�013)

400 1 NPL-Λ 1�963 1�863 1�759 1�631 1�506 1�056 3�680 1�907
(λ = 0�5) (0�273) (0�272) (0�255) (0�258) (0�263) (0�147) (0�739) (0�269)

400 10 MLE 1�897 1�797 1�697 1�594 1�496 0�993 4�015 2�004
(0�084) (0�084) (0�082) (0�085) (0�095) (0�045) (0�216) (0�086)

400 10 2S-PML 1�934 1�824 1�703 1�556 1�338 1�123 2�297 1�409
(0�090) (0�085) (0�079) (0�079) (0�085) (0�049) (0�330) (0�117)

400 10 NPL N/A N/A N/A N/A N/A N/A N/A N/A
(N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A)

400 10 NPL-Λ 1�900 1�801 1�700 1�600 1�500 0�991 4�023 2�007
(λ = 0�5) (0�079) (0�081) (0�077) (0�080) (0�091) (0�052) (0�255) (0�098)

400 20 MLE 1�908 1�806 1�707 1�607 1�514 0�991 4�046 2�017
(0�057) (0�056) (0�053) (0�055) (0�059) (0�031) (0�137) (0�054)

400 20 2S-PML 1�946 1�840 1�722 1�593 1�413 1�070 2�931 1�635
(0�066) (0�062) (0�059) (0�059) (0�059) (0�039) (0�224) (0�079)

400 20 NPL N/A N/A N/A N/A N/A N/A N/A N/A
(N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A)

400 20 NPL-Λ 1�905 1�804 1�706 1�607 1�517 0�988 4�077 2�027
(λ = 0�5) (0�063) (0�062) (0�058) (0�058) (0�063) (0�038) (0�173) (0�065)

respectively, while the true values are θRN = 4 and θRS = 2. For T = 20, the mean esti-
mates of θRN and θRS of 2S-PML are 4 standard deviations away from the true values.
The constrained optimization approach converged for all 100 data sets for different T ,
although it converged for only 582 runs (out of 1000) for T = 1; it also produced fairly
accurate estimates of all structural parameters.

Note that in Experiments 1 and 2, the constrained optimization approach failed to
converge more frequently and needed longer computing time for T = 1 than for T = 10
or 20. One possible explanation for this finding is that with fewer observations in the
data (T = 1), the likelihood function is flatter than that with more observations (T = 10
or 20), which makes the optimization problem in the former case more challenging to
solve.

Experiment 3. In Tables 7 and 8, we have collected the results of Cases 5 and 6. With
|S| = 10, the NPL algorithm often failed to converge, finding a solution for only 23 of 50
data sets (or 76 out of 250 runs), and produced highly biased estimates of the parame-
ter θRS for the converged data sets, with a mean estimate of 1�966 (standard deviation
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Table 7. Convergence results and computational time for Cases 5 and 6.

Data Sets Runs CPU Time Avg. NPL(-Λ)
|S| Estimator Converged Converged (in Sec.) Iter.

10 MLE 50 240 231�52 –
10 2S-PML 50 250 7�44 –
10 NPL 23 76 552�85 89
10 NPL-Λ (λ = 0�5) 50 241 289�39 43

15 MLE 50 222 762�78 –
15 2S-PML 50 242 31�45 –
15 NPL 0 0 1560�08 100
15 NPL-Λ (λ = 0�5) 1 3 1658�08 100

Table 8. Monte Carlo results on parameter estimates for Cases 5 and 6.

Estimates

|S| Estimator θFC�1 θFC�2 θFC�3 θFC�4 θFC�5 θEC θRN θRS

True Value 1�9 1�8 1�7 1�6 1�5 1 2 1

10 MLE 1�882 1�780 1�677 1�584 1�472 0�999 2�031 1�004
(0�092) (0�087) (0�079) (0�084) (0�068) (0�046) (0�201) (0�048)

10 2S-PML 1�884 1�792 1�679 1�583 1�469 1�039 1�065 0�755
(0�102) (0�088) (0�082) (0�087) (0�068) (0�048) (0�222) (0�053)

10 NPL 1�919 1�810 1�699 1�606 1�485 1�011 1�851 1�966
(0�092) (0�089) (0�068) (0�079) (0�071) (0�050) (0�136) (0�036)

10 NPL-Λ 1�884 1�781 1�678 1�584 1�472 0�997 2�032 1�005
(λ = 0�5) (0�095) (0�089) (0�081) (0�085) (0�070) (0�049) (0�211) (0�051)

15 MLE 1�897 1�800 1�694 1�597 1�492 0�983 2�040 1�011
(0�098) (0�107) (0�087) (0�093) (0�090) (0�059) (0�311) (0�069)

15 2S-PML 1�792 1�705 1�595 1�506 1�394 1�046 0�766 0�664
(0�119) (0�123) (0�119) (0�114) (0�114) (0�059) (0�220) (0�053)

15 NPL N/A N/A N/A N/A N/A N/A N/A N/A
(N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A)

15 NPL-Λ 1�922 1�821 1�671 1�611 1�531 1�012 1�992 1�007
(λ = 0�5) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A)

0�036) versus the true value θRS = 1. The constrained optimization approach and the
NPL-Λ algorithm converged for all 50 data sets and produced similar estimates for all
structural parameters. However, with |S| = 15 as shown in Table 6, the NPL algorithm
failed to converge for all 50 data sets, and the NPL-Λ algorithm converged for only 1 of
50 data sets.12 The constrained optimization approach converged for all 50 data sets (or

12This observation holds when we loosen the convergence tolerance from 1�0e−6 to 1�0e−5 or increase
the number of iterations. The stopping error of the NPL or NPL-Λ algorithm typically cycles back to a large
value every few iterations while not falling below 1�0e−5. Loosening the convergence tolerance even fur-
ther to 1�0e−4 or 1�0e−3 can induce NPL and NPL-Λ to report convergence more frequently in this exper-
iment.



590 Egesdal, Lai, and Su Quantitative Economics 6 (2015)

222 out of 250 runs), and produced accurate estimates of all parameters. In both Cases 5
and 6, the 2S-PML estimator produced highly biased estimates of θRN and θRS. In terms
of computational speed, the 2S-PML estimator was around 25–30 times faster than the
constrained optimization approach in this experiment.

Recall that the specifications in Experiment 3 are identical to those in Case 2 in Ex-
periment 2 except that we increased the number of grid points in the market-size state
space from 5 to 10 and 15 in Cases 5 and 6, respectively. It is surprising to see that the
NPL and NPL-Λ algorithms failed to converge for almost all data sets when we simply
increased the size of the state space to 15, but fixed the true parameter values in the data
generating process.

4.3 Implementation improvements and robustness checks

In this subsection, we modify our implementation of the constrained optimization ap-
proach for the ML estimator and the NPL-Λ algorithm for the NPL estimator in some
of the Monte Carlo experiments to investigate the potential for performance improve-
ments. For the ML estimator, we use the 2S-PML estimates as starting values for solving
the constrained optimization problem (12); for the NPL-Λ algorithm, we use different
values of λ in updating the conditional choice probabilities. We provide more details on
our implementation and discuss the numerical results below.

For the ML estimator, instead of using the starting values specified in Section 4.1, we
use the 2S-PML estimates as starting values for the constrained optimization problem
(12) and rerun the estimation for Experiments 2 and 3. We report the corresponding
results for Cases 3 and 4 in Tables 9 and 10, respectively, and the results for Cases 5 and 6
in Table 11.

For Case 3, the average speed of the constrained optimization approach improves
from 216 seconds to 42 seconds for T = 1, from 32 seconds to 25 seconds for T = 10, and
from 29 seconds to 23 seconds for T = 20; see Tables 3 and 9. For Case 4, the average
time per run improves from 273 seconds to 42 seconds for T = 1, from 149 seconds to
29 seconds for T = 10, and from 121 seconds to 27 seconds for T = 20; see Tables 5 and
10. We also observed similar speed improvements with the data sets in Cases 5 and 6
in Experiment 3. For Cases 5 and 6, when using the 2S-PML estimates as starting val-

Table 9. Additional ML estimator results using 2S-PML as starting values for Case 3.

Estimates Data
Sets

Conv.

CPU
Time

(in Sec.)M T θFC�1 θFC�2 θFC�3 θFC�4 θFC�5 θEC θRN θRS

Truth 1�9 1�8 1�7 1�6 1�5 1 2 1

400 1 1�949 1�849 1�764 1�651 1�563 0�983 2�257 1�086 99 42�35
(0�254) (0�236) (0�241) (0�247) (0�250) (0�150) (1�086) (0�310)

400 10 1�895 1�794 1�697 1�597 1�495 0�990 2�048 1�011 100 25�05
(0�077) (0�078) (0�075) (0�074) (0�073) (0�046) (0�345) (0�095)

400 20 1�903 1�801 1�701 1�600 1�502 0�996 2�020 1�005 100 23�61
(0�056) (0�050) (0�050) (0�049) (0�050) (0�028) (0�241) (0�067)
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Table 10. Additional MLE results using 2S-PML as starting values for Case 4.

Estimates Data
Sets

Conv.

CPU
Time

(in Sec.)M T θFC�1 θFC�2 θFC�3 θFC�4 θFC�5 θEC θRN θRS

Truth 1�9 1�8 1�7 1�6 1�5 1 4 2

400 1 1�947 1�845 1�741 1�632 1�538 1�006 3�989 2�011 100 42�19
(0�310) (0�291) (0�282) (0�287) (0�316) (0�181) (0�906) (0�343)

400 10 1�897 1�797 1�697 1�594 1�496 0�993 4�015 2�004 100 29�19
(0�084) (0�084) (0�082) (0�085) (0�095) (0�045) (0�216) (0�086)

400 20 1�908 1�806 1�707 1�607 1�514 0�991 4�046 2�017 100 27�43
(0�057) (0�056) (0�053) (0�055) (0�059) (0�031) (0�137) (0�054)

Table 11. MLE results using 2S-PML estimator as starting values for Cases 5 and 6.

Estimates Data
Sets

Conv.

CPU
Time

(in Sec.)|S| θFC�1 θFC�2 θFC�3 θFC�4 θFC�5 θEC θRN θRS

Truth 1�9 1�8 1�7 1�6 1�5 1 2 1

10 1�882 1�780 1�677 1�584 1�472 0�999 2�031 1�004 50 91�41
(0�092) (0�087) (0�079) (0�084) (0�068) (0�046) (0�201) (0�048)

15 1�899 1�803 1�697 1�600 1�494 0�983 2�034 1�010 49 449�06
(0�098) (0�106) (0�085) (0�093) (0�090) (0�059) (0�304) (0�067)

ues for the constrained optimization approach, the average time per run improves from
231 seconds to 91 seconds and from 762 seconds to 449 seconds, respectively; see Ta-
bles 7 and 11. Clearly, using the 2S-PML estimates as starting values may decrease aver-
age computational time of the ML estimator by as much as a factor of 6.

In terms of performance on the number of data sets converged and the accuracy
of the estimates, solving the constrained optimization problem (12) with 2S-PML esti-
mates as starting values produces comparable results to those reported in Tables 3–8.
This observation suggests that with a better choice of starting values, the performance
of the ML estimator can be improved significantly in terms of decreasing computational
time while obtaining estimates that are qualitatively similar.13

For the NPL-Λ algorithm, we perform robustness checks by using different values
of λ in the updating of P̃K in equation (19). Recall that the choice of λ affects the con-
traction rate of the iterative process and researchers may seek to adjust λ to improve
convergence, for example, by using a small value of λ as suggested by Kasahara and Shi-
motsu (2012). However, the choice of the value of λ also affects computational time and
the number of NPL-Λ iterations required to converge. When researchers are more con-
servative and choose the value of λ to be small, the NPL-Λ algorithm may also require
more iterations to achieve convergence, which increases computational time. In exam-
ining the impact of different λ values on the performance of the NPL-Λ algorithm, we

13In practice, researchers should still use multiple starting values, perhaps by perturbing the 2S-PML
estimates, in an attempt to find a global solution.



592 Egesdal, Lai, and Su Quantitative Economics 6 (2015)

Table 12. Additional NPL-Λ results with different λ values for Case 4.

Estimates Data
Sets

Conv.

CPU
Time

(in Sec.)
NPL-Λ

Iter.T λ θFC�1 θFC�2 θFC�3 θFC�4 θFC�5 θEC θRN θRS

Truth 1�9 1�8 1�7 1�6 1�5 1 4 2

1 0�9 2�009 1�869 1�743 1�571 1�339 1�301 2�234 1�414 8 78�38 95�6
(0�266) (0�282) (0�285) (0�311) (0�275) (0�119) (0�222) (0�107)

1 0�7 1�970 1�873 1�741 1�612 1�460 1�111 3�349 1�790 54 61�89 71�1
(0�238) (0�241) (0�210) (0�201) (0�170) (0�129) (0�584) (0�185)

1 0�3 2�006 1�916 1�797 1�619 1�409 1�167 2�819 1�621 25 84�27 96�6
(0�277) (0�298) (0�279) (0�287) (0�265) (0�151) (0�507) (0�192)

1 0�1 N/A N/A N/A N/A N/A N/A N/A N/A 0 87�83 100
(N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A)

10 0�9 N/A N/A N/A N/A N/A N/A N/A N/A 0 88�53 100
(N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A)

10 0�7 1�879 1�782 1�678 1�571 1�454 1�016 3�876 1�949 33 76�30 89�7
(0�081) (0�081) (0�077) (0�073) (0�076) (0�047) (0�216) (0�083)

10 0�3 1�873 1�786 1�683 1�560 1�407 1�058 3�581 1�845 11 83�84 99�4
(0�110) (0�098) (0�107) (0�102) (0�102) (0�049) (0�181) (0�085)

10 0�1 N/A N/A N/A N/A N/A N/A N/A N/A 0 88�03 100
(N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A)

20 0�9 N/A N/A N/A N/A N/A N/A N/A N/A 0 92�59 100
(N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A)

20 0�7 1�896 1�787 1�697 1�591 1�485 1�016 3�935 1�972 22 84�54 94�5
(0�084) (0�084) (0�082) (0�085) (0�095) (0�045) (0�216) (0�086)

20 0�3 1�932 1�834 1�731 1�623 1�513 1�016 3�884 1�969 15 85�49 99�4
(0�068) (0�066) (0�068) (0�065) (0�069) (0�026) (0�133) (0�053)

20 0�1 N/A N/A N/A N/A N/A N/A N/A N/A 0 92�67 100
(N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A)

set λ = {0�1�0�3�0�7�0�9} and re-solve the estimation problem for each data set in Cases
4 and 6, the two cases for which the NPL algorithm failed to converge most often.

In Table 12, we report the results of the NPL-Λ algorithm using different λ values for
the data sets used in Case 4. Recall that for Case 4, the NPL algorithm converged for only
2 data sets for T = 1 and failed to converge for all 100 data sets for T = 10 and 20, and
the NPL-Λ algorithm with λ = 0�5 converged in 84 data sets for T = 1, 63 data sets for
T = 10, and 53 data sets for T = 20; see Table 5. With λ = 0�9, we expect the performance
of the NPL and the NPL-Λ algorithms to be similar since each iteration of the NPL-Λ
algorithm should be similar to that of the NPL algorithm. Indeed, we observe that the
NPL-Λ algorithm only converges for 8 data sets for T = 1, and fails to converge for all
data sets for T = 10 and 20.

With λ = 0�1, the NPL-Λ algorithm takes small steps in updating the conditional
choice probabilities. Although, in theory, using a small value of λ may help the NPL-
Λ algorithm to converge, the downside is that the iterations progress very slowly and
the NPL-Λ algorithm may need many iterations before convergence is achieved. As can
be seen in Table 12, the NPL-Λ algorithm fails to converge in all data sets for T = 1, 10,



Quantitative Economics 6 (2015) Estimating dynamic discrete-choice games 593

Table 13. Additional NPL-Λ results with different λ values for Case 6 (|S| = 15).

Estimates Data
Sets

Conv.

CPU
Time

(in Sec.)
NPL-Λ

Iter.T λ θFC�1 θFC�2 θFC�3 θFC�4 θFC�5 θEC θRN θRS

Truth 1�9 1�8 1�7 1�6 1�5 1 4 2

10 0�9 N/A N/A N/A N/A N/A N/A N/A N/A 0 1706�26 100
(N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A)

10 0�7 1�922 1�821 1�671 1�611 1�531 1�012 1�992 1�007 1 1679�52 99�6
(N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A)

10 0�3 N/A N/A N/A N/A N/A N/A N/A N/A 0 1766�75 100
(N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A)

10 0�1 N/A N/A N/A N/A N/A N/A N/A N/A 0 1764�13 100
(N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) (N/A)

and 20. Further inspection of the iteration output indicates that the maximum number
of iterations K̄ = 100 is reached before the convergence condition (21) is satisfied. This
observation confirms our conjecture that with a small value of λ, the NPL-Λ algorithm
will require more iterations to achieve convergence.

We also report the results of the NPL-Λ algorithm with λ = 0�3 and 0�7. As expected,
the performance of the NPL-Λ algorithm for these two values is better than that of λ =
0�1 or 0�9. Still, the best convergence rate of the NPL-Λ algorithm is obtained in our
original implementation with λ= 0�5.14

In Table 13, we report the results of the NPL-Λ algorithm with different λ values (λ =
{0�1�0�3�0�7�0�9}) for the data sets in Case 6. Recall that for Case 6, the NPL algorithm
failed to converge in all 50 data sets and the NPL-Λ algorithm with λ = 0�5 converged
in 1 out of 50 data sets; see Table 7. As shown in Table 13, across multiple values of λ,
the NPL-Λ algorithm converged for only 1 data set (with λ = 0�7). In this case, using
different values of λ does not help to alleviate the convergence issue of the NPL or the
NPL-Λ algorithm.15

In summary, choosing an appropriate value for λ in implementing the NPL-Λ algo-
rithm is a delicate issue. As shown in our numerical results, choosing λ to be close to 1
(e.g., λ = 0�9) does not alter the iteration process of the NPL algorithm too much and,
hence, may result in limited improvement in the convergence of the NPL-Λ algorithm.
On the other hand, choosing λ to be small (e.g., λ = 0�1 or 0�01) may, in theory, help the
NPL-Λ algorithm achieve convergence, but will require more iterations and longer com-
putational time. The results of our numerical experiments reported in Tables 12 and 13
document and illustrate this trade-off between using different values of λ in implement-
ing the NPL-Λ algorithm.

14We also increased K̄ to 500 and reran the NPL-Λ algorithm using a few sample data sets for which
the NPL-Λ algorithm failed to converge with K̄ = 100. For λ = 0�1 and λ = 0�3, the stopping error bounced
between values from roughly 1�0e−4 to 1.0 with no sign of a trend toward convergence. For λ = 0�7 and
λ = 0�9, the stopping error sometimes went as low as on the order of 1�0e−5, but then bounced back to
values on the order of 1�0e−1 or even larger than 1.0 in a few iterations.

15However, using a loose convergence tolerance such as 1�0e−4 or 1�0e−3 may help the NPL-Λ algo-
rithm to report convergence more frequently.
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5. Conclusion

In this paper, we have formulated the ML estimation of dynamic discrete-choice games
of incomplete information as a constrained optimization problem. We have compared
the numerical performance of our constrained approach to the 2S-PML estimator,
which suffers from large finite-sample biases in many cases, and to the NPL and NPL-Λ
algorithms, which suffer from convergence issues. Our Monte Carlo experiments have
demonstrated that the lack of convergence of NPL and NPL-Λ is not a trivial issue in
practice. In contrast, the constrained optimization approach for ML estimation pro-
duces accurate parameter estimates and has better convergence properties when com-
pared to the NPL and NPL-Λ algorithms. The performance of the constrained optimiza-
tion approach is robust to changes in both the size of the model and the true values
of the structural parameters. Our results suggest that the constrained optimization ap-
proach for ML estimation is, indeed, practical and computationally feasible for estimat-
ing dynamic games with a moderate number of grid points in the state space as long
as the constraint Jacobian and the Hessian of the constrained optimization problem are
relatively sparse.

For future research, we plan to explore using the constrained approach in games
with unobserved heterogeneity, such as the model in Arcidiacono and Miller (2011). We
also plan to improve the numerical implementation of the constrained optimization ap-
proach to estimate dynamic games with higher dimensional state spaces.

Appendix A: Proof of Proposition 1

We first consider the constraint Jacobian matrix. For any Bellman optimality constraint
gradient row, there are at most 2N(2δs + 1) + |θ| + 2N nonzero elements. The first term
comes from the derivative with respect to Vi(x′) for the same player i, the second term
comes from the derivative with respect to the structural parameters, and the third term
comes from the derivative with respect to choice probabilities of all players across the
binary action space at the current state x. This applies to N · |S| · 2N Bellman optimality
constraints. Similarly, inspecting the CCP equation (8) leads, by the same derivation,
to at most |2|N(2δs + 1) + |θ| + 2N nonzero elements for each constraint gradient row.
This refers nontrivially to each of N · |S| · 2N rows. Finally, we add at most two nonzero
elements per row for each of the remaining N · |S| ·2N CCP equations, forcing the choice
probabilities to sum to 1. This corresponds to the probabilities of each player’s actions
at the current state x.

Summing up these terms yields the numerator as the number of nonzero elements
in the constraint Jacobian matrix. The denominator comes from there being (2 + 1) ·N ·
|S| · 2N constraints and (2 + 1) ·N · |S| · 2N + |θ| variables. This leads to the upper bound

DJ ≤ N · |S| · 2N · (2 · (2N(2δs + 1)+ |θ| + 2N)+ 2)
((2 + 1) ·N · |S| · 2N) · ((2 + 1) ·N · |S| · 2N + |θ|)

= 2
3

(
2N(2δs + 1)+ |θ| + 2N + 1

3N · |S| · 2N + |θ|
)

(22)

≤ 2
9

(
2δs + 1
N · |S| + |θ| + 1

N · |S| · 2N
+ 1

|S| · 2N−1

)
�
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The derivation for DH is similar. We can sum over five terms to construct the numer-
ator of the upper bound. The first corresponds to the ∂2V derivative terms, the second
corresponds to the ∂2P derivative terms, the third corresponds to the ∂V∂P derivative
terms, the fourth corresponds to both the ∂V∂θ and ∂P∂θ derivative terms, and the fifth
corresponds to the ∂2θ derivative terms. The denominator corresponds to the square of
the number of variables. Combining these numerator and denominator terms leads to
the expression

DH ≤ (N · |S| · 2N · (2N · (2δs + 1)
)+ |S| · 2N · (2N)2

+ 4N2 · |S| · 2N · (2N · (2δs + 1)
)+ 2 · ((2 + 1) ·N · |S| · 2N

) · |θ| + |θ|2)
(23)

/
(
(2 + 1) ·N · |S| · 2N + |θ|)2

≤ 1
9

(
2δs + 1
N · |S| + 4

|S| · 2N
+ 4 · (2δs + 1)

|S| + 6 · |θ|
N · |S| · 2N

+
( |θ|
N · |S| · 2N

)2)
�

Proposition 1(b) and (c) follow immediately.

Appendix B: Sparsity information for the constraint Jacobian and

Hessian matrices

Table 14. Upper bounds on the density of constraint matrices varying |S| and N , with δs = 1.

Constrained Jacobian Hessian

|S| N θ Nonzero Elements Density DJ Nonzero Elements Density DH

5 5 8 187,200 3�24% 1,676,900 28�9%
6 5 8 224,640 2�70% 2,012,260 24�1%
7 5 8 262,080 2�31% 2,347,620 20�7%
8 5 8 299,520 2�03% 2,682,980 18�2%
9 5 8 336,960 1�80% 3,018,340 16�1%

10 5 8 374,400 1�62% 3,353,700 14�5%
11 5 8 411,840 1�47% 3,689,060 13�2%
12 5 8 449,280 1�35% 4,024,420 12�1%
13 5 8 486,720 1�25% 4,359,780 11�2%
14 5 8 524,160 1�16% 4,695,140 10�4%
15 5 8 561,600 1�08% 5,030,500 9�68%
16 5 8 599,040 1�01% 5,365,860 9�08%
17 5 8 636,480 0�95% 5,701,220 8�55%
18 5 8 673,920 0�90% 6,036,580 8�07%
19 5 8 711,360 0�85% 6,371,940 7�65%
20 5 8 748,800 0�81% 6,707,300 7�27%

5 3 6 9360 7�07% 44,704 33�4%
5 4 7 42,240 4�54% 283,601 30�3%
5 5 8 187,200 3�24% 1,676,900 28�9%
5 6 9 829,440 2�50% 9,388,921 28�2%
5 7 10 3,682,560 2�04% 50,337,424 27�8%
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