Supplement to "Estimating overidentified, nonrecursive, time-varying coefficients structural variable autoregressions"

(Quantitative Economics, Vol. 6, No. 2, July 2015, 359-384)

FABIO CANOVA EUI and CEPR

Fernando J. Pérez Forero BCRP

APPENDIX A: GLOBAL IDENTIFICATION OF THE CONSTANT COEFFICIENTS SVAR Consider the constant coefficients version of the SVAR model used in Section 5:

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \alpha_{1} & 1 & 0 & 0 & 0 & 0 \\ \alpha_{2} & \alpha_{5} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \alpha_{11} & 0 \\ \alpha_{3} & \alpha_{6} & 0 & \alpha_{9} & 1 & 0 \\ \alpha_{4} & \alpha_{7} & \alpha_{8} & \alpha_{10} & \alpha_{12} & 1 \end{bmatrix}}_{A(\alpha)} \times \begin{bmatrix} \text{GDP}_{t} \\ P_{t} \\ U_{t} \\ R_{t} \\ M_{t} \\ P \text{com}_{t} \end{bmatrix} = A^{+}(L) \begin{bmatrix} \text{GDP}_{t-1} \\ P_{t-1} \\ U_{t-1} \\ R_{t-1} \\ M_{t-1} \\ P \text{com}_{t-1} \end{bmatrix} + \Sigma \begin{bmatrix} \varepsilon_{t}^{u} \\ \varepsilon_{t}^{w} \\ \varepsilon_{t}^{mp} \\ \varepsilon_{t}^{md} \\ \varepsilon_{t}^{i} \end{bmatrix}$$

v

with

$$\Sigma = \begin{bmatrix} \sigma^i & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma^{\mathrm{md}} & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma^{\mathrm{mp}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma^y & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma^p & 0 \\ 0 & 0 & 0 & 0 & 0 & \sigma^u \end{bmatrix}.$$

To verify that the system is globally identified, we rewrite the model using the notation of Rubio Ramirez et al. (2010). Let $y_t \equiv (\text{GDP}_t, P_t, U_t, R_t, M_t, P\text{com}_t)'$ and $\varepsilon_t \equiv (\varepsilon_t^y, \varepsilon_t^p, \varepsilon_t^u, \varepsilon_t^{\text{mp}}, \varepsilon_t^{\text{md}}, \varepsilon_t^i)'$. Premultiplying by Σ^{-1} , we obtain

 $\Sigma^{-1}A(\alpha)y_t = \Sigma^{-1}A^+(L)y_{t-1} + \varepsilon_t$

Fabio Canova: canova@eui.eu

Fernando J. Pérez Forero: fernando.perez@bcrp.gob.pe

Copyright © 2015 Fabio Canova and Fernando J. Pérez Forero. Licensed under the Creative Commons Attribution-NonCommercial License 3.0. Available at http://www.qeconomics.org. DOI: 10.3982/QE305

,

,

with $\varepsilon_t \sim N(0, I_6)$. Define $\mathbf{A}'_0 \equiv \Sigma^{-1} \mathcal{A}(\alpha)$ and $\mathbf{A}'(L) \equiv \Sigma^{-1} \mathcal{A}^+(L)$. Then

$$y_t' \mathbf{A}_0 = \sum_{L=1}^p y_{t-L}' \mathbf{A}_L + \varepsilon_t',$$

where

$$\mathbf{A}_{0}^{\prime} = \begin{bmatrix} \sigma^{y} & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma^{p} & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma^{u} & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma^{mp} & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma^{md} & 0 \\ 0 & 0 & 0 & 0 & \sigma^{rd} \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \alpha_{1} & 1 & 0 & 0 & 0 & 0 \\ \alpha_{2} & \alpha_{5} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \alpha_{11} & 0 \\ \alpha_{3} & \alpha_{6} & 0 & \alpha_{9} & 1 & 0 \\ \alpha_{4} & \alpha_{7} & \alpha_{8} & \alpha_{10} & \alpha_{12} & 1 \end{bmatrix} \\ = \begin{bmatrix} \frac{1}{\sigma^{y}} & 0 & 0 & 0 & 0 & 0 \\ \frac{\alpha_{1}}{\sigma^{p}} & \frac{1}{\sigma^{p}} & 0 & 0 & 0 & 0 \\ \frac{\alpha_{2}}{\sigma^{u}} & \frac{\alpha_{5}}{\sigma^{u}} & \frac{1}{\sigma^{u}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\sigma^{mp}} & \frac{\alpha_{11}}{\sigma^{mp}} & 0 \\ \frac{\alpha_{3}}{\sigma^{md}} & \frac{\alpha_{6}}{\sigma^{md}} & 0 & \frac{\alpha_{9}}{\sigma^{md}} & \frac{1}{\sigma^{mp}} & 0 \\ \frac{\alpha_{4}}{\sigma^{i}} & \frac{\alpha_{7}}{\sigma^{i}} & \frac{\alpha_{8}}{\sigma^{i}} & \frac{\alpha_{12}}{\sigma^{i}} & \frac{1}{\sigma^{i}} & \frac{1}{\sigma^{i}} \end{bmatrix} .$$

Denoting $\mathbf{A}_0 = [a_{kj}]$, we have

$$\mathbf{A}_{0} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 & a_{15} & a_{16} \\ 0 & a_{22} & a_{23} & 0 & a_{25} & a_{26} \\ 0 & 0 & a_{33} & 0 & 0 & a_{36} \\ 0 & 0 & 0 & a_{44} & a_{45} & a_{46} \\ 0 & 0 & 0 & a_{54} & a_{55} & a_{56} \\ 0 & 0 & 0 & 0 & 0 & a_{66} \end{bmatrix}.$$

The matrices \mathbf{Q}_j , j = 1, ..., 6, present in Theorem 1 of Rubio Ramirez et al. (2010) are

Supplementary Material

Estimating structural VARs 3

•

Define the matrices

$$\mathbf{M}_{j}(\mathbf{A}_{0}) = \begin{bmatrix} \mathbf{Q}_{j}\mathbf{A}_{0} \\ \begin{bmatrix} \mathbf{I}_{j} & \mathbf{0}_{j\times(M-j)} \end{bmatrix} \end{bmatrix}, \quad j = 1, \dots, M,$$
(A.1)

so that

Since all \mathbf{M}_j have full column rank, the model is globally identified.

Appendix B: Single-move Metropolis for drawing B_t

Koop and Potter's (2011) approach for drawing the elements of the B^T sequence separately works as follows. Given $(f^{i-1})^T$, $(\Sigma^{i-1})^T$, Q^{i-1} , V^{i-1} , W^{i-1} , the measurement equation is

$$y_t = X_t' B_t + A(\alpha_t)^{-1} \Sigma_t \varepsilon_t$$

and the transition equation is

$$B_t = B_{t-1} + v_t,$$

with $v_t \sim N(0, Q)$, B_0 given, and $A(\alpha_t)^{-1} \Sigma_t \varepsilon_t = u_t \sim N(0, \Omega_t)$. To sample the individual elements of B^T , all $t \ge 1$, the steps are as follows.

1. Draw a candidate $B_t^{\dagger} \sim N(\mu_t, \Psi_t)$, where

$$\begin{split} \mu_t &= \begin{cases} \frac{B_{t-1}^i + B_{t+1}^{i-1}}{2} + G_t \bigg[y_t - X_t' \bigg(\frac{B_{t-1}^i + B_{t+1}^{i-1}}{2} \bigg) \bigg], \quad t < T, \\ B_{t-1}^i + G_t \big[y_t - X_t' (B_{t-1}^i) \big], \quad t = T, \end{cases} \\ G_t &= \begin{cases} \frac{1}{2} Q^{i-1} X_t \big(X_t' Q^{i-1} X_t + \Omega_t \big)^{-1}, \quad t < T, \\ Q^{i-1} X_t \big(X_t' Q^{i-1} X_t + \Omega_t \big)^{-1}, \quad t = T, \end{cases} \\ \Psi_t &= \begin{cases} \frac{1}{2} (I_K - G_t X_t') Q^{i-1}, \quad t < T, \\ (I_K - G_t X_t') Q^{i-1}, \quad t = T. \end{cases} \end{split}$$

2. Construct the companion form matrix $\overline{\mathbf{B}}_t^{\dagger}$ and evaluate $\mathcal{I}(\max | \operatorname{eig}(\overline{\mathbf{B}}_t^{\dagger})| < 1)$, where $\mathcal{I}(\cdot)$ is an indicator function taking the value of 1 if the condition within the parentheses is satisfied.

3. The acceptance rate of B_t^{\dagger} is

$$\begin{split} \omega_{B,t} &= \min\left\{\frac{\frac{\mathcal{I}(\max|\operatorname{eig}(\overline{\mathbf{B}}_{t}^{\dagger})| < 1)}{\lambda(B_{t}^{\dagger}, Q^{i-1})}}{\frac{1}{\lambda(B_{t}^{i-1}, Q^{i-1})}}, 1\right\} \\ &= \min\left\{\frac{\mathcal{I}(\max|\operatorname{eig}(\overline{\mathbf{B}}_{t}^{\dagger})| < 1)\lambda(B_{t}^{i-1}, Q^{i-1})}{\lambda(B_{t}^{\dagger}, Q^{i-1})}, 1\right\}, \end{split}$$

where $\lambda(\cdot)$ is an integrating constant measuring the proportion of draws that satisfy the inequality constraint. To compute $\lambda(\cdot)$, first one draws $B_t^{\dagger,l} \sim N(B_t^{\dagger}, Q^{i-1})$ for $l = 1, \ldots, \overline{L}$, constructs the companion form matrix $\overline{\mathbf{B}}_t^{\dagger,l}$, and evaluates $\lambda_l =$ $\mathcal{I}(\max|\operatorname{eig}(\overline{\mathbf{B}}_{t}^{\dagger,l})| < 1)$. Second, one evaluates $\lambda(B_{t}^{\dagger}, Q^{i-1}) = \frac{\sum_{l=1}^{\overline{L}} \lambda_{l}}{\overline{L}}$ and $\lambda(B_{t,i-1}, Q^{i-1})$, and computes the acceptance probability. When t = T, this probability is

$$\omega_{B,T} = \mathcal{I}(\max|\operatorname{eig}(\overline{\mathbf{B}}_t^{\dagger})| < 1).$$

4. Draw a $v \sim U(0, 1)$. Set $B_t^i = B_t^c$ if $v < \omega_{B,t}$ and set $B_t^i = B_t^{i-1}$ otherwise.

Since Q depends on B_t , we need to change the sampling scheme also for this matrix. Assume that $Q^{-1} \sim W(\underline{v}, \underline{Q}^{-1})$ so that the unrestricted posterior is $Q^{-1} \sim W(\overline{v}, \overline{Q}^{-1})$ with $\overline{v} = \underline{v} + T$ and $\overline{Q}^{-1} = [\underline{Q} + \sum_{t=1}^{T} (B_{t,i} - B_{t-1,i})(B_{t,i} - B_{t-1,i})']^{-1}$. Then draw a candidate $(Q^{\dagger})^{-1} \sim W(\overline{v}, \overline{Q}^{-1})$, and for t = 1, ..., T, evaluate $\lambda(B_t^i, Q^{\dagger})$ and $\lambda(B_t^i, Q^{i-1})$ for a fixed \overline{L} , and calculate

$$\omega_{\mathcal{Q}} = \min\left\{\prod_{t=1}^{T} \frac{\lambda(B_{t}^{i}, \mathcal{Q}^{i-1})}{\lambda(B_{t}^{i}, \mathcal{Q}^{\dagger})}, 1\right\}.$$

Finally, we draw a $v \sim U(0, 1)$, set $Q^i = Q^c$ if $v < \omega_Q$, and set $Q^i = Q^{i-1}$. In the exercise of Section 5, we set $\overline{L} = 25$ when evaluating the integrating constants $\lambda(\cdot)$ at each *t*.

Note that in a multi-move approach, $\lambda(\cdot) = 1$ when sampling both B^T and Q. Therefore, Koop and Potter's approach generalizes the multi-move procedure at the cost of making convergence to the posterior, in general, much slower and, because $\lambda(\cdot)$ needs to be simulated at each *t*, of adding considerable computational time.

Appendix C: A shrinkage approach to draw B^T when Ξ is known

The model still consists of

$$y_t = X'_t B_t + A_t^{-1} \Sigma_t \varepsilon_t,$$

$$\alpha_t = \alpha_{t-1} + \zeta_t,$$

$$\log(\sigma_{m,t}) = \log(\sigma_{m,t-1}) + \eta_{m,t},$$

but now

$$B_t = B_{t-1} + v_t$$

is substituted by

$$B_t = \Xi \theta_t + v_t, \quad v_t \sim N(0, I), \tag{C.1}$$

$$\theta_t = \theta_{t-1} + \rho_t, \quad \rho_t \sim N(0, Q), \tag{C.2}$$

where $\dim(\theta_t) \ll \dim(B_t)$ and where the matrix Ξ is known, as in Canova and Ciccarelli (2009). Using (C.2) into (C.1), we have

$$y_t = X'_t \Xi \theta_t + A(\alpha_t)^{-1} \Sigma_t \varepsilon_t + X'_t \upsilon_t \equiv X'_t \Xi \theta_t + \psi_t,$$
(C.3)
where $\psi_t \sim N(0, H_t)$ with $H_t \equiv A(\alpha_t)^{-1} \Sigma_t \Sigma'_t (A(\alpha_t)^{-1})' + X'_t X_t.$

To estimate the unknowns, we do the following:

1. We sample θ^T with a multi-move routine using (C.3) and (C.2).

2. Given θ^T , we compute $\hat{y}_t = y_t - X'_t \Xi \theta_t$. Pre-multiplying by $A(\alpha_t)$, we get the concentrated structural model

$$A(\alpha_t)\widehat{y}_t = A(\alpha_t)\xi_t = \Sigma_t \varepsilon_t + A(\alpha_t)X'_t v_t.$$

As before,

$$(\widehat{y}_t' \otimes I_M)(S_A f_t + s_A) = \Sigma_t \varepsilon_t + A(\alpha_t) X_t' v_t$$

so that the second state space system is

$$\tilde{y}_t = Z_t f_t + \Sigma_t \varepsilon_t + A(\alpha_t) X_t' \upsilon_t, \tag{C.4}$$

$$f_t = f_{t-1} + \zeta_t \tag{C.5}$$

and we draw f^T using our proposed Metropolis step. The variance of the measurement error is $\Sigma_t \Sigma'_t + A_t(\alpha_t) X'_t X_t A'_t(\alpha_t)$ and it is evaluated at $f_{t|t-1}$.

3. Given (θ^T, f^T) ,

$$\widehat{A}(\alpha_t)\widehat{y}_t = \Sigma_t \varepsilon_t + \widehat{A}(\alpha_t) X'_t v_t.$$

Since $\widehat{A}(\alpha_t)X'_t$ is known, let the lower triangular P_t satisfy $P_t(\widehat{A}(\alpha_t)X'_tX_t\widehat{A}(\alpha_t)')P'_t = I$. Then

$$P_t \widehat{A}(\alpha_t) \widehat{y}_t = y_t^{**} = P_t \Sigma_t \varepsilon_t + P_t \widehat{A}(\alpha_t) X_t' v_t$$

with $\operatorname{var}(P_t\widehat{A}(\alpha_t)X'_tv_t) = I$ and where $P_t\sum_t\sum_tP'_t + P_t(\widehat{A}(\alpha_t)X'_tX_t\widehat{A}(\alpha_t)')P'_t$ is a diagonal matrix. This transformation is similar to Cogley and Sargent (2005); however, since $\widehat{A}(\alpha_t)X'_t$ is known, we only need to sample the variances of $\epsilon_{m,t}$. We do this using the $\log(\chi^2)$ approximation of a mixture of *J* normals.

4. Given $(\theta^T, f^T, \Sigma^T)$, sample Q, V, and W from independent inverted Wishart distributions.

5. Given new values of $\sigma_{m,t}$, we construct $A(\alpha_t)^{-1} \Sigma_t \Sigma'_t (A(\alpha_t)^{-1})' + X'_t X_t$ and go back to step 1.

Appendix D: A shrinkage approach to draw B^T when Ξ is unknown

When the Ξ 's are known, the algorithm needs to be modified as follows.

The TVC-SVAR model is

$$y_t = X_t' B_t + A(\alpha_t)^{-1} \Sigma_t \varepsilon_t,$$

where
$$X'_t = I_M \otimes [D'_t, y'_{t-1}, \dots, y'_{t-k}]$$
, with
 $B_t = \Xi \theta_t + \omega_t,$
 $\theta_t = \theta_{t-1} + \upsilon_t,$
 $f_t = f_{t-1} + \zeta_t,$
 $\log(\sigma_t) = \log(\sigma_{t-1}) + \eta_t,$
 $\left(\begin{bmatrix} \varepsilon_t \\ \omega_t \end{bmatrix} \right) = \begin{bmatrix} I & 0 & 0 & 0 \\ 0 & Q & 0 & 0 \end{bmatrix}$

$$\operatorname{Var}\left(\left[\begin{array}{c} \omega_t \\ \upsilon_t \\ \zeta_t \\ \eta_t \end{array}\right]\right) = \left[\begin{array}{ccccc} 0 & Q & 0 & 0 & 0 \\ 0 & 0 & R & 0 & 0 \\ 0 & 0 & 0 & V & 0 \\ 0 & 0 & 0 & 0 & W \end{array}\right],$$

where *Q* and *R* are diagonal matrices. We exploit the hierarchical structure of the model to simulate the posterior distribution as in Chib and Greenberg (1995):

1. Given $(A(\alpha_t), \sigma_t Q)$, sample B_t using

$$y_t = X_t' B_t + A(\alpha_t)^{-1} \Sigma_t \varepsilon_t$$

with $A(\alpha_t)^{-1}\Sigma_t \varepsilon_t = u_t \sim N(0, H_t)$. That is, for each t = 1, ..., T, draw

$$B_t \sim N(\overline{B}_t, \overline{VB}_t),$$

where

$$\overline{VB}_t = (\underline{VB}^{-1} + X_t H_t^{-1} X_t')^{-1},$$

$$\overline{B}_t = \overline{VB}_t (\underline{VB}^{-1} \underline{B}_t + X_t H_t^{-1} y_t)$$

and priors

$$\underline{VB} = Q, \qquad \underline{B}_t = \Xi \theta_t.$$

2. Given (B_t, θ_t) , compute the residuals $(B_t - \Xi \theta_t)$ and sample Q using an inverse Wishart distribution.

3. Given B_t , sample θ_t using the state space form

$$B_t = \Xi \theta_t + \omega_t,$$
$$\theta_t = \theta_{t-1} + v_t.$$

4. Given θ_t , sample *R* using an inverse Wishart distribution.

5. Given (B_t, θ_t, Q) , draw Ξ using

$$B_t = \Xi \theta_t + \omega_t, \quad t = 1, \dots, T,$$

where, to achieve identification, we normalize the first upper block of Ξ to be an identity matrix, as in Koop and Korobilis (2010). That is, denote $\mathcal{F} = \dim(\theta_t)$ and $K = \dim(B_t)$. Then Ξ is a $K \times \mathcal{F}$ matrix. The first \mathcal{F} rows of Ξ are

$$\Xi_{(1:\mathcal{F})\times(1:\mathcal{F})} = I_{\mathcal{F}}.$$

Moreover, since $\omega_t \sim N(0, Q)$ and we have assumed that Q is diagonal, we draw the loadings row by row for each element of B_t . That is, for each $f = \mathcal{F} + 1, \dots, K$, draw

$$\Xi_{f\times(1:\mathcal{F})} \sim N(\overline{\Xi}_f, \overline{V\Xi}_f)$$

with

$$\overline{V\overline{\Xi}}_{f} = (\underline{V\overline{\Xi}}^{-1} + Q_{(f,f)}^{-1}(\theta^{T})(\theta^{T})')^{-1},$$

$$\overline{\Xi}_{f} = \overline{V\overline{\Xi}}_{f}(\underline{V\overline{\Xi}}^{-1}\underline{\Xi}_{f} + Q_{(f,f)}^{-1}\theta^{T}B_{f}^{T}),$$

where θ^T is an $\mathcal{F} \times T$ matrix of explanatory variables, B_f^T is a $T \times 1$ vector that contains the dependent variable, and $Q_{(f,f)}$ is the corresponding element of matrix Q drawn previously. The priors are $\underline{\Xi}_f = \mathbf{0}_{\mathcal{F} \times 1}$ and $\underline{V\Xi} = k_{\Xi}^2 I_{\mathcal{F}}$ with the hyperparameter $k_{\Xi}^2 = 0.01$.

6. Given (B_t, Q) , sample $(A(\alpha_t), V, \sigma_t, W)$ as before. Then go back to step 1.

Appendix E: Nonlinear models

E.1 *The setup*

Consider the general nonlinear state space model

$$y_t = z_t(\beta_t, \alpha_t) + u_t(\sigma_t, \xi_{1t}), \tag{E.1}$$

$$\beta_t = w_t(\beta_{t-1}) + s_t(\beta_{t-1}, \xi_{2t}), \tag{E.2}$$

$$\alpha_t = t_t(\alpha_{t-1}) + r_t(\alpha_{t-1}, \xi_{3t}),$$
(E.3)

$$f_t(\sigma_t) = h_t(\sigma_{t-1}) + k_t \big(u_{t-1}(\sigma_{t-1}, \xi_{1t-1}) \big),$$
(E.4)

where y_t , and ξ_{1t} are $M \times 1$ vectors, β_t and ξ_{2t} are $K_\beta \times 1$ vectors, α_t and ξ_{3t} are $K_\alpha \times 1$ vectors, $\xi_{1t} \sim N(0, Q_{1t})$, $\xi_{2t} \sim N(0, Q_{2t})$, and $\xi_{3t} \sim N(0, Q_{3t})$. Assume that $z_t(\cdot)$, $u_t(\cdot)$, $w_t(\cdot)$, $s_t(\cdot)$, $t_t(\cdot)$, $t_t(\cdot)$, $f_t(\cdot)$, $h_t(\cdot)$, and $k_t(\cdot)$ are continuous and differentiable vector-valued functions. To estimate this system, we can linearize it around the previous forecast of the state vector, so that

$$\begin{aligned} z_{t}(\beta_{t},\alpha_{t}) &\simeq z_{t}(\widehat{b}_{t|t-1},\widehat{a}_{t|t-1}) + \widehat{Z}_{1t}(\beta_{t}-\widehat{b}_{t|t-1}) + \widehat{Z}_{2t}(\alpha_{t}-\widehat{a}_{t|t-1}), \\ u_{t}(\sigma_{t},\xi_{1t}) &\simeq u_{t}(\widehat{\sigma}_{t|t-1},0) + \widehat{u}_{\sigma,t}(\sigma_{t}-\widehat{\sigma}_{t|t-1}) + \widehat{u}_{\xi_{1},t}\xi_{1,t}, \\ w_{t}(\beta_{t-1}) &\simeq w_{t}(\widehat{b}_{t-1|t-1}) + \widehat{w}_{t}(\beta_{t-1}-\widehat{b}_{t-1|t-1}), \\ s_{t}(\beta_{t-1},\xi_{2t}) &\simeq s_{t}(\widehat{\beta}_{t-1|t-1},0) + \widehat{s}_{\beta,t}(\beta_{t-1}-\widehat{b}_{t-1|t-1}) + \widehat{s}_{\xi_{2},t}\xi_{2,t}, \end{aligned}$$

$$\begin{split} t_{t}(\alpha_{t-1}) &\simeq t_{t}(\widehat{a}_{t-1|t-1}) + \widehat{T}_{t}(\alpha_{t-1} - \widehat{a}_{t-1|t-1}), \\ r_{t}(\alpha_{t-1}, \xi_{3t}) &\simeq r_{t}(\widehat{\alpha}_{t-1|t-1}, 0) + \widehat{r}_{\alpha,t}(\alpha_{t-1} - \widehat{a}_{t-1|t-1}) + \widehat{r}_{\xi_{3},t}\xi_{3,t}, \\ f_{t}(\sigma_{t}) &\simeq f_{t}(\widehat{\sigma}_{t|t-1}) + \widehat{f}_{t}(\sigma_{t} - \widehat{\sigma}_{t|t-1}), \\ h_{t}(\sigma_{t-1}) &\simeq h_{t}(\widehat{\sigma}_{t-1|t-1}) + \widehat{h}_{t}(\sigma_{t-1} - \widehat{\sigma}_{t-1|t-1}), \\ k_{t}(u_{t-1}(\sigma_{t-1}, \xi_{1t-1})) &\simeq k_{t}(\widehat{u}_{\xi_{1},t-1}\xi_{1,t-1}), \end{split}$$

where $\widehat{Z}_{i,t}$, i = 1, 2, and $\widehat{u}_{\sigma,t}$, $\widehat{u}_{\xi_1,t}$, \widehat{w}_t , \widehat{T}_t , $\widehat{s}_{\beta,t}$, $\widehat{s}_{\xi_2,t}$, $\widehat{r}_{\alpha,t}$, and $\widehat{r}_{\xi_3,t}$ are matrices corresponding to the Jacobian of $z_t(\cdot)$, $u_t(\cdot)$, $w_t(\cdot)$, $t_t(\cdot)$, $s_t(\cdot)$, and $r_t(\cdot)$, evaluated at $\beta_t = \widehat{b}_{t|t-1}$, $\alpha_t = \widehat{a}_{t|t-1}$, $\sigma_t = \widehat{\sigma}_{t|t-1}$, and $\xi_{1,t} = \xi_{2,t} = \xi_{3,t} = 0$. Thus, the approximated model is

$$\widehat{y}_t \simeq \widehat{Z}_{1t} \beta_t + \widehat{Z}_{2t} \alpha_t + \widehat{d}_t + \widehat{u}_{\xi_1, t} \xi_{1, t}, \tag{E.5}$$

$$\beta_t \simeq \widehat{w}_t \beta_{t-1} + \widehat{g}_t + \widehat{s}_{\xi_2, t} \xi_{2, t}, \tag{E.6}$$

$$\alpha_t \simeq \widehat{T}_t \alpha_{t-1} + \widehat{c}_t + \widehat{r}_{\xi_{3,t}} \xi_{3,t}, \tag{E.7}$$

$$\hat{f}_t \sigma_t = \hat{h}_t \sigma_{t-1} + k_t (\hat{u}_{\xi_1, t-1} \xi_{1, t-1}),$$
(E.8)

where

$$\widehat{d}_{t} = z_{1t}(\widehat{b}_{t|t-1}) - \widehat{Z}_{1t}\widehat{b}_{t|t-1} + z_{2t}(\widehat{a}_{t|t-1}) - \widehat{Z}_{2t}\widehat{a}_{t|t-1}$$
(E.9)

$$+ u(\widehat{\sigma}_{t|t-1}, 0) - \widehat{u}_{\sigma,t}(\widehat{\sigma}_{t|t-1} - \sigma_t),$$

$$\widehat{c}_{t} = t_{t}(\widehat{a}_{t-1|t-1}) - \widehat{T}_{t}\widehat{a}_{t-1|t-1} + r_{t}(\widehat{\alpha}_{t|t-1}, 0) - \widehat{r}_{\alpha,t}(\widehat{\alpha}_{t|t-1} - a_{t-1}),$$
(E.10)

$$\widehat{g}_{t} = w_{t}(\widehat{b}_{t-1|t-1}) - \widehat{W}_{t}\widehat{b}_{t-1|t-1} + s_{t}(\widehat{\beta}_{t|t-1}, 0) - \widehat{s}_{\beta,t}(\widehat{\beta}_{t|t-1} - b_{t-1}).$$
(E.11)

When (i) $z_t(\cdot)$, $w_t(\cdot)$, $t_t(\cdot)$, and $u_t(\cdot)$ are linear, (ii) $s_t(\cdot)$ is independent of β_t , (iii) $r_t(\cdot)$ is independent of α_t , and (iv) $u_t(\cdot)$ is independent of σ_t , $\hat{d}_t = \mathbf{0}$, $\hat{c}_t = \mathbf{0}$, $\hat{g}_t = \mathbf{0}$. In one of the cases considered by Rubio Ramírez et al. (2010), $\hat{d}_t \neq \mathbf{0}$, while if the law of motion of the structural coefficient is nonlinear or there are nonlinear identification restrictions, $\hat{c}_t \neq \mathbf{0}$ or $\hat{g}_t \neq \mathbf{0}$.

E.2 Estimation

Since (E.5)–(E.8) are linear, the algorithm described in Section 4 can now be applied. The only difference is that we now draw from distributions or proposals that are centered at the extended Kalman smoother estimates. For example, given (f_0, y^T, Σ^T) , we construct updated estimates according to

$$f_{t|t} = f_{t|t-1} + K_t [y_t - z_t f_{t|t-1}],$$
(E.12)

$$P_{t|t} = P_{t|t-1} - P_{t|t-1} \widehat{Z}'_t \Gamma_t^{-1} \widehat{Z}_t P'_{t|t-1},$$
(E.13)

where $f_{t|t-1} = t_t f_{t-1|t-1}$, $P_{t|t-1} = \widehat{T}_t P_{t-1|t-1} \widehat{T}'_t + \widehat{r}_{\xi_2,t} Q_{2t} \widehat{r}'_{\xi_2,t} K_t = P_{t|t-1} \widehat{Z}'_t \Gamma_t^{-1}$, and $\Gamma_t = \widehat{Z}'_t P_{t|t-1} \widehat{Z}_t + \widehat{u}_{\xi_1,t} Q_{2t} \widehat{u}'_{\xi_1,t}$.

Smoothed estimates are $f_{T|T}^* = f_{T|T}$, $P_{T|T}^* = P_{T|T}$, and

$$f_{t|t+1}^* = f_{t|t} + P_{t|t} \widehat{Z}'_t P_{t+1|t}^{-1} (f_{t+1|t+2}^* - t_t f(a_{t|t})),$$
(E.14)

$$P_{t|t+1}^* = P_{t|t} - P_{t|t} \widehat{Z}_t' [P_{t+1|t} + \widehat{r}_{\xi_2, t} Q_{2t} \widehat{r}_{\xi_2, t}']^{-1} \widehat{Z}_t P_{t|t-1}'$$
(E.15)

for t = T - 1, ..., 1. Hence, when $f(\alpha_t)$ is nonlinear, we draw f^T from a proposal centered at (E.14)–(E.15). Notice that the approximate model is used only in predicting and updating the mean squared error of $f(\alpha_t)$.

Depending on the exact specification of the nonlinear model, one or more steps in the algorithm may require some adjustments.

E.3 Sampling the GARCH model

To sample volatilities when their law of motion is assumed to be a GARCH(1, 1), we need to modify the transition and the measurement equations used in step 3 of the algorithm of Section 4. The *m*th equation of the model is

$$y_{m,t}^{**} = \sigma_{m,t} \varepsilon_{m,t}, \tag{E.16}$$

where $\sigma_{m,t}$ is the *m*th diagonal element of Σ_t . Assume

$$\sigma_{m,t}^2 = \left(1 - \delta + \delta \sigma_{m,t-1}^2 + \delta (y_{m,t-1}^{**})^2 \right) + \eta_{m,t}$$
(E.17)

with $\eta_t \sim N(0, W)$, where δ and W are known parameters.

The system (E.16)–(E.17) is now nonlinear. Equation (E.16) can be written as

$$y_{m,t}^{**} = z(\sigma_{m,t}) + u_t(\sigma_{m,t}, \varepsilon_{m,t}).$$

Since $z(\sigma_{m,t}) = 0$, the linear approximation is

$$\sigma_{m,t}\varepsilon_{m,t} \simeq u_t(\widehat{\sigma}_{m,t|t-1}, 0) + \widehat{u}_{\sigma,t}(\sigma_{m,t} - \widehat{\sigma}_{m,t|t-1}) + \widehat{u}_{\varepsilon_{m,t}}\varepsilon_{m,t} = \widehat{\sigma}_{m,t|t-1}\varepsilon_{m,t}$$

because

•
$$u_t(\widehat{\sigma}_{m,t|t-1}, 0) = \widehat{\sigma}_{m,t|t-1} \times 0 = 0$$
,

•
$$\widehat{u}_{\sigma,t} = \frac{\partial u_t(\sigma_{m,t},\varepsilon_{m,t})}{\partial \sigma_{m,t}}|_{(\sigma_{m,t}=\widehat{\sigma}_{m,t|t-1},\varepsilon_{m,t}=0)} = \varepsilon_{m,t}|_{(\sigma_{m,t}=\widehat{\sigma}_{m,t|t-1},\varepsilon_{m,t}=0)} = 0,$$

•
$$\widehat{u}_{\varepsilon_{m,t}} = \frac{\partial u_t(\sigma_{m,t},\varepsilon_{m,t})}{\partial \varepsilon_{m,t}}|_{(\sigma_{m,t}=\widehat{\sigma}_{m,t|t-1},\varepsilon_{m,t}=0)} = \sigma_{m,t}|_{(\sigma_{m,t}=\widehat{\sigma}_{m,t|t-1},\varepsilon_{m,t}=0)} = \widehat{\sigma}_{m,t|t-1}.$$

The transition equation (E.17) can be written as

$$\sigma_{m,t}^{2} \equiv f_{t}(\sigma_{m,t}) = h_{t}(\sigma_{m,t-1}) + k_{t}(\sigma_{m,t-1}, \eta_{m,t})$$
$$\equiv \left(1 - \delta + \delta \sigma_{m,t-1}^{2} + \delta \left(y_{m,t-1}^{**}\right)^{2}\right) + \eta_{m,t}.$$

Linearizing the two sides of the equation, we have

$$\begin{split} f_t(\sigma_{m,t}) &\simeq f_t(\widehat{\sigma}_{m,t|t-1}) + \widehat{f}_t(\widehat{\sigma}_{m,t-1|t-1})(\sigma_{m,t-1} - \widehat{\sigma}_{m,t-1|t-1}), \\ h_t(\sigma_{m,t-1}) &\simeq h_t(\widehat{\sigma}_{m,t-1|t-1}) + \widehat{h}_t(\widehat{\sigma}_{m,t-1|t-1})(\sigma_{m,t-1} - \widehat{\sigma}_{m,t-1|t-1}), \end{split}$$

where $\widehat{f_t}(\widehat{\sigma}_{m,t|t-1},0) = 2\sigma_{m,t}|_{(\widehat{\sigma}_{m,t|t-1},0)}$ and $\widehat{h}_t(\widehat{\sigma}_{m,t-1|t-1},0) = 2\delta\sigma_{m,t-1}|_{(\widehat{\sigma}_{m,t|t-1},0)}$.

E.4 Long-run restrictions

Long-run restrictions are nonlinear in the SVAR coefficients, but linear in the impulse responses. For the sake of presentation, we omit the intercept $B_{0,t}$. Let

$$y_t = B_{1,t}y_{t-1} + \dots + B_{p,t}y_{t-p} + \left[A(\alpha_t)\right]^{-1} \Sigma_t \varepsilon_t.$$

Then we only need to modify how draws for the B_t block are made, in particular, as follows:

1. At iteration *i*, given $A(\alpha_t)^{i-1}$ and Σ_t^{i-1} , sample $\{B_t^i\}_{t=1}^T$ using Carter and Kohn's routine or one of the other routines described in Section 5. With the sampled vector, compute the companion matrix

$$\mathbf{B}_{t}^{i} = \begin{bmatrix} B_{1,t}^{i} & \cdots & B_{p-1,t}^{i} & B_{p,t}^{i} \\ I_{M} & \cdots & \mathbf{0}_{M \times M} & \mathbf{0}_{M \times M} \\ \vdots & \ddots & \vdots & \vdots \\ \mathbf{0}_{M \times M} & \cdots & I_{M} & \mathbf{0}_{M \times M} \end{bmatrix},$$

where $B_t^i = [\operatorname{vec}(B_{1,t}^i)', \dots, \operatorname{vec}(B_{p,t}^i)']'.$

2. Given B_t^i , $A(\alpha_t)^{i-1}$, and Σ_t^{i-1} , compute the long-run matrix for each *t*,

$$\mathbf{D}_{t}^{i} = \mathbf{J} (I_{Mp} - \mathbf{B}_{t}^{i})^{-1} \mathbf{J}' [A(\alpha_{t})^{i-1}]^{-1} \Sigma_{t}^{i-1}$$

$$= (I_{M} - B_{1t}^{i} - \dots - B_{p,t}^{i})^{-1} [A(\alpha_{t})^{i-1}]^{-1} \Sigma_{t}^{i-1},$$
(E.18)

where $\mathbf{J} = \begin{bmatrix} I_M & \mathbf{0}_{M \times M} & \cdots & \mathbf{0}_{M \times M} \end{bmatrix}$ is a selection matrix.

3. Impose long-run restrictions, i.e., construct $\tilde{\mathbf{D}}_t^i = R\mathbf{D}_t^i$, where *R* is matrix restricting the entries of \mathbf{D}_t^i .

4. Given $\tilde{\mathbf{D}}_{t}^{i}$, then $A(\alpha_{t})^{i-1}$, Σ_{t}^{i-1} , and $B_{j,t}^{i}$, j = 1, ..., p-1, solve for $\tilde{B}_{p,t}^{i}$ using (E.18), so that

$$\tilde{B}_{p,t}^{i} = I_{M} - B_{1,t}^{i} - \dots - B_{p-1,t}^{i} - \left[A(\alpha_{t})^{i-1}\right]^{-1} \Sigma_{t}^{i-1} \left[\tilde{\mathbf{D}}_{t}^{i}\right]^{-1},$$

and with this construct the restricted draw $\tilde{B}_t^i = [\operatorname{vec}(B_{1,t}^i)', \dots, \operatorname{vec}(\tilde{B}_{p,t}^i)']'$.

5. Evaluate whether

$$\tilde{\mathbf{B}}_{t}^{i} = \begin{bmatrix} B_{1,t}^{i} & \cdots & B_{p-1,t}^{i} & \tilde{B}_{p,t}^{i} \\ I_{M} & \cdots & \mathbf{0}_{M \times M} & \mathbf{0}_{M \times M} \\ \vdots & \ddots & \vdots & \vdots \\ \mathbf{0}_{M \times M} & \cdots & I_{M} & \mathbf{0}_{M \times M} \end{bmatrix}$$

has all its eigenvalues inside the unit circle. If so, we accept \tilde{B}_t^i , otherwise discard it.

Given a draw for \tilde{B}_t , the sampling of the remaining blocks $(A(\alpha_t), \Sigma_t, s, \mathcal{V})$ is unchanged.

Additional reference

Chib, S. and E. Greenberg (1995), "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models." *Journal of Econometrics*, 68, 339–360. [7]

Submitted September, 2012. Final version accepted July, 2014.