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Treatment response with social interactions:
Partial identification via monotone comparative statics

Natalia Lazzati
University of Michigan, Ann Arbor

This paper studies (nonparametric) partial identification of treatment response
with social interactions. It imposes conditions motivated by economic theory on
the primitives of the model, that is, the structural equations, and shows that they
imply shape restrictions on the distribution of potential outcomes via monotone
comparative statics. The econometric framework is tractable and allows for coun-
terfactual predictions in models with multiple equilibria. Under three sets of as-
sumptions, we identify sharp distributional bounds on the potential outcomes
given observable data. We illustrate our results by studying the effect of police per
capita on crime rates in New York state.

Keywords. Treatment effects, social interactions, nonparametric bounds, super-
modular games, monotone comparative statics, first order stochastic dominance.

JEL classification. C31, D71.

1. Introduction

This paper studies partial identification of treatment response in environments with en-
dogenous social interdependencies. During the last three decades, social interactions
have become an essential component of economic analysis. Activities we suspect are
subject to strong social pressure include crimes, schooling, and fertility decisions.1 Mod-
els of network goods and two-sided markets display this feature as well. Despite the at-
tention received by this kind of interdependence in many areas of economics, just a
few studies of treatment response incorporate the social dimension.2 That is, standard
models assume that each person’s outcome varies only with her own treatment. To ac-
commodate the applications above, we allow individual outcomes to also depend on
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the outcomes of other people in the population. Under this setup, we use monotone
comparative statics to provide distributional bounds on treatment effects.

Models of endogenous interactions often start with the outline of a system of struc-
tural equations that define the outcome of each individual as a function of observable
characteristics and the outcomes of the other group members. The solution to the sys-
tem of equations (when it exists) is the predicted outcome or behavior of the group
members. When there are multiple equilibria, observed behavior also depends on the
mechanism by which people select among them. We assume the analyst observes a vec-
tor of realized outcomes and treatments for a sample of groups. The objective of the
researcher is to learn about the potential outcome distribution that would occur in the
study population if the groups were to receive a specific treatment. Our approach for
identification consists of two steps. We first impose monotone restrictions on the prim-
itives of the model (i.e., the structural equations) and derive their implications on the
predicted outcomes of each group. We then translate the monotone comparative stat-
ics results into sharp distributional bounds for the potential outcomes. Our approach is
robust to the possibility of multiple equilibria.

Most of the research in econometrics is concerned with the identification of the
structural equations. This is indeed the case of recent results in the econometric analy-
sis of game theoretic models; see Bajari, Hahn, Hong, and Ridder (2011) for an updated
overview.3 Following Manski (2013), our objective is (partial) identification of the po-
tential outcome distributions under alternative treatment rules, not the structural func-
tions per se. To achieve this goal, Manski (2013) proceeds by imposing the identifica-
tion restrictions directly on the equilibrium behavior of the agents. Our approach differs
from his in that we impose all shape conditions on the primitives of the structural model
and derive their implications on the solution sets. Once this connection is established,
our final propositions follow from Manski (2013) with the sole difference that we need to
adapt his proofs to multivariate distributions. We thereby provide the microfoundations
for some of his novel results and make explicit the strength of the identifying assump-
tions.

The first two conditions we impose are as follows: the outcome of each individual in-
creases with the outcomes of the others and it varies monotonically with the treatment
to be received by the group. These conditions imply clear restrictions on the predicted
outcomes: The system of structural equations leads to an increasing function that maps
possible outcomes into itself, so that the set of solutions of the model coincides with
the set of fixed points of this artificial function. By Tarski’s fixed point theorem, the first
assumption guarantees the system has a minimal and a maximal solution, that is, the
model is coherent (see Chesher and Rosen (2012) for identification of models that may
have no solution for some covariate values). The second restriction shifts the function
up or down, inducing the extremal solutions to vary monotonically with the potential
treatments. These two implications are akin to the main results in the literature of super-
modular games (see, e.g., Milgrom and Roberts (1990), Topkis (1979), and Vives (1990)).
We motivate coordination on extremal equilibria via simple arguments and propose an

3We elaborate on this connection at the end of Section 3.3.
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alternative restriction that leads to the same comparative statics. Our results extend the
routes for inference in Manski (1990, 1997) to models with endogenous interactions by
using an approach that relates to game theory. In doing this, we bridge the economet-
ric theory on nonparametric identification with the recent literature on supermodular
games.

So far, the monotone assumptions discussed above restrict the response function of
each member of the group but are silent with respect to the process of treatment se-
lection. Many studies have established identification results by assuming the outcome
functions are statistically independent of realized treatments. Manski and Pepper (2000)
weaken that restriction by assuming the outcome functions are stochastically increas-
ing in the realized treatments.4 We extend this result to interactions-based models by
developing an approach that allows for comparisons of equilibrium outcomes for dif-
ferent sets of groups. Our results relate to the methodology proposed by Amir (2008) to
contrast Nash equilibria of different games. One important difference between the latter
and our result is that we need to compare the distribution of equilibrium points for two
sets of games, not only two games. This distributional comparative statics has no direct
precedent in the theoretical literature.

We provide identification results for two models of social interactions. In the first
setup we study small groups, where each member has a distinctive role, for example,
men and women in married couples. The second setup is appropriate to study large
neighborhoods with anonymous social interactions, for example, crimes and infectious
diseases. Finally, we use the latter framework to study crime rates in New York state for
different levels of enforcement that we measure by police per capita, showing the dis-
cussed monotone conditions provide quite valuable information.

The rest of the paper is organized as follows. Section 2 presents an initial example
that motivates our main results. Sections 3 and 4 study identification of treatment ef-
fects for small and large groups, respectively. Section 5 uses our results to study crime
rates in New York state. Section 6 concludes and we collect all the proofs in Appendixes A
and B. Replication files are available in a supplementary file on the journal website,
http://qeconomics.org/supp/308/code_and_data.zip.

2. An initial example

This section uses a model similar to the one in Becker (1991) to highlight the objective
of our analysis and to differentiate our identification strategy from existing results. Each
person j ∈ G decides whether to go to a popular restaurant. Here the treatment is the
price she would pay for the service and the outcome (yj) is a yes/no indicator taking the
value 1 or 0. Consumer j maximizes her utility, taking as given the behavior of the others.
Her demand for the good is given by

yj = fj

[
t�
(
1/|G|)∑

i∈G
yi

]
� j ∈G� (1)

4Brock and Durlauf (2007) use a similar idea to address partial identification of a model with social in-
teractions in a semiparametric framework.

http://qeconomics.org/supp/308/code_and_data.zip
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where t is the price for the service and (1/|G|)∑i∈G yi is the average of decisions in
neighborhood G. This is the source of endogeneity in our model. An equilibrium in this
market is a solution to the system of structural equations (1). We indicate such a solution
by

y(t) ≡ [
yj(t)� j ∈G

]
� (2)

The empirical evidence consists of vectors of prices and individual demands for a set of
neighborhoods in the population. The analyst wants to learn about the distribution of
individual demands that would occur if groups were to receive a price t, that is, P[y(t)].

The literature on games refers to (1) as the best-reply function of person j to the
profile of actions of other people in her group. Recent results in the econometrics of
games provide conditions for identification of the best-reply functions. As in Manski
(2013), our purpose is identification of P[y(t)], not the best replies per se. Our approach
differs from Manski (2013) in that while we impose all our assumptions on the primitives
of the model (1), his restrictions are placed directly on the solution set (2). Thus, for
instance, while Manski (2013) directly assumes that y(t), as defined in (2), increases in t,
we provide conditions on the primitives (i.e., (1)) that validate this assumption.

The main restrictions we impose, which are subsequently elaborated, are as follows:

A 1 (Positive Interactions). Individual j’s demand increases with the decisions of the
other group members.

A2 (Monotone Treatment Response). Individual j’s demand decreases with the market
price.

A3 (Monotone Treatment Selection). The owner of the restaurant chain is more likely to
set higher prices to those neighborhoods with stronger demands.

We then use monotone comparative statics to show that the conditions we place on
(1) imply clear restrictions on the solution set (2). Within the analysis, these results are
captured by a set of lemmas. We finally exploit the shape restrictions we derive on the
equilibrium sets to provide nonparametric bounds for the distribution of potential out-
comes, or demands, P[y(t)]. We next formalize and extend all these ideas to frameworks
where groups are small and large, respectively. The restaurant example is closer to the
second setup.

3. Identification of treatment response for small groups

This section studies identification of treatment response in situations where groups are
small and each group member has a distinctive role. Models of decisions of married
couples, small teams of co-workers, and pairs of patients and doctors fit in here.



Quantitative Economics 6 (2015) Treatment response with social interactions 53

3.1 The model and the analyst’s problem

The population J is partitioned into a finite set of classes L = 1�2� � � � � |L|, that is,
J = (J1� J2� � � � � J|L|). Each group G is composed of one individual from each class. We in-
dicate by t ∈ T a potential treatment and allow t to specify policies that may vary across
classes. The behavior or achievement of agent jl ∈G, yjl ∈ Y ⊆R with jl ∈ Jl, depends on
the treatment and the behavior of the other group members, y−jl = (yjm� jm ∈G�m �= l).
That is,

yjl = fjl(t�y−jl) with jl ∈G� (3)

We assume social interactions occur within groups and group membership is known to
the econometrician. If the underlying model is a complete information game, then we
can think of (3) as the best-reply function of player jl to the profile of actions of the other
players in G. A simultaneous solution to the system (3) is a vector of potential outcomes

y(t) = (
yjl(t)� jl ∈G

)
with y(t) ∈ Y |L|� (4)

We typify groups through the outcome functions of the group members and relate
the distribution of types of groups to the underlying process of group formation. The
next example illustrates the probabilistic approach we describe afterward.

Example 1. We model a scenario of a tobacco prevention program. The population has
six people, three boys and three girls. Thus, J = (J1� J2), where Jl = (1l�2l�3l) with l = 1�2
is the set of boys and girls, respectively. Each group is a dating couple and its members
decide whether to smoke. The treatment is 1 if the couple receives information about the
risks of smoking and is 0 otherwise. An individual’s decision about smoking depends on
the treatment received and the smoking decision of his or her partner. Thus, T = {0�1},
Y = {0�1}, and fjl :T ×Y → Y with j = 1�2�3 and l = 1�2.

Couples differ with respect to their outcome functions, that is, in terms of the way
they react to the treatments and partners’ decisions. In this example, we have 24 (or
16) possible types of people—for each of the four possible configurations of treatments
and partner’s decisions, there are two possible actions—and then 162 (or 256) types of
couples. Let us assume the population has outcome functions as those in Figure 1. In
this figure, the 1 in square brackets means the second boy will smoke if he does not
receive information and his girlfriend smokes.

The population described in Figure 1 involves only two types of girls and boys (out
of 16) and then four types of couples (out of 256). The distribution of types of couples
depends on both the smoking and the dating preferences of the individuals. Suppose
these individuals prefer to date rather than remaining alone and to engage with individ-
uals with similar smoking tastes. Thus, two out of the three couples will have members
who smoke if and only if they are uninformed and their partners smoke, and the other
couple will have members who smoke if and only if their partners smoke irrespective of
the treatment. The other two types of groups have no chance of being formed given the
assumed dating preferences.
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Treatments and Partners’ Decisions

Outcomes (0�0) (0�1) (1�0) (1�1)

Boys
y11 0 1 0 0
y21 0 [1] 0 0
y31 0 1 0 1

Girls
y12 0 1 0 0
y22 0 1 0 0
y32 0 1 0 1

Figure 1. Structural functions of the population.

In our model, individuals may differ with respect to the way they react to the treat-

ments and the decisions of the other group members. We let T be countable and Y be

finite with Y = min(Y) and Y = max(Y).5 Thus, there are countably many different sys-

tems of structural equations (3) that can describe a group. We say a group is of type k if its

members have structural equations fk(t�y) ≡ [fkl(t�y−l)� l ∈L] with fkl :T ×Y |L|−1 → Y .

We let K indicate the set of possible types of groups. Since random group formation is

often hard to motivate, we do not impose such a restriction. Instead, we think that the

relative proportion of different agents within each class and the underlying matching

process define the distribution of types of groups in the universe of groups U . Let πk de-

note the fraction of type-k groups, so that π ≡ (πk�k ∈ K) is the distribution of types

in U . In Example 1, K = {1�2� � � � �256} and π = (2/3�1/3�0� � � � �0). We assume group

formation is independent of t, in the sense that potential treatments do not affect the

distribution of types of groups, π.6 Nevertheless, realized treatments may provide rich

information about the type of group that could have generated the data (see condition

A3 in Section 2).

In summary, [(fk�πk)�k ∈ K] describes the universe of groups, U , in the popula-

tion J. Groups have observable realized treatments τm and outcomes ym ≡ (ym1 � ym2 � � � � �

ym|L|), so that the available data are [(τm�ym)�m ∈ M]. The researcher wants to learn

about the joint outcome distribution that would occur in the population J if the groups

were to receive a treatment t, that is, P[y(t)], where y(t) ≡ [y1(t)� y2(t)� � � � � y|L|(t)] is a

random vector.

5These two restrictions are introduced for simplicity. We conjecture that it may be possible to extend the
results to uncountable sets by taking appropriate care of measurability conditions. Manski (2007) uses a
similar approach to develop partial identification of counterfactual choice probabilities.

6Manski (2013) describes a similar condition by saying that reference groups are treatment-invariant,
and thus nonmanipulable (i.e., the social planner cannot use the treatments to change a person’s influence
group).
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Remark. Though the primitives in our model, fk(t�y), do not incorporate covariate in-
formation, we can assume that this information has been taken into account. We just
need to interpret the primitives as conditional on some covariate values.

The next example provides an application of the model we just presented.

Example 2. This model can be used to study retirement decisions of husbands and
wives. Let J1 be the set of men and J2 be the set of women, with U defined as the set
of all married couples in J. Let the outcome of interest be the retirement age and let
the treatment be the income tax. Many studies argue that endogenous interactions are
important within couples as spouses will obtain more pleasure from retirement if they
retire together.

3.2 Monotone assumptions and their implications

We next impose three sets of conditions on the structural equations and derive their im-
plications in terms of equilibrium behavior. We then use these results to provide bounds
for P[y(t)].
Coherence of the model This section shows equilibrium existence and relates observed
and equilibrium outcomes with the primitives of the model.

Without further restrictions, the system of equations (3) might have no solution.
When this happens our equilibrium concept has no predictive power. We next provide
a restriction that precludes this possibility. Throughout, we indicate by ≥ the standard
coordinatewise order.

A 1 (Positive Interactions). For each k ∈ K, l ∈ L, and t ∈ T , fkl(t�y) ≥ fkl(t�y′) for all
y�y′ ∈ Y |L|−1 with y ≥ y′.

Condition A1 requires the outcome of each individual to increase with the outcomes
of the other group members. In Example 2, this condition requires that each member of
the married couple be more willing to retire whenever his or her partner retires.

Among the models that satisfy A1, we have the supermodular games.7 Let Ukl(yl� t�y)
be the payoff function of a type-l agent in a type-k group who gets treatment t and let
fkl(t�y) = arg maxyl∈Y Ukl(yl� t�y). Then A1 holds if, for all yl ≥ y ′

l and y ≥ y′,

Ukl(yl� t�y)− Ukl

(
y ′
l� t�y

)≥ Ukl

(
yl� t�y′)− Ukl

(
y ′
l� t�y′)� (5)

This condition states that the extra payoff of selecting a high over a low action increases
with the action profile of the others.8 This is the distinctive requirement of any super-
modular game.9

Condition A1 is also satisfied by models with positive externalities, for example, peer
effects in the classroom.

7See, for example, Milgrom and Roberts (1990), Vives (1990), and Topkis (1979).
8This analysis implicitly assumes the maximizer of Ukl(yl� t�y) exists and is unique.
9Condition (5) could be relaxed by using the results in Milgrom and Shannon (1994).
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Let φ(t�k) denote the solution set of the system of structural equations for a given
t, k. The next result states the existence of extremal equilibria.

Lemma 1. If A1 holds, then φ(t�k) has a least and a greatest solution for all k ∈ K and
t ∈ T .

We next offer a sketch of proof. Let Mt�k :Y |L| → Y |L| be defined as

Mt�k(y1� y2� � � � � y|L|)= (
y ′
k1� y

′
k2� � � � � y

′
k|L|

)
(6)

with y ′
kl = fkl(t� y−l) for all l ∈L�

By construction, the set of fixed points of Mt�k coincides with φ(t�k). Then this proof
reduces to showing that the set of fixed points of (6) has a least and a greatest element.
Under positive interactions, Mt�k is increasing. Thus, the result follows by Tarski’s fixed
point theorem.10

While condition A1 guarantees equilibrium existence, it does not eliminate the pos-
sibility of multiple solutions. Thus, to complete the model, we need to introduce an
equilibrium selection mechanism. In this study, we restrict attention to deterministic
equilibrium selection rules that depend on k and t. These types of selection mechanisms
are widely used in economic theory. One of the reasons is that they can often be moti-
vated by either Pareto dominance or simple learning processes in which the individuals
adjust their choices based on the observed behavior of the others.11 The experimen-
tal literature on coordination in games offers substantial support to our approach; see,
for example, Cooper, DeJong, Forsythe, and Ross (1992). In contrast to our restriction,
stochastic selection rules have been used for identification and testability in previous
studies; see, for example, Bajari et al. (2011) and Echenique and Komunjer (2009).

Let yk(t) be the element of φ(t�k) that is selected by a type-k group that gets treat-
ment t. Thus, the probability that the vector of potential outcomes falls in B ⊆ R|L| is
given by

P
[
y(t) ∈ B

]=
∑
k∈K

1
[
yk(t) ∈ B

]
πk� (7)

Let πk|τ indicate the fraction of groups in U that are of type k conditional on τ, and
let P(τ) denote the distribution of realized treatments across groups. We institute the
convention that πk|τ ≡ 0 if the conditioning event does not hold. The probability that
the joint vector of realized outcomes falls in a set B ⊆ R|L| is given by

P(y ∈ B) =
∑
s∈T

P(y ∈ B | τ = s)P(τ = s) (8)

with P(y ∈ B | τ = s) =∑
k∈K 1[yk(s) ∈ B]πk|τ=s . Then P(y) is a mixture of realized out-

come distributions conditional on observed treatments, with P(τ) as the mixing proba-
bility function. We next evaluate the implications of two other monotone restrictions.

10A similar approach has been used by Ackerberg and Gowrisankaran (2006), Jia (2008), and De Paula
(2009).

11See, for example, Amir and Lazzati (2011), Monderer and Shapley (1996), and Oyama, Sandholm, and
Tercieux (2012).
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Monotone treatment response We now assume the structural equations are weakly in-
creasing in potential treatments. As we explain below, we get opposite results if we re-
verse the signs of these effects.

A2 (Monotone Treatment Response). For each k ∈ K, l ∈ L, and y ∈ Y |L|−1, fkl(t�y) ≥
fkl(t

′�y) for all t� t ′ ∈ T with t ≥ t ′.

When the outcome functions correspond to the best replies of a supermodular
game, A2 is satisfied if, for all yl ≥ y ′

l and t ≥ t ′,

Ukl(yl� t�y)− Ukl

(
y ′
l� t�y

)≥ Ukl

(
yl� t

′�y
)− Ukl

(
y ′
l� t

′�y
)
� (9)

The interpretation of this condition is similar to that of condition (5). In Example 2, con-
dition A2 would require that people be more willing to retire when the income tax is
larger.

Without further restrictions, monotone treatment response allows counterfactual
predictions at the extremal elements of the solution set. That is, if A1 and A2 hold, then
mapping Mt�k in (6) shifts up as t increases and the extremal solutions in φ(t�k) move
in the same direction. It follows that if the groups always select either the smallest or the
largest equilibrium, then we can predict the directional effect of t on the distribution of
potential outcomes. The same result holds under an alternative condition on the struc-
tural equations. We formalize these restrictions next and elaborate on them afterward.

S 1 (Equilibrium Selection). One of the following conditions holds: (i) each group se-
lects either the smallest or the largest element of φ(t�k) and the selection rule (weakly)
increases in t or (ii) fk(t� infφ(t ′�k)) ≥ supφ(t ′�k) ∀t� t ′ ∈ T such that t ≥ t ′ and ∀k ∈K.

Condition S1(i) can be motivated in at least two ways. The first justification is based
on Pareto dominance. The models we discuss here often allow us to Pareto rank the equi-
librium outcomes (or, as in Brock and Durlauf (2001), to rank them in terms of expected
welfare). If the structural functions correspond to the best replies of a supermodular
game, then the largest equilibrium Pareto dominates all the others if, for all y ≥ y′,

Ukl(yl� t�y) ≥ Ukl

(
yl� t�y′)�

that is, when the payoff functions display positive spillovers. The opposite is true when-
ever the spillovers are negative. Cooper et al. (1992) provide evidence that this selec-
tion is more likely to hold under preplay communication among the agents. Though
strong, this selection rule has already been used in the empirical literature (see, e.g.,
Gowrisankaran and Stavins (2004)). As we explain at the end of this section, this as-
sumption could be relaxed with a richer data set that contains exclusion restrictions at
the individual level.

The second justification relies on a simple dynamic process. Let us define an adap-
tive dynamics A(y� t�k) as a sequence {yi}∞i=0 such that

y0 = y� yi = fk
(
t�yi−1)� i ≥ 1�
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This dynamic process begins with an initial vector y0, then assumes people behave ac-
cording to their respective outcome functions inducing a new vector y1, and the pro-
cess repeats indefinitely. The literature on games refers to this process as either best-
response dynamics or myopic best reply. We say the adaptive dynamics are pessimistic
if the elements of A(y� t�k) with y = Y |L| describe the evolution of outcomes as we ap-
ply treatment t. We say they are optimistic if this evolution is alternatively described by

A(y� t�k) with y = Y
|L|

. It can be shown that if the adaptive dynamics are pessimistic,
then this process converges to the smallest element of φ(t�k), and it converges to the
largest element whenever they are optimistic. Thus, S1(i) can be motivated by assuming
that the cross-sectional distribution of outcomes arises as the limit of either pessimistic
or optimistic adaptive dynamics.12

Condition S1(ii) is quite different from the last one. It ensures that φ(t�k) is strongly
increasing in t, in the sense that when t increases, the smallest element of the new so-
lution set is higher than the largest element of the old one.13 Thus, any selection from
the equilibrium set is necessarily increasing in the potential treatment. The drawback
of this condition is that it is nonprimitive, that is, to check it requires knowledge of the
extremal elements of the solution sets. It is trivially satisfied when the equilibrium is
unique, a common assumption in the empirical literature (see, e.g., Glaeser, Sacerdote,
and Scheinkman (1996)) that would hold here if, for instance, the system of structural
equations were a contraction. Condition S1(ii) requires a very strong treatment effect.

We next state that under all previous restrictions the equilibrium outcomes increase
in t.

Lemma 2. If A1, A2, and S1 hold, then yk(t) ≥ yk(t ′) for all t� t ′ ∈ T with t ≥ t ′ and k ∈K.

Remark. Lemma 2 exploits two types of monotone shape restrictions on the outcome
function of each group member: First, monotonicity regarding other people choices,
that is, A1; second, monotonicity regarding the treatment, that is, A2. These two types of
monotone restrictions play different roles and deserve different attention. Condition A1
guarantees the existence of extremal equilibria via Tarski’s fixed point theorem. Given
the approach we follow, the potential outcomes need to be increasing in other people
choices. In other words, our method only applies to models with positive strategic inter-
actions. On the other hand, condition A2 allows us to obtain the monotone comparative
statics results that we exploit for counterfactual predictions. In this case, the potential
outcomes can be either increasing or decreasing in the treatment vector. When they are
increasing and S1 holds, yk(t) ≥ yk(t ′) for all t ≥ t ′. When they are decreasing and the
dual of S1 holds, yk(t) ≤ yk(t ′) for all t ≥ t ′.14 The proof for the decreasing case is anal-

12Suppose we want to know what would happen if we increased the treatment level of a certain group
from t ′ to t. If the evolution of outcomes is described by A(y� t�k) with y = y(t ′), then the monotone com-
parative statics in Lemma 2 holds as well. To observe this possibility in our model, we should simply allow
the selection rule to depend on the previous treatment.

13See Echenique and Sabarwal (2003).
14By the dual of S1 we mean that one of the following conditions holds: (i) each group selects ei-

ther the smallest or the largest element of φ(t�k) and the selection rule (weakly) decreases in t or
(ii) fk(t� supφ(t ′�k)) ≤ infφ(t ′�k) ∀t� t ′ ∈ T such that t ≥ t ′ and ∀k ∈ K.
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ogous to the proof for the increasing one: we simply need to reverse the order of the
treatment (i.e., to use −t instead of t) and apply identical steps.

The previous assumptions restrict the response function of each group member, but
are silent with respect to the process of treatment selection. The next restriction fills this
gap.

Monotone treatment selection Many studies have established identification by assum-
ing the outcome functions are statistically independent of realized treatments, that is,
P[y(t) | τ = t] = P[y(t)]. In our case, this condition would be plausible if an explicit
randomization mechanism had been used to assign treatments to the groups, so that
πk|τ = πk. Recognizing that this assumption is often hard to justify, Manski and Pep-
per (2000) alternatively assume the outcome distributions are stochastically increasing
in realized treatments, referring to this condition as monotone treatment selection. We
next extend their finding to interactions-based models.

To facilitate the introduction of the required conditions in this section, we need to
define a natural partial order on (fk�k ∈K).

Definition 3. We say fk ≥ fk′ if fkl(t�y) ≥ fk′l(t�y) ∀l ∈L and ∀(t�y) ∈ T ×Y |L|−1.

That is, we say fk is larger than fk′ if it is pointwise greater. Appendix A (Proofs) shows
that (under A1) if fk ≥ fk′ , then the least and the greatest solutions in φ(t�k) are larger
than the corresponding solutions in φ(t�k′). Let f denote a random vector of functions
with support on (fk�k ∈ K), and let us define P(f = fk | τ) ≡ πk|τ . The next assumption
allows us to compare equilibrium distributions for two sets of groups that received dif-
ferent treatments.

A3 (Monotone Treatment Response). We have P(f | τ = s) ≥st P(f | τ = s′) for all s ≥ s′.

This condition simply states that the structural functions are statistically increasing
in realized treatments. Depending on the context, an alternative interpretation would
be that groups that self-select into higher treatments have stochastically larger structural
functions than those that self-select into lower ones. Here again the identification power
of monotone treatment selection relies on an additional restriction.

S2 (Equilibrium Selection). One of the following conditions holds: (i) groups select ei-
ther the smallest or the largest element of the solution set and (for each t ∈ T ) the se-
lection rule is the same ∀k ∈ K or (ii) fk(t� infφ(t�k′)) ≥ supφ(t�k′) ∀k�k′ ∈ K such that
fk ≥ fk′ .

Condition S2(i) requires the selection rule to be the same across groups, a natural
restriction given that we want to compare potential outcomes across them. Whenever
the model allows us to claim that either the smallest or the largest equilibrium Pareto
dominates the others—as in the case of supermodular games with negative and pos-
itive spillovers, respectively—this condition can be justified by assuming a selection
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mechanism based on Pareto dominance. Condition S2(ii) guarantees that for every pair
k�k′ ∈K such that fk ≥ fk′ , the solution set φ(t�k) is strongly greater than φ(t�k′) in the
sense that the smallest element of the first solution set is higher than the largest element
of the second set.

If A1 holds, then the added benefit of S2 is that now yk(t) ≥ yk′(t) for allk�k′ ∈K such
that fk ≥ fk′ . The next lemma derives from this observation. This distributional compar-
ative statics result has no direct precedent in the theoretical literature of games.

Lemma 4. Assume A1, A3, and S2 hold. Let s� s′ ∈ T . Then, for all t ∈ T ,

s ≥ s′ �⇒ P
[
y(t) | τ = s

]≥st P
[
y(t) | τ = s′

]
� (10)

Remark. The remark below Lemma 2 applies here as well. That is, we obtain the oppo-
site inequality if we assume negative treatment selection and correspondingly accom-
modate S2.

The next section uses all previous results to provide bounds for P[y(t)]. Before doing
so, we connect our approach with the econometric literature on games.

Connection with games Let us interpret yjl = fjl(t�y−jl) with jl ∈ G as the best-reply
function of player jl to the profile of actions of the other players in her group. Our ap-
proach differs from the current econometric literature on games in that we impose con-
ditions on the best-reply functions, but do not intend to identify them. In fact, given the
data we assume is available, we cannot do so. In a companion paper, Lazzati (2014) im-
poses similar monotone conditions on the primitives of the model and identifies bounds
for the best-reply functions by taking advantage of exclusion restrictions.15 She then
uses the extremal selections of these bounds to provide partial identification results for
equilibrium behavior. This second paper is based on a different data set, but allows us,
on the other hand, to dispense with any restriction regarding the equilibrium selection
mechanism.16

3.3 Identification region for P[y(t)]
The identification problem can be formulated in terms of a simple decomposition that
follows from the law of total probability:

P
[
y(t)

]= P
[
y(t) | τ = t

]
P(τ = t)+ P

[
y(t) | τ �= t

]
P(τ �= t)� (11)

Under A1, the empirical evidence reveals P[y(t) | τ = t] = P(y | τ = t), P(τ = t), and
P(τ �= t).17 The sampling process alone remains silent about the potential outcome dis-
tribution for those groups that have realized treatments that differ from the potential

15By exclusion restrictions, we mean variables that, while affecting the payoff of one member of the
group, can be excluded from directly affecting the payoffs of the other group members. These exclusion
restrictions play a key role in identifying best-reply functions in the empirical literature on games.

16See also Molinari and Rosen (2008).
17Recall that we assume that each group type behaves according to one element of the solution set for

each potential treatment that they might receive. If the solution set is nonempty, then the latter guarantees
that equality (11) holds. Condition A1 ensures that the solution set has at least one element.
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one, that is, P[y(t) | τ �= t]. However, the set of possible vectors of outcomes is bounded

from below and above by Y |L| and Y
|L|

, respectively. Then, without any other restriction,

the degenerate distributions P(Y |L|) and P(Y
|L|

) are sharp lower and upper bounds for
P[y(t) | τ �= t].

Let ΔY |L| be the set of multivariate distributions with domain on Y |L| and let H be
the set of distributions that are consistent with our assumptions given the data, that
is, the sharp identification region for P[y(t)]. In the next result, “st” means stochastic
dominance.18

Proposition 5. Assume A1 holds. Then, for all t ∈ T ,

H
{
P
[
y(t)

]} = {
δ ∈ ΔY |L| :P(y | τ = t)P(τ = t)+ P

(
Y

|L|)
P(τ �= t)

≥st δ ≥st P(y | τ = t)P(τ = t)+ P
(
Y |L|)P(τ �= t)

}
�

At the beginning of the last section, we showed equilibrium existence and related
observed and equilibrium outcomes with the primitives of the model. Given these re-
sults, Proposition 5 builds directly on Manski (1990, 2013). The only difference is that,
in our model, y(t) indicates a vector of outcomes. Thus, ≥st partially orders multivariate
distribution functions and the proof of Proposition 5 correspondingly modifies those of
Manski (1990, 2013).

The endpoints of Proposition 5 almost always differ, so P[y(t)] is typically only par-
tially identified. Moreover, if Pr(τ �= t) = 1, then these bounds are sharp but completely
uninformative. We next show that the identification region can be substantially tight-
ened by adding either monotone treatment response or monotone treatment selection.

If A1, A2, and S1 hold, then, by Lemma 2, the predicted outcomes yk(t) increase in t.
Let us consider a type-k group with empirical evidence (τm�ym). If τm ≤ t, then ym is
a sharp lower bound for yk(t); otherwise, the empirical evidence is uninformative and
Y |L| is the sharp lower bound. Alternatively, if τm ≥ t, then ym is a sharp upper bound for
yk(t); otherwise, the sharp upper bound is just the greatest possible vector of outcomes,

Y
|L|

. Since k was arbitrarily chosen, this analysis extends to all groups in U and justifies
the next result.

Proposition 6. Assume A1, A2, and S1 hold. Then, for all t ∈ T ,

H
{
P
[
y(t)

]} = {
δ ∈ ΔY |L| :P(y | τ ≥ t)P(τ ≥ t)+ P

(
Y

|L|)
P(τ � t)

≥st δ ≥st P(y | τ ≤ t)P(τ ≤ t)+ P
(
Y |L|)P(τ � t)

}
�

We now invoke monotone treatment selection. If A1, A3, and S2 hold, then P(y |
τ = t) is a lower bound for P[y(t) | τ ≥ t] and an upper bound for P[y(t) | τ ≤ t]. These
observations are direct implications of Lemma 4. The identification result is as follows.

18See Appendix A for the typical multivariate characterization of first order stochastic dominance.
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Proposition 7. Assume A1, A3, and S2 hold. Then, for all t ∈ T ,

H
{
P
[
y(t)

]} = {
δ ∈ ΔY |L| :P(y | τ = t)P(τ ≤ t)+ P

(
Y

|L|)
P(τ � t)

≥st δ≥st P(y | τ = t)P(τ ≥ t)+ P
(
Y |L|)P(τ � t)

}
�

The multivariate standard stochastic order is closed with respect to marginalization.
Thus, Propositions 5, 6, and 7 also imply sharp bounds for the marginal distributions
of potential outcomes for individuals who belong to a subset of classes S ⊂ L, that is,
P[yS(t)], where yS(t) is the restriction of y(t) to S.19 In the next result, we write L/S for
the set of classes in L different from S. Corollary 8 (without proof) formalizes this claim
for the monotone treatment selection restriction; a similar idea can be applied to our
first two propositions.20

Corollary 8. Assume A1, A3, and S2 hold. Then

H
{
P
[
yS(t)

]} = {
δ ∈ ΔY |S| :P(yS | τ = t)P(τ ≤ t)+ P

(
Y

|S|)
P(τ � t)

≥st δ ≥st P(yS | τ = t)P(τ ≥ t)+ P
(
Y |S|)P(τ � t)

}
for all t ∈ T , where P(yS | ·) = EyL/S [P(y | ·)].

Although the sets of assumptions (A1, A2, and S1) and (A1, A3, and S2) are not indi-
vidually refutable, the combined restriction can be shown to be false given the data. To
see why, note that if these two sets of restrictions hold, then, for all s > s′,

P(y | τ = s) = P
(
y(s) | τ = s

)≥st P
(
y(s) | τ = s′

)
≥st P

(
y
(
s′
) | τ = s′

)= P
(
y | τ = s′

)
�

where the right inequality follows by (A1, A2, and S1) and the left inequality follows by
(A1, A3, and S2). Thus, the joint restriction implies that P(y | τ = s) ≥st P(y | τ = s′) for
all s > s′.21 It is interesting to note that this joint restriction is no longer testable when
the monotone treatment response and the monotone treatment selection assumptions
work in opposite directions, as in the case of crimes we study in Section 5. To see why, let

19Corollary 8 derives from Proposition 7, using Theorem 3.3.10 of Müller and Stoyan (2002, p. 94).
20We can also construct sharp bounds for other measures of interest, such as differences of expectations

E[y(t)] − E[y(t′)] with t > t ′. If we only assume monotone treatment selection or (A1, A3, and S2), then
the sharp upper bound for the latter is just the difference between the upper bound of the expectation of
the vector of potential outcomes for the high treatment level and the lower bound for the expectation of
the vector of potential outcomes for the low treatment level; the sharp lower bound can be obtained in a
similar fashion. Under monotone treatment selection, the difference in expectations cannot be signed a
priori. The reason is that this assumption does not impose any restriction on the distribution of potential
outcomes across different potential treatments. The result changes if we use monotone treatment response
or (A1, A2, and S1). In this case, the lower bound for the difference of expectations is always positive.

21In a recent article, Lee, Linton, and Whang (2009) propose a test for stochastic monotonicity that could
be used to check the validity of the joint requirement.
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us assume that the monotone treatment response is negative and the monotone treat-
ment selection is positive. Then, for each s > s′, all we can say is

P(y | τ = s) ≥st P
(
y(s) | τ = s′

)
and P

(
y | τ = s′

)≥st P
(
y(s) | τ = s′

)
�

where the right inequality follows from negative treatment response and the left in-
equality follows from monotone treatment selection. This information does not suffice
to compare the observable distributions P(y | τ = s) and P(y | τ = s′).

All our identified bounds can be consistently estimated from sample data of a subset
of groups under regularity conditions. The analyst just needs to substitute all the empir-
ical distributions with their sample analogs. The techniques developed by Andrews and
Soares (2010), Imbens and Manski (2004), Rosen (2008), and Stoye (2009), among others,
could be adapted to construct confidence sets for the identified regions. The asymptotic
properties of the estimates depend on sampling a large number of groups.

4. Identification of treatment response for large groups

In this section, groups are large (but finite) and social interactions are anonymous. Mod-
els of crimes, schooling, infectious diseases, and addictions fit well here. An important
difference between this section and the previous one is that groups may differ in the
number of people. This feature makes the comparative statics harder.

4.1 The model and the analyst’s problem

For each treatment t ∈ T to be received by group G in the population J, the vector of
potential outcomes y(t) ≡ [yj(t)� j ∈G] ∈ Y |G| solves the system of structural equations

yj = fj
[
t�PG(y)

]
with j ∈ G� (12)

where PG(y) is the distribution of outcomes induced by vector y ≡ (yj� j ∈G).22

We say a group is of type k if its members have structural equations fk ≡ [fkl(·)�
l ∈ Gk], where fkl :T ×ΔY → Y . Let πk denote the fraction of individuals who belong to
type-k groups, so that π ≡ (πk�k ∈ K) is the discrete distribution of types. Since groups
are allowed to differ with respect to the number of members, πk depends on both the
fraction of groups that are of type k and the relative size of this type of group. Then
[(fk�πk)�k ∈ K] characterizes the universe of groups in U . Groups have realized treat-
ments and outcomes given by [(τm�ym)�m ∈ M]. The objective of analysis is to learn
about the counterfactual distribution of individual outcomes in the population for treat-
ment t, that is, P[y(t)].

Example 3. This model can be used to study crime rates and social interactions. Let J
be the citizens of a given state and let us define a group as the set of people who live
in one of its cities. The outcome of interest is the decision to commit a crime at the

22Formally, for all sets B ⊂ R, PG(y ∈ B) =∑
j∈G 1(yj ∈ B)(1/|G|).
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individual level and the treatment is police per capita at the city level. Distributional en-
dogenous interactions are important in this model, as a higher crime participation rate
by members of a city leads to fewer resources being spent on apprehending each crim-
inal, which lowers his probability of punishment and further increases his incentives to
commit a crime (see Sah (1991)).

4.2 Monotone assumptions and their implications

This section imposes three alternative sets of conditions that are naturally satisfied in
various social interactions models and derives their main implications in terms of equi-
librium behavior.

Coherence of the model The first assumption imposes a monotone condition on
(fk�k ∈K), which, as A1, guarantees equilibrium existence.

A1′ (Positive Interactions). For each k ∈ K, l ∈ Gk, and t ∈ T , fkl[t�P(y)] ≥ fkl[t�P(y ′)]
for all P(y)�P(y ′) ∈ ΔY with P(y) ≥st P(y

′).

Let ϕ(t�k) indicate the solution set for t, k. Since the analyst’s objective is to perform
inference on the individual outcome distributions in J, we let the elements of ϕ(t�k) be
the distribution functions induced by the solution vectors. In the next lemma, least and
greatest are with respect ≥st.

Lemma 9. If A1′ holds, then ϕ(t�k) has a least and a greatest solution for all k ∈ K and
t ∈ T .

We write P[yk(t)] for the element of ϕ(t�k) that is selected by a type-k group that
receives treatment t. The probability that the potential outcome falls in a set B ⊆ R is
given by

P
[
y(t) ∈ B

]=
∑
k∈K

P
[
yk(t) ∈ B

]
πk (13)

and it is linear in πk. Let πk|τ be the proportion of individuals in J who belong to type-k
groups conditional on the realized treatment τ. We let P(τ) denote the distribution of
realized treatments in J. The probability that the realized outcome falls in a set B ⊆ R is
given by

P(y ∈ B)=
∑
s∈T

P
[
y(s) ∈ B | τ = s

]
P(τ = s)� (14)

where P[y(s) ∈ B | τ = s] =∑
k∈K P[yk(s) ∈ B]πk|τ=s .

We next elaborate on the power of two extra monotone restrictions. As we explained
earlier, though we assume that the monotone treatment response and selection restric-
tions are positive, we can easily accommodate the opposite cases.
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Monotone treatment response We now assume that individual outcomes increase in t

on T .

A 2′ (Monotone Treatment Response). For each k ∈ K, l ∈ Gk, and P(y) ∈ ΔY , fkl[t�
P(y)] ≥ fkl[t ′�P(y)] for all t� t ′ ∈ T with t ≥ t ′.

If A1′ and A2′ hold, then the smallest and the largest distributions in ϕ(t�k) in-
crease in t with respect to ≥st. Thus, here again, extremal equilibrium selection rules
are enough to make counterfactual predictions as we vary the treatment. We introduce
an alternative assumption that leads to the same result. To this end, let us define Fk for
all B ⊆ R as

Fk

(
y ∈ B | t�P(y))= (

1/|Gk|) ∑
l∈Gk

1
{
fkl
[
t�P(y)

] ∈ B
}
� (15)

Thus, Fk is an aggregate response function that indicates the fraction of people in a type-
k group whose outcomes would lie in the set B for some t and some initial P(y).

S 1′ (Equilibrium Selection). One of the following conditions holds: (i) each group se-
lects either the smallest or the largest element of ϕ(t�k) and the selection rule (weakly)
increases in t or (ii) Fk(y | t� infφ(t ′�k)) ≥st supφ(t ′�k) ∀t� t ′ ∈ T such that t > t ′ and
∀k ∈ K.

We can motivate S1′(i) in the same way as we did with S1(i). The following result is
the analog to Lemma 2.

Lemma 10. If A1′, A2′, and S1′ hold, then P[yk(t)] ≥st P[yk(t ′)] for all t� t ′ ∈ T with t > t ′
and k ∈K.

We finally study monotone treatment selection.

Monotone treatment selection This section provides sufficient conditions to validate
the use of realized treatments as monotone instrumental variables. To this end, we in-
troduce a partial order on (Fk�k ∈K), as defined in (15).

Definition 11. We say Fk ≥ Fk′ if Fk[y | t�P(y)] ≥st Fk′ [y | t�P(y)] ∀[t�P(y)] ∈ T ×ΔY .

According to the last definition, Fk is greater than Fk′ if the outcome distribution
of the type-k group is stochastically higher than the outcome distribution of the type-
k′ group for any conditioning event. Let F denote a random function with support
(Fk�k ∈ K), and define P(F = Fk | τ)≡ πk|τ for all k ∈K. The next condition is similar to
condition A3.

A3′ (Monotone Treatment Response). We have P(F | τ = s) ≥st P(F | τ = s′) for all s ≥ s′.
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Condition A3′ states that the proportion of individuals who belong to groups with
weakly higher structural functions increases with realized treatments. The motivation
for this constraint is well captured by Example 3: in the study of crime rates, it is rea-
sonable to think that the public authority is more likely to invest more (per capita) on
the criminal apprehension system of those cities where people’s willingness to commit
crimes is believed to be higher. (As we explained earlier, our framework can easily ac-
commodate the case of negative treatment selection.) Here again, before elaborating
on the identification power of adding the monotone treatment selection condition, we
need to introduce another restriction.

S2′ (Equilibrium Selection). One of the following conditions holds: (i) groups select ei-
ther the smallest or the largest element of the solution set and (for each t ∈ T ) the selec-
tion rule is the same ∀k ∈K or (ii) Fk[y | t� infϕ(t�k′)] ≥st supϕ(t�k′) ∀k�k′ ∈K such that
Fk ≥ Fk′ .

The next lemma is the analog to Lemma 4.

Lemma 12. Assume A1′, A3′, and S2′ hold. Let s� s′ ∈ T . Then, for all t ∈ T ,

s ≥ s′ �⇒ P
[
y(t) | τ = s

]≥st P
[
y(t) | τ = s′

]
� (16)

The next section uses all of our previous results to provide bounds for P[y(t)].

4.3 Identification region for P[y(t)]
The bounds for P[y(t)] are quite similar to those of P[y(t)]. We only need to substitute
y(t) by y(t) and A1, (A1, A2, S1), and (A1, A3, S2) by A1′, (A1′, A2′, S1′), and (A1′, A3′, S2′)
in Propositions 5, 6, and 7 to obtain Propositions 5′, 6′, and 7′, respectively. Appendix A
formalizes these claims. Thus, instead of repeating these results, we elaborate on two
interesting differences between the two models.

Quantiles are often parameters of interest in applied studies. For α ∈ (0�1), the
α-quantile of P[y(t)] is defined as Qα[y(t)] ≡ infy ′ {E{1[y(t) ≤ y ′]} ≥ α}. The characteri-
zation of the standard stochastic order in terms of the expectations of increasing func-
tions induces a partial order on the quantiles of random variables: if a distribution func-
tion stochastically dominates another distribution function, then all the quantiles of the
former are larger than the corresponding quantiles of the latter. Hence, the analogs of
Propositions 5, 6, and 7 for the case of large groups can be easily reformulated in terms
of the quantiles of the pertinent distributions, for example, the medians. Manski (1997)
provides functional forms to construct bounds for quantiles in an individualistic model.
The lack of objective basis for ordering multivariate observations is a major difficulty in
extending the previous definition to random vectors. There are several attempts in the
statistical literature toward multidimensional generalizations of univariate quantiles,
each of which captures distinct aspects of interest. We remained silent about quantiles
in Section 3.3 as it is not immediate that the multivariate standard stochastic order has
clear monotone predictions for all the quantiles according to all the existing definitions.
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We mentioned in Section 3.3 that all our identified bounds can be consistently esti-
mated from sample data of a subset of groups under regularity conditions. When groups
are large, the same result holds if we sample a subset of individuals from each group in
the random sample of groups. The reason is that, in this second case, we are not in-
terested in obtaining the joint distribution of outcomes of the group members; see, for
example, Brock and Durlauf (2000).

5. Application: Crime rates and social interactions

This section illustrates our previous results by applying them to the analysis of crime
rates in New York state. Becker (1968) studies individual decisions to commit crimes
from an economic perspective. He develops a cost–benefit analysis and argues that a
key ingredient in an individual’s choice of whether to become a criminal is his per-
ceived probability of punishment. Subsequent work emphasizes the importance of pos-
itive social interactions in motivating criminal behavior (see Glaeser, Sacerdote, and
Scheinkman (1996) and the literature therein).

We use the model in Section 4 to study crimes across cities. Let each person in a given
city decide whether to commit a crime. We define the treatment as police per capita at
the city level and define the outcome as a yes/no indicator that takes the value 1 or 0,
that is, Y = {0�1}. Sah (1991) presents a model where one individual’s choice to com-
mit a crime lowers the probability that any other individual ends up arrested. Since the
police cannot be in two places at the same time, the higher is the criminal activity in a
given city, the lower is the probability of being punished. His argument justifies A1′.23

In addition, each individual’s decision to commit a crime decreases with the amount of
police per capita in his own city. (This is a natural direct effect of the treatment.) Then
the dual version of A2′ holds here as well. It is also reasonable to think that the public
authority is more likely to invest more on the criminal apprehension system of those
cities where people’s willingness to commit crimes is believed to be higher.24 The last
statement validates condition A3′. We will also assume that the dual of S1′ and S2′ hold.

The analyst wants to learn about the fraction of people who would commit a crime
in New York state if all its cities were to be assigned a given level of police per capita.
The next subsection describes the data we use and the subsequent subsection shows
our findings.

5.1 Data set

Our data source is the Uniform Crime Reporting (UCR) program of the Federal Bureau
of Investigation (FBI) for the year 2009. The UCR program informs crimes reported and
verified. The data set also provides information about the number of police at the city

23This assumption is justified in the criminology literature by using many different arguments (for ex-
ample, the theory of differential association by Sutherland (1974)). Our results do not depend on the par-
ticular mechanism by which the interactions arise. Thus, any of the existing justifications can be used to
validate A1′.

24Lazzati and Menichini (2014) provide a theoretical model of optimal police allocation that could be
used to justify this restriction.
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Figure 2. Distribution of realized levels of police per capita.

level and the population of each city. We decided to eliminate New York City from the
sample, as its features (e.g., number of people) are markedly different from the charac-
teristics of the other cities. Our data cover 47% of the remaining population of New York
state (314 cities). To perform the analysis, we discretized the level of police per capita in
multiples of 0�0001.

Figure 2 displays the data for 99�4% of the sampled population: for expositional ease,
the figure does not include a few observations with extremely high levels of police per
capita, but these observations were taken into account in the estimation. For levels of
police per capita between 0 and 0�005, P(τ) indicates the fraction of individuals in the
sample who received treatment τ during the year 2009. Since a large part of the sam-
pled population—specifically, 91�02%—received treatments between 0�001 and 0�004,
the next section estimates the outcomes of interest for levels of police per capita in that
range of values. The asymptotic properties of our estimators should be thought of as the
number of sampled cities approaches the whole universe of cities in New York state.

In Figure 3, P(y = 1 | τ) indicates the fraction of people who committed a crime in
2009 conditional on living in a city with a level of police per capita τ. Throughout this
application, we assume each individual has committed at most one crime during 2009.

Remark. The assumption that each individual has committed at most one crime during
2009 is surely strong. This condition could be relaxed by a richer data set that incorpo-
rates information on offender reincidence. This issue could also be fixed by interpret-
ing the potential outcome as the decision of committing at least one crime, but results
should correspondingly be adapted to this alternative interpretation.25

25I thank one of the referees for this suggestion.
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Figure 3. Criminal activity conditional on realized treatments.

5.2 Findings

Since the outcome of interest is binary (i.e., Y = {0�1}), the fraction of people who would
commit a crime for a given level of police per capita t (i.e., P[y(t) = 1]) contains all the
information we need to describe the distribution of potential outcomes, P[y(t)].

We consider four levels of police per capita (i.e., four treatments): 0�001, 0�002, 0�003,
and 0�004. For each of them, Figure 4 reports the lower and the upper estimations of the
identified bounds for P[y(t) = 1] under three sets of assumptions.26 These bounds are
reported in the third and the fourth columns respectively, and are expressed in percent-
age points. They are the sample analogs of Propositions 5′, 6′, and 7′, respectively. In
addition, we provide (in the last column) confidence sets for P[y(t) = 1] at the 95% of
confidence level. To compute them, we follow the methodology in Imbens and Manski
(2004) and Stoye (2009); see Appendix B for further details. We next highlight our find-
ings.27

We can clearly see in Figure 4 that A1′ alone is practically uninformative in the four
cases. The mere addition of either (dual of A2′, S1′) or (A3′, S2′) substantially improves all
the predictions. For instance, for t = 0�004, A1′ alone predicts 100×P[y(t)= 1] ∈ (0�100),
while the introduction of (dual of A2′, S1′) reduces that interval to (0�5�04). The reason is
that a very small fraction (i.e., 0�25%) of the population has realized treatment τ = 0�004

26In an individualistic model, Manski and Pepper (2000) study returns to schooling assuming both the
monotone treatment response and the monotone treatment selection restrictions are satisfied. They show
that the bounds under the joint restriction are much tighter than the simple intersection of the bounds
under the individual assumptions. We computed the sharp bounds under the joint restriction for the crime
application. In our case, they were almost identical to the intersection of the bounds under the individual
restrictions. We speculate that this result, which contrasts with that in Manski and Pepper (2000), relates
to the fact that, in our case, the monotone treatment response and selection restrictions work in opposite
directions.

27For t = 0�004, one of the estimators takes a value slightly below 0 and a second estimator takes a value
slightly above 100. We wrote 0 and 100 instead, as the true parameter of interest will always take values
between 0 and 100.
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Police Per Capita Assumptions Lower Bound Upper Bound 95% Confidence Set

t = 0�001 A1′ 0�06 96�74 (0�03�98�37)
A1′, dual of A2′, S1′ 2�90 89�25 (2�72�92�10)
A1′, A3′, S2′ 1�79 89�26 (1�74�92�11)

t = 0�002 A1′ 0�12 94�97 (0�07�96�98)
A1′, dual of A2′, S1′ 2�18 54�94 (1�95�59�47)
A1′, A3′, S2′ 1�39 55�04 (1�29�59�56)

t = 0�003 A1′ 0�50 89�74 (0�35�92�48)
A1′, dual of A2′, S1′ 1�23 18�42 (1�02�21�74)
A1′, A3′, S2′ 1�26 20�03 (1�07�23�29)

t = 0�004 A1′ 0�00 99�8 (0�00�100�0)
A1′, dual of A2′, S1′ 0�02 04�1 (0�00�05�04)
A1′, A3′, S2′ 0�01 01�47 (0�00�02�42)

Source: FBI, UCR (Uniform Crime Reporting) program for year 2009.

Figure 4. Lower and upper bounds for P[y(t)= 1] in percent.

and then the empirical evidence alone is ineffective to identify the potential outcomes.
However, by adding monotone treatment response, all the data are used in the estima-
tion: part of the observations improve the upper bound, another segment helps to esti-
mate the lower bound, and a third group of observations is used to construct both. For
this treatment level, (A3′, S2′) provides even more information as the interval shrinks to
(0�2�42). The reason for this result is that the groups that received this large treatment
displayed very low criminal activity.

The bounds we just provided can be improved if we select less conservative, though
still credible, upper bounds for the largest possible fraction of people who could com-
mit a crime at any treatment level. We refer to the latter probability as Pmax. Figure 5
provides bounds for the fraction of people who would commit a crime at a level of po-
lice per capita t = 0�002 for three different values of Pmax.28 Our results show that the
bounds become substantially more informative as we reduce Pmax. Similar results hold
for the other treatment levels.

Welfare analysis Though the previous results show that the estimated intervals for
criminal activity decrease as police per capita increases, increasing police per capita
has an opportunity cost in terms of other social policies that could be pursued with the
budget assigned to police resources.29 Thus, to decide whether to increase the police
resources, the public authority may want to compare the overall cost of the available
alternatives. We next show that our previous bounds can help the public authority to
make a decision, even when some of the bounds are quite wide. Our model is based on
Becker (1968).

28I thank one referee for this suggestion.
29I thank a referee for suggesting this welfare analysis.
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Values of Pmax Assumptions Lower Bound Upper Bound 95% Confidence Set

Pmax = 1 A1′ 0�12 94�97 (0�07�96�98)
A1′, dual of A2′, S1′ 2�18 54�94 (1�95�59�47)

Pmax = 0�50 A1′, A3′, S2′ 1�39 55�04 (1�29�59�56)

A1′ 0�12 47�55 (0�07�48�52)
A1′, dual of A2′, S1′ 2�18 27�96 (1�95�30�18)
A1′, A3′, S2′ 1�39 28�06 (1�29�30�27)

Pmax = 0�25 A1′ 0�12 23�83 (0�07�24�30)
A1′, dual of A2′, S1′ 2�18 14�47 (1�95�15�53)
A1′, A3′, S2′ 1�39 14�57 (1�29�15�62)

Source: FBI, UCR (Uniform Crime Reporting) program for year 2009.

Figure 5. Lower and upper bounds for P[y(t = 0�002)= 1] in percent.

Let O(t) be the number of offences in New York state when its cities receive a level of
police per capita t. If the number of people is N , then O(t) ≈ NP[y(t) = 1]. Let H(O(t))

be the corresponding social harm. We assume H is linear so that H(O(t)) = hO(t), where
h> 0 is the social cost per crime committed. In addition, we let c > 0 be the opportunity
cost per unit of police officer. The public authority wants to compare the overall cost of
two levels of police per capita t� t ′ ∈ T with t > t ′; that is, it is interested in estimating

Δ
(
t� t ′

)= (
hNP

[
y(t) = 1

]+ cNt
)− (

hNP
[
y
(
t ′
)= 1

]+ cNt ′
)
�

To provide bounds for Δ(t� t ′), we let Pl[y(t) = 1] and Pu[y(t) = 1] be the lower and the
upper bounds for P[y(t) = 1]. The bounds for Δ(t� t ′) can be obtained as

hN
{
Pu
[
y(t) = 1

]− Pl

[
y
(
t ′
)= 1

]}+ cN
(
t − t ′

)
≥ Δ

(
t� t ′

)≥ hN
{
Pl

[
y(t) = 1

]− Pu
[
y
(
t ′
)= 1

]}+ cN
(
t − t ′

)
�

Though they may not be sharp, these bounds can be easily implemented. The lower
bound can be either positive or negative. When it is positive, our analysis suggests that
it is not worth it to increase the level of police even if it reduces the criminal activity.

To illustrate how useful this analysis might be, we next estimate the lower bound of
Δ(t� t ′) for two alternative changes in treatment levels. We assume that h is $400 and the
opportunity cost of a police officer c is $105,000.30 To estimate the lower bounds, we use
the results in Figure 4 under the restriction (A1′, dual of A2′, S1′). We get

Δ
(
t = 0�003� t ′ = 0�002

)≥ −N128�8 and Δ
(
t = 0�004� t ′ = 0�003

)≥N18�04�

This result shows that increasing police per capita in all cities of New York state from
0�002 to 0�003 might reduce the social cost. It also states that further increments from

30Estimates of the average social cost of crimes substantially differ across studies. Most of them agree
that the estimates for most of the crimes are very low. However, they also agree that the average is pushed
up by a small number of crimes that involve extremely large monetary losses.
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0�003 to 0�004 will never do so. As we mentioned earlier, this outcome is interesting as
it shows that even when our bounds are wide, they can still be useful to guide policy
decisions.

6. Concluding remarks

This paper provides identification results for treatment response models with endoge-
nous social interactions by means of monotone comparative statics. In doing so, we
bridge the theory of identification of treatment effects that exploits monotone restric-
tions with recent results on games with strategic complementarities.

The approach to partial identification is nonparametric and allows for counterfac-
tual predictions under multiple equilibria. Moreover, it relies neither on random treat-
ment assignment nor on random assignment of individuals to the groups. Our results
derive from shape restrictions on the primitives of the model that lead to monotone
comparative statics of the equilibrium sets. The identification regions have the form of
intervals, that is, we identify two extreme distributions that are functions of the observ-
able data such that the true distribution must lie between them in terms of stochastic
dominance. The bounds we provide are sharp and, by applying them to the study of
crimes in New York state, we show that they can also be very informative.

An additional contribution of this study is to develop a flexible and tractable proba-
bilistic framework for the model that typifies groups through the relevant features of the
group members and can accommodate various processes of group formation. Last, this
article also contributes to the literature on identification of nonparametric simultane-
ous equations models.31

Appendix A: Proofs

To make this paper self-contained, we provide the three theorems we invoke.

Tarski’s Fixed Point Theorem ( TFP). If X is a complete lattice and f :X → X is an
increasing function, then f has a fixed point. Moreover, the set of fixed points of f has a
smallest and a largest element (Tarski (1955)).

Milgrom and Roberts’ Theorem (MR). If X is a complete lattice, S is a partially or-
dered set, and f :X × S → X is an increasing function, then the least and greatest fixed
points of f are increasing in s on S (Milgrom and Roberts (1990)).

The concept of first order (or standard) stochastic dominance is based on upper sets.
Let us consider (Ω�≥), where Ω is a set and ≥ defines a partial order on it. A subset U ⊂ Ω

is an upper set if and only if x′ ∈U and x ≥ x′ imply x ∈U .

First Order Stochastic Dominance Theorem (FOSD). Let X�X ′ ∈ Rn be two ran-
dom vectors. The following two statements are equivalent:

31See, for example, Matzkin (2008) and the literature therein.
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(i) We have P(X ∈U) ≥ P(X ′ ∈ U) for all upper set U ⊂Rn.

(ii) We have E[f (X)] ≥ E[f (X ′)] for all increasing functions f (·) (such that the expec-
tations exist).

We write P(X) ≥st P(X
′) if these conditions hold. This concept extends to arbitrary

partially ordered domains up to measurability considerations (see Mosler and Scarsini
(1991)).

Proof of Lemma 1. Consider the mapping

Mt�k :Y |L| → Y |L|�
(17)

(y1� y2� � � � � y|L|) → (
y ′
k1� y

′
k2� � � � � y

′
k|L|

)
�

where y ′
kl = fkl(t�y−l) for l = 1�2� � � � � |L| and y−l ≡ (y1� � � � � yl−1� yl+1� � � � � y|L|). By con-

struction, the solution set to the system of equations fk, φ(t�k), coincides with the set
of fixed points of Mt�k. Then the proof of Lemma 1 reduces to show that the set of fixed
points of Mt�k has a least and a greatest element. Here (Y |L|�≥) is a complete lattice for
the coordinatewise (partial) order y ≥ y′ if yl ≥ y ′

l for all l ∈ L. By A1, Mt�k is increasing.
Hence, Lemma 1 follows by TFP. �

Proof of Lemma 2. Lemma 1 shows that if A1 holds, then φ(t�k) has a least and a
greatest element, and A2 ensures that the system of equations fk increases in t for any
fixed k ∈ K. Then Mt�k, as defined in (17), increases in t on T , and the fact that the ex-
tremal elements of φ(t�k) increase in t follows by MR. Thus, condition S1(i) is sufficient
to our claim. The fact that S1(ii) is sufficient to our claim holds by Echenique and Sabar-
wal (2003). �

The proof of Lemma 4 requires an additional result.

Lemma 13. Assume A1 and S2 hold. Let k�k′ ∈ K. If fk ≥ fk′ according to Definition 3,
then yk(t) ≥ yk′(t) for all t ∈ T .

Proof. Lemma 1 shows that if A1 holds, then φ(t�k) and φ(t�k′) have a least and
a greatest element. Let S = {0�1}, Mt�k(0) ≡ Mt�k′ , and Mt�k(1) ≡ Mt�k with Mt�k′ and
Mt�k defined as in (17). Notice that fk ≥ fk′ implies Mt�k(s) is increasing in s on S.
Then, by MR—since φ(t�k) and φ(t�k′) are the sets of fixed points of Mt�k and Mt�k′ ,
respectively—the least (greatest) vector in φ(t�k) is larger than the least (greatest) vec-
tor in φ(t�k′) ∀t ∈ T . The fact that yk(t) ≥ yk′(t) ∀t ∈ T holds by S2(i). The fact that S2(ii)
is sufficient to our claim holds by Echenique and Sabarwal (2003). �

Proof of Lemma 4. Let s� s′ ∈ T with s ≥ s′, and let us assume that A1, A3, and S2 hold.
Fix an upper set U ⊂ R|L|. By definition,

P
[
y(t) ∈U | τ = s

]=
∑
k∈K

1
[
yk(t) ∈U

]
πk|τ=s� (18)
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Recall that P(f = fk | τ) ≡ πk|τ . By Lemma 13, 1[yk(t) ∈ U] ≥ 1[yk′(t) ∈ U] if fk ≥ fk′ . Then
P[y(t) ∈ U | τ = s] is the expectation of an increasing function of f conditional on τ = s.
By A3, P(f | τ = s) ≥st P(f | τ = s′). Then, by FOSD(ii), P[y(t) ∈ U | τ = s] ≥ P[y(t) ∈ U |
τ = s′]. The result follows by FOSD(i) as U was arbitrarily selected. �

Proof of Proposition 5. We first show

P
[
y(t)

]≥st P(y | τ = t)P(τ = t)+ P
(
Y |L|)P(τ �= t)� (19)

Let U ⊂ R|L| be an upper set and let us consider the next two steps:

P
[
y(t) ∈U

] = P
[
y(t) ∈U | τ = t

]
P(τ = t)+ P

[
y(t) ∈U | τ �= t

]
P(τ �= t)

(20)
≥ P(y ∈U | τ = t)P(τ = t)+ P

(
Y |L| ∈ U

)
P(τ �= t)�

The empirical evidence reveals P[y(t) ∈ U | τ = t] = P(y ∈ U | τ = t). The inequality is
true as Y |L| is a lower bound for any vector of potential outcomes. Since U was arbitrarily
selected, our first claim holds by FOSD(i). The proof for the upper bound is similar, so
we omit it.

To show that the identified area is sharp, first notice that we restrict P[y(t)] to the set
of all possible distributions that are consistent with the nature of the outcomes, that is,
P[y(t)] ∈ ΔY |L| . In addition, given the data, our initial assumptions are consistent with

both P[y(t) | τ �= t] = P(Y |L|) and P[y(t) | τ �= t] = P(Y
|L|

). Then P[y(t)] can coincide
with any element of ΔY |L| that lies between the lower and the upper bound, and our
claim follows. �

The proof of Proposition 6 requires an intermediate result that relates to Lemma 2.

Corollary 14. Assume A1, A2, and S1 hold. Then we have P[y(t) | τ ≤ t] ≥st P(y | τ ≤ t)

and P(y | τ ≥ t) ≥st P[y(t) | τ ≥ t].

Proof. Let U ⊂R|L| be an upper set and consider the next steps:

P
[
y(t) ∈U | τ ≤ t

] =
∑
s∈T

{∑
k∈K

1
[
yk(t) ∈U

]
πk|τ=s

}
1(s ≤ t)P(τ = s | τ ≤ t)

≥
∑
s∈T

{∑
k∈K

1
[
yk(s) ∈U

]
πk|τ=s

}
1(s ≤ t)P(τ = s | τ ≤ t) (21)

= P(y ∈U | τ ≤ t)�

Under A1, A2, and S1, the inequality follows by Lemma 2, as it implies yk(t) ≥ yk(s) for
all t ≥ s. Since U was arbitrarily selected, the first claim follows by FOSD(i). The proof for
the second claim is similar, so we omit it. �

Proof of Proposition 6. We next show

P
[
y(t)

]≥st P(y | τ ≤ t)P(τ ≤ t)+ P
(
Y |L|)P(τ � t)� (22)
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Let U ⊂ R|L| be an upper set and let us consider the next three steps:

P
[
y(t) ∈U

] = P
[
y(t) ∈U | τ ≤ t

]
P(τ ≤ t)+ P

[
y(t) ∈U | τ � t

]
P(τ � t)

≥ P(y ∈ U | τ ≤ t)P(τ ≤ t)+ P
[
y(t) ∈U | τ � t

]
P(τ � t) (23)

≥ P(y ∈ U | τ ≤ t)P(τ ≤ t)+ P
(
Y |L| ∈U

)
P(τ � t)�

Under A1, A2, and S1, the first inequality follows by Corollary 14 and FOSD(i). The sec-
ond inequality is true as Y |L| is a lower bound for any vector of outcomes. Since U was
arbitrarily selected, the claim holds by FOSD(i). The proof for the upper bound is similar,
so we omit it.

Sharpness follows by the same argument as that invoked in Proposition 5. �

The proof of Proposition 7 requires an intermediate result that relates to Lemma 4.

Corollary 15. Assume A1, A3, and S2 hold. Then we have P[y(t) | τ ≥ t] ≥st P(y | τ = t)

and P(y | τ = t) ≥st P[y(t) | τ ≤ t] for all t ∈ T .

Proof. Let U ⊂ R|L| be an upper set, and consider the next steps:

P
[
y(t) ∈U | τ ≥ t

] =
∑
s∈T

P
[
y(t) ∈U | τ = s

]
1(s ≥ t)P(τ = s | τ ≥ t)

≥
∑
s∈T

P
[
y(t) ∈U | τ = t

]
1(s ≥ t)P(τ = s | τ ≥ t)

(24)
= P

[
y(t) ∈U | τ = t

]∑
s∈T

1(s ≥ t)P(τ = s | τ ≥ t)

= P(y ∈U | τ = t)�

Under A1, A3, and S2, the inequality holds by Lemma 4. The third line holds as
P[y(t) ∈ U | τ = t] is independent of s, and the last line is true as

∑
s∈T 1(s ≥ t) ×

P(τ = s | τ ≥ t)= 1. Since U was arbitrarily selected, the first claim holds by FOSD(i).
The proof of the second claim is similar, so we omit it. �

Proof of Proposition 7. We next show

P
[
y(t)

]≥st P(y | τ = t)P(τ ≥ t)+ P
(
Y |L|)P(τ � t)� (25)

Let U ⊂ R|L| be an upper set and let us consider the next three steps:

P
[
y(t) ∈U

] = P
[
y(t) ∈U | τ ≥ t

]
P(τ ≥ t)+ P

[
y(t) ∈U | τ � t

]
P(τ � t)

≥ P(y ∈ U | τ = t)P(τ ≥ t)+ P
[
y(t) ∈U | τ � t

]
P(τ � t) (26)

≥ P(y ∈ U | τ = t)P(τ ≥ t)+ P
(
Y |L| ∈U

)
P(τ � t)�

Under A1, A3, and S2, the first inequality follows by Corollary 15, and the last inequality
holds as Y |L| is a lower bound for any vector of potential outcomes. Since U was arbitrar-
ily selected, our first claim holds by FOSD(i). The proof for the upper bound is similar,
so we omit it.
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Sharpness follows by the same argument as that invoked in Proposition 5. �

Proof of Lemma 9. Consider the mapping

Nt�k :ΔY → ΔY �
(27)

P(y) → P
(
y ′)�

where P(y ′ ∈ B) = (1/|Gk|)∑l∈Gk
1{fkl[t�P(y)] ∈ B} for all B ⊆ R. It is immediate to no-

tice that the range of Nt�k is as given. By construction, the extremal elements of ϕ(t�k)
coincide with the extremal fixed points of Nt�k. Then the proof of Lemma 9 reduces to
show that the set of fixed points of Nt�k has a least and a greatest element.

By Echenique (2003, Lemma 1), (ΔY �≥st) is a complete lattice. By assumption A1′,(
1/|Gk|) ∑

l∈Gk

1
{
fkl
[
t�P(y)

] ∈U
}≥ (

1/|Gk|) ∑
l∈Gk

1
{
fkl
[
t�Q(y)

] ∈U
}

if P(y) ≥st Q(y) for all upper set U ⊂ R. Then, by FOSD(i), P(y ′) ≥st Q(y ′). Thus, Nt�k is
monotone increasing and the claim holds by TFP. �

Proof of Lemma 10. Lemma 9 shows that if A1′ holds, then ϕ(t�k) has a least and a
greatest element, and A2′ ensures the system of equations fk[t�P(y)] increases in t for
any fixed k ∈K. Then, for all t > t ′,(

1/|Gk|) ∑
l∈Gk

1
{
fkl
[
t�P(y)

] ∈U
}≥ (

1/|Gk|) ∑
l∈Gk

1
{
fkl
[
t ′�P(y)

] ∈U
}

for any upper level set U . It follows, by FOSD(i), that Nt�k, as defined in (27), increases
with respect to FOSD in t on T . The fact that the extremal elements of ϕ(t�k) increase
in t follows by MR. Condition S1′(i) is then sufficient to our claim. The fact that S1′(ii) is
sufficient to our claim holds by Echenique and Sabarwal (2003). �

The proof of Lemma 12 requires an additional result.

Lemma 16. Assume A1′ and S2′ hold. Let k�k′ ∈K. If Fk ≥ Fk′ according to Definition 11,
then P[yk(t)] ≥st P[yk′(t)] for all t ∈ T .

Proof. Lemma 9 shows if A1′ holds, then ϕ(t�k) and ϕ(t�k′) have a least and a greatest
element. Let S = {0�1}, Nt�k(0) ≡ Nt�k′ , and Nt�k(1) ≡ Nt�k, with Nt�k′ and Nt�k defined
as in (27). Notice that Fk ≥ Fk′ implies Nt�k(s) is increasing in s on S with respect to
FOSD. Then, by MR—since the extremal elements of ϕ(t�k) and ϕ(t�k′) coincide with
the extremal fixed points of Nt�k and Nt�k′ , respectively—the least (greatest) distribution
in ϕ(t�k) is larger than the least (greatest) distribution in ϕ(t�k′) ∀t ∈ T . The fact that
P[yk(t)] ≥st P[yk′(t)] ∀t ∈ T holds by S2′(i). The fact that S2′(ii) is sufficient to our claim
holds by Echenique and Sabarwal (2003). �
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Proof of Lemma 12. Let s� s′ ∈ T with s ≥ s′, and let us assume that A1′, A3′, and S2′
hold. Fix an upper set U ⊂ R. By definition,

P
[
y(t) ∈U | τ = s

]=
∑
k∈K

P
[
yk(t) ∈ U

]
πk|τ=s� (28)

Recall P(F = Fk | τ) ≡ πk|τ . By Lemma 16, P[yk(t) ∈ U] ≥ P[yk′(t) ∈ U] if Fk ≥ Fk′ . Then
P[y(t) ∈ U | τ = s] is the expectation of an increasing function of F conditional on τ = s.
By A3′, we know that P(F | τ = s) ≥st P(F | τ = s′). Then, by FOSD(ii), we get P[y(t) ∈ U |
τ = s] ≥ P[y(t) ∈U | τ = s′]. The result follows by FOSD(i) as U was arbitrarily selected. �

Having shown Lemma 9, the proof of Proposition 5′ is similar to that of Proposition 5.
Thus we omit it.

The proof of Proposition 6′ requires an intermediate result that relates to Lemma 10.

Corollary 17. Assume A1′, A2′, and S1′ hold. Then we have P[y(t) | τ ≤ t] ≥st P(y |
τ ≤ t) and P(y | τ ≥ t)≥st P[y(t) | τ ≥ t].

Proof. Let U ⊂ R be an upper set and consider the next steps:

P
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P
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}
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P
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}
1(s ≤ t)P(τ = s | τ ≤ t) (29)

= P(y ∈U | τ ≤ t)�

Under A1′, A2′, and S1′, the inequality follows by Lemma 10, as they imply P[yk(t)] ≥st

P[yk(s)] for all t ≥ s. Since U was arbitrarily selected, the first claim follows by FOSD(i).
The proof for the second claim is similar, so we omit it. �

Having shown Corollary 17, the proof of Proposition 6′ is similar to that of Proposi-
tion 6. Thus we omit it.

The proof of Proposition 7′ requires an intermediate result that relates to Lemma 12.

Corollary 18. Assume A1′, A3′, and S2′ hold. Then we have P[y(t) | τ ≥ t] ≥st P(y |
τ = t) and P(y | τ = t)≥st P[y(t) | τ ≤ t] for all t ∈ T .

Proof. Let U ⊂ R be an upper set and consider the next steps:

P
[
y(t) ∈U | τ ≥ t

] =
∑
s∈T

{∑
k∈K

P
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]
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}
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∑
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{∑
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P
[
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]
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}
1(s ≥ t)P(τ = s | τ ≥ t) (30)
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=
{∑
k∈K

P
[
yk(t) ∈U

]
πk|τ=t

}∑
s∈T

1(s ≥ t)P(τ = s | τ ≥ t)

= P(y ∈ U | τ = t)�

Under A1′, A3′, and S2′, the inequality follows by Lemma 12. The third line is true as
P[y(t) ∈ U | τ = t] is independent of s, and the last line is true as

∑
s∈T 1(s ≥ t)P(τ = s |

τ ≥ t) = 1. Since U was arbitrarily selected, the first claim holds by FOSD(i). The proof of
the second claim is similar, so we omit it. �

Having shown Corollary 18, the proof of Proposition 7′ is similar to that of Proposi-
tion 7. Thus we omit it.

Appendix B

B.1 Estimators for the extremal bounds of P[y(t) = 1]
The parameter of interest is the fraction of people who would commit a crime in New
York state at a level of police per capita t, that is, P[y(t) = 1]. We observe criminal activity
and realized levels of police per capita for a random sample of cities in New York state of
size N .

Let us denote by Pl[y(t) = 1] and Pu[y(t) = 1] the identified lower and upper bounds
for P[y(t) = 1] under the sustained assumptions. We indicate by Δ(t) the distance be-
tween these bounds, that is, Δ(t) ≡ Pu[y(t) = 1] −Pl[y(t) = 1]. We distinguish estimators
by using carets.

In what follows, τm is the realized level of police per capita in city m; dm is the number
of crimes in city m divided by the number of people in city m; nm is the number of people
in city m divided by the number of people in the sample; and N is the number of cities in
the sample. We next provide expressions for the estimators of interest under three sets
of restrictions.

I. Positive interactions The propositions below specify Propositions 5′, 6′, and 7′ to the
analysis of crimes.

Proposition 19. Assume A1′ holds. Then, for all t ∈ T ,

H
{
P
[
y(t) = 1

]} = {
δ ∈ [0�1] :P(y = 1 | τ = t)P(τ = t)+ P(τ �= t)

(31)
≥ δ ≥ P(y = 1 | τ = t)P(τ = t)

}
�

The estimators for the bounds are just the sample analogs of (31); that is, ∀t ∈ T ,

P̂u
[
y(t) = 1

]=
∑
m∈M

[
dm1(τm = t)+ 1(τm �= t)

]
nm�

P̂l

[
y(t) = 1

]=
∑
m∈M

dm1(τm = t)nm�
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II. Positive interactions and (negative) monotone treatment response

Proposition 20. Assume A1′ and the duals of (A2′ and S1′) hold. Then, for all t ∈ T ,

H
{
P
[
y(t) = 1

]} = {
δ ∈ [0�1] :P(y = 1 | τ ≤ t)P(τ ≤ t)+ P(τ � t)

(32)
≥ δ≥ P(y = 1 | τ ≥ t)P(τ ≥ t)

}
�

The estimators for the bounds are just the sample analogs of (32); that is, ∀t ∈ T ,

P̂u
[
y(t) = 1

]=
∑
m∈M

[
dm1(τm ≤ t)+ 1(τm > t)

]
nm�

P̂l

[
y(t) = 1

]=
∑
m∈M

dm1(τm ≥ t)nm�

III. Positive interactions and monotone treatment selection

Proposition 21. Assume A1′, A3′, and S2′ hold. Then, for all t ∈ T ,

H
{
P
[
y(t) = 1

]} = {
δ ∈ [0�1] :P(y = 1 | τ = t)P(τ ≤ t)+ P(τ � t)

(33)
≥ δ≥ P(y = 1 | τ = t)P(τ ≥ t)

}
�

The estimators for the bounds are just the sample analogs of (33); that is, ∀t ∈ T ,

P̂u
[
y(t) = 1

]=
∑
m∈M

⎡⎢⎢⎣
⎛⎜⎜⎝
∑
m∈M

dm1(τm = t)nm∑
m∈M

1(τm = t)nm

⎞⎟⎟⎠1(τm ≤ t)+ 1(τm > t)

⎤⎥⎥⎦nm�

P̂l

[
y(t) = 1

]=
∑
m∈M

⎡⎢⎢⎣
⎛⎜⎜⎝
∑
m∈M

dm1(τm = t)nm∑
m∈M

1(τm = t)nm

⎞⎟⎟⎠1(τm ≥ t)

⎤⎥⎥⎦nm�

Remark. Since all the previous estimators take the form of weighted averages, then the
corresponding vectors of variances and correlation, (σ̂2

l � σ̂
2
u� ρ̂), can be easily estimated.

B.2 Confidence intervals for P[y(t) = 1]
We estimate confidence regions by following the approaches of Imbens and Manski
(2004) and Stoye (2009). Imbens and Manski (2004) show uniform validity of their con-
fidence region under the following assumption (Assumption 1 adapts their condition to
our problem).
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Assumption 1.

(i) There exist estimators P̂l[y(t) = 1] and P̂u[y(t) = 1] that satisfy

√
N

[
P̂l

[
y(t) = 1

]− Pl

[
y(t) = 1

]
P̂u
[
y(t) = 1

]− Pu
[
y(t) = 1

]] d→ N
([

0

0

]
�

[
σ2
l ρσlσu

ρσlσu σ2
u

])

uniformly in P ∈Ψ , and there are estimators (σ̂2
l � σ̂

2
u� ρ̂) that converge to their population

values uniformly in P ∈ Ψ .

(ii) For all P ∈ Ψ , σ2 ≤ σ2
l ≤ σ2 and σ2 ≤ σ2

u ≤ σ2 for some positive and finite σ2 and
σ2, and Pu[y(t) = 1] − Pl[y(t) = 1] ≤ Δ< ∞.

(iii) For all ε > 0, there are ν > 0, K, and N0 such that N ≥ N0 implies Pr(
√
N|Δ−Δ| >

KΔν) < ε uniformly in P ∈Ψ .

Stoye (2009) explains that Assumption 1(iii) requires Δ̂(t) to be superefficient at 0,
a quite strong condition. Thus, he imposes conditions (i) and (ii), and shows that the
results of Imbens and Manski (2004) are still valid if we substitute condition (iii) by the
next requirement.

Assumption 1(iii′). There exists a sequence {aN } such that aN −→ 0, aN
√
N → ∞, and√

N|Δ−ΔN | p→ 0 for all sequences of distributions PN ⊆ Ψ with ΔN ≤ aN .

Though condition (iii′) is often hard to validate, Stoye (2009) provides a sufficient
condition that clearly holds in our setup.

Lemma 22. Let Assumption 1(i) and (ii) hold, and assume

Pr
(
P̂u
[
y(t) = 1

]≥ P̂l

[
y(t) = 1

])= 1�

Then Assumption 1(iii′) is implied.

We next introduce the confidence intervals we use in the analysis of crimes.
Imbens and Manski (2004) propose the confidence region

CIα ≡
[
P̂l

[
y(t) = 1

]− cασ̂l√
N

� P̂u
[
y(t) = 1

]+ cασ̂u√
N

]
�

where cα solves

�

(
cα +

√
NΔ̂

max{σ̂l� σ̂u}
)

−�(−cα) = 1 − α�

Stoye (2009) shows uniform validity of CIα under Assumption 1(i), (ii), and (iii′).32

32Stoye (2009) proposes an alternative confidence region that takes into account the bivariate nature of
the estimators. In our applications, both approaches give almost identical results.
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