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This supplement contains details of the examples and proofs of some results given
in the main paper. We also provide several additional examples illustrating ways
in which weak identification can arise in a DSGE context.

S.1. StYLi1ZED DSGE MODEL FROM SECTION 2
S.1.1 Solving the model

Here we solve the restricted linear rational expectations system
bEﬂTH_] + KXt — T = O,

—[r: — Evmipq — pAag) + Erxyp1 — x: =0, (8.1

1
—TT+ U =Ty,
p t t

where x; and 7, are observed endogenous variables. Exogenous shocks a; and u; evolve
according to the system

Aa; = pAa, 1 + a5 ur=0u;_1+ ey,
(8a,t5 €u) ~1id. N(0,3); 3 =diag(o?, o2).

To solve the system, we substitute out r; in the first two equations of (S.1) and obtain
the system

bE w41 = —kx; + 7y,

1
Eimig +Eixppr =x: + Eﬂt +u; — pAay.

We solve for E;x; and get the expectation equation
bEx;11 = (b+ k)x;+ bus — bpAay,
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which we can rewrite as

bE b bp
b+Ktxz+1 b+” b+

Xy = Aat.

Now we solve this expectation equation by iterating forward:

=/ b\ b bp
xt:Z(b—i—K) Et[ b+ x ut+j+b+—KAat+ji|.
j=0

We notice that E;u; = 8/u; and E;Aa,j = p/ Aa,. As a result, we have

b 1 bp 1
b—|—t'<.1_6 b ut+b+K'1_p b
b+ k b+ k
b bp

- A
brr—ob T hrr_pp

Xt = —

We plug the last expression into the Euler equation and solve the resulting expectation
equation for 7;:

= bE;mi 1+ kX,
bk bpk
A
bir—ob " T hrn_bp "

>, . bk bpk
=S WE,| - ~ Ay
g ’[ btr—0b"" T b k—bp “’*f]

bk bpk

= bEt7Tt+1 -

T T hrr—obd—ob) " T brr—bpd—bp) "
Finally, we obtain the solution to the system (S.1):
X = b U+ b Aa
T T hrk—ob " T hyrr—_pp""
(S.2)
bk bk
T = — U + p ai.

(b+ k—8b)(1—6b) (b+ k—pb)(1—bp)

S.1.2 Identification of the model

In this subsection, we check identification of the model (S.1). We use the explicit solution
written in equation (S.2). Assume that 02 > 0, 2 > 0,0 < 8, p, b < 1, and « > 0.

First we show that the model is point-identified if 6 < p. Let A1(0) = _b+,<h—_ab and
Ar(0) = b+K 5- We have

= A1(0)u; + A2(0)pAa;
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and

7Tt=—8bA1(9)Mt+ . A2(9)PAat

We can identify autocovariances of all orders for the series x; and 7, as well as all cross-
covariances. In particular, we have

Var(x;) = A1(0)

2
A 922 Ty
82+ 2(0) 1

p?’

25k o2 pk

0,0

COVCre, xi—p) = A1(8) T4 + A2(0)°p? T4
— 82 -p
It is easy to see that from the autocovariance structure of process x;, one can identify
d<p, A 1(0)203, and A2(0)2¢73. We also have the following expressions for the cross-
covariances:

2 2
o K g K
cov(x;, ;) 1()1_321—8b+ 2()p1_p21—pb’
2ok 2 k
20'5 K 2 2 04P K
cov(x;, m_i) = A1(0) vie. 8b+A2(0) p - 21— pb’

From cross-covariances, we can additionally identify A1(6')2 i Tosp and A»(0)% 02 o "pb

To sum up, the autocovariance structure of the process x;, 7; allows us to identify
the six quantities

K

1-68b°

8, p, A1(0)*0y, Ax(0)’07, Ai(0) 0 =5

We can see from the last four quantities that —5; and ; b are identified, and thus % gz

is identified. Since p and 6 are identified, we see that b is 1dent1ﬁed as well. This implies
that « is also identified. Finally, we notice that the A4;(6) are functions of only b, «, p,
and §, and thus are identified. Looking at these six quantities, we can see that they imply
identification of ¢ and 2.

Now we examine the identification in the case 8 = p. If 5 = p, we have that x, and =,
satisfy the system

Xy = (pAat_ul)7

b+ k—6b
br (pAa; —uy) = K X
(b+ K —ob)(1—ob) PR M) =1 5"

T =

x; and m; are linearly dependent AR(1) processes with autoregressive (AR) root é = p.
The only functionally independent quantities that can be identified are the autoregres-
sive parameter (6 = p), the variance of x;, and the ratio x,;/ ;. Hence we can only identify
four quantities,

b

2
b+k—6b

24 g2
ato

K
6=p, g, us 1_5b7

p



4 Andrews and Mikusheva Supplementary Material

but we have six structural parameters. As a result, there are 2 degrees of underidentifi-
cation.

S.1.3 Checking Assumption 1

We have that

Y, = (j:) =C(h) (A”{;) — C(O)U,

and

)

U=AU_1+¢&, A= (()

2) and &, ~ N (0, 3).
We can write the likelihood function:
£1(6) = const

T
Y (CHOY = ACTHO)Y,) ITHCTH Y = ACTH(B)Y,_1)
t=1

~ N =

- ElogIEI — Tlog|C(6)|.

We derive the score for a similar likelihood in Section S.3. Here we just note that the score
at the true parameter value is a linear combination of terms (e,&; — 2) and &,Y;_,. It thus
trivially satisfies Assumption 1 in the paper for sequences of models with p =8 + TCT

S.2. DETAILS OF EXAMPLE 1: ARMA(1, 1) WITH NEARLY CANCELING ROOTS
Below we use the formulation of the weak ARMA(1, 1) model from Andrews and Cheng
(2012):

Yt=(7T+B)Yt—1+et_7Tet—l’ e,’\’lld N(O, 1)

The true value of parameter 6y = (B, m)’ satisfies the restrictions |my| < 1, B9 # 0, and
|70 + Bo| < 1, which guarantee that the process is stationary and invertible. For simplic-
ity, we assume that Yy = 0 and ¢y = 0, though due to stationarity and invertibility, the
initial condition does not matter asymptotically. One can rewrite the model as

(1—(m+B)L)Y,=(1—wL)e, or Y,=(1—(m+pB)L) '(1—mL)e,.

It is easy to see that if 8 = 0, the parameter 7 is not identified. Assume that the model
is point-identified, that is, 8 # 0, but that identification is weak. This can be modeled as

- C
p==<.
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First, we write the log likelihood function. Here we follow the derivation of Andrews
and Cheng (2012) closely:

—1 -1
e = Z ) (Yi—j — (mo+ Bo)Yi—j_1) = Y: — Bo Z T Yij-1,

Jj=0 j=0
1 I -1 2
¢(B, m) = const — - ;(Y, -B Xg 7T]Y[_j_1> .
= J=

Next, we introduce the two time series
t . 1
w=7y mYrj=~1-mL) 'Y= (1-(m+Bo)L) e
j=0

and

t
Vy = Zj’ﬁ(])_lytfj
j=0
= (1= mL) Y, = —mL) (1 - (m+ Bo)L) (1 = mL)e,y
= (1= mL)" (1= (m + Bo)L) " er-r.

Series u; is an AR(1) process with coefficient 7y + By, v; is an AR(2) process with roots
7o and my + By.
One can see that the score is

=1 j=0 j:0

T t—1 t—1
Sx(0) = BZ[(K ~By Yt,-l) (ijf‘lYt,-l)}.
=1 j=0

j=0

Notice that Y; — By Z;;(l) 773 Y;_j—1=e;. As aresult,

T
Z Crlly—1
_ t=1

= T
BoY e
=1

We can now write the two measures of information

T T
2.2 2
Zetut—l Bozetut—lvt—l
=1 =1

T T
2 2 2.2
Bo E CrUr—1Vr—1 B E € Vi1
t=1 t=1

A ,
ST(GO)z( 8(Bo 7To))

S#(Bo, )

Jr(Bo, mo) =
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2
I7(69) = —

£
2090’
T

T T
2
Z”t—l _Zetvt—l +B()Zut—lvt—1
_ t=1 t=1 =1

- T T T T
2 2
_Zetvtfl +BOZ”171UF1 Bozvt_1 _B()Zetwtfl
=1 =1 t=1 t=1

where w;_; = Z;;(l) JjG — 1)#6_2Y,_ j—11s a weakly stationary series.
Assume weakly canceling roots, that is, 8 = C/+/T. Then for a normalizing matrix
K7 = diag(1/+/T, 1), we have

E[12 ] C. E[th_lvt—l]) ’ (8.3)

P
KrJr(00)KT = (
C-Eluryvi—1]  C* E[v? ]

where we used the law of large numbers.
We also can notice that

1
0 — erv;_
S e

K7(J7(60) — I7(00))KT = +op(1)

\/LT > ey % > ey

0 ¢
=><§ Cn)’

where (£, )’ is a mean-zero normal vector with covariance matrix

( E[v? ] E[Ut—lwt—l])
Elvi1ws1] E[wf_l] '
CHECKING AssuMPTION 1. It is easy to see that Lindeberg’s condition holds for se-
quences ““=1 and mﬁ‘ . We check Assumption 1(b) in equation (S.3). As a result, Theo-
rem 1 holds for the ARMA(1, 1) model with near-canceling roots, and we have a robust
test for a simple hypothesis Hy : 7 = g, 8 = By.

Let us consider the problem of testing the weakly identified parameter 7, treating g

as a nuisance parameter. The hypothesis of interest is Hy: 7 = .

CHECKING ASSUMPTION 2.

(a) We showed before that

T
—1pp(60) = ;—1 u} 5 lim T gg (60).

S0 J 54 (00)1ps(60) > 1.
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(b) Igg(mp, B) does not depend on B.
(c) Function £(m, B) is quadratic in B; as a result, ﬁ(Trg) is the ordinary least squares
(OLS) estimator in a regression of Y; on u;. The assumption trivially holds.

This means that Assumption 2 is satisfied and, thus, the restricted ML estimate of B is
asymptotically normal under the null.

CHECKING AssuMPTION 3. We have to check the conditions for the CLT for a pair S7(6y)
and

T

T
Apx(60) =Jpx(00) — Ipx(00) = Bo ) (€7 — Dus1vi1+ ) _ e 1.
=1 t=1

It is easy to see that for By = C/+/T and Kgr =
KgzAgr = N(0, Ev?).

f’ Assumption 3 is satisfied, and

CHECKING ASSUMPTION 4.

(@) Wehave Kg 7 =Kg, 1= and K, r = 1. Assumption 4(a) holds trivially.

1
JT
255 €= -2 u; 1v,—1. We may try to calculate Agg, from the third
information equality, but it is enough to notice that K ﬁ,TKTBT[;ZB%K =—% Z Ui Vi1

(b) Note that

satisfies the law of large numbers and that all terms in the third information equality
are normalized to converge to their expectations. This implies that Klz3 K= 1Apgr con-
verges to its expectation (which is zero, since A is a martingale).

(© The argument here is exactly the same as in (b), with the additional observation
that 72— B 5-¢=0.
Since Assumptions 2, 3, and 4 are satisfied, according to Theorem 2, the two score
test statistics LM, () and LM, () for testing hypothesis Hy: 7 = 7y have an asymp-
totic xj 2 distribution despite the weak identification of 7.

S.3. AN ADDITIONAL EXAMPLE OF WEAK IDENTIFICATION: NEARLY REDUCED DYNAMICS

This section contains an additional example showing how weak identification can arise
in DSGE models. Specifically, we consider an example in which insufficiently rich dy-
namics for the observed variables gives rise to weak identification.

Assume that we observe a sample of 2 x 1 random vectors Yy, t =1, ..., T, generated
from the model

AO)Y, =U,,
U =AU+ &,
& ~1.i.d. N(0, ),

which is the form typically taken by log-linearized DSGE models. Here U; and ¢, are
2 x 1 unobserved random vectors. Assume that the matrix of persistence parameters
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A = diag(p, 6) and the matrix of variances 3 = diag(alz, 022) are both diagonal. The vec-
tor 6 = (6, 012, 022, p, 6) contains the unknown parameters. We will show that if the ele-
ments of A are equal, the parameter § may become locally underidentified.

S.3.1 Identification when 6 # p

According to Komunjer and Ng (2011), two parameter values 6, and 6 are observation-
ally equivalent if and only if there exists matrix P such that

PA0P71 =Aq,
PA(6y) = A(61),
P3P =23;.

Assume that p # 8. If there exists a matrix P such that for some diagonal matrices A;
and 3, we have PAoP~! = A; and P3P’ = 3, then the matrix P must be of the form

(¢! C(z]) or (02 ‘) for some nonzero constants c¢; and ¢;. Thus the model is locally identified

at 6 if and only if the transformation f : (¢, ¢2, 6) — vec{({! 0) A(O)} is locally injective
at (c1, ¢z, 0) = (1,1, 6p). The sufficient condition for this is that the derivative of f with
respect to (ci, ¢z, 0) have full rank at (1, 1, 6y). The above mentioned matrix derivative is
written

A11(80) 0
A
0~ 21(80) i vec(A(D))
A12(0p) 0 96
0 A (0)

If this matrix has full rank, then parameter 6 is locally identified at 6y. As we can see, for
6 to be point-identified, it must be of dimension at most 2, which makes the dimension
of 6 = (0, 02, 03, p, &) equal to 6. From now on, we assume that 6 is two dimensional
and that the model is point-identified for p # 6.

S.3.2 Identification at p = 6

To show that identification fails at 6 = p, we write the likelihood for the model
£(0;Yq,...,Y7p). Let ALy (0) =4£(0;Y,...,Y;) —£(0;Yq,...,Y,_1) be the increment of
the likelihood in period ¢:

1, - . : . _
Al == (A@)Y = AAB)Y,-1) SN AB)Y: — AAD)Y, 1)
— %logIZI +log| A(8)].

Consider the score. First take the score with respect to the variances:

&AZ,

1
7 (00 = (et = i)

l
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Next, let s be a part of §. We have

_JAL

S0 = (4@ - Aa@yi) s (G- alv)

das as
dA
- trace(—A_l)
as
JdA
=é&,3 ( s AN AU, +e)— A

JA
— trace(—A1>.
das

If p =6, then A = 8Id; and %A‘l/l = A%A_l. As aresult,

dA
ﬁA_lUH)

IAL;

)= trace((sta; -3)3! %A1> .

as
We can see that the score with respect to the four parameters (6, 0-12, 0-22) is alinear func-
tion of the three-dimensional random variable Zthl (et} — 3). This implies that the
Fisher information for parameters 6, o7, o5, which is equal to covariance matrix of score,
is degenerate and has rank at most 3 (which makes the rank for the full parameter vector
0 at most 5). Thus we lose 1 degree of identification compared with the case of p # &.

S.3.3 Weak identification

We model weak identification as A = 8Id, + # u, where u = (g 8 ) Consider the score.
First take the score with respect to the variances:

ﬁAE t

1
7 (00) = — (&5, = 7).
g;

l

Next let s be a part of . We have

&AK dA
— I(OO)_trace((sts’[ 1 A )
(S.4)
+ ! trace(U 3 ( A~ aAA ))
e & — .
JT t—18t¢ ,U« M&

Consider the variables

2 /
‘71’82t Uz>31,t32,t) )

S\

vec(Us—1&r).

i

SI
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Both ¢7 and n7 converge to mean-zero normal vectors (which are three and four di-
mensional, respectively), all components of which are independent. We then see that

1 o¢ 1
—ﬁa—;(00)=7§§T+ﬁv?’nT- (S.5)

Here v and v} are fixed vectors.
Let 6* = (6, 012, 022) be the subset of parameters excluding p and 6. What we have
shown is that

1 o9bp
\/_&0*

where the score — ﬁ

1
0 I'ér+ —I*np,
—(0p)=T¢r s nr

b (6p) is a4 x 1 vector, I' is a4 x 3 matrix, and I"* is a 4 x 4 matrix.

96+
As a result, the 4 x 4 block of the normalized Fisher information matrix corresponding

to the parameters 0* has rank 3 asymptotically:

1 1
Lo = I'Var(é)I" + TF*Var(nT)(F*)' — I'Var(&)I.

Now let us look at the components of the score corresponding to 6 and p:

‘Wf(eo)—sz (0 0)Ut 1_trace(Ut 16:37 (8 ?)),

aAEt(é’@)—trace(Ut 16,37 <1 O))
ap 0 0

As aresult,

1 oer
VT 3(p, 8)

where I' is a 2 x 4 matrix of full rank. We see that the part of the normalized information
matrix corresponding to the block of parameters p and 8 has rank 2 asymptotically, and
that the information matrix is asymptotically block-diagonal.

———(6p) =I'nr,

S.3.3.1 Asymptotic behavior of Hessian In the previous section, we showed that the
normalized (per observation) Fisher information for the four-dimensional parameter 6*
is of rank 3 asymptotically and as a result there is a direction « along which this matrix is
degenerate. We show that the normalized (per observation) Hessian of the log likelihood
is NOT asymptotically degenerate along this direction.

For simplicity of notation, denote by Z the limit of the normalized (per observation)
theoretical Fisher information for the block of parameters 6*, that is,

1 PINAVEINAN o1 dep
— lim 17, = lim LE =_ lim —E .
TR T T T AT Z(aa*)(ae*) T T 96% 96"

Let us also denote by Z; ; the entry of 7 corresponding to parameters s and 5.
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First consider two parameters s, 5 € §, andlet A, = 22 A=, By =24 4~y — n24 471,

_PA 41 A Ty — A 4-1
Ass=55A",and Bz = 552 A~ “as =~ A~". We have

, oﬂM[
Tt = — 75 ( 0o)

1 ' 1
= <As8t + ﬁBsUt—1> 3! (Agé‘t + ﬁBgUz—l)

+ 371 <Asgst +

(5.6)

1
ﬁBS§Ut_1> + trace( Ay Az) — trace( A ;)

= {s;A;EAAgst + trace(A; As) } + trace[ (s;&] — 2)2—11455] +0,(1/T).
As aresult, we have
Ts= E{s/,A;E_lAgs, + trace(As4;)} = trace(EAéE‘lAs) + trace( Ay As).
Let us define C; = 312 4,3Y/2 Then
I = trace(C}Cy) + trace(C;Cy) = trace(DyDy),

where D = %(Cs + C}) is a symmetric matrix.
In fact, all entries of the limit of the normalized Fisher information matrix Z have
this form. Consider the entry corresponding to s € 6 and a variance aiz

’

where the subindex i stands for the ith component. As a result,
I, = trace(SM; 37" A4y),

where M, is matrix that has all entries equal to zero except entry ii, which is — L. Matrix
3~12M;3/% is symmetric. Define D; = %Z_WMZEM.

Thus, for any two parameters s and 5 out of §* = (, 7, 03), the entry of the infor-
mation matrix corresponding to this pair is

T, 5 = trace(D;Ds),
and all matrices D, are symmetric 2 x 2 matrices. Because these matrices are symmetric,

trace(DsD5) = Y _(Dy)ix(D5)ix = (vec(Dy)) vec(Ds).
i,k

Since Dy is symmetric, there are two repeating entries. Let us define D} tobe a3 x 1
vector such that

trace(D;D;) = (Dj)/D;f.
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If we put all the vectors D} into one matrix D (of dimension 3 x 4), we get
I=D'D

and so can see that 7 is a 4 x 4 matrix of rank 3, and the degenerate direction is the direc-
tion perpendicular to D} for all s € 6*. Call this direction «. Consider a linear combina-
tion of the parameters o’ 6* and note that the limit of the normalized Fisher information
along this direction is 7, = &’Za = o/D’'Da = 0.

The expression for 7 is obtained as the expectation of the negative second derivative.
Given the second information, equality Z is also equal to the limit of the normalized
covariance matrix of the score. From the formula for the score (S.4), we have that for
S = trace((s;&, — 3)371 Ay),

cov(Ss, ;) = (D}) Ds,

where D7 is a 3 x 1 vector function of 4; and 3 only (described above).
The Hessian is I = ZL] it r, where the explicit formula for i, is given in (5.6). We
can see that

1 1< / _
<71T _I>s,§= ?gtrace[(sta, -3 1AS§] +0,(1/T).

The summands in the expression above have the same form as random variables S;. As
a result, we have

1 1 /
lim T —Ir-7 —=Ir-7 = (D!;) D:.
Tl_l;noo COV((T r >s,§, (T r >r,7’> ( S’S) "

where D5 ; is 3 x 1 and constructed from A ; in exactly the same manner as D is con-
structed from A;.
Consider the direction a = (ay)secg such that «’Za = 0 and note that

. 1 ) 1
Th_l:noo Tvar<o/<71T - I)a) = Tl;m(ﬁvar(Z:(TlT - I>s,§asa§>

s,5

- Z Z(D:’g)/D;k,FaSa§ara?

5,8 nF

D* a0
Z §,875%8
s,8

2

In general the last expression is nonzero. For example, assume that ¥ is the identity
matrix. Then the last expression is equal to zero if any only if the second derivative of
matrix 4 + A’ along direction « is equal to zero. This is obviously true if, for exam-
ple, A is a linear function of the parameter. In general, however, for nonlinear func-
tions, the second derivative along the special degenerate direction does not have to
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be zero, and thus the stochasticity of /7 along this direction is nontrivial asymptoti-
cally.

S.3.4 Checking Assumptions 1-4

CHECKING AssuMPTION 1. Given the formula of score stated in equation (S.5), it is easy
to see that Assumption 1 holds.

Let us denote 8 = 6* = (0, 012, 022), a = (p, 6). Below we show that Assumptions 2—4
hold for testing Hy : B = B¢ with the nuisance parameter a.

CHECKING AsSUMPTION 2. Denote e; =(1,0) and e; = (0, 1)". Then A = pe;e) + dezé).
It is easy to see that

T T
ﬁ@T ‘%T
Z I ee) 37 ey Z ! exeh S ley

We can also note that

(925]" T 1 (9sz T 1
4 / — / / —
—W=ZUF]€1€1E elellUtfl; —07?=ZU17]€2622 eze/ZU[,l
p t=1 t=1
and
T
ﬂzﬂT
~op35 " Z e1e) 37 lereb Uy,
It is easy to see that the law of large numbers implies that T &a &a and + Z[T 1 "?{f’ X
("wf )’ converge to the same matrix,
2
EU[
2
O'l )
0 EUL
o2
2

Thus Assumption 2(a) holds. Assumption 2(b) holds trivially since the third derivative
of £7 with respect to « is zero. We also notice that estimator a(B) is the usual OLS esti-
mator; as such, Assumption 2(c) holds trivially.

CHECKING AssUMPTION 3. We need only to check that some form of the CLT holds for
the terms in the martingale A.3. Here we check one term; all others can be checked in
the same manner. One can easily check that for s € 6,

, FLINA
l = —
post Ip ds

1
—U,_,e1¢,37'BU, 4,

=U|_ Ase1e} 37 e, + U,’_le1e’12_1Asgt + NG
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while the score is

OAL; 1
3 =U,_je1€]3 ¢,
JAL _ 1 _
é)st :g/tz 1A58t—trace(AS)+ ﬁ&‘;z lBSUt,].
As aresult,

1
ﬁAP,S,thrac ( Z (4 61612 +e1e) 3™ 14 ))

Z _e1e, 37 e trace((ere) — 3) 371 Ag) +0,(1/T).

We can see that the CLT holds for the last expression and K, BT = For the terms

1
VT '

T

I _Z Ui, i—181,s
P 0'1 T 0_4
=1 1

and/, AT =0.So 02,7 Converges toa Gaussian random variable and one can ver-

f P,
ify that the correspondlng Jr entries converge in probability.

CHECKING ASSUMPTION 4. Assumption 4(a) holds trivially since K, 7 = ﬁ and
Ko, BT f’ while K BT is bounded (it is 1 for some directions and \/L for the others).

For part (b), we notice that Ay, «; B is a linear combination of terms that are prod-
ucts of & and U,_; up to order 4. As a result, all terms in [Aaj,a;,8] satisfy the law of

large numbers and thus %[/\a,-,a,, gl £ const. Thus, it is easy to see that the expression in
Assumption 4(b) has too strong a normalization and converges to zero.
Assumption 4(c) holds trivially since Iy, (a, B) = I4,q(ag, B) for any «, g, and B.

S.4. ADDITIONAL EXAMPLE OF WEAK IDENTIFICATION: WEAK VAR

The identification failure observed in our main example in Section 2 of the paper when
p = & results from the interplay of two problems, one of which is reduced dynamics,
discussed in Section S.3, while the other is that the structural VAR loses 1 degree of iden-
tification due to the fact that the 2 x 2 matrix C(6) has rank 1. The example of this section
deals with the second problem; in particular, we consider structural VAR models where
part of the parameter vector is weakly identified. Ferndndez-Villaverde, Rubio-Ramirez,
Sargent, and Watson (2007) discuss the relationship between linearized DSGE models
and VARs. To model weak identification in this context, we follow the approach of Stock
and Wright (2000) and consider a set of drifting functions that become asymptotically
flat in some directions.
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Consider an exponential family with joint density of the form

T
fr(Xr16) = h(XT)exp nr(6) > H(x,) — TA(n7(6)) 1. 8.7)
t=1

Here n is a p-dimensional reduced-form parameter, while Zthl H(x;) is a p-
dimensional sufficient statistic. Model (S.7) covers structural VAR models for n a set
of reduced-form VAR coefficients, structural variance terms and functions thereof, and
xe=(Y/,...., Y/ ), where Y, is a vector of data observed at time ¢, and the sufficient
statistics are the sample autocovariances of the Y.

Suppose that we can partition the structural coefficient 6 into subvectors « and S,
0 = (d/, B’ For this example, we consider an embedding similar to that of Stock and
Wright (2000) for weak GMM, which we use to model B8 as weakly identified. In particu-
lar, we assume that

1
0) =m(a) + —=m(a, B),
nr(6) (a) NG (o, B)
where -~ 2 m(ap) and -2 sz nr(6p) are matrices of full rank k,, and k = ko + kg correspond-
ingly. Assume that an infinitesimality condition holds for the sequence {%H (x,)}tT:1

and a law of large numbers holds for H(x;)H(x;) (i.e., % Zszl H(x)H (x;) £
E[H (x)H (x)).

Let A and A denote the first and the second derivatives of 4 with respect to i (they
area p x 1 vector and a p x p matrix, respectively). From the normalization in the expo-
nential family, we have that E[H (x)] = A and Var(H (x;)) = A. Assume that the param-
eter space for 6 is compact, that 6y lies in the interior of the parameter space, and that
the function Q(a) = m(a) A(m(ag)) — A(m(a)) is uniquely maximized at the point «y.

The score is

om(a) 1 dm(a, B)

T

. da JT da
Sr=S (H(x,) — A g
=LA G
JT B

. . . L1d, 0
Consider a set of normalizing matrices K1 = (V7 ha

). It is easy to see that Assump-
0 Id

B
tion 1 is trivially satisfied. In particular, since

T
Z (H(x) — A)(H(x) — A)' 5 4,

we have that K7J7 K’ converges in probability to a positive-definite matrix.
Now consider the behavior of the Hessian. It is easy to see that

T

. Pnr anr\' nr
Iy =—Y (H(x;) — A) T A= 58
(I7)ij ;( (x) = 4) 39;90; " (M) 99; oY




16 Andrews and Mikusheva Supplementary Material

Since Var(H (x;)) = A, we have

anT\ -dnr . /
lim KT A—= 1 KrJ K = lim K7Z7K7.
T T < 96 ) 90 TR = I AT T

That is, the second term in (S.8) reflects the Fisher information. The first term in (S.8)
also matters asymptotically, however. In particular,

, *m ,072m

9Bi 9B = IBi B}’

(Kr(r =I1)K7)g, 5 = fZ (H(x) — A)

where s is a Gaussian vector. Thus K717K’, and K7J7 K’ have different asymptotic lim-
Ok xka Okgxk
o a a B

its, and K7(IT — J7)K/, converges in distribution to a matrix ( 0 ;
kB xka

), where ¢ is

a kg x kg symmetric matrix with Gaussian entries.

S.4.1 Checking Assumptions 2—4

Below we check Assumptions 2—4 for testing hypothesis Hy : 8 = B with strongly identi-
fied nuisance parameter a.

CHECKING ASSUMPTION 2. Assumption 2(a) has been checked above. For Assump-
tion 2(b), we assume that nonstochastic functions m(a), m(a, By), and A(nr(a, By))
have third derivatives with respect to « that are bounded in absolute value over the
whole parameter space for «. Indeed,

Ka,TIa,-,aj,T(aa BO)Ka,T
T ’
1 5> . 32 J "0
_ _ZH(xt) nr iy nr + nr A TIT'
T pe dajdaj da;daj da; daj

. . 2 .
The last two terms are nonstochastic as is term %, the change in these terms when
J

they are evaluated at ¢y and « such that K;lTla —ap| <8 is O(K,,1) = O(%). The

stochastic part of the first term % ST | H(x,) does not depend on a and converges to
a constant by the law of large numbers. Assumption 2(c) trivially follows from classi-
cal results, since Q(a) = Lor(a, Bo) uniformly converges to Q(a) = m(a)A(m(ao)) -
A(m(a)).

CHECKING ASSUMPTION 3. Itis easy to see that

1 & S\ 2
t=1

B <f977T

~

(1 T .\ dm
— H )—A H £) — —A) | —.
<f§ (x) — A)(H(x;) — A) )>&B,~

=
N————"

~
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Assume that the law of large numbers holds for the fourth power of H(x;). Then As-
sumption 3 holds with K¢, g, 7 = 1.

CHECKING ASSUMPTION 4. Assumption 4(a) holds trivially. For Assumption 4(b), we as-
sume that the law of large numbers holds for any products of any up to six components
of stochastic vectors H(x;); in such a case, 4(b) holds due to the fact that %[Aa,-,aj, Bl
converges to a constant, while Ka,,TKaj,TK Bn,T = % For Assumption 4(c), we assume

Prin(eBo)
that =3 o5 s bounded everywhere.

S.5. ADDITIONAL EXAMPLE: REGIME-SWITCHING MODEL

So far we have discussed only log-linearized DSGE models, which have been the primary
focus of the DSGE literature to date. However, the robust tests we propose are applicable
to nonlinear models as well.

One class of nonlinear DSGE models in the literature is that of models with regime
switching, for example, Schorfheide (2005), whose model includes an exogenous state
variable that determines the target inflation rate and the variance of Taylor rule shocks.
Such regime-switching mechanisms can produce additional weak identification issues;
for example, if the two regimes produce similar behavior for the observable variables,
then the regime-switching probabilities will be weakly identified.

One difficulty of working with nonlinear DSGE models is that it is often challenging
to calculate the likelihood function and its derivatives, which we will need to evaluate
our tests. For example, the frequently used particle filter does not typically allow us to
approximate derivatives to a sufficient level of accuracy. Nonetheless, there are some
nonlinear models where the likelihood can be approximated using other methods that
allow us to calculate derivatives. For examples, we refer the reader to Schorfheide (2005)
as well as Amisano and Tristani (2011), who derive the exact likelihood of a second-order
approximation for a class of models with regime switching.

Below, we use a toy example to illustrate how regime-switching models can gener-
ate weak identification, where, to simplify the treatment, we abstract from time-series
behavior and consider an i.i.d. model.

We assume that we have a sample X;, t =1,..., T, drawn i.i.d. from the distribution

fC o1, 92,8)=08f(501) + (1= 8)f(; ¢2),

where the one-dimensional parameters ¢; and ¢, belong to an open set (2. To resolve
the “label-switching” problem, assume that 0 < § < 1/2. Consider a weak identification
embedding in which the parameters ¢ and é are fixed while the parameter ¢, 7 = ¢1 +
% is drifting to the point of nonidentification (¢; = ¢3).

Assume that for almost every realization of X; the CDF f(X;; ¢) is four times con-
tinuously differentiable in ¢ € . Assume further that there exists a random variable 7

with the finite second moment such that almost surely

[(Xi, ) ’f@(Xt,go) }<
f(Xt’QD]) ’ f(thD]) -

max
i=1,...,4
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for all ¢ € (2, where f¥) stands for ith derivative with respect to ¢. We also assume that
fO(X,, ¢1) for i € {1,2, 3} are linearly independent random variables under f(X,, ¢1).

S.5.1 Checking Assumption 1

The score is

T

. V(X 01)
Sr=Y" ( A =8fD(Xy; 92) )
of (X1 01) + (1 = 0) f(Xy; @2)
=1 f(Xi o1 f(Xe: 02 f(Xs 01) — f(Xs; 02)

SV (X @1)

c 1 c?
S 1]la- 6>(f“><xt; o0+ [P X v SFO X o) + op(T*/z))

i

= ) ¢ o G 1 e -2
-f (Xﬁ‘Pl)ﬁ*f (X‘;‘Pl)ﬁféf (Xt§¢1)m+op(T)

where w; = 6f (Xy; ¢1) + (1 — 8) f(Xy; ¢2). We may notice that

1
5T 0 0 FOX 1)
T C _
2 1 3VT ST:LZL —Ef(z)(Xt;%)‘i‘Op(T 2)
8 1-5 C VT = o o3
CVT  _CVT /O X e +0,(177)
26 2(1-9)
Let us define
1
— 0 0
VT
ko| 2 L 3T
o 1-6 C
CVT  CJT
26 2(1-9)
Then by the law of large numbers,
FOXe e1) fOXe)
1| _Cro . Cox.
KTJTK/T—p)E — _Ef (Xt ¢1) _Ef (Xt 01)
L

Cc3 C3
Ef“)(Xt; ®1) Ef“)(Xt; ®1)

where the limit is a finite positive-definite matrix. We also may notice that the sum-
mands Krst,; satisfy Lindeberg’s condition. As a result, Assumption 1 of the paper is
satisfied.
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S.5.2 Hessian

Now let us look at the Hessian /7. One can show that

, 8F P (X4, ¢1) 0 FYXy, 1)
Jr=Ir=) — 0 (1=8)fP X1, e2) ~f V(X1 02)
t
=1 fYX, 0 —fYXy,02) 0

From the logic of the information equality, it follows that
(D 2)
Wy Wy

for any ¢. Thus we have the central limit theorem

1 1
v 3 ;(ﬂb(x,, o), fP (X1, 1)) = (£1, &),

=1
where (£1, &) is a Gaussian vector with the covariance matrix

<L1)>2 FOF@

f f?
FOF@ (ﬁy
f? f
Furthermore,
1 (552 0 &1 )
—Ur—=In=1 0 (A-08§& -&],
VT & -6 0

from which it is easy to see that the matrix K7(J7 — I7)K’, is asymptotically explosive,
and thus that /7 and J7 have asymptotically different behavior.

S.6. A SIMPLIFIED NONLINEAR MODEL

In this section we discuss an analytically solvable model with regime switching that may
suffer from identification issues.

Schorfheide (2005) discusses a model with learning and monetary policy shifts,
whose log-linearized equilibrium conditions can be written

xi=Ex 1 —1(ry — Eymig1) — EfAgi1 + TE Z441,
= BE w1 + k(X — &),
re=0=p)pm+prri1 + A —pr)(1— l/l)’IT;k(S,) + &nss

Eg.t a'g2 0 0
ez | ~N|0,| 0 o? 0 )
&t 0 O o-,z(st)

and
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where s; € {1, 2} is an unobserved state that evolves exogenously according to a first-
order Markov chain with transition matrix

e 1-92
P_[l—cbl ¢ ]

Two parameters 7/ (s;) and a,z(s[) are functions of the state variable.

To solve the model analytically, we make a few simplifying assumptions. In particu-
lar, we assume that 7} (1) = 7;(2) = 0, so there is no change in the target inflation across
states. Let us further assume that r =1, p, = 0, and s = +. Under these assumptions, the
model becomes

xe=Exi —re+Ermpr + (1= pg)ge + pzzs,
m = BEim + k(X — &1),

ry= Em + &rts
where the only state dependence is regime switching in the variance of ¢, ;. We have
used the fact that E;z,11 = p,z; and E/Ag,11 = E[gr4+1 — &= (pg — Dg:.
We can solve this model forward in the same manner as the DSGE example in Sec-
tion S.1. We can write the solution in the form

B Bp: _ B -
K+ B — PBp: K+ pB
Xt 81t
Yt= m BzKpZ _ BK Zt
r (k+B—Bp)(1— Bp2) K+ B e
t ot
Bkp; B
- (k+ B~ Bp)(1— Bpz) K+B -

S.6.1 Identification failure

Let us impose that 0 < B3, pg, p, < 1, and « > 0, and assume that all variances are strictly
positive. Note that conditional on the state s;,

g
0 0
1-pg
var(Yils;) = C(6) o, |C@,
1-p:
0 0 a2(s)
while the autocovariance of Y, with Y;_; for j > 0 is
2
.0
j_ Y%
p 0 0
81— Pg
Cov(Yy, Yi_jls)) = C(0) j o? C(0).
0 le
— Pz
0 0 0

o2
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The state s; has no effect on the autocovariance of Y;, but instead matters only through
the variance. In the special case where the variance of ¢, is the same across the two
states, 0,2(1) = 0',2(2), the state has no effect on the covariance structure of {Y;}?°,. Since
{Y:}?72, is jointly normal in this case, the covariance function is sufficient for all param-
eters, so this implies that for 0,2(1) = 03(2), the state transition probabilities ¢ and ¢,
are unidentified.

S.7. PROOF OF LEMMA 2
Take any ¢ > 0,

T

Kj,TKl,Tij,tml,t
=1

K; 1K 7[Mj, Mjl7|.

KirK; K1 Z M (M My

t=1

T
‘ < max |K; rm; |
t

= max |K; 7mi ;]

Assumption 3(b) implies that K; 7K; 7[M;, M;]t £ j,1 is bounded in probability.
E(mtax |Ki,Tmi,t|> <e+ E<Ki,T max lmi, [I{|Ki 7mi | > 8})

<e+ ZE(Ki,Tlmi,tIH{IKi,Tmi,tl > &}).
t
The last term converges to 0 by Assumption 3(a).
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