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This supplement contains details of the examples and proofs of some results given
in the main paper. We also provide several additional examples illustrating ways
in which weak identification can arise in a DSGE context.

S.1. Stylized DSGE model from Section 2

S.1.1 Solving the model

Here we solve the restricted linear rational expectations system

bEtπt+1 + κxt −πt = 0�

−[rt −Etπt+1 − ρ�at] +Etxt+1 − xt = 0� (S.1)

1
b
πt + ut = rt�

where xt and πt are observed endogenous variables. Exogenous shocks at and ut evolve
according to the system

�at = ρ�at−1 + εa�t� ut = δut−1 + εu�t�
(εa�t� εu�t)

′ ∼ i	i	d	 N(0�Σ); Σ= diag
(
σ2
a�σ

2
u

)
	

To solve the system, we substitute out rt in the first two equations of (S.1) and obtain
the system

bEtπt+1 = −κxt +πt�

Etπt+1 +Etxt+1 = xt + 1
b
πt + ut − ρ�at	

We solve for Etxt+1 and get the expectation equation

bEtxt+1 = (b+ κ)xt + but − bρ�at�
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which we can rewrite as

xt = b

b+ κEtxt+1 − b

b+ κut +
bρ

b+ κ�at	

Now we solve this expectation equation by iterating forward:

xt =
∞∑
j=0

(
b

b+ κ
)j
Et

[
− b

b+ κut+j +
bρ

b+ κ�at+j
]
	

We notice that Etut+j = δjut and Et�at+j = ρj�at . As a result, we have

xt = − b

b+ κ · 1

1 − δ b

b+ κ
ut + bρ

b+ κ · 1

1 − ρ b

b+ κ
�at

= − b

b+ κ− δbut +
bρ

b+ κ− bρ�at	

We plug the last expression into the Euler equation and solve the resulting expectation
equation for πt :

πt = bEtπt+1 + κxt
= bEtπt+1 − bκ

b+ κ− δbut +
bρκ

b+ κ− bρ�at

=
∞∑
j=0

bjEt

[
− bκ

b+ κ− δbut+j +
bρκ

b+ κ− bρ�at+j
]

= − bκ

(b+ κ− δb)(1 − δb)ut +
bρκ

(b+ κ− bρ)(1 − bρ)�at	

Finally, we obtain the solution to the system (S.1):

xt = − b

b+ κ− δbut +
b

b+ κ− ρbρ�at�
(S.2)

πt = − bκ

(b+ κ− δb)(1 − δb)ut +
bκ

(b+ κ− ρb)(1 − bρ)ρ�at	

S.1.2 Identification of the model

In this subsection, we check identification of the model (S.1). We use the explicit solution
written in equation (S.2). Assume that σ2

a > 0, σ2
u > 0, 0< δ�ρ�b < 1, and κ > 0.

First we show that the model is point-identified if δ < ρ. Let A1(θ) = − b
b+κ−δb and

A2(θ)= b
b+κ−ρb . We have

xt =A1(θ)ut +A2(θ)ρ�at
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and

πt = κ

1 − δbA1(θ)ut + κ

1 − ρbA2(θ)ρ�at	

We can identify autocovariances of all orders for the series xt and πt as well as all cross-
covariances. In particular, we have

Var(xt)=A1(θ)
2 σ2

u

1 − δ2 +A2(θ)
2ρ2 σ2

a

1 − ρ2 �

cov(xt�xt−k)=A1(θ)
2 σ

2
uδ
k

1 − δ2 +A2(θ)
2ρ2 σ

2
aρ
k

1 − ρ2 	

It is easy to see that from the autocovariance structure of process xt , one can identify
δ < ρ, A1(θ)

2σ2
u, and A2(θ)

2σ2
a . We also have the following expressions for the cross-

covariances:

cov(xt�πt)=A1(θ)
2 σ2

u

1 − δ2
κ

1 − δb +A2(θ)
2ρ2 σ2

a

1 − ρ2
κ

1 − ρb�

cov(xt�πt−k)=A1(θ)
2 σ

2
uδ
k

1 − δ2
κ

1 − δb +A2(θ)
2ρ2 σ

2
aρ
k

1 − ρ2
κ

1 − ρb	

From cross-covariances, we can additionally identifyA1(θ)
2σ2
u

κ
1−δb andA2(θ)

2σ2
a

κ
1−ρb .

To sum up, the autocovariance structure of the process xt , πt allows us to identify
the six quantities

δ� ρ� A1(θ)
2σ2
u� A2(θ)

2σ2
a� A1(θ)

2σ2
u

κ

1 − δb� A2(θ)
2σ2
a

κ

1 − ρb	

We can see from the last four quantities that κ
1−δb and κ

1−ρb are identified, and thus 1−ρb
1−δb

is identified. Since ρ and δ are identified, we see that b is identified as well. This implies
that κ is also identified. Finally, we notice that the Ai(θ) are functions of only b, κ, ρ,
and δ, and thus are identified. Looking at these six quantities, we can see that they imply
identification of σ2

u and σ2
a .

Now we examine the identification in the case δ= ρ. If δ= ρ, we have that xt and πt
satisfy the system

xt = b

b+ κ− δb(ρ�at − ut)�

πt = bκ

(b+ κ− δb)(1 − δb)(ρ�at − ut)= κ

1 − δbxt	

xt and πt are linearly dependent AR(1) processes with autoregressive (AR) root δ = ρ.
The only functionally independent quantities that can be identified are the autoregres-
sive parameter (δ= ρ), the variance of xt , and the ratio xt/πt . Hence we can only identify
four quantities,

δ= ρ� b

b+ κ− δb
√
ρ2σ2

a + σ2
u�

κ

1 − δb�
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but we have six structural parameters. As a result, there are 2 degrees of underidentifi-
cation.

S.1.3 Checking Assumption 1

We have that

Yt =
(
xt
πt

)
= C(θ)

(
ut
�at

)
= C(θ)Ut

and

Ut =ΛUt−1 + εt� Λ=
(
δ 0
0 ρ

)
and εt ∼N(0�Σ)	

We can write the likelihood function:

�T (θ) = const

− 1
2

T∑
t=1

(
C−1(θ)Yt −ΛC−1(θ)Yt−1

)′
Σ−1(C−1(θ)Yt −ΛC−1(θ)Yt−1

)
− T

2
log |Σ| − T log

∣∣C(θ)∣∣	
We derive the score for a similar likelihood in Section S.3. Here we just note that the score
at the true parameter value is a linear combination of terms (εtε′

t −Σ) and εtY ′
t−1. It thus

trivially satisfies Assumption 1 in the paper for sequences of models with ρ= δ+ C√
T

.

S.2. Details of Example 1: ARMA(1�1) with nearly canceling roots

Below we use the formulation of the weak ARMA(1�1) model from Andrews and Cheng
(2012):

Yt = (π +β)Yt−1 + et −πet−1� et ∼ i	i	d	 N(0�1)	

The true value of parameter θ0 = (β0�π0)
′ satisfies the restrictions |π0|< 1, β0 �= 0, and

|π0 +β0|< 1, which guarantee that the process is stationary and invertible. For simplic-
ity, we assume that Y0 = 0 and e0 = 0, though due to stationarity and invertibility, the
initial condition does not matter asymptotically. One can rewrite the model as

(
1 − (π +β)L)Yt = (1 −πL)et or Yt =

(
1 − (π +β)L)−1

(1 −πL)et	

It is easy to see that if β = 0, the parameter π is not identified. Assume that the model
is point-identified, that is, β �= 0, but that identification is weak. This can be modeled as
β= C√

T
.
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First, we write the log likelihood function. Here we follow the derivation of Andrews
and Cheng (2012) closely:

et =
t−1∑
j=0

π
j
0

(
Yt−j − (π0 +β0)Yt−j−1

)= Yt −β0

t−1∑
j=0

π
j
0Yt−j−1�

�(β�π)= const − 1
2

T∑
t=1

(
Yt −β

t−1∑
j=0

πjYt−j−1

)2

	

Next, we introduce the two time series

ut =
t∑
j=0

π
j
0Yt−j = (1 −π0L)

−1Yt =
(
1 − (π0 +β0)L

)−1
et

and

vt =
t∑
j=0

jπ
j−1
0 Yt−j

= (1 −π0L)
−2Yt−1 = (1 −π0L)

−2(1 − (π0 +β0)L
)−1
(1 −π0L)et−1

= (1 −π0L)
−1(1 − (π0 +β0)L

)−1
et−1	

Series ut is an AR(1) process with coefficient π0 + β0, vt is an AR(2) process with roots
π0 and π0 +β0.

One can see that the score is

Sβ(θ)=
T∑
t=1

[(
Yt −β

t−1∑
j=0

πjYt−j−1

)(
t−1∑
j=0

πjYt−j−1

)]
�

Sπ(θ)= β
T∑
t=1

[(
Yt −β

t−1∑
j=0

πjYt−j−1

)(
t−1∑
j=0

jπj−1Yt−j−1

)]
	

Notice that Yt −β0
∑t−1
j=0π

j
0Yt−j−1 = et . As a result,

ST (θ0)=
(
Sβ(β0�π0)

Sπ(β0�π0)

)
=

⎛⎜⎜⎜⎜⎝
T∑
t=1

etut−1

β0

T∑
t=1

etvt−1

⎞⎟⎟⎟⎟⎠ 	
We can now write the two measures of information

JT (β0�π0)=

⎛⎜⎜⎜⎜⎝
T∑
t=1

e2
t u

2
t−1 β0

T∑
t=1

e2
t ut−1vt−1

β0

T∑
t=1

e2
t ut−1vt−1 β2

0

T∑
t=1

e2
t v

2
t−1

⎞⎟⎟⎟⎟⎠ �
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IT (θ0)= − ∂2

∂θ∂θ′ �

=

⎛⎜⎜⎜⎜⎝
T∑
t=1

u2
t−1 −

T∑
t=1

etvt−1 +β0

T∑
t=1

ut−1vt−1

−
T∑
t=1

etvt−1 +β0

T∑
t=1

ut−1vt−1 β2
0

T∑
t=1

v2
t−1 −β0

T∑
t=1

etwt−1

⎞⎟⎟⎟⎟⎠ �

where wt−1 =∑t−1
j=0 j(j − 1)πj−2

0 Yt−j−1 is a weakly stationary series.

Assume weakly canceling roots, that is, β = C/
√
T . Then for a normalizing matrix

KT = diag(1/
√
T�1), we have

KTJT (θ0)KT
p→
(

E
[
u2
t−1

]
C ·E[ut−1vt−1]

C ·E[ut−1vt−1] C2 ·E[v2
t−1

] )
� (S.3)

where we used the law of large numbers.
We also can notice that

KT
(
JT (θ0)− IT (θ0)

)
KT =

⎛⎜⎝ 0
1√
T

∑
etvt−1

1√
T

∑
etvt−1

C√
T

∑
etwt−1

⎞⎟⎠+ op(1)

⇒
(

0 ξ

ξ Cη

)
�

where (ξ�η)′ is a mean-zero normal vector with covariance matrix(
E
[
v2
t−1

]
E[vt−1wt−1]

E[vt−1wt−1] E
[
w2
t−1

] )
	

Checking Assumption 1. It is easy to see that Lindeberg’s condition holds for se-
quences etut−1√

T
and etvt−1√

T
. We check Assumption 1(b) in equation (S.3). As a result, Theo-

rem 1 holds for the ARMA(1�1) model with near-canceling roots, and we have a robust
test for a simple hypothesisH0 :π = π0, β= β0.

Let us consider the problem of testing the weakly identified parameter π, treating β
as a nuisance parameter. The hypothesis of interest isH0 :π = π0.

Checking Assumption 2.

(a) We showed before that

1
T
Iββ(θ0)= 1

T

T∑
t=1

u2
t

p→ lim
1
T
Jββ(θ0)	

So J−1
ββ(θ0)Iββ(θ0)

p→ 1.
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(b) Iββ(π0�β) does not depend on β.

(c) Function �(π0�β) is quadratic in β; as a result, β̂(π0) is the ordinary least squares
(OLS) estimator in a regression of Yt on ut . The assumption trivially holds.

This means that Assumption 2 is satisfied and, thus, the restricted ML estimate of β is
asymptotically normal under the null.

Checking Assumption 3. We have to check the conditions for the CLT for a pair ST (θ0)

and

Aβπ(θ0)= Jβπ(θ0)− Iβπ(θ0)= β0

T∑
t=1

(
e2
t − 1

)
ut−1vt−1 +

T∑
t=1

etvt−1	

It is easy to see that for β0 = C/
√
T and Kβπ = 1√

T
, Assumption 3 is satisfied, and

KβπAβπ ⇒N(0�Ev2
t ).

Checking Assumption 4.

(a) We haveKβ�T =Kβπ�T = 1√
T

andKπ�T = 1. Assumption 4(a) holds trivially.

(b) Note that ∂3

∂2β∂π
� = −2

∑
ut−1vt−1. We may try to calculate Λββπ from the third

information equality, but it is enough to notice that K2
β�TKπ�T

∂3

∂2β∂π
� = − 2

T

∑
ut−1vt−1

satisfies the law of large numbers and that all terms in the third information equality
are normalized to converge to their expectations. This implies that K2

β�TKπ�TΛββπ con-
verges to its expectation (which is zero, since Λ is a martingale).

(c) The argument here is exactly the same as in (b), with the additional observation

that ∂4

∂3β∂π
�= 0.

Since Assumptions 2, 3, and 4 are satisfied, according to Theorem 2, the two score
test statistics L̃Mo(π0) and L̃Me(π0) for testing hypothesis H0 :π = π0 have an asymp-
totic χ2

1 distribution despite the weak identification of π.

S.3. An additional example of weak identification: Nearly reduced dynamics

This section contains an additional example showing how weak identification can arise
in DSGE models. Specifically, we consider an example in which insufficiently rich dy-
namics for the observed variables gives rise to weak identification.

Assume that we observe a sample of 2 × 1 random vectors Yt , t = 1� 	 	 	 �T , generated
from the model⎧⎨⎩

A(θ̃)Yt =Ut�
Ut =ΛUt−1 + εt�
εt ∼ i	i	d	 N(0�Σ)�

which is the form typically taken by log-linearized DSGE models. Here Ut and εt are
2 × 1 unobserved random vectors. Assume that the matrix of persistence parameters
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Λ= diag(ρ�δ) and the matrix of variances Σ= diag(σ2
1 �σ

2
2 ) are both diagonal. The vec-

tor θ = (θ̃�σ2
1 �σ

2
2 �ρ�δ) contains the unknown parameters. We will show that if the ele-

ments of Λ are equal, the parameter θ̃may become locally underidentified.

S.3.1 Identification when δ �= ρ
According to Komunjer and Ng (2011), two parameter values θ0 and θ1 are observation-
ally equivalent if and only if there exists matrix P such that⎧⎨⎩

PΛ0P
−1 =Λ1�

PA(θ̃0)=A(θ̃1)�

PΣ0P
′ = Σ1	

Assume that ρ �= δ. If there exists a matrix P such that for some diagonal matricesΛ1

and Σ1, we have PΛ0P
−1 = Λ1 and PΣ0P

′ = Σ1, then the matrix P must be of the form( c1 0
0 c2

)
or
( 0 c1
c2 0

)
for some nonzero constants c1 and c2. Thus the model is locally identified

at θ0 if and only if the transformation f : (c1� c2� θ̃)→ vec
{( c1 0

0 c2

)
A(θ̃)

}
is locally injective

at (c1� c2� θ̃) = (1�1� θ̃0). The sufficient condition for this is that the derivative of f with
respect to (c1� c2� θ̃) have full rank at (1�1� θ̃0). The above mentioned matrix derivative is
written ⎛⎜⎜⎜⎝

A11(θ̃0) 0

0 A21(θ̃0)

A12(θ̃0) 0

0 A22(θ̃0)

; ∂
∂θ̃

vec
(
A(θ̃)

)
⎞⎟⎟⎟⎠ 	

If this matrix has full rank, then parameter θ is locally identified at θ0. As we can see, for
θ̃ to be point-identified, it must be of dimension at most 2, which makes the dimension
of θ = (θ̃�σ2

1 �σ
2
2 �ρ�δ) equal to 6. From now on, we assume that θ̃ is two dimensional

and that the model is point-identified for ρ �= δ.

S.3.2 Identification at ρ= δ
To show that identification fails at δ = ρ, we write the likelihood for the model
�(θ;Y1� 	 	 	 �YT ). Let ��t(θ) = �(θ;Y1� 	 	 	 �Yt) − �(θ;Y1� 	 	 	 �Yt−1) be the increment of
the likelihood in period t:

��t = −1
2
(
A(θ̃)Yt −ΛA(θ̃)Yt−1

)′
Σ−1(A(θ̃)Yt −ΛA(θ̃)Yt−1

)
− 1

2
log |Σ| + log

∣∣A(θ̃)∣∣	
Consider the score. First take the score with respect to the variances:

2
∂��t

∂σ2
i

(θ0)= 1
σ4
i

(
ε2
i�t − σ2

i

)
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Next, let s be a part of θ̃. We have

−∂��t
∂s

(θ0) = (
A(θ̃)Yt −ΛA(θ̃)Yt−1

)′
Σ−1

(
∂A

∂s
Yt −Λ∂A

∂s
Yt−1

)
− trace

(
∂A

∂s
A−1

)
= ε′

tΣ
−1
(
∂A

∂s
A−1(ΛUt−1 + εt)−Λ∂A

∂s
A−1Ut−1

)
− trace

(
∂A

∂s
A−1

)
	

If ρ= δ, then Λ= δId2 and ∂A
∂s A

−1Λ=Λ∂A∂s A−1. As a result,

−∂��t
∂s

(θ0)= trace
((
εtε

′
t −Σ

)
Σ−1 ∂A

∂s
A−1

)
	

We can see that the score with respect to the four parameters (θ̃�σ2
1 �σ

2
2 ) is a linear func-

tion of the three-dimensional random variable
∑T
t=1(εtε

′
t − Σ). This implies that the

Fisher information for parameters θ̃, σ2
1 , σ2

2 , which is equal to covariance matrix of score,
is degenerate and has rank at most 3 (which makes the rank for the full parameter vector
θ at most 5). Thus we lose 1 degree of identification compared with the case of ρ �= δ.

S.3.3 Weak identification

We model weak identification as Λ= δId2 + 1√
T
μ, where μ= (C 0

0 0

)
. Consider the score.

First take the score with respect to the variances:

2
∂��t

∂σ2
i

(θ0)= 1
σ4
i

(
ε2
i�t − σ2

i

)
	

Next let s be a part of θ̃. We have

−∂��t
∂s

(θ0) = trace
((
εtε

′
t −Σ

)
Σ−1 ∂A

∂s
A−1

)
(S.4)

+ 1√
T

trace
(
Ut−1εtΣ

−1
(
∂A

∂s
A−1μ−μ∂A

∂s
A−1

))
	

Consider the variables

ξT = 1√
T

T∑
t=1

(
ε2

1�t − σ2
1 � ε

2
2�t − σ2

2 � ε1�tε2�t
)′
�

ηT = 1√
T

T∑
t=1

vec(Ut−1εt)	
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Both ξT and ηT converge to mean-zero normal vectors (which are three and four di-
mensional, respectively), all components of which are independent. We then see that

− 1√
T

∂�t

∂s
(θ0)= γ′

sξT + 1√
T
γ∗′
s ηT 	 (S.5)

Here γs and γ∗
s are fixed vectors.

Let θ∗ = (θ̃�σ2
1 �σ

2
2 ) be the subset of parameters excluding ρ and δ. What we have

shown is that

− 1√
T

∂�T
∂θ∗ (θ0)= Γ ξT + 1√

T
Γ ∗ηT �

where the score − 1√
T

∂�t
∂θ∗ (θ0) is a 4 × 1 vector, Γ is a 4 × 3 matrix, and Γ ∗ is a 4 × 4 matrix.

As a result, the 4 × 4 block of the normalized Fisher information matrix corresponding
to the parameters θ∗ has rank 3 asymptotically:

1
T
Iθ∗�T = Γ Var(ξt)Γ ′ + 1

T
Γ ∗ Var(ηT )

(
Γ ∗)′ → Γ Var(ξt)Γ ′	

Now let us look at the components of the score corresponding to δ and ρ:

∂��t

∂δ
(θ0)= ε′

tΣ
−1
(

0 0
0 1

)
Ut−1 = trace

(
Ut−1ε

′
tΣ

−1
(

0 0
0 1

))
�

∂��t

∂ρ
(θ0)= trace

(
Ut−1ε

′
tΣ

−1
(

1 0
0 0

))
	

As a result,

1√
T

∂�T
∂(ρ�δ)

(θ0)= Γ̃ ηT �

where Γ̃ is a 2 × 4 matrix of full rank. We see that the part of the normalized information
matrix corresponding to the block of parameters ρ and δ has rank 2 asymptotically, and
that the information matrix is asymptotically block-diagonal.

S.3.3.1 Asymptotic behavior of Hessian In the previous section, we showed that the
normalized (per observation) Fisher information for the four-dimensional parameter θ∗
is of rank 3 asymptotically and as a result there is a direction α along which this matrix is
degenerate. We show that the normalized (per observation) Hessian of the log likelihood
is NOT asymptotically degenerate along this direction.

For simplicity of notation, denote by I the limit of the normalized (per observation)
theoretical Fisher information for the block of parameters θ∗, that is,

I = lim
T→∞

1
T
Iθ∗�T = lim

T→∞
1
T
E

T∑
t=1

(
∂��t

∂θ∗

)(
∂��t

∂θ∗

)′
= − lim

T→∞
1
T
E

∂2�T
∂θ∗ ∂θ∗′ 	

Let us also denote by Is�s̃ the entry of I corresponding to parameters s and s̃.
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First consider two parameters s� s̃ ∈ θ̃, and letAs = ∂A
∂s A

−1, Bs = ∂A
∂s A

−1μ−μ∂A∂s A−1,

As�s̃ = ∂2A
∂s ∂s̃A

−1, and Bs�s̃ = ∂2A
∂s ∂s̃A

−1μ−μ ∂2A
∂s ∂s̃A

−1. We have

iT�t = −∂
2��t

∂s ∂s̃
(θ0)

=
(
Asεt + 1√

T
BsUt−1

)′
Σ−1

(
As̃εt + 1√

T
Bs̃Ut−1

)
(S.6)

+ ε′
tΣ

−1
(
Ass̃εt + 1√

T
Bss̃Ut−1

)
+ trace(AsAs̃)− trace(As�s̃)

= {
ε′
tA

′
sΣ

−1As̃εt + trace(AsAs̃)
}+ trace

[(
εtε

′
t −Σ

)
Σ−1Ass̃

]+Op(1/T)	
As a result, we have

Iss̃ =E{ε′
tA

′
sΣ

−1As̃εt + trace(AsAs̃)
}= trace

(
ΣA′

s̃Σ
−1As

)+ trace(AsAs̃)	

Let us define Cs = Σ−1/2AsΣ
1/2. Then

Iss̃ = trace
(
C ′
s̃Cs

)+ trace(Cs̃Cs)= trace(DsDs̃)�

whereDs = 1√
2
(Cs +C ′

s) is a symmetric matrix.

In fact, all entries of the limit of the normalized Fisher information matrix I have
this form. Consider the entry corresponding to s ∈ θ̃ and a variance σ2

i ,

− ∂2��t

∂s ∂σ2
i

(θ0)= −εit
σ4
i

(
Asεt + 1√

T
BsUt−1

)
i

�

where the subindex i stands for the ith component. As a result,

Is�i = trace
(
ΣMiΣ

−1As
)
�

whereMi is matrix that has all entries equal to zero except entry ii, which is − 1
σ2
i

. Matrix

Σ−1/2MiΣ
1/2 is symmetric. DefineDi = 1√

2
Σ−1/2MiΣ

1/2.

Thus, for any two parameters s and s̃ out of θ∗ = (θ̃�σ2
1 �σ

2
2 ), the entry of the infor-

mation matrix corresponding to this pair is

Is�s̃ = trace(DsDs̃)�

and all matricesDs are symmetric 2×2 matrices. Because these matrices are symmetric,

trace(DsDs̃)=
∑
i�k

(Ds)ik(Ds̃)ik = (
vec(Ds)

)′
vec(Ds̃)	

Since Ds is symmetric, there are two repeating entries. Let us define D∗
s to be a 3 × 1

vector such that

trace(DsDs̃)= (
D∗
s

)′
D∗
s̃ 	
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If we put all the vectorsD∗
s into one matrixD (of dimension 3 × 4), we get

I =D′D

and so can see that I is a 4×4 matrix of rank 3, and the degenerate direction is the direc-
tion perpendicular to D∗

s for all s ∈ θ∗. Call this direction α. Consider a linear combina-
tion of the parameters α′θ∗ and note that the limit of the normalized Fisher information
along this direction is Iα = α′Iα= α′D′Dα= 0.

The expression for I is obtained as the expectation of the negative second derivative.
Given the second information, equality I is also equal to the limit of the normalized
covariance matrix of the score. From the formula for the score (S.4), we have that for
Ss = trace((εtε′

t −Σ)Σ−1As),

cov(Ss� Ss̃)= (
D∗
s

)′
D∗
s̃ �

whereD∗
s is a 3 × 1 vector function ofAs and Σ only (described above).

The Hessian is IT =∑T
t=1 iT�t , where the explicit formula for iT�t is given in (S.6). We

can see that(
1
T
IT − I

)
s�s̃

= 1
T

T∑
t=1

trace
[(
εtε

′
t −Σ

)
Σ−1Ass̃

]+Op(1/T)	
The summands in the expression above have the same form as random variables Ss . As
a result, we have

lim
T→∞

T cov
((

1
T
IT − I

)
s�s̃

�

(
1
T
IT − I

)
r�r̃

)
= (
D∗
s�s̃

)′
D∗
r�r̃ �

where D∗
s�s̃ is 3 × 1 and constructed from As�s̃ in exactly the same manner as D∗

s is con-
structed fromAs .

Consider the direction α= (αs)s∈θ such that α′Iα= 0 and note that

lim
T→∞

T var
(
α′
(

1
T
IT − I

)
α

)
= lim
T→∞

var
(∑
s�s̃

(
1
T
IT − I

)
s�s̃

αsαs̃

)

=
∑
s�s̃

∑
r�r̃

(
D∗
s�s̃

)′
D∗
r�r̃αsαs̃αrαr̃

=
∥∥∥∥∑
s�s̃

D∗
s�s̃αsαs̃

∥∥∥∥2

	

In general the last expression is nonzero. For example, assume that Σ is the identity
matrix. Then the last expression is equal to zero if any only if the second derivative of
matrix A + A′ along direction α is equal to zero. This is obviously true if, for exam-
ple, A is a linear function of the parameter. In general, however, for nonlinear func-
tions, the second derivative along the special degenerate direction does not have to
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be zero, and thus the stochasticity of IT along this direction is nontrivial asymptoti-
cally.

S.3.4 Checking Assumptions 1–4

Checking Assumption 1. Given the formula of score stated in equation (S.5), it is easy
to see that Assumption 1 holds.

Let us denote β= θ∗ = (θ̃�σ2
1 �σ

2
2 ), α= (ρ�δ). Below we show that Assumptions 2–4

hold for testingH0 :β= β0 with the nuisance parameter α.

Checking Assumption 2. Denote e1 = (1�0)′ and e2 = (0�1)′. Then Λ= ρe1e
′
1 + δe2e

′
2.

It is easy to see that

∂�T
∂ρ

=
T∑
t=1

U ′
t−1e1e

′
1Σ

−1εt; ∂�T
∂δ

=
T∑
t=1

U ′
t−1e2e

′
2Σ

−1εt	

We can also note that

−∂
2�T

∂ρ2 =
T∑
t=1

U ′
t−1e1e

′
1Σ

−1e1e
′
1Ut−1; −∂

2�T

∂δ2 =
T∑
t=1

U ′
t−1e2e

′
2Σ

−1e2e
′
2Ut−1

and

− ∂
2�T
∂ρ∂δ

=
T∑
t=1

U ′
t−1e1e

′
1Σ

−1e2e
′
2Ut−1	

It is easy to see that the law of large numbers implies that 1
T
∂2�T
∂α∂α′ and 1

T

∑T
t=1

∂��t
∂α ×

(∂��t∂α )
′ converge to the same matrix,⎛⎜⎜⎜⎝

EU2
t−1�1

σ2
1

0

0
EU2

t−1�2

σ2
2

⎞⎟⎟⎟⎠ 	
Thus Assumption 2(a) holds. Assumption 2(b) holds trivially since the third derivative
of �T with respect to α is zero. We also notice that estimator α̂(β0) is the usual OLS esti-
mator; as such, Assumption 2(c) holds trivially.

Checking Assumption 3. We need only to check that some form of the CLT holds for
the terms in the martingale Aαβ. Here we check one term; all others can be checked in
the same manner. One can easily check that for s ∈ θ̃,

iρ�s�t = −∂
2��t

∂ρ∂s

= U ′
t−1Ase1e

′
1Σ

−1εt +U ′
t−1e1e

′
1Σ

−1Asεt + 1√
T
U ′
t−1e1e

′
1Σ

−1BsUt−1�
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while the score is

∂��t

∂ρ
=U ′

t−1e1e
′
1Σ

−1εt�

∂��t

∂s
= ε′

tΣ
−1Asεt − trace(As)+ 1√

T
ε′
tΣ

−1BsUt−1	

As a result,

1√
T
Aρ�s�T = trace

(
1√
T

T∑
t=1

εtU
′
t−1
(
Ase1e

′
1Σ

−1 + e1e
′
1Σ

−1As
))

− 1√
T

T∑
t=1

U ′
t−1e1e

′
1Σ

−1εt trace
((
εtε

′
t −Σ

)
Σ−1As

)+Op(1/T)	

We can see that the CLT holds for the last expression and Kαi�βj�T = 1√
T

. For the terms

that involve α and σ2
i , we notice that

Iρ�σ2
1 �T

= −
T∑
t=1

U1�t−1ε1�t

σ4
1

and Iρ�σ2
2 �T

= 0. So 1√
T
Iρ�σ2

1 �T
converges to a Gaussian random variable and one can ver-

ify that the corresponding JT entries converge in probability.

Checking Assumption 4. Assumption 4(a) holds trivially since Kαi�T = 1√
T

and

Kαi�βj�T = 1√
T

, whileKβj�T is bounded (it is 1 for some directions and 1√
T

for the others).

For part (b), we notice that Λαi�αj�β is a linear combination of terms that are prod-
ucts of εt and Ut−1 up to order 4. As a result, all terms in [Λαi�αj�β] satisfy the law of

large numbers and thus 1
T [Λαi�αj�β] p→ const. Thus, it is easy to see that the expression in

Assumption 4(b) has too strong a normalization and converges to zero.
Assumption 4(c) holds trivially since Iα�α(α�β)= Iα�α(α0�β) for any α, α0, and β.

S.4. Additional example of weak identification: Weak VAR

The identification failure observed in our main example in Section 2 of the paper when
ρ = δ results from the interplay of two problems, one of which is reduced dynamics,
discussed in Section S.3, while the other is that the structural VAR loses 1 degree of iden-
tification due to the fact that the 2×2 matrixC(θ) has rank 1. The example of this section
deals with the second problem; in particular, we consider structural VAR models where
part of the parameter vector is weakly identified. Fernández-Villaverde, Rubio-Ramírez,
Sargent, and Watson (2007) discuss the relationship between linearized DSGE models
and VARs. To model weak identification in this context, we follow the approach of Stock
and Wright (2000) and consider a set of drifting functions that become asymptotically
flat in some directions.
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Consider an exponential family with joint density of the form

fT (XT |θ)= h(XT )exp

{
ηT (θ)

′
T∑
t=1

H(xt)− TA(ηT (θ))
}
	 (S.7)

Here η is a p-dimensional reduced-form parameter, while
∑T
t=1H(xt) is a p-

dimensional sufficient statistic. Model (S.7) covers structural VAR models for η a set
of reduced-form VAR coefficients, structural variance terms and functions thereof, and
xt = (Y ′

t � 	 	 	 �Y
′
t−p)′, where Yt is a vector of data observed at time t, and the sufficient

statistics are the sample autocovariances of the Yt .
Suppose that we can partition the structural coefficient θ into subvectors α and β,

θ = (α′�β′)′. For this example, we consider an embedding similar to that of Stock and
Wright (2000) for weak GMM, which we use to model β as weakly identified. In particu-
lar, we assume that

ηT (θ)=m(α)+ 1√
T
m̃(α�β)�

where ∂
∂α′m(α0) and ∂

∂θ′ηT (θ0) are matrices of full rank kα, and k= kα +kβ correspond-
ingly. Assume that an infinitesimality condition holds for the sequence { 1√

T
H(xt)}Tt=1

and a law of large numbers holds for H(xt)H(xt)
′ (i.e., 1

T

∑T
t=1H(xt)H(xt)

′ p→
E[H(xt)H(xt)′]).

Let Ȧ and Ä denote the first and the second derivatives of A with respect to η (they
are a p× 1 vector and a p×pmatrix, respectively). From the normalization in the expo-
nential family, we have that E[H(xt)] = Ȧ and Var(H(xt))= Ä. Assume that the param-
eter space for θ is compact, that θ0 lies in the interior of the parameter space, and that
the functionQ(α)=m(α)Ȧ(m(α0))−A(m(α)) is uniquely maximized at the point α0.

The score is

ST =
T∑
t=1

(
H(xt)− Ȧ)′

⎛⎜⎝
∂m(α)

∂α
+ 1√

T

∂m̃(α�β)

∂α

1√
T

∂m̃(α�β)

∂β

⎞⎟⎠ 	
Consider a set of normalizing matricesKT = ( 1√

T
Idkα 0

0 Idkβ

)
. It is easy to see that Assump-

tion 1 is trivially satisfied. In particular, since

1
T

T∑
t=1

(
H(xt)− Ȧ)(H(xt)− Ȧ)′ p→ Ä�

we have thatKTJTK′
T converges in probability to a positive-definite matrix.

Now consider the behavior of the Hessian. It is easy to see that

(IT )ij = −
T∑
t=1

(
H(xt)− Ȧ)′ ∂2ηT

∂θi ∂θj
+ T

(
∂ηT
∂θi

)′
Ä
∂ηT
∂θj

	 (S.8)
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Since Var(H(xt))= Ä, we have

lim
T→∞

KTT

(
∂ηT
∂θ

)′
Ä
∂ηT
∂θ

K′
T = lim

T→∞
KTJTK

′
T = lim

T→∞
KTITK′

T 	

That is, the second term in (S.8) reflects the Fisher information. The first term in (S.8)
also matters asymptotically, however. In particular,

(
KT(IT − JT )K′

T

)
βi�βj

= 1√
T

T∑
t=1

(
H(xt)− Ȧ)′ ∂2m̃

∂βi ∂βj
⇒ ς′ ∂2m̃

∂βi ∂βj
�

where ς is a Gaussian vector. ThusKTITK′
T andKTJTK′

T have different asymptotic lim-

its, and KT(IT − JT )K′
T converges in distribution to a matrix

( 0kα×kα 0kα×kβ
0kβ×kα ξ

)
, where ξ is

a kβ × kβ symmetric matrix with Gaussian entries.

S.4.1 Checking Assumptions 2–4

Below we check Assumptions 2–4 for testing hypothesisH0 :β= β0 with strongly identi-
fied nuisance parameter α.

Checking Assumption 2. Assumption 2(a) has been checked above. For Assump-
tion 2(b), we assume that nonstochastic functions m(α), m̃(α�β0), and A(ηT (α�β0))

have third derivatives with respect to α that are bounded in absolute value over the
whole parameter space for α. Indeed,

Kα�T Iαi�αj�T (α�β0)Kα�T

= −
(

1
T

T∑
t=1

H(xt)

)
∂2ηT
∂αi ∂αj

− Ä ∂2ηT
∂αi ∂αj

+
(
∂ηT
∂αi

)′
Ä
∂ηT
∂αj

	

The last two terms are nonstochastic as is term ∂2ηT
∂αi ∂αj

, the change in these terms when

they are evaluated at α0 and α such that K−1
α�T |α − α0| ≤ δ is O(Kα�T ) = O( 1√

T
). The

stochastic part of the first term 1
T

∑T
t=1H(xt) does not depend on α and converges to

a constant by the law of large numbers. Assumption 2(c) trivially follows from classi-
cal results, since Q̂(α) = 1

T �T (α�β0) uniformly converges to Q(α) = m(α)Ȧ(m(α0)) −
A(m(α)).

Checking Assumption 3. It is easy to see that

Aαi�βj = −
(

1√
T

T∑
t=1

(
H(xt)− Ȧ))′

∂2

∂αi ∂βj

−
(
∂ηT
α

)′( 1√
T

T∑
t=1

((
H(xt)− Ȧ)(H(xt)− Ȧ)− Ä)) ∂m̃

∂βj
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Assume that the law of large numbers holds for the fourth power of H(xt). Then As-
sumption 3 holds withKαi�βj�T = 1.

Checking Assumption 4. Assumption 4(a) holds trivially. For Assumption 4(b), we as-
sume that the law of large numbers holds for any products of any up to six components
of stochastic vectors H(xt); in such a case, 4(b) holds due to the fact that 1

T [Λαi�αj�βn ]
converges to a constant, while Kαi�TKαj�TKβn�T = 1

T . For Assumption 4(c), we assume

that ∂
3m̃(α�β0)
∂α2 ∂β

is bounded everywhere.

S.5. Additional example: Regime-switching model

So far we have discussed only log-linearized DSGE models, which have been the primary
focus of the DSGE literature to date. However, the robust tests we propose are applicable
to nonlinear models as well.

One class of nonlinear DSGE models in the literature is that of models with regime
switching, for example, Schorfheide (2005), whose model includes an exogenous state
variable that determines the target inflation rate and the variance of Taylor rule shocks.
Such regime-switching mechanisms can produce additional weak identification issues;
for example, if the two regimes produce similar behavior for the observable variables,
then the regime-switching probabilities will be weakly identified.

One difficulty of working with nonlinear DSGE models is that it is often challenging
to calculate the likelihood function and its derivatives, which we will need to evaluate
our tests. For example, the frequently used particle filter does not typically allow us to
approximate derivatives to a sufficient level of accuracy. Nonetheless, there are some
nonlinear models where the likelihood can be approximated using other methods that
allow us to calculate derivatives. For examples, we refer the reader to Schorfheide (2005)
as well as Amisano and Tristani (2011), who derive the exact likelihood of a second-order
approximation for a class of models with regime switching.

Below, we use a toy example to illustrate how regime-switching models can gener-
ate weak identification, where, to simplify the treatment, we abstract from time-series
behavior and consider an i.i.d. model.

We assume that we have a sampleXt , t = 1� 	 	 	 �T , drawn i.i.d. from the distribution

f (·;ϕ1�ϕ2� δ)= δf (·;ϕ1)+ (1 − δ)f (·;ϕ2)�

where the one-dimensional parameters ϕ1 and ϕ2 belong to an open set Ω. To resolve
the “label-switching” problem, assume that 0< δ < 1/2. Consider a weak identification
embedding in which the parameters ϕ1 and δ are fixed while the parameter ϕ2�T = ϕ1 +
C√
T

is drifting to the point of nonidentification (ϕ1 = ϕ2).

Assume that for almost every realization of Xt the CDF f (Xt;ϕ) is four times con-
tinuously differentiable in ϕ ∈Ω. Assume further that there exists a random variable η
with the finite second moment such that almost surely

max
i=1�			�4

{∣∣∣∣ f (Xt�ϕ)f (Xt�ϕ1)

∣∣∣∣� ∣∣∣∣f (i)(Xt�ϕ)f (Xt�ϕ1)

∣∣∣∣}≤ η
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for all ϕ ∈Ω, where f (i) stands for ith derivative with respect to ϕ. We also assume that

f (i)(Xt�ϕ1) for i ∈ {1�2�3} are linearly independent random variables under f (Xt�ϕ1).

S.5.1 Checking Assumption 1

The score is

ST =
T∑
t=1

1
δf(Xt;ϕ1)+ (1 − δ)f (Xt;ϕ2)

⎛⎝ δf (1)(Xt;ϕ1)

(1 − δ)f (1)(Xt;ϕ2)

f (Xt;ϕ1)− f (Xt;ϕ2)

⎞⎠

=
T∑
t=1

1
ωt

⎛⎜⎜⎜⎜⎜⎝
δf (1)(Xt;ϕ1)

(1 − δ)
(
f (1)(Xt;ϕ1)+ f (2)(Xt;ϕ1)

C√
T

+ 1
2
f (3)(Xt;ϕ1)

C2

T
+Op

(
T−3/2))

−f (1)(Xt;ϕ1)
C√
T

− f (2)(Xt;ϕ1)
C2

2T
− 1

6
f (3)(Xt;ϕ1)

C3

T 3/2 +Op
(
T−2)

⎞⎟⎟⎟⎟⎟⎠ �

where ωt = δf(Xt;ϕ1)+ (1 − δ)f (Xt;ϕ2). We may notice that

⎛⎜⎜⎜⎜⎜⎜⎝

1

δ
√
T

0 0

2
δ

1
1 − δ

3
√
T

C

C
√
T

2δ
C

√
T

2(1 − δ) T

⎞⎟⎟⎟⎟⎟⎟⎠ST = 1√
T

T∑
t=1

1
ωt

⎛⎜⎜⎜⎜⎝
f (1)(Xt;ϕ1)

−C
2
f (2)(Xt;ϕ1)+Op

(
T−1/2)

C3

12
f (3)(Xt;ϕ1)+Op

(
T−1/2)

⎞⎟⎟⎟⎟⎠ 	

Let us define

KT =

⎛⎜⎜⎜⎜⎜⎜⎝

1

δ
√
T

0 0

2
δ

1
1 − δ

3
√
T

C

C
√
T

2δ
C

√
T

2(1 − δ) T

⎞⎟⎟⎟⎟⎟⎟⎠ 	

Then by the law of large numbers,

KTJTK
′
T

p→E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
ω2
t

⎛⎜⎜⎜⎜⎝
f (1)(Xt;ϕ1)

−C
2
f (2)(Xt;ϕ1)

C3

12
f (3)(Xt;ϕ1)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

f (1)(Xt;ϕ1)

−C
2
f (2)(Xt;ϕ1)

C3

12
f (3)(Xt;ϕ1)

⎞⎟⎟⎟⎟⎠
′⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ �

where the limit is a finite positive-definite matrix. We also may notice that the sum-

mands KT sT�t satisfy Lindeberg’s condition. As a result, Assumption 1 of the paper is

satisfied.
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S.5.2 Hessian

Now let us look at the Hessian IT . One can show that

JT − IT =
T∑
t=1

1
ωt

⎛⎜⎝δf
(2)(Xt�ϕ1) 0 f (1)(Xt�ϕ1)

0 (1 − δ)f (2)(Xt�ϕ2) −f (1)(Xt�ϕ2)

f (1)(Xt�ϕ1) −f (1)(Xt�ϕ2) 0

⎞⎟⎠ 	
From the logic of the information equality, it follows that

E

(
f (1)(Xt�ϕ)

ωt

)
=E

(
f (2)(Xt�ϕ)

ωt

)
= 0

for any ϕ. Thus we have the central limit theorem

1√
T

T∑
t=1

1
ωt

(
f (1)(Xt�ϕ1)� f

(2)(Xt�ϕ1)
)⇒ (ξ1� ξ2)�

where (ξ1� ξ2) is a Gaussian vector with the covariance matrix

E

⎛⎜⎜⎝
(
f (1)

f

)2
f (1)f (2)

f 2

f (1)f (2)

f 2

(
f (2)

f

)2

⎞⎟⎟⎠ 	
Furthermore,

1√
T
(JT − IT )⇒

⎛⎝δξ2 0 ξ1

0 (1 − δ)ξ2 −ξ1

ξ1 −ξ1 0

⎞⎠ �
from which it is easy to see that the matrix KT(JT − IT )K

′
T is asymptotically explosive,

and thus that IT and JT have asymptotically different behavior.

S.6. A simplified nonlinear model

In this section we discuss an analytically solvable model with regime switching that may
suffer from identification issues.

Schorfheide (2005) discusses a model with learning and monetary policy shifts,
whose log-linearized equilibrium conditions can be written

xt =Etxt+1 − τ(rt −Etπt+1)−Et�gt+1 + τEtzt+1�

πt = βEtπt+1 + κ(xt − gt)�
rt = (1 − ρr)ψπt + ρrrt−1 + (1 − ρr)(1 −ψ)π∗

t (st)+ εr�t�
and ⎛⎝εg�tεz�t

εr�t

⎞⎠∼N
⎛⎝0�

⎡⎣σ2
g 0 0

0 σ2
z 0

0 0 σ2
r (st)

⎤⎦⎞⎠ �
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where st ∈ {1�2} is an unobserved state that evolves exogenously according to a first-
order Markov chain with transition matrix

P =
[

φ1 1 −φ2

1 −φ1 φ2

]
	

Two parameters π∗
t (st) and σ2

r (st) are functions of the state variable.
To solve the model analytically, we make a few simplifying assumptions. In particu-

lar, we assume that π∗
t (1)= π∗

t (2)= 0, so there is no change in the target inflation across
states. Let us further assume that τ= 1, ρr = 0, andψ= 1

β . Under these assumptions, the
model becomes

xt =Etxt+1 − rt +Etπt+1 + (1 − ρg)gt + ρzzt�
πt = βEtπt+1 + κ(xt − gt)�

rt = 1
β
πt + εr�t�

where the only state dependence is regime switching in the variance of εr�t . We have
used the fact that Etzt+1 = ρzzt and Et�gt+1 =Et[gt+1 − gt] = (ρg − 1)gt .

We can solve this model forward in the same manner as the DSGE example in Sec-
tion S.1. We can write the solution in the form

Yt =
⎛⎝ xtπt
rt

⎞⎠=

⎡⎢⎢⎢⎢⎢⎢⎣
1

βρz

κ+β−βρz − β

κ+β

0
β2κρz

(κ+β−βρz)(1 −βρz) − βκ

κ+β
0

βκρz

(κ+β−βρz)(1 −βρz)
β

κ+β

⎤⎥⎥⎥⎥⎥⎥⎦
⎛⎝ gt
zt
εr�t

⎞⎠ 	

S.6.1 Identification failure

Let us impose that 0<β�ρg�ρz < 1, and κ > 0, and assume that all variances are strictly
positive. Note that conditional on the state st ,

Var(Yt |st)= C(θ)

⎡⎢⎢⎢⎢⎣
σ2
g

1 − ρg 0 0

0
σ2
z

1 − ρz 0

0 0 σ2
r (st)

⎤⎥⎥⎥⎥⎦C(θ)′�

while the autocovariance of Yt with Yt−j for j > 0 is

Cov(Yt�Yt−j|st)= C(θ)

⎡⎢⎢⎢⎢⎣
ρ
j
g

σ2
g

1 − ρg 0 0

0 ρ
j
z
σ2
z

1 − ρz 0

0 0 0

⎤⎥⎥⎥⎥⎦C(θ)′	
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The state st has no effect on the autocovariance of Yt , but instead matters only through
the variance. In the special case where the variance of εr�t is the same across the two
states, σ2

r (1)= σ2
r (2), the state has no effect on the covariance structure of {Yt}∞t=1. Since

{Yt}∞t=1 is jointly normal in this case, the covariance function is sufficient for all param-
eters, so this implies that for σ2

r (1)= σ2
r (2), the state transition probabilities φ1 and φ2

are unidentified.

S.7. Proof of Lemma 2

Take any ε > 0,∣∣∣∣∣Ki�TKj�TKl�T
T∑
t=1

mi�tmj�tml�t

∣∣∣∣∣ ≤ max
t

|Ki�Tmi�t |
∣∣∣∣∣Kj�TKl�T

T∑
t=1

mj�tml�t

∣∣∣∣∣
= max

t
|Ki�Tmi�t |

∣∣Kj�TKl�T [Mj�Ml]T
∣∣	

Assumption 3(b) implies thatKj�TKl�T [Mj�Ml]T p→ Σj�l is bounded in probability.

E
(

max
t

|Ki�Tmi�t |
)

≤ ε+E
(
Ki�T max

t
|mi�t |I

{|Ki�Tmi�t |> ε})
≤ ε+

∑
t

E
(
Ki�T |mi�t |I

{|Ki�Tmi�t |> ε})	
The last term converges to 0 by Assumption 3(a).
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