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Appendix A: The bivariate normal selection model and KS

To develop intuition for our metric S(F) of deviations from missing at random, we pro-
vide here a mapping between the parameters of a standard bivariate selection model,
the resulting CDFs of observed and missing outcomes, and the implied values of S(F).
Using the notation of Section 2, our data generating process (DGP) of interest is

(Yi� vi) ∼N

(
0�
(

1 ρ

ρ 1

))
� Di = 1{μ+ vi > 0}� (A.1)

In this model, the parameter ρ indexes the degree of nonignorable selection in the out-
come variable Yi. We chose μ = 0�6745 to ensure a missing fraction of 25%, which is
approximately the degree of missingness found in our analysis of earnings data in the
U.S. Census. We computed the distributions of missing and observed outcomes for var-
ious values of ρ by simulation, some of which are plotted in Figures A.1 and A.2. The
resulting values of S(F), which correspond to the maximum vertical distance between
the observed and missing CDFs across all points of evaluation, are given in Table A.1.

Table A.1. S(F) as a function of ρ.

ρ S(F) ρ S(F) ρ S(F)

0�05 0�0337 0�35 0�2433 0�65 0�4757
0�10 0�0672 0�40 0�2778 0�70 0�5165
0�15 0�1017 0�45 0�3138 0�75 0�5641
0�20 0�1355 0�50 0�3520 0�80 0�6158
0�25 0�1721 0�55 0�3892 0�85 0�6717
0�30 0�2069 0�60 0�4304 0�90 0�7377
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Figure A.1. Missing and observed outcome CDFs.

Figure A.2. Vertical distance between CDFs.
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Appendix B: Data details

Census data

Our analysis of Decennial Census data uses 1% unweighted extracts obtained from the
Minnesota IPUMS website http://usa.ipums.org/ on August 28th, 2009. Our extract con-
tained all native born black and white men ages 40–49. We drop all men with less than 5
years of schooling and recode the schooling variable according to the scheme described
by Angrist, Chernozhukov, and Fernádez-Val (2006) in their online appendix available at
http://econ-www.mit.edu/files/385. Our IPUMS extract, along with Stata code used to
impose our sample restrictions, is available online at http://qeconomics.org/supp/176/
code_and_data.zip.

Like Angrist, Chernozhukov, and Fernádez-Val (2006), we drop from the sample all
individuals with allocated age or education information and all individuals known not
to have worked or generated earnings. We also drop observations in small demographic
cells. Table B.2 lists the effects of these drops on the sample sizes by Census year.

Following Angrist, Chernozhukov, and Fernádez-Val (2006) we choose as our wage
concept log average weekly earnings—the log of total annual wage and salary income
divided by annual weeks worked. Earnings in all years are converted to 1989 dollars us-
ing the Personal Consumption Expenditure (PCE) price index. We recode to missing all
weekly earnings observations with allocated earnings or weeks worked.

CPS data

For the analysis in Section 5.2, we used ICPSR (Inter-university Consortium for Political
and Social Research) archive 7616, “Current Population Survey, 1973, and Social Security
Records: Exact Match Data.” We extract from this file a sample of white and black men
ages 25–54 with 6 or more years of schooling who reported working at least one week
in the last year. We then drop from the sample individuals who are self-employed and
those who work in industries or occupations identified by Bound and Krueger (1991) as
likely to receive tips that are underreported to the IRS.

Annual IRS wage and salary earnings are top-coded at $50,000 dollars. There are also
a small fraction of observations with very low IRS earnings below $1,000. We drop ob-
servations that fall into either group. We also drop observations with allocated weeks
worked. Finally we drop observations that fall into demographic cells with less than 50

Table B.2. Census sample sizes by year after imposing restrictions.

1980 1990 2000

Native born black and white men ages 40–49
w/≥5 years of schooling 97,900 131,667 168,909

Drop observations w/imputed age 96,403 130,806 165,505
Drop observations w/imputed education 90,064 124,161 155,158
Drop observations w/unallocated (earnings or weeks worked) = 0 80,800 111,366 131,711
Drop observations in cells w/<20 observations 80,128 111,070 131,265

http://usa.ipums.org/
http://econ-www.mit.edu/files/385
http://qeconomics.org/supp/176/code_and_data.zip
http://qeconomics.org/supp/176/code_and_data.zip
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Table B.3. CPS sample sizes after imposing restrictions.

1980

Black and white men ages 25–54 w/≥5 years of schooling
and one or more weeks worked 19,693

Drop self-employed 17,665
Drop bound-Krueger industries/occupations 17,138
Drop top-coded IRS earnings and outliers 15,632
Drop observations w/allocated weeks worked 15,355
Drop cells w/<50 observations 15,027

observations. An itemization of the effect of these decisions on sample size is provided
by Table B.3.

Weeks worked are reported categorically in the 1973 CPS. We code unallocated
weeks responses to the midpoint of their interval. Our average weekly earnings measure
is constructed by dividing IRS wage and salary earnings by the recoded weeks worked
variable.

Appendix C: Implementation details

We outline here the implementation of our estimation and inference procedure in
the Decennial Census data. The MATLAB code employed is available online at http://
qeconomics.org/supp/176/code_and_data.zip.

Our estimation and inference routine consists of three distinct procedures: (i) Ob-
taining point estimates, (ii) obtaining bootstrap estimates, and (iii) constructing confi-
dence regions from such estimates. Below we outline in detail the algorithms employed
in each procedure.

(i) Point Estimates: We examine a grid of quantiles, denoted T , with lower and upper
limits of ¯τ and τ̄, for example T = {0�1�0�15� � � � �0�85�0�9}. For each τ in this grid, we let

Ku(τ) ≡ min
{

min{τ� (1 − τ)}
maxx∈X (1 − p̂(x))

�
min{τ� (1 − τ)}
maxx∈X p̂(x)

�0�3
}

− 0�001� (C.1)

and examine for each τ ∈ T , a grid of restrictions k, denoted K(τ), with a lower bound
of 0 and an upper bound Ku(τ), for example, K(τ) = {0�0�01� � � � � �Ku(τ)

0�01 � × 0�01}. These
grids approximate

B̂ ≡ {(τ�k) ∈ [0�1]2 : ¯τ ≤ τ ≤ τ̄ and 0 ≤ k≤Ku(τ)
}
� (C.2)

which is, with probability tending to 1, a subset of Bζ for some ζ such that Bζ 	= ∅. For
each pair (τ�k) in our constructed grid, we then perform the following operations:

Step 1. For each x ∈ X , we find q̂L(τ�k|x) and q̂U(τ�k|x), which respectively are just the
τ − k(1 − p̂(x)) and τ + k(1 + p̂(x)) quantiles of observed Y for the demographic group
with X = x.

http://qeconomics.org/supp/176/code_and_data.zip
http://qeconomics.org/supp/176/code_and_data.zip
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Step 2. We obtain π̂L(τ�k) and π̂U(τ�k) by solving the linear programming problems
defined in equations (36) and (37), employing the linprog routine in MATLAB.

(ii) Bootstrap Estimates: We generate an i.i.d. sample {Wi}ni=1 with W exponentially
distributed and E[W ] = Var(W ) = 1. For each (τ�k) in the grid employed to find point
estimates, we then perform the following operations:

Step 1. For each x ∈ X , we find q̃L(τ�k|x) and q̃U(τ�k|x). Computationally, they respec-
tively equal the τ − k(1 − p̃(x)) and τ + k(1 − p̃(x)) weighted quantiles of observed Y

for the group X = x, where each observation receives weight Wi/(
∑

Wi1{Di = 1�Xi = x})
rather than 1/(

∑
i 1{Di = 1�Xi = x}).

Step 2. We obtain π̃L(τ�k) and π̃U(τ�k) by solving the linear programming problems
defined in equations (53) and (54) by employing the linprog routine in MATLAB.

(iii) Confidence Regions: Throughout we set ωL(τ�k) = ωU(τ�k) = ω(τ), where
ω(τ) ≡ φ(
−1(τ))−1/2, with φ(·) and 
(·) equal to the standard normal density and
CDF. In computing confidence regions, we employ the point estimates (π̂t

L� π̂
t
U) for

t ∈ {80�90�00} from (i), and 1,000 bootstrap estimates {(π̃t
b�L� π̃

t
b�U)}1,000

b=1 computed ac-
cording to (ii) based on 1,000 independent i.i.d. samples {Wi}ni=1.

The specifics underlying the computation of each figure’s confidence regions are as
follows:

Figure 4. For this figure, we compute (q̂L(τ�k|x)� q̂U(τ�k|x)) evaluated at (τ�k) =
(0�5�1) for all x ∈ X . Employing the bootstrap analogues (q̃L(0�5�1|x)� q̃U(0�5�1|x)), we
obtain estimates σ̂L and σ̂U of the asymptotic variances of q̂L(0�5�1|x) and q̂U(0�5�1|x),
and construct[

q̂L(0�5�1|x)− z1−ασ̂L√
n

� q̂U(0�5�1|x)+ z1−ασ̂U√
n

]
(C.3)

for all x ∈ X , where z1−α is the 1−α quantile of a standard normal. By independence, the
product of the intervals (C.3) evaluated at α = 0�951/227 is a nonparametric confidence
region with asymptotic probability of covering q(τ|x) of at least 0�95 (Imbens and Manski
(2004)). Employing linprog in MATLAB, we obtain the bounds for the “parametric set”
by maximizing/minimizing the coefficient on schooling subject to the constraint that
the Mincer specification lies within (C.3) for all x ∈ X .

Figure 5. The nonparametric confidence region was obtained as in Figure 4, but em-
ploying k= 0�05 instead. The bounds on the set of BLPs were obtained by solving a linear
programming problem as defined in equations (24) and (25), but employing the end-
points of the interval defined in (C.3) in place of qL(0�5�1|x) and qU(0�5�1|x); here λ
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equals 1 for the coordinate corresponding to the coefficient on education, and equals 0
elsewhere.

Figure 6. We employ a grid for τ equal to T = {0�1�0�15� � � � �0�85�0�9}. For each t ∈
{80�90�00}, we compute the 1 − α quantile across bootstrap samples of

max
τ∈{0�1�0�15�����0�85�0�9}

max
{
π̃t
L(τ�0)− π̂t

L(τ�0)
ω(τ)

�
π̂t
U(τ�0)− π̃t

U(τ�0)
ω(τ)

}
� (C.4)

which we denote by r̃t1−α(0). For each t ∈ {80�90�00} the two-sided uniform confidence
region is then given by [π̂t

L(τ�0)− r̃t1−α(0)ω(τ)� π̂t
U(τ�0)+ r̃t1−α(0)ω(τ)], where for τ out-

side our grid {0�1�0�15� � � � �0�85�0�9}, we obtain a number by linear interpolation.

Figure 7. The procedure is identical to Figure 6, except k is set at 0�05 instead of at 0.

Figure 8. For ks = 0�05, we compute the 1 − α quantile across bootstrap samples of

max
τ∈{0�2�0�25�����0�75�0�8}

π̂80
U (τ�ks)− π̃80

U (τ�ks)

ω(τ)
� (C.5)

which we denote by r̃80
1−α(ks). Similarly, we find the 1 −α quantile across bootstrap sam-

ples of

max
τ∈{0�2�0�25�����0�75�0�8}

π̃90
L (τ�ks)− π̂90

L (τ�ks)

ω(τ)
� (C.6)

which we denote by r̃90
1−α(ks). Unlike in Figures 6 and 7, we employ a shorter grid for τ,

as the bounds corresponding to extreme quantiles become unbounded for large k. Next,
we examine whether

min
τ∈{0�2�0�25�����0�75�0�8}

{(
π̂80
U (τ�ks)+ r̃80

1−α(ks)ω(τ)
)

(C.7)
− (π̂90

L (τ�ks)− r̃90
1−α(ks)ω(τ)

)}≥ 0�

If (C.7) holds, we set k∗
0 = ks ; otherwise repeat (C.5)–(C.7) with ks + 0�005. Hence,

k∗
0 = 0�175 was the smallest k (under steps of size 0�005) for which the upper confi-

dence interval for π80
U (τ�k∗

0) laid above the lower confidence interval for π90
L (τ�k∗

0) for
all τ ∈ {0�2�0�25� � � � �0�75�0�8}.

Figure 9. For this figure, we employ a grid of size 0�01 for τ, for instance, T =
{0�1�0�11� � � � �0�89�0�9}, and compute Ku(τ) (as in (C.1)) using the 1990 Decennial Cen-
sus. In turn, for each τ, we employ a k-grid K(τ) = {0�0�001� � � � � �Ku(τ)

0�001 � × 0�001}, and
obtain π̂80

U (τ�k) and π̂80
L (τ�k) at each (τ�k) pair. Finally, for each τ in our grid, we let

kI(τ) denote the smallest value of k in its grid such that

π̂80
U (τ�k)≥ π̂90

L (τ�k) (C.8)
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and define κ̂(τ) ≡ (π̂80
U (τ�kI(τ)) + π̂90

L (τ�kI(τ)))/2, which constitutes our estimate of
the “breakdown curve.” To obtain a confidence region, we compute the 1 − α quantile
across bootstrap samples of

max
τ∈{0�1�0�15�����0�85�0�9}

max
k∈{0�0�01������Ku(τ)

0�01 �×0�01}
|π̂80

U (τ�k)− π̃80
U (τ�k)|

ω(τ)
� (C.9)

which we denote by r̃80
1−α. Similarly, we compute the 1−α quantile across bootstrap sam-

ples of

max
τ∈{0�1�0�15�����0�85�0�9}

max
k∈{0�0�01������Ku(τ)

0�01 �×0�01}
|π̂90

L (τ�k)− π̃90
L (τ�k)|

ω(τ)
� (C.10)

which we denote by r̃90
1−α. We then let kI�L(τ) be the smallest value of k in the grid such

that

π̂80
U (τ�k)+ r̃80

1−αω(τ) ≥ π̂90
L (τ�k)− r̃90

1−αω(τ)� (C.11)

The lower confidence band is then

κ̂L(τ) ≡ (π̂80
U

(
τ�kI�L(τ)

)+ r̃80
1−αω(τ)+ π̂90

L

(
τ�kI�L(τ)

)− r̃90
1−αω(τ)

)
/2�

Analogously, we let kI�U(τ) be the smallest value of k ∈ {0�0�001� � � � � �Ku(τ)
0�001 � × 0�001}

such that

π̂80
U (τ�k)− r̃80

1−αω(τ) ≥ π̂90
L (τ�k)+ r̃90

1−αω(τ)� (C.12)

and get the upper confidence band

κ̂U(τ) ≡ (π̂80
U

(
τ�kI�U(τ)

)− r̃80
1−αω(τ)+ π̂90

L

(
τ�kI�U(τ)

)+ r̃90
1−αω(τ)

)
/2�

Figure 9 is a graph of κ̂L(τ), κ̂U(τ), and κ̂(τ). Our bootstraps were conducted over a
coarser grid than the one used to obtain point estimates so as to save on computational
cost.

Figure 10. Here λ is set to different levels of education and all other coordinates are
set equal to the sample mean of {Xi}ni=1. The procedure is otherwise identical to the one
employed in the construction of Figure 7, with the exception that a quantile specific
critical value is employed.

Appendix D: Derivations of Section 5.2

This appendix provides a justification for the derivations in Section 5.2, in particular,
derivations of the representation derived in equation (62). Toward this end, observe first
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that by Bayes’ rule,

Fy|1�x(c) = P(D = 1|X = x�Y ≤ c)× Fy|x(c)
p(x)

(D.1)

= P(D = 1|X = x�Fy|x(Y) ≤ Fy|x(c))× Fy|x(c)
p(x)

�

where the second equality follows from Fy|x being strictly increasing. Evaluating (D.1) at
c = q(τ|x), employing the definition of pL(x�τ), and noting that Fy|x(q(τ|x))= τ yields

Fy|1�x
(
q(τ|x))= pL(τ�x)× τ

p(x)
� (D.2)

Moreover, by identical arguments, but working instead with the definition of pU(τ�x),
we derive

1 − Fy|1�x
(
q(τ|x)) = P(D = 1|Y > q(τ|x)�X = x)× (1 − Fy|1�x(q(τ|x)))

p(x)
(D.3)

= pU(τ�x)× (1 − τ)

p(x)
�

Finally, we note that the same manipulations applied to Fy|0�x instead of Fy|1�x enable us
to obtain

Fy|0�x
(
q(τ|x))= (1 −pL(τ�x))× τ

1 −p(x)
�

(D.4)

1 − Fy|0�x
(
q(τ|x))= (1 −pU(τ�x))× (1 − τ)

1 −p(x)
�

Hence, we can obtain by direct algebra from the results (D.1) and (D.4) that we must
have

∣∣Fy|1�x
(
q(τ|x))− Fy|0�x

(
q(τ|x))∣∣= |p(x)−pL(x�τ)| × τ

p(x)(1 −p(x))
� (D.5)

Analogously, exploiting (D.1) and (D.4) once again, we can also obtain∣∣Fy|1�x
(
q(τ|x))− Fy|0�x

(
q(τ|x))∣∣

= ∣∣(1 − Fy|1�x
(
q(τ|x)))− (1 − Fy|0�x

(
q(τ|x)))∣∣ (D.6)

= |p(x)−pU(x�τ)| × (1 − τ)

p(x)(1 −p(x))
�

Equation (62) then follows from taking the square root of the product of (D.5) and (D.6).

Appendix E: Proof of Results

Proof of Lemma 3.1. For any θ ∈ C(τ�k), the first order condition of the norm min-
imization problem yields β(τ) = (ES[XiX

′
i])−1ES[Xiθ(Xi)]. The lemma then follows

from Corollary 2.1. �
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Proof of Corollary 3.1. Since P(τ�k) is convex by Lemma 3.1, it follows that
the identified set for λ′β(τ) is a convex set in R and, hence, is an interval. The fact
that πL(τ�k) and πU(τ�k) are the endpoints of such an interval follows directly from
Lemma 3.1. �

Lemma E.1. Let Assumption 2.1 hold, and let Wi be independent of (Yi�Xi�Di) with
E[Wi] = 1 and E[W 2

i ]<∞ and positive almost surely. If {YiDi�Xi�Di�Wi} is an i.i.d. sam-
ple, then the following class is Donsker:

M ≡ {mc :mc(y�x�d�w) ≡ w1{y ≤ c�d = 1�x= x0} − P(Yi ≤ c�Di = 1�Xi = x0)�

c ∈ R
}
�

Proof. For any 1 > ε > 0, there is an increasing sequence −∞ = y0 ≤ · · · ≤ y�8/ε� = +∞
such that for any 1 ≤ j ≤ � 8

ε�, we have Fy|1�x(yj) − Fy|1�x(yj−1) < ε/4. Next, define the
functions

lj(y�x�d�w) ≡ w1{y ≤ yj−1� d = 1�x= x0} − P(Yi ≤ yj�Di = 1�Xi = x0)� (E.1)

uj(y�x�d�w) ≡w1{y ≤ yj�d = 1�x= x0} − P(Yi ≤ yj−1�Di = 1�Xi = x0) (E.2)

and notice that the brackets {[lj� uj]}�8/ε�
j=1 form a partition of the class Mc (since w ∈ R+).

In addition, note that

E
[(
uj(Yi�Xi�Di�Wi)− lj(Yi�Xi�Di�Wi)

)2]
≤ 2E

[
W 2

i 1{yj−1 ≤ Yi ≤ yj�Di = 1�Xi = x0}
]

(E.3)
+ 2P2(yj−1 ≤ Yi ≤ yj�Di = 1�Xi = x0)

≤ 4E
[
W 2

i

]× (Fy|1�x(yj)− Fy|1�x(yj−1)
)
�

and, hence, each bracket has norm bounded by
√
E[W 2

i ]ε. Therefore, N[](ε� M�‖ · ‖L2)≤
16E[W 2

i ]/ε2, and the lemma follows by Theorem 2.5.6 in van der Vaart and Wellner
(1996). �

Lemma E.2. Let Assumption 2.1 hold, and let Wi be independent of (Yi�Xi�Di) with
E[Wi] = 1, E[W 2

i ] < ∞ and positive almost surely. Also let Sε ≡ {(τ�b) ∈ [0�1]2 :b{1 −
p(x)} + ε ≤ τ ≤ p(x)+ b{1 −p(x)} − ε ∀x ∈ X } for some ε satisfying 0 < 2ε < infx∈X p(x)

and denote the minimizers

s0(τ�b�x) = arg min
c∈R

Qx(c|τ�b)� ŝ0(τ�b�x) ∈ arg min
c∈R

Q̃x�n(c|τ�b)� (E.4)

Then s0(τ�b�x) is bounded in (τ�b�x) ∈ Sε × X and if {YiDi�Xi�Di�Wi} is i.i.d., then for
some M > 0,

P
(

sup
x∈X

sup
(τ�b)∈Sε

∣∣ŝ0(τ�b�x)
∣∣>M

)
= o(1)�
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Proof. First note that Assumption 2.1(ii) implies s0(τ�b�x) is uniquely defined, while
ŝ0(τ�b�x) may be one of multiple minimizers. By Assumption 2.1(ii) and the definition
of Sε, it follows that the equality

P
(
Yi ≤ s0(τ�b�x)�Di = 1|Xi = x

)= τ − bP(Di = 0|Xi = x) (E.5)

implicitly defines s0(τ�b�x). Let s̄(x) and ¯s(x) be the unique numbers satisfying
Fy|1�x(s̄(x)) × p(x) = p(x) − ε and Fy|1�x(¯s(x)) × p(x) = ε. By result (E.5) and the def-
inition of Sε, we then obtain that for all x ∈ X ,

−∞ < ¯s(x) ≤ inf
(τ�b)∈Sε

s0(τ�b�x) ≤ sup
(τ�b)∈Sε

s0(τ�b�x)≤ s̄(x) < +∞� (E.6)

Hence, we conclude that sup(τ�b)∈Sε
|s0(τ�b�x)| = O(1) and the first claim follows by X

being finite.
To establish the second claim of the lemma, we define the functions

Rx(τ�b) ≡ bP(Di = 0�Xi = x)− τP(Xi = x)� (E.7)

Rx�n(τ�b) ≡ 1
n

n∑
i=1

Wi

(
b1{Di = 0�Xi = x} − τ1{Xi = x}) (E.8)

as well as the maximizers and the minimizers ofRx�n(τ�b) on the set Sε, which we denote
by

(
¯τn(x)� ¯bn(x)

) ∈ arg max
(τ�b)∈Sε

Rx�n(τ�b)�

(E.9)(
τ̄n(x)� b̄n(x)

) ∈ arg min
(τ�b)∈Sε

Rx�n(τ�b)�

Also denote the set of maximizers and minimizers of Q̃x�n(c|τ�b) at these particular
choices of (τ�b) by

¯Sn(x) ≡
{
¯sn(x) ∈ R : ¯sn(x) ∈ arg min

c∈R
Q̃x�n

(
c|¯τn(x)� ¯bn(x)

)}
� (E.10)

S̄n(x) ≡
{
s̄n(x) ∈ R : s̄n(x) ∈ arg min

c∈R
Q̃x�n

(
c|τ̄n(x)� b̄n(x)

)}
� (E.11)

From the definition of Q̃x�n(c|τ�b), we then obtain from (E.9), (E.10), and (E.11) that for
all x ∈ X ,

inf
¯sn(x)∈¯Sn(x) ¯

sn(x) ≤ inf
(τ�b)∈Sε

ŝ0(τ�b�x) ≤ sup
(τ�b)∈Sε

ŝ0(τ�b�x) ≤ sup
s̄n(x)∈S̄n(x)

s̄n(x)� (E.12)

We establish the second claim of the lemma by exploiting (E.12) and showing that for
some 0 <M < ∞,

P
(

inf
¯sn(x)∈¯Sn(x) ¯

sn(x) <−M
)

= o(1)� P
(

sup
s̄n(x)∈S̄n(x)

s̄n(x) >M
)

= o(1)� (E.13)
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To prove that inf
¯sn(x)∈¯Sn(x) ¯sn(x) is larger than −M with probability tending to 1, note that

∣∣Rx�n
(
¯τn(x)� ¯bn(x)

)+ εP(Xi = x)
∣∣

(E.14)
=
∣∣∣Rx�n

(
¯τn(x)� ¯bn(x)

)− max
(τ�b)∈Sε

Rx(τ�b)
∣∣∣= op(1)�

where the second equality follows from the theorem of the maximum and the contin-
uous mapping theorem. Therefore, using the equality a2 − b2 = (a − b)(a + b), result
(E.14), and Lemma E.1, it follows that

sup
c∈R

∣∣Q̃x�n
(
c|¯τn(x)� ¯bn(x)

)− (Fy|1�x(c)p(x)− ε
)2
P2(Xi = x)

∣∣= op(1)� (E.15)

Fix δ > 0 and note that since Fy|1�x(¯s(x))p(x) = ε and ε/p(x) < 1, Assumption 2.1(ii)
implies that

η≡ inf
|c−¯s(x)|>δ

(
Fy|1�x(c)p(x)− ε

)2
> 0� (E.16)

Therefore, it follows from direct manipulations, and the definition of ¯Sn(x) in (E.10) and
of ¯s(x) that

P
(∣∣∣ inf

¯sn(x)∈¯Sn(x) ¯
sn(x)− ¯s(x)

∣∣∣> δ
)

≤ P
(

inf
|c−¯s(x)|>δ

Q̃x�n
(
c|¯τn(x)� ¯bn(x)

)≤ Q̃x�n
(
¯s(x)|¯τn(x)� ¯bn(x)

))

≤ P
(
η≤ sup

c∈R
2
∣∣Q̃x�n

(
c|¯τn(x)� ¯bn(x)

)− (Fy|1�x(c)p(x)− ε
)2
P2(Xi = x)

∣∣)�
We hence conclude from (E.15) that inf

¯sn(x)∈¯Sn(x) ¯sn(x)
p→ ¯s(x), which together with (E.6)

implies that inf
¯sn(x)∈¯Sn(x) ¯sn(x) is larger than −M with probability tending to 1 for some

M > 0. By similar arguments, it can be shown that sups̄n(x)∈S̄n(x) s̄n(x)
p→ s̄(x), which to-

gether with (E.6) establishes (E.13). The second claim of the lemma then follows from
(E.12), (E.13), and X being finite. �

Lemma E.3. Let Assumption 2.1 hold, and let Wi be independent of (Yi�Xi�Di) with
E[Wi] = 1, E[W 2

i ] < ∞ and positive almost surely. Also let Sε ≡ {(τ�b) ∈ [0�1]2 :b{1 −
p(x)} + ε ≤ τ ≤ p(x)+ b{1 −p(x)} − ε ∀x ∈ X } for some ε satisfying 0 < 2ε < infx∈X p(x)

and denote the minimizers

s0(τ�b�x) = arg min
c∈R

Qx(c|τ�b)� ŝ0(τ�b�x) ∈ arg min
c∈R

Q̃x�n(c|τ�b)� (E.17)

If {YiDi�Xi�Di�Wi} is an i.i.d. sample, then supx∈X sup(τ�b)∈Sε
|ŝ0(τ�b�x) − s0(τ�b�x)| =

op(1).
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Proof. First define the criterion functions M :L∞(Sε × X ) → R and Mn :L∞(Sε × X ) →
R by

M(θ)≡ sup
x∈X

sup
(τ�b)∈Sε

Qx
(
θ(τ�b�x)|τ�b)�

(E.18)
Mn(θ) ≡ sup

x∈X
sup

(τ�b)∈Sε

Q̃x�n
(
θ(τ�b�x)|τ�b)�

For notational convenience, let s0 ≡ s0(·� ·� ·) and ŝ0 ≡ ŝ0(·� ·� ·). By Lemma E.2, s0 ∈
L∞(Sε × X ), while with probability tending to 1, ŝ0 ∈L∞(Sε × X ). Hence, (E.17) implies
that with probability tending to 1,

ŝ0 ∈ arg min
θ∈L∞(Sε×X )

Mn(θ)� s0 = arg min
θ∈L∞(Sε×X )

M(θ)� (E.19)

By Assumption 2.1(ii) and (E.5), Qx(·|τ�b) is strictly convex in a neighborhood of
s0(τ�b�x). Furthermore, since by (E.5) and the implicit function theorem, s0(τ�b�x) is
continuous in (τ�b) ∈ Sε for every x ∈ X , then

inf
‖θ−s0‖∞≥δ

M(θ)

≥ inf
x∈X

inf
(τ�b)∈Sε

inf
|c−s0(τ�b�x)|≥δ

Qx(c|τ�b)
(E.20)

= inf
x∈X

inf
(τ�b)∈Sε

min
{
Qx
(
s0(τ�b�x)− δ|τ�b)�Qx

(
s0(τ�b�x)+ δ|τ�b)}

> 0�

where the final inequality follows by compactness of Sε, which together with continuity
of s0(τ�b�x), implies the inner infimum is attained, while the outer infimum is trivially
attained due to X being finite. Since (E.20) holds for any δ > 0, s0 is a well separated
minimum of M(θ) in L∞(Sε × X ). Next define

Gx�i(c) ≡ Wi1{Yi ≤ c�Di = 1�Xi = x} (E.21)

and observe that compactness of Sε, a regular law of large numbers, Lemma E.1, and
finiteness of X yield

sup
x∈X

sup
(τ�b)∈Sε

sup
c∈R

∣∣∣∣∣1n
n∑

i=1

Gx�i(c)+Rx�n(τ�b)−E
[
Gx�i(c)

]−Rx(τ�b)

∣∣∣∣∣
≤ sup

x∈X
sup
c∈R

∣∣∣∣∣1n
n∑

i=1

Gx�i(c)−E
[
Gx�i(c)

]∣∣∣∣∣
(E.22)

+ sup
x∈X

sup
(τ�b)∈Sε

∣∣Rx�n(τ�b)−Rx(τ�b)
∣∣

= op(1)�
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where Rx(τ�b) and Rx�n(τ�b) are as in (E.7) and (E.8), respectively. Hence, using (E.22),
the equality a2 −b2 = (a−b)(a+b) and Qx(c|τ�b) uniformly bounded in (c� τ�b) ∈ R× Sε

due to the compactness of Sε, we obtain

sup
θ∈L∞(Sε×X )

∣∣Mn(θ)−M(θ)
∣∣

≤ sup
θ∈L∞(Sε×X )

sup
x∈X

sup
(τ�b)∈Sε

∣∣Q̃x�n
(
θ(τ�b�x)|τ�b)−Qx

(
θ(τ�b�x)|τ�b)∣∣

(E.23)
≤ sup

x∈X
sup

(τ�b)∈Sε

sup
c∈R

∣∣Q̃x�n(c|τ�b)−Qx(c|τ�b)
∣∣

= op(1)�

The claim of the lemma then follows from results (E.19), (E.20), and (E.23) together with
Corollary 3.2.3 in van der Vaart and Wellner (1996). �

Lemma E.4. Let Assumptions 2.1 and 4.1 hold, and let Wi be independent of (Yi�Xi�Di)

with E[Wi] = 1, E[W 2
i ] < ∞, and positive a.s. Also let Sε ≡ {(τ�b) ∈ [0�1]2 :b{1 − p(x)} +

ε ≤ τ ≤ p(x) + b{1 − p(x)} − ε ∀x ∈ X } for some ε satisfying 0 < 2ε < infx∈X p(x) and
denote the minimizers

s0(τ�b�x) = arg min
c∈R

Qx(c|τ�b)� ŝ0(τ�b�x) ∈ arg min
c∈R

Q̃x�n(c|τ�b)� (E.24)

For Gx�i(c) ≡ Wi1{Yi ≤ c�Di = 1�Xi = x} and Rx�n(τ�b) as defined in (E.8), denote the
criterion function

Q̃s
x�n(c|τ�b) ≡

(
1
n

n∑
i=1

{
E
[
Gx�i(c)−Gx�i

(
s0(τ�b�x)

)]+Gx�i

(
s0(τ�b�x)

)}
(E.25)

+Rx�n(τ�b)

)2

�

If {YiDi�Xi�Di�Wi} is an i.i.d. sample, it then follows that

sup
x∈X

sup
(τ�b)∈Sε

∣∣∣∣dQ̃
s
x�n(ŝ0(τ�b�x)|τ�b)

dc

∣∣∣∣= op
(
n−1/2)� (E.26)

Proof. We first introduce the criterion function Ms
n :L∞(Sε × X ) → R to be given by

Ms
n(θ) ≡ sup

x∈X
sup

(τ�b)∈Sε

Q̃s
x�n

(
θ(τ�b�x)|τ�b)� (E.27)

We aim to characterize and establish the consistency of an approximate minimizer of
Ms

n(θ) on L∞(Sε × X ). Observe that by Lemma E.1, compactness of Sε, finiteness of X ,
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and the law of large numbers,

sup
x∈X

sup
(τ�b)∈Sε

∣∣∣∣∣1n
n∑

i=1

{
Gx�i

(
s0(τ�b�x)

)−E
[
Gx�i

(
s0(τ�b�x)

)]}

+Rx�n(τ�b)−Rx(τ�b)

∣∣∣∣∣
≤ sup

x∈X
sup
c∈R

∣∣∣∣∣1n
n∑

i=1

{
Gx�i(c)−E

[
Gx�i(c)

]}∣∣∣∣∣ (E.28)

+ sup
x∈X

sup
(τ�b)∈Sε

∣∣Rx�n(τ�b)−Rx(τ�b)
∣∣

= op(1)�

where Rx(τ�b) is as in (E.7). Hence, by definition of Sε and Rx(τ�b), with probability
tending to 1,

ε

2
P(Xi = x) ≤ 1

n

n∑
i=1

{
E
[
Gx�i

(
s0(τ�b�x)

)]−Gx�i

(
s0(τ�b�x)

)}−Rx�n(τ�b)

(E.29)

≤
(
p(x)− ε

2

)
P(Xi = x) ∀(τ�b�x) ∈ Sε × X �

By Assumption 2.1(ii), whenever (E.29) holds, we may implicitly define ŝs0(τ�b�x) by the
equality

P
(
Yi ≤ ŝs0(τ�b�x)�Di = 1�Xi = x

)
(E.30)

= 1
n

n∑
i=1

{
E
[
Gx�i

(
s0(τ�b�x)

)]−Gx�i

(
s0(τ�b�x)

)}−Rx�n(τ�b)

for all (τ�b�x) ∈ Sε × X and set ŝs0(τ�b�x) = 0 for all (τ�b�x) ∈ Sε × X whenever (E.29)
does not hold. Thus,

sup
x∈X

sup
(τ�b)∈Sε

∣∣∣Q̃s
x�n

(
ŝs0(τ�b�x)|τ�b

)− inf
c∈R

Q̃s
x�n(c|τ�b)

∣∣∣= op
(
n−1)� (E.31)

Let ŝs0 ≡ ŝs0(·� ·� ·) and note that by construction ŝs0 ∈ L∞(Sε × X ). From (E.31), we then
obtain that

Ms
n

(
ŝs0
) ≤ sup

x∈X
sup

(τ�b)∈Sε

inf
c∈R

Q̃s
x�n(c|τ�b)+ op

(
n−1)

(E.32)
≤ inf

θ∈L∞(Sε×X )
Ms

n(θ)+ op
(
n−1)�
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To establish ‖ŝs0 − s0‖∞ = op(1), let M(θ) be as in (E.18) and notice that arguing as in
(E.23) together with result (E.28) and Lemma E.1 implies that

sup
θ∈L∞(Sε×X )

∣∣Ms
n(θ)−M(θ)

∣∣
≤ sup

θ∈L∞(Sε×X )

sup
x∈X

sup
(τ�b)∈Sε

∣∣Q̃s
x�n

(
θ(τ�b�x)|τ�b)−Qx

(
θ(τ�b�x)|τ�b)∣∣

(E.33)
≤ sup

x∈X
sup

(τ�b)∈Sε

sup
c∈R

∣∣Q̃s
x�n(c|τ�b)−Qx(c|τ�b)

∣∣
= op(1)�

Hence, by (E.20), (E.32), (E.33), and Corollary 3.2.3 in van der Vaart and Wellner (1996),
we obtain

sup
x∈X

sup
(τ�b)∈Sε

∣∣ŝs0(τ�b�x)− s0(τ�b�x)
∣∣= op(1)� (E.34)

Next, define the random mapping Δn :L∞(Sε × X )→ L∞(Sε × X ) to be given by

Δn(θ)(τ�b�x) ≡ 1
n

n∑
i=1

{(
Gx�i

(
θ(τ�b�x)

)−E
[
Gx�i

(
θ(τ�b�x)

)])
(E.35)

− (Gx�i

(
s0(τ�b�x)

)−E
[
Gx�i

(
s0(τ�b�x)

)])}
�

and observe that Lemma E.1 and finiteness of X imply that ‖Δn(s̄)‖∞ = op(n
−1/2)

for any s̄ ∈ L∞(Sε × X ) such that ‖s̄ − s0‖∞ = op(1). Since Q̃x�n(ŝ0(τ�b�x)|τ�b) ≤
Q̃x�n(s0(τ�b�x)|τ�b) for all (τ�b�x) ∈ Sε × X , and by Lemma E.1 and finiteness of X ,
supx∈X sup(τ�b)∈Sε

Q̃x�n(s0(τ�b�x)|τ�b)= Op(n
−1), we conclude that

sup
x∈X

sup
(τ�b)∈Sε

{
Q̃s

x�n

(
ŝ0(τ�b�x)|τ�b

)− Q̃s
x�n

(
ŝs0(τ�b�x)|τ�b

)}
≤ sup

x∈X
sup

(τ�b)∈Sε

{
Q̃x�n

(
ŝ0(τ�b�x)|τ�b

)− Q̃s
x�n

(
ŝs0(τ�b�x)|τ�b

)}
(E.36)

+ ∥∥Δ2
n(ŝ0)

∥∥∞ + 2
∥∥Δn(ŝ0)

∥∥∞ ×M
1/2
n (ŝ0)

≤ sup
x∈X

sup
(τ�b)∈Sε

{
Q̃x�n

(
ŝs0(τ�b�x)|τ�b

)− Q̃s
x�n

(
ŝs0(τ�b�x)|τ�b

)}+ op
(
n−1)�

where Mn(θ) is as in (E.18). Furthermore, since by (E.32), we have Ms
n(ŝ

s
0) ≤ Ms

n(s0) +
op(n

−1), and by Lemma E.1 and finiteness of X we have Ms
n(s0) =Op(n

−1), similar argu-
ments as in (E.36) imply that

sup
x∈X

sup
(τ�b)∈Sε

{
Q̃x�n

(
ŝs0(τ�b�x)|τ�b

)− Q̃s
x�n

(
ŝs0(τ�b�x)|τ�b

)}
(E.37)

≤ ∥∥Δn
(
ŝs0
)∥∥2

∞ + 2
∥∥Δn

(
ŝs0
)∥∥∞ × [Ms

n

(
ŝs0
)]1/2 = op

(
n−1)�
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Therefore, by combining the results in (E.31), (E.36), and (E.37), we are able to conclude
that

sup
x∈X

sup
(τ�b)∈Sε

{
Q̃s

x�n

(
ŝ0(τ�b�x)|τ�b

)− inf
c∈R

Q̃s
x�n(c|τ�b)

}

≤ sup
x∈X

sup
(τ�b)∈Sε

{
Q̃s

x�n

(
ŝ0(τ�b�x)|τ�b

)− Q̃s
x�n

(
ŝs0(τ�b�x)|τ�b

)}+ op
(
n−1) (E.38)

≤ op
(
n−1)�

Let εn ↘ 0 be such that εn = op(n
−1/2) and in addition satisfies

sup
x∈X

sup
(τ�b)∈Sε

∣∣∣Q̃s
x�n

(
ŝ0(τ�b�x)|τ�b

)− inf
c∈R

Q̃s
x�n(c|τ�b)

∣∣∣= op
(
ε2
n

)
� (E.39)

which is possible by (E.38). A Taylor expansion at each (τ�b�x) ∈ Sε × X then im-
plies

0 ≤ sup
x∈X

sup
(τ�b)∈Sε

{
Q̃s

x�n

(
ŝ0(τ�b�x)+ εn|τ�b

)− Q̃s
x�n

(
ŝ0(τ�b�x)|τ�b

)}
+ op

(
ε2
n

)
(E.40)

= sup
x∈X

sup
(τ�b)∈S

{
εn × dQ̃s

x�n(ŝ0(τ�b�x)|τ�b)
dc

+ ε2
n

2
× d2Q̃s

x�n(s̄(τ�b�x)|τ�b)
dc2

}

+ op
(
ε2
n

)
�

where s̄(τ�b�x) is a convex combination of ŝ0(τ�b�x) and ŝ0(τ�b�x) + εn. Since Lem-
ma E.3 and εn ↘ 0 imply that ‖s̄− s0‖∞ = op(1), the mean value theorem, fy|1�x(c) being
uniformly bounded, and (E.23) yield

sup
x∈X

sup
(τ�b)∈Sε

∣∣∣∣∣1n
n∑

i=1

{
E
[
Gx�i

(
s̄(τ�b�x)

)−Gx�i

(
s0(τ�b�x)

)]+Gx�i

(
s0(τ�b�x)

)}

+Rx�n(τ�b)

∣∣∣∣∣ (E.41)

≤ sup
c∈R

fy|1�x(c)p(x)P(Xi = x)× ‖s̄ − s0‖∞ +M
1/2
n (s0)= op(1)�

Therefore, exploiting (E.41), f ′
y|1�x(c) being uniformly bounded, and by direct calcula-

tion, we conclude that

sup
x∈X

sup
(τ�b)∈Sε

∣∣∣∣d
2Q̃s

x�n(s̄(τ�b�x)|τ�b)
dc2 − 2f 2

y|1�x
(
s̄(τ�b�x)

)
p2(x)P2(Xi = x)

∣∣∣∣
(E.42)

≤ sup
x∈X

sup
(τ�b)∈Sε

∣∣f ′
y|1�x

(
s̄(τ�b�x)

)
p(x)P(Xi = x)

∣∣× op(1) = op(1)�
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Thus, combining results (E.40) together with (E.42) and fy|1�x(c) uniformly bounded, we
conclude

0 ≤ εn × sup
x∈X

sup
(τ�b)∈Sε

dQ̃s
x�n(ŝ0(τ�b�x)|τ�b)

dc
+Op

(
ε2
n

)
� (E.43)

In a similar fashion, we note that by exploiting (E.39) and proceeding as in (E.40)–(E.43),
we obtain

0 ≤ inf
x∈X

inf
(τ�b)∈Sε

{
Q̃s

x�n

(
ŝ0(τ�b�x)− εn|τ�b

)− Q̃s
x�n

(
ŝ0(τ�b�x)|τ�b

)}+ op
(
ε2
n

)

≤ inf
x∈X

inf
(τ�b)∈Sε

{
−εn × dQ̃x�n(ŝ0(τ�b�x)|τ�b)

dc
(E.44)

+ ε2
n

2
× d2Q̃s

x�n(s̄(τ�b�x)|τ�b)
dc2

}
+ op

(
ε2
n

)

≤ −εn × sup
x∈X

sup
(τ�b)∈Sε

dQ̃x�n(ŝ0(τ�b�x)|τ�b)
dc

+Op
(
ε2
n

)
�

Therefore, since εn = op(n
−1/2), we conclude from (E.43) and (E.44) that we must

have

sup
x∈X

sup
(τ�b)∈Sε

dQ̃s
x�n(ŝ0(τ�b�x)|τ�b)

dc
=Op(εn) = op

(
n−1/2)� (E.45)

By similar arguments, but reversing the sign of εn in (E.40) and (E.44), it possible to
establish that

sup
x∈X

sup
(τ�b)∈Sε

−dQ̃s
x�n(ŝ0(τ�b�x)|τ�b)

dc
= op

(
n−1/2)� (E.46)

The claim of the lemma then follows from (E.45) and (E.46). �

Lemma E.5. Let Assumptions 2.1 and 4.1 hold, and let Wi be independent of (Yi�Xi�Di)

with E[Wi] = 1, E[W 2
i ] < ∞, and positive a.s. Also let Sε ≡ {(τ�b) ∈ [0�1]2 :b{1 − p(x)} +

ε ≤ τ ≤ p(x)+b{1−p(x)}−ε ∀x ∈ X } for some ε satisfying 0 < ε< infx∈X p(x) and denote
the minimizers

s0(τ�b�x) = arg min
c∈R

Qx(c|τ�b)� ŝ0(τ�b�x) ∈ arg min
c∈R

Q̃x�n(c|τ�b)� (E.47)

If Gx�i(c) is as in (E.21), infx∈X inf(τ�b)∈Sε fy|1�x(s0(τ�b�x))p(x) > 0, and {YiDi�Xi�Di�Wi}
is i.i.d., then

sup
x∈X

sup
(τ�b)∈Sε

∣∣∣∣∣(ŝ0(τ�b�x)− s0(τ�b�x)
)

(E.48)

− 1
n

n∑
i=1

Gx�i(s0(τ�b�x))+Wi(b1{Di = 0�Xi = x} − τ1{Xi = x})
P(Xi = x)p(x)fy|1�x(s0(τ�b�x))

∣∣∣∣∣= op
(
n−1/2)�
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Proof. For Q̃s
x�n(c|τ�b) as in (E.25), note that the mean value theorem and Lemma E.4

imply

sup
x∈X

sup
(τ�b)∈Sε

∣∣∣∣(ŝ0(τ�b�x)− s0(τ�b�x)
)× d2Q̃s

x�n(s̄(τ�b�x)|τ�b)
dc2

+ dQ̃s
x�n(s0(τ�b�x)|τ�b)

dc

∣∣∣∣ (E.49)

= op
(
n−1/2)

for s̄(τ�b�x) a convex combination of s0(τ�b�x) and ŝ0(τ�b�x). Also note that Lemma E.1

implies

sup
x∈X

sup
(τ�b)∈Sε

∣∣∣∣dQ̃
s
x�n(s0(τ�b�x)|τ�b)

dc

∣∣∣∣
= sup

x∈X
sup

(τ�b)∈Sε

∣∣∣∣∣2fy|1�x(s0(τ�b�x)
)
p(x)P(Xi = x)

(E.50)

×
{

1
n

n∑
i=1

Gx�i

(
s0(τ�b�x)

)+Rn(τ�b)

}∣∣∣∣∣
=Op

(
n−1/2)�

In addition, by (E.42), the mean value theorem, and fy|1�x(c) being uniformly bounded,

we conclude that

sup
x∈X

sup
(τ�b)∈Sε

∣∣∣∣d2Q̃x�n(s̄(τ�b�x)|τ�b)
dc2 − 2f 2

y|1�x
(
s0(τ�b�x)

)
p2(x)P2(Xi = 1)

∣∣∣∣
� sup

x∈X
sup

(τ�b)∈Sε

∣∣f 2
y|1�x

(
s̄(τ�b�x)

)− f 2
y|1�x

(
s0(τ�b�x)

)∣∣+ op(1) (E.51)

� sup
c∈R

∣∣f ′
y|1�x(c)

∣∣× ‖s̄ − s0‖∞ + op(1)�

Since by assumption, fy|1�x(s0(τ�b�x))p(x) is bounded away from zero uniformly in

(τ�b�x) ∈ Sε × X , it follows from (E.51) and ‖s̄ − s0‖∞ = op(1) by Lemma E.3 that for

some δ > 0,

inf
x∈X

inf
(τ�b)∈Sε

d2Q̃x�n(s̄(τ�b�x)|τ�b)
dc2 > δ (E.52)

with probability approaching 1. Therefore, we conclude from results (E.49), (E.50), and

(E.52) that we must have ‖ŝ0 −s0‖∞ =Op(n
−1/2). Hence, by (E.49) and (E.51) we conclude
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that

sup
x∈X

sup
(τ�b)∈Sε

∣∣∣∣2(ŝ0(τ�b�x)− s0(τ�b�x)
)
f 2
y|1�x

(
s0(τ�b�x)

)
p2(x)P2(Xi = 1)

+ dQ̃s
x�n(s0(τ�b�x)|τ�b)

dc

∣∣∣∣ (E.53)

= op
(
n−1/2)�

The claim of the lemma is then established by (E.50), (E.52), and (E.53). �

Lemma E.6. Let Assumptions 2.1 and 4.1(ii) and (iii) hold, and let Wi be independent of
(Yi�Xi�Di) with E[Wi] = 1, E[W 2

i ] < ∞ and positive a.s. Let Sε ≡ {(τ�b) ∈ [0�1]2 :b{1 −
p(x)} + ε ≤ τ ≤ p(x)+ b{1 −p(x)} − ε ∀x ∈ X } for some ε satisfying 0 < 2ε < infx∈X p(x)

and for some x0 ∈ X , denote the minimizers

s0(τ�b�x0) = arg min
c∈R

Qx0(c|τ�b)�

If inf(τ�b)∈Sε fy|1�x(s0(τ�b�x0))p(x0) > 0 and {YiDi�Xi�Di�Wi} is i.i.d., then the following
class is Donsker:

F ≡
{
fτ�b(y�x�d�w)

= w1{y ≤ s0(τ�b�x0)�d = 1�x= x0} + bw1{d = 0�x= x0} − τw1{x = x0}
P(Xi = x0)p(x0)fy|1�x(s0(τ�b�x0))

:

(τ�b) ∈ Sε

}
�

Proof. For δ > 0, let {Bj} be a collection of closed balls in R2 with diameter δ covering
Sε. Further notice that since Sε ⊆ [0�1]2, we may select {Bj} so its cardinality is less than
4/δ2. On each Bj , define

¯τj = min
(τ�b)∈Sε∩Bj

τ� τ̄j = max
(τ�b)∈Sε∩Bj

τ�

¯bj = min
(τ�b)∈Sε∩Bj

b� b̄j = max
(τ�b)∈Sε∩Bj

b�

(E.54)

¯sj = min
(τ�b)∈Sε∩Bj

s0(τ�b�x0)� s̄j = max
(τ�b)∈Sε∩Bj

s0(τ�b�x0)�

¯
fj = min

(τ�b)∈Sε∩Bj

fy|1�x
(
s0(τ�b�x0)

)
� f̄j = max

(τ�b)∈Sε∩Bj

fy|1�x
(
s0(τ�b�x0)

)
�

where we note that all minima and maxima are attained due to compactness of Sε ∩Bj ,
continuity of s0(τ�b�x0) by (E.5) and the implicit function theorem, and continuity of
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fy|1�x(c) by Assumption 4.1(iii). Next, for 1 ≤ j ≤ #{Bj}, define the functions

lj(y�x�d�w)≡ w1{y ≤ ¯sj� d = 1�x= x0} + ¯bjw1{d = 0�x = x0}
P(Xi = x0)p(x0)f̄j

(E.55)

− τ̄jw1{x = x0}
P(Xi = x0)p(x0)¯

fj
�

uj(y�x�d�w) ≡ w1{y ≤ s̄j� d = 1�x = x0} + b̄jw1{d = 0�x= x0}
P(Xi = x0)p(x0)¯

fj
(E.56)

− ¯τjw1{x= x0}
P(Xi = x0)p(x0)f̄j

and note that the brackets [lj� uj] cover the class F . Since

f̄−1
j ≤

¯
f−1
j ≤

[
inf

(τ�b)∈Sε

fy|1�x
(
s0(τ�b�x0)

)]−1
< ∞

for all j, there is a finite constant M that does not depend on j so that M > 3E[W 2
i ] ×

P−2(Xi = x0)p
−2(x0)¯

f−2
j f̄−2

j uniformly in j. To bound the norm of the bracket [lj� uj],
note that for such a constant M , it follows that

E
[(
uj(Yi�Xi�Di�Wi)− lj(Yi�Xi�Di�Wi)

)2]
≤M × (b̄j f̄j − ¯bj¯

fj)
2 +M × (τ̄j f̄j − ¯τj¯

fj)
2 (E.57)

+M ×E
[(

1{Yi ≤ ¯sj�Di = 1�Xi = x0}¯
fj − 1{Yi ≤ s̄j�Di = 1�Xi = x0}f̄j

)2]
�

Next observe that by the implicit function theorem and result (E.5), we can conclude
that for any (τ�b) ∈ Sε,

ds0(τ�b�x0)

dτ
= 1

fy|1�x(s0(τ�b�x0))
�

(E.58)
ds0(τ�b�x0)

db
= − 1 −p(x0)

fy|1�x(s0(τ�b�x0))
�

Since the minima and maxima in (E.54) are attained, it follows that for some (τ1� b1)�

(τ2� b2) ∈ Bj ∩ Sε, we have s0(τ1� b1�x0) = s̄j and s0(τ2� b2�x0) = ¯sj . Hence, the mean value
theorem and (E.58) imply

|s̄j − ¯sj| =
∣∣∣∣ 1

fy|1�x(s0(τ̃� b̃� x0))
(τ1 − τ2)+ 1 −p(x)

fy|1�x(s0(τ̃� b̃� x0))
(b1 − b2)

∣∣∣∣
(E.59)

≤
√

2δ
inf

(τ�b)∈Sε

fy|1�x(s0(τ�b�x0))
�

where (τ̃� b̃) is between (τ1� b1) and (τ2� b2), and the final inequality follows by (τ̃� b̃) ∈
Sε by convexity of Sε, (τ1� b1)� (τ2� b2) ∈ Bj ∩ Sε, and Bj having diameter δ. By similar
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arguments and (E.59), we conclude that

|f̄j −
¯
fj| ≤ sup

c∈R

∣∣f ′
y|1�x(c)

∣∣× |s̄j − ¯sj|
(E.60)

≤ sup
c∈R

∣∣f ′
y|1�x(c)

∣∣×
√

2δ
inf

(τ�b)∈Sε

fy|1�x(s0(τ�b�x0))
�

Since ¯bj ≤ b̄j ≤ 1 due to b̄j ∈ [0�1] and |b̄j − ¯bj| ≤ δ by Bj having diameter δ, we further
obtain that

(b̄j f̄j − ¯bj¯
fj)

2 ≤ 2f̄ 2
j (b̄j − ¯bj)

2 + 2¯b
2
j (f̄j −

¯
fj)

2

(E.61)

≤ 2 sup
c∈R

f 2
y|1�x(c)× δ2 + 4δ2

inf
(τ�b)∈Sε

f 2
y|1�x(s0(τ�b�x0))

�

where in the final inequality, we have used result (E.60). By similar arguments, we also
obtain

(τ̄j f̄j − ¯τj¯
fj)

2 ≤ 2 sup
c∈R

f 2
y|1�x(c)× δ2 + 4δ2

inf
(τ�b)∈Sε

f 2
y|1�x(s0(τ�b�x0))

� (E.62)

Also note that by direct calculation, the mean value theorem, and results (E.59) and
(E.60), it follows that

E
[(

1{Yi ≤ ¯sj�Di = 1�Xi = x0}¯
fj − 1{Yi ≤ s̄j�Di = 1�Xi = x0}f̄j

)2]
≤ 2(f̄j −

¯
fj)

2 + sup
c∈R

f 2
y|1�x(c)× P(Xi = x0)p(x0)

(
Fy|1�x(s̄j)− Fy|1�x(¯sj)

)
(E.63)

≤ 4δ2

inf
(τ�b)∈Sε

f 2
y|1�x(s0(τ�b�x0))

+ sup
c∈R

f 3
y|1�x(c)×

√
2δ

inf
(τ�b)∈Sε

fy|1�x(s0(τ�b�x0))
�

Thus, from (E.57), (E.61), and (E.62), it follows that for δ < 1 and some constant K not
depending on j,

E
[(
uj(Yi�Xi�Di�Wi)− lj(Yi�Xi�Di�Wi)

)2]≤Kδ� (E.64)

Since #{Bj} ≤ 4/δ2, we can, therefore, conclude that N[](δ� F�‖ · ‖L2) ≤ 4K2/δ2 and,
hence, by Theorem 2.5.6 in van der Vaart and Wellner (1996), it follows that the class
F is Donsker. �

Lemma E.7. Let Assumptions 2.1 and 4.1(ii) and (iii) hold, and let Wi be independent of
(Yi�Xi�Di) with E[Wi] = 1, E[W 2

i ] < ∞, positive a.s., Sζ ≡ {(τ�b) ∈ [0�1]2 :b{1 − p(x)} +
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ζ ≤ τ ≤ p(x)+ b{1 −p(x)} − ζ ∀x ∈ X }, and

p̃(x) ≡

n∑
i=1

Wi1{Di = 1�Xi = x}
n∑

i=1

Wi1{Xi = x}
� p(x) ≡ P(Di = 1|Xi = x)�

s0(τ�b�x)= arg min
c∈R

Qx(c|τ�b)�

If inf(τ�b�x)∈Sζ×X fy|1�x(s0(τ�b�x))p(x) > 0 and {YiDi�Xi�Di�Wi} is an i.i.d. sample, then
for a ∈ {−1�1},

s0
(
τ�τ + akp̃(x)�x

)− s0
(
τ�τ + akp(x)�x

)
(E.65)

= − (1 −p(x))ka

fy|1�x(s0(τ� τ + akp(x)�x))P(X = x)
× 1

n

n∑
i=1

R(Xi�Wi�x)+ op
(
n−1/2)�

where R(Wi�Xi�x) = p(x){P(X = x)−Wi1{Xi = x}}+Wi1{Di = 1�Xi = x}−P(D = 1�X =
x) and (E.65) holds uniformly in (Bζ × X ). Moreover, the right hand side of (E.65) is
Donsker.

Proof. First observe that (τ�k) ∈ Bζ implies (τ� τ + akp(x)) ∈ Sζ for all x ∈ X and that
with probability tending to 1, (τ� τ+akp̃(x)) ∈ Sζ for all (τ�k) ∈ Bζ . In addition, also note
that

p̃(x)−p(x)= 1
nP(X = x)

n∑
i=1

R(Xi�Wi�x)+ op
(
n−1/2) (E.66)

by an application of the Delta method and infx∈X P(X = x) > 0 due to X having finite
support. Moreover, by the mean value theorem and (E.58), we obtain for some b̄(τ�k)

between τ + akp̃(x) and τ + akp(x) that

s0
(
τ�τ + akp̃(x)�x

)− s0
(
τ�τ + akp(x)�x

)
= − (1 −p(x))ka

fy|1�x(s0(τ� b̄(τ�k)�x))

(
p̃(x)−p(x)

)
(E.67)

= − (1 −p(x))ka

fy|1�x(s0(τ� τ + akp(x)�x))

(
p̃(x)−p(x)

)+ op
(
n−1/2)�

where the second equality follows from (τ� b̄(τ�k)) ∈ Sζ for all (τ�k) with proba-
bility approaching 1 by convexity of Sζ , inf(τ�b�x)∈Sζ×X fy|1�x(s0(τ�b�x))p(x) > 0, and
sup(τ�k)∈Bζ

|ak(p̃(x) − p(x))| = op(1) uniformly in X . The first claim of the lemma then
follows by combining (E.66) and (E.67).

Finally, observe that the right hand side of (E.65) is trivially Donsker since R(Xi�

Wi�x) does not depend on (k�τ) and the function (1 −p(x))ka/(fy|1�x(s0(τ� τ + akp(x)�
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x))P(X = x)) is uniformly continuous on (τ�k) ∈ Bζ due to inf(τ�b�x)∈Sζ×X fy|1�x(s0(τ�

b�x))p(x) > 0. �

Proof of Theorem 4.1. Throughout the proof, we exploit Lemmas E.5 and E.6 ap-
plied with Wi = 1 with probability 1, so that Q̃x�n(c|τ�b) = Qx�n(c|τ�b) for all (τ�b) in Sζ ,
where

Sζ ≡ {(τ�b) ∈ [0�1]2 :
(E.68)

b
{
1 −p(x)

}+ ζ ≤ τ ≤ p(x)+ b
{
1 −p(x)

}− ζ ∀x ∈ X
}
�

Also notice that for every (τ�k) ∈ Bζ and all x ∈ X , the points (τ� τ + kp(x))� (τ� τ −
kp(x)) ∈ Sζ , while with probability approaching 1, (τ� τ+kp̂(x)) and (τ� τ−kp̂(x)) also
belong to Sζ . Therefore, for s0(τ�b�x) and ŝ0(τ�b�x) as defined in (E.47), we obtain from
Lemmas E.5 and E.6, applied with Wi = 1 a.s., that∣∣(ŝ0

(
τ�τ + akp(x)�x

)− s0
(
τ�τ + akp(x)�x

))
− (ŝ0

(
τ�τ + akp̂(x)�x

)− s0
(
τ�τ + akp̂(x)�x

))∣∣ (E.69)

= op
(
n−1/2)

uniformly in (τ�k�x) ∈ Bζ × X and a ∈ {−1�1}. Moreover, by Lemma E.7 applied with
Wi = 1 a.s.,

s0
(
τ�τ + akp̂(x)�x

)− s0
(
τ�τ + akp(x)�x

)
(E.70)

= − (1 −p(x))ka

fy|1�x(s0(τ� τ + akp(x)�x))P(X = x)
× 1

n

n∑
i=1

R(Xi�x)+ op
(
n−1/2)�

where R(Xi�x) = p(x){P(X = x)−1{Xi = x}}+1{Di = 1�Xi = x}−P(D = 1�X = x) again
uniformly in (τ�k�x) ∈ Bζ × X . Also observe that since (τ� τ + kp̂(x)) and (τ� τ − kp̂(x))

belong to Sζ with probability approaching 1, we obtain uniformly in (τ�k�x) ∈ Bζ × X
that

qL(τ�k|x) = s0
(
τ�τ + kp(x)�x

)
�

qU(τ�k|x) = s0
(
τ�τ − kp(x)�x

)
�

(E.71)
q̂L(τ�k|x) = ŝ0

(
τ�τ + kp̂(x)�x

)+ op
(
n−1/2)�

q̂U(τ�k|x) = ŝ0
(
τ�τ − kp̂(x)�x

)+ op
(
n−1/2)�

Therefore, combining results (E.69)–(E.71), and exploiting Lemmas E.5, E.6, and E.7 and
the sum of Donsker classes being Donsker, we conclude that for J a Gaussian process
on L∞(Bζ × X )×L∞(Bζ × X ),

√
nCn

L→ J� Cn(τ�k�x) ≡
(
q̂L(τ�k|x)− qL(τ�k|x)
q̂U(τ�k|x)− qU(τ�k|x)

)
� (E.72)
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To establish the second claim of the theorem, observe that since X has finite sup-
port, we may denote X = {x1� � � � � x|X |} and define the matrix B = (P(Xi = x1)x1� � � � �

P(Xi = x|X |)x|X |) as well as the vector

w ≡ λ′(ES

[
XiX

′
i

])−1
B� (E.73)

Since w is also a function on X , we refer to its coordinates by w(x). Solving the linear
programming problems defined in equations (24) and (25), we obtain the closed form
solution

πL(τ�k)=
∑
x∈X

{
1
{
w(x) ≥ 0

}
w(x)qL(τ�k|x)+ 1

{
w(x) ≤ 0

}
w(x)qU(τ�k|x)}�

(E.74)
πU(τ�k)=

∑
x∈X

{
1
{
w(x) ≥ 0

}
w(x)qU(τ�k|x)+ 1

{
w(x) ≤ 0

}
w(x)qL(τ�k|x)}�

with a similar representation holding for (π̂L(τ�k)� π̂U(τ�k)), but with (q̂L(τ�k|x)�
q̂U(τ�k|x)) in place of (qL(τ�k|x)�qU(τ�k|x)). We hence define the linear map K :
L∞(Bζ × X )×L∞(Bζ × X ) →L∞(Bζ)×L∞(Bζ), to be given by

K(θ)(τ�k)≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
x∈X

{
1
{
w(x) ≥ 0

}
w(x)θ(1)(τ�k�x)

+ 1
{
w(x) ≤ 0

}
w(x)θ(2)(τ�k�x)

}
∑
x∈X

{
1
{
w(x) ≥ 0

}
w(x)θ(2)(τ�k�x)

+ 1
{
w(x) ≤ 0

}
w(x)θ(1)(τ�k�x)

}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
� (E.75)

where for any θ ∈ L∞(X × Bζ)×L∞(Bζ × X ), θ(i)(τ�k�x) denotes the ith coordinate of
the two dimensional vector θ(τ�k�x). It then follows from (E.72), (E.74), and (E.75) that

√
n

(
π̂L −πL

π̂U −πU

)
= √

nK(Cn)� (E.76)

Moreover, employing the norm ‖ · ‖∞ + ‖ · ‖∞ on the product spaces L∞(Bζ × X ) ×
L∞(Bζ × X ) and L∞(Bζ) × L∞(Bζ), we can then obtain by direct calculation that for
any θ ∈L∞(Bζ × X )×L∞(Bζ × X ),∥∥K(θ)

∥∥∞ ≤ 2
∑
x∈X

∣∣w(x)
∣∣× sup

x∈X
sup

(τ�b)∈Sζ

∣∣θ(τ�b�x)∣∣= 2
∑
x∈X

∣∣w(x)
∣∣× ‖θ‖∞� (E.77)

which implies the linear map K is continuous. Therefore, the theorem is established by
(E.72), (E.76), the linearity of K, and the continuous mapping theorem. �

Proof of Theorem 4.2. For a metric space D, let BLc(D) denote the set of real valued
bounded Lipschitz functions with supremum norm and Lipschitz constant less than or
equal to c. We first aim to show that

sup
h∈BL1(R)

∣∣E[h(L(G̃ω)
)|Zn

]−E
[
h
(
L(Gω)

)]∣∣= op(1)� (E.78)
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where Zn = {YiDi�Xi�Di}ni=1 and E[h(Z̃)|Zn] denotes outer expectation over {Wi}ni=1
with Zn fixed. Let

ŝ0(τ�b�x) ∈ arg min
c∈R

Qx�n(c|τ�b)� s̃0(τ�b�x) ∈ arg min
c∈R

Q̃x�n(c|τ�b)�
(E.79)

s0(τ�b�x) ∈ arg min
c∈R

Qx(c|τ�b)�

Also note that with probability approaching 1 the points (τ� τ + akp̃(x)) ∈ Sζ for all
(τ�k�x) ∈ Bζ × X and a ∈ {−1�1} for Sζ as in (E.68). Hence, arguing as in (E.69) and (E.70),
we obtain

q̃L(τ�k|x)− q̂L(τ�k|x)
= s̃0

(
τ�τ + kp(x)�x

)− ŝ0
(
τ�τ + kp(x)�x

)
(E.80)

− (1 −p(x))k

fy|1�x(s0(τ� τ + kp(x)�x))P(X = x)
× 1

n

n∑
i=1

�R(Xi�Wi�x)+ op
(
n−1/2)�

q̃U(τ�k|x)− q̂U(τ�k|x)
= s̃0

(
τ�τ − kp(x)�x

)− ŝ0
(
τ�τ − kp(x)�x

)
(E.81)

+ (1 −p(x))k

fy|1�x(s0(τ� τ − kp(x)�x))P(X = x)
× 1

n

n∑
i=1

�R(Xi�Wi�x)+ op
(
n−1/2)�

where �R(Xi�Wi�x) = (1 −Wi)(1{Xi = x}p(x)− 1{Di = 1�Xi = x}) and both statements
hold uniformly in (τ�k�x) ∈ Bζ × X . Also note that for the operator K as defined in (E.75),
we have

√
n

(
π̃L − π̂L

π̃U − π̂U

)
= √

nK(C̃n)� C̃n(τ�k�x) ≡
(
q̃L(τ�k|x)− q̂L(τ�k|x)
q̃U(τ�k|x)− q̂U(τ�k|x)

)
� (E.82)

By Lemmas E.5, E.6, and E.7, results (E.80) and (E.81), and Theorem 2.9.2 in van der
Vaart and Wellner (1996), the process

√
nC̃n converges unconditionally to a tight Gaus-

sian process on L∞(Bζ × X ). Hence, by the continuous mapping theorem,
√
nK(C̃n) is

asymptotically tight. Define

Ḡω ≡ √
n

(
(π̃L − π̂L)/ωL

(π̃U − π̂U)/ωU

)
� (E.83)

and notice that ωL(τ�k) and ωU(τ�k) being bounded away from zero, ω̂L(τ�k) and
ω̂U(τ�k) being uniformly consistent by Assumption 4.2(ii), and

√
nK(C̃n) being asymp-

totically tight imply that

∣∣L(G̃ω)−L(Ḡω)
∣∣

≤ sup
(τ�k)∈Bζ

M0

∣∣∣∣
√
n(π̂L(τ�k)− π̃L(τ�k))

ω̂L(τ�k)
−

√
n(π̂L(τ�k)− π̃L(τ�k))

ωL(τ�k)

∣∣∣∣ (E.84)
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+ sup
(τ�k)∈Bζ

M0

∣∣∣∣
√
n(π̂U(τ�k)− π̃U(τ�k))

ω̂U(τ�k)
−

√
n(π̂U(τ�k)− π̃U(τ�k))

ωU(τ�k)

∣∣∣∣
= op(1)

for some constant M0 due to L being Lipschitz. By definition of BL1, all h ∈ BL1 have
Lipschitz constant less than or equal to 1 and are also bounded by 1. Hence, for any
η> 0, Markov’s inequality implies

P
(

sup
h∈BL1(R)

∣∣E[h(L(G̃ω)
)|Zn

]−E
[
h
(
L(Ḡω)

)|Zn
]∣∣>η

)

≤ P

(
2P
(∣∣L(G̃ω)−L(Ḡω)

∣∣> η

2

∣∣∣Zn

)
(E.85)

+ η

2
P

(∣∣L(G̃ω)−L(Ḡω)
∣∣≤ η

2

∣∣∣Zn

)
>η

)

≤ 4
η
E

[
E

[
1
{∣∣L(G̃ω)−L(Ḡω)

∣∣> η

2

}∣∣∣Zn

]]
�

Therefore, by (E.84), (E.85), and Lemma 1.2.6 in van der Vaart and Wellner (1996), we
obtain

P
(

sup
h∈BL1(R)

∣∣E[h(L(G̃ω)
)|Zn

]−E
[
h
(
L(Ḡω)

)|Zn
]∣∣>η

)
(E.86)

≤ 4
η
P

(∣∣L(G̃ω)−L(Ḡω)
∣∣> η

2

)
= o(1)�

Next, let
L= stands for “equal in law” and notice that for J the Gaussian process in

(E.72),

L(Gω)
L= T ◦K(J)� L(Ḡω) = √

nL ◦K(C̃n) (E.87)

due to the continuous mapping theorem and (E.82). For w(x) as defined in (E.70) and
C0 ≡ 2

∑
x∈X |w(x)|, it follows from linearity of K and (E.75), that K is Lipschitz with

Lipschitz constant C0. Therefore, for any h ∈ BL1(R), result (E.87) implies that h◦L◦K ∈
BLC0M0(L

∞(Bζ × X )) for some M0 > 0 and, hence,

sup
h∈BL1(R)

∣∣E[h(L(Ḡω)
)|Zn

]−E
[
h
(
L(Gω)

)]∣∣
(E.88)

≤ sup
h∈BLC0M0 (L

∞(Bζ×X ))

∣∣E[h(Ḡω)|Zn
]−E

[
h(J)

]∣∣= op(1)�

where the final equality follows from (E.80), (E.81), (E.87), arguing as in (E.85) and (E.86),
Lemmas E.6 and E.7, and Theorem 2.9.6 in van der Vaart and Wellner (1996). Hence,
(E.86) and (E.88) establish (E.78).

Next, we aim to show that for all t ∈ R at which the CDF of L(Gω) is continuous and
for any η> 0,

P
(∣∣P(L(G̃ω) ≤ t|Zn

)− P
(
L(Gω) ≤ t

)∣∣>η
)= o(1)� (E.89)
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Toward this end, for every λ > 0 and t at which the CDF of L(Gω) is continuous, define
the functions

hU
λ�t(u) = 1 − 1{u > t}min

{
λ(u− t)�1

}
�

(E.90)
hL
λ�t(u) = 1{u < t}min

{
λ(t − u)�1

}
�

Notice that by construction, hL
λ�t(u) ≤ 1{u ≤ t} ≤ hU

λ�t(u) for all u ∈ R, the functions hL
λ�t

and hU
λ�t are both bounded by 1, and they are both Lipschitz with Lipschitz constant λ.

Also by direct calculation,

0 ≤E
[
hU
λ�t

(
L(Gω)

)− hL
λ�t

(
L(Gω)

)]≤ P
(
t − λ−1 ≤L(Gω)≤ t + λ−1)� (E.91)

Therefore, exploiting that hL
λ�t�h

U
λ�t ∈ BLλ(R) and that h ∈ BLλ(R) implies λ−1h ∈ BL1(R),

we obtain∣∣P(L(G̃ω) ≤ t|Zn
)− P

(
L(Gω)≤ t

)∣∣
≤ ∣∣E[hL

λ�t

(
L(G̃ω)

)|Zn
]−E

[
hU
λ�t

(
L(Gω)

)]∣∣
+ ∣∣E[hU

λ�t

(
L(G̃ω)

)|Zn
]−E

[
hL
λ�t

(
L(Gω)

)]∣∣
≤ 2 sup

h∈BLλ(R)

∣∣E[h(L(G̃ω)
)|Zn

]−E
[
h
(
L(Gω)

)]∣∣ (E.92)

+ 2P
(
t − λ−1 ≤L(Gω) ≤ t + λ−1)

= 2λ sup
h∈BL1(R)

∣∣E[h(L(G̃ω)
)|Zn

]−E
[
h
(
L(Gω)

)]∣∣
+ 2P

(
t − λ−1 ≤L(Gω) ≤ t + λ−1)

for any λ > 0. Moreover, we may select a λη sufficiently large so that 2P(t − λ−1
η ≤

L(Gω) ≤ t+λ−1
η ) < η/2 due to t being a continuity point of the CDF of L(Gω). Therefore,

from (E.92), we obtain

P
(∣∣P(L(G̃ω) ≤ t|Zn

)− P
(
L(Gω)≤ t

)∣∣>η
)

(E.93)

≤ P

(
2λη sup

h∈BL1(R)

∣∣E[h(L(G̃ω)
)|Zn

]−E
[
h
(
L(Gω)

)]∣∣> η

2

)
= o(1)�

where the final equality follows from (E.78).
Finally, note that since the CDF of L(Gω) is strictly increasing and continuous at

r1−α, we obtain that

P
(
L(Gω) ≤ r1−α − ε

)
< 1 − α< P

(
L(Gω) ≤ r1−α + ε

)
(E.94)

∀ε > 0. Define the event An ≡ {P(L(G̃ω) ≤ r1−α − ε|Zn) < 1 − α < P(L(G̃ω) ≤ r1−α +
ε|Zn)} and notice that

P
(|r̃1−α − r1−α| ≤ ε

)≥ P(An) → 1� (E.95)
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where the inequality follows by definition of r̃1−α, and the second result is implied by
(E.89) and (E.94). �
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