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New evidence, old puzzles: Technology shocks and labor
market dynamics

Almut Balleer
RWTH Aachen University and IIES, Stockholm University

Can the standard search-and-matching labor market model replicate the busi-
ness cycle fluctuations of the job finding rate and the unemployment rate? In the
model, these fluctuations are driven by movements in productivity. This paper in-
vestigates the sources of productivity fluctuations that are commonly interpreted
as technology shocks. I estimate different types of technology shocks from struc-
tural vector autoregressions and reassess the empirical performance of the stan-
dard model based on second moments that are conditional on technology and
nontechnology (preference) shocks. Most prominently, the model is able to repli-
cate the conditional volatilities of job finding and unemployment. However, it fails
to replicate the correlation of productivity with unemployment and job finding
that is conditional on both technology and nontechnology shocks.

Keywords. Labor market dynamics, technology shocks, structural VAR, search
and matching, business cycle.
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1. Introduction

How well can the standard search-and-matching framework explain the large move-
ments into and out of employment that we observe in U.S. business cycles? This ques-
tion has been one of the most controversially discussed issues in the recent macrola-
bor literature. Fueled by Shimer (2005), the debate has centered around the ability of
the search-and-matching model to propagate shocks to labor productivity such that the
model can replicate the high volatilities of the job finding rate and the unemployment
rate that are observed in the data.

Against this background, this paper investigates the sources of fluctuations in la-
bor productivity and how these relate to the volatility and co-movements of the la-
bor market variables over the business cycle. In the view of the standard search-and-
matching model, “a change in labor productivity is most easily interpreted as a technol-
ogy or supply shock” (as Shimer (2005) phrases it). In fact, the dynamics in the base-
line Mortensen–Pissarides model and its many extensions that allow for risk aversion,

Almut Balleer: almut.balleer@iies.su.se
I thank Fabio Canova, Michael Evers, Jordi Galí, Christian Häfke, Per Krusell, Ricardo Lagos, Monika Merz,
Markus Poschke, Garey Ramey, Thijs van Rens, and Harald Uhlig as well as numerous conference and sem-
inar participants for helpful comments and suggestions.

Copyright © 2012 Almut Balleer. Licensed under the Creative Commons Attribution-NonCommercial Li-
cense 3.0. Available at http://www.qeconomics.org.
DOI: 10.3982/QE35

http://www.qeconomics.org/
mailto:almut.balleer@iies.su.se
http://creativecommons.org/licenses/by-nc/3.0/
http://www.qeconomics.org/
http://dx.doi.org/10.3982/QE35
http://creativecommons.org/licenses/by-nc/3.0/


364 Almut Balleer Quantitative Economics 3 (2012)

capital accumulation, or an explicit production technology stand in the tradition of the
real-business-cycle (RBC) literature.1 Next to technology shocks, other structural dis-
turbances, generally referred to as nontechnology or demand shocks, have been ad-
vocated to play an important role for the business cycle fluctuations of labor market
variables. Hall (1997), for example, documented the importance of preference shocks,
that is, shocks that change the marginal rate of substitution between consumption and
leisure, for the cyclical fluctuations of hours worked.

Here, I readdress the empirical performance of the search-and-matching model
based on standard deviations and correlations that are conditional on structural shocks
rather than on the overall unconditional sample moments. For this purpose, I compare
the second moments from a model that allows for both technology and nontechnol-
ogy shocks to their conditional equivalents in the data. The latter are estimated using
a structural vector autoregression (VAR) with long-run restrictions. As in Galí (1999),
the main assumption that is used to separate technology shocks from nontechnology
shocks is that they are the only shocks that affect labor productivity in the long run. This
assumption holds in a large class of models including RBC and New Keynesian setups. It
should be noted that this aggregate concept of technology shocks both theoretically and
empirically may encompass phenomena not directly related to technological progress
such as permanent demand shifts between sectors.

The structural VAR is estimated on quarterly U.S. data incorporating the worker flow
data calculated by Shimer from the Current Population Survey (CPS). Conditional stan-
dard deviations enable us to investigate whether the model sufficiently propagates the
respective shocks, how the conditional volatilities translate into the overall volatility of
productivity and the labor market variables, and, hence, whether this provides new in-
formation with respect to the Shimer debate. More importantly, the conditional corre-
lations between productivity and the labor market variables reveal potentially different
and counteracting dynamics that are generated by the different shocks and that are en-
compassed by the unconditional correlations. In fact, I show that since conditional and
unconditional moments substantially differ in this case, a judgement of the model that
is based on unconditional moments only may be very misleading.

A simple version of a search-and-matching model provides the benchmark mo-
ments to which the empirical conditional and unconditional moments will be com-
pared. This model nests search-and-matching in a real-business cycle and growth setup
with frictions on the labor market as in Merz (1995) or Andolfatto (1996). Hence, it is
not identical to the original setup introduced by Mortensen and Pissarides (1994) and
used by Shimer (2005), but designed to be comparable to the output from the struc-
tural VAR. Growth in this model is driven by permanent technology shocks, modeled
as a random walk with drift. These shocks then satisfy the long-run restrictions in the
structural VAR. Driven by technology shocks only, this model reflects similar problems
with respect to the propagation of these shocks as the standard model that is discussed
in Shimer. Over the business cycle, the model allows for different sources of variation in

1Well known examples that use search and matching in an RBC context include Merz (1995), Andolfatto
(1996), and den Haan, Ramey, and Watson (2000).
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labor productivity and hence labor market variables, here both technology and prefer-
ences shocks.

Comparing the output from the model to the conditional and unconditional mo-
ments in the data, two main findings emerge. With respect to volatility, the standard
deviations of the job finding rate and the unemployment rate that are conditional on
technology shocks are much lower than the unconditional ones. In addition, these stan-
dard deviations are, in fact, close to the standard deviations that are generated within a
commonly calibrated version of the standard model that is driven by technology shocks
only. Consequently, the Shimer critique of the model with respect to its lack of volatility
does not apply when the empirical performance is based on moments that are con-
ditional on technology shocks. To replicate the unconditional moments in the data,
the standard model should, therefore, be augmented by additional nontechnological
sources of fluctuations rather than with respect to a better propagation of technology
shocks as suggested in the literature (see Hall (2005), Shimer (2005), Hagedorn and
Manovskii (2008), and many others). I show that preference shocks work well in this
respect.

As an additional result, job separations significantly move after both types of esti-
mated structural shocks. This means that it is not reasonable to assume that the job
separation rate is constant over the business cycle (as has been done by many contribu-
tions to the literature).

With respect to the conditional correlations, the co-movement of the job finding
rate with labor productivity that is conditional on technology shocks is negative, while
the conditional correlation of unemployment with productivity is positive. Put differ-
ently, job finding falls after a positive technological innovation, while unemployment
increases. In the standard labor market model, a positive technology shock of the same
size leads to an increase in labor productivity and, hence, to an increase in the job find-
ing rate and a fall in unemployment. From the viewpoint of the standard model, this
result constitutes a “job finding puzzle” that is comparable to the so-called “hours puz-
zle” documented in Galí (1999). Since technology shocks play a considerable role for
the business cycle variance of the job finding rate and unemployment, this result is a
much more serious challenge to the empirical performance of the standard model than
is Shimer’s “volatility in unemployment puzzle”. Hence, this result supports models that
are able to incorporate these effects. Since the correlations of these two variables with
productivity that is conditional on technology shocks are of opposite sign to the respec-
tive unconditional moments, nontechnology shocks are once more necessary to fully
describe the overall dynamics in the data. I show that preference shocks are not suitable
to explain the remaining variation in the data.

The use of long-run restrictions to identify technology shocks and the empirical dy-
namics that are induced by these shocks has been harshly criticized, most prominently
by Chari, Kehoe, and McGrattan (2008). I address their critique in various ways. First,
I account for the “lag-truncation bias,” the fact that a VAR cannot be estimated with an
infinite number of lags as would correspond to the inverted solution of the respective
model. For this, I estimate the VAR with a Minnesota prior, adjusting the weight of the



366 Almut Balleer Quantitative Economics 3 (2012)

lags such that I can incorporate more past information (as suggested by Canova, Lopez-
Salido, and Michelacci (2010)). Second, I simulate data from the baseline model and
show that my structural identification can reveal the theoretical impulse responses of
the technology and nontechnology shocks. Third, I compare the results driven by the
estimated technology shocks to the dynamics induced by an alternative measure from
Basu, Fernald, and Kimball (2006) and document robustness of my results in this re-
spect.

The results are robust when allowing for investment-specific technology shocks.
Fisher (2006) motivated the separate identification of investment-neutral and invest-
ment-specific (or capital-embodied) technology shocks from the data. In the model,
both of these shocks positively affect labor productivity in the long run, while invest-
ment-specific technology shocks also have a negative long-run effect on the price of in-
vestment goods relative to consumption goods. In line with Fisher, investment-specific
technology shocks are identified in the data through the assumption that, in the long
run, they affect the relative price of investment negatively and labor productivity posi-
tively and in a certain ratio to the effect of neutral shocks on this variable. I document
that both in the model and in the data, investment-specific technology shocks behave
similar to neutral technology shocks.

I am not the first investigator to address conditional moments with respect to la-
bor market dynamics. Michelacci and Lopez-Salido (2007), Ravn and Simonelli (2008) or
Canova, Lopez-Salido, and Michelacci (2007) and Barnichon (2012) have also used long-
run restrictions in structural VARs to investigate the effect of different shocks on either
job flows, worker flows, or vacancies and unemployment. Different from these contri-
butions, this paper uses these conditional moments to address the empirical validity of
the baseline search-and-matching model. By investigating the sources of fluctuations in
labor productivity and thereby highlighting the discrepancies between conditional and
unconditional moments, this paper seeks to shed new light on ongoing debates like the
Shimer puzzle. This involves not only the role of technology shocks, but also preference
shocks as proposed by Hall (1997). It is important to document that labor market fluctu-
ations are not only driven by different shocks, but also that these different shocks induce
counteracting dynamics on the labor market. Furthermore, this paper is the first that ac-
tually tests whether the structural VAR correctly addresses the empirical performance of
the baseline model through the simulation exercise mentioned above.

Complementary to these studies, there exist many contributions in the literature
that estimate medium or large scale dynamic stochastic general equilibrium (DSGE)
models that incorporate search-and-matching in the labor market.2 Here, technology
shocks are usually identified based on a combination of short-run sign restrictions as in
Fujita (2011) or Braun, De Bock, and DiCecio (2006). While these shocks should gener-
ally depict the same dynamics as the technology shocks identified in this paper, this is
not always the case and depends on the fact that the co-movement between labor input
and productivity in the short run is explicitly used for identification.

2See, for example, Mandelman and Zanetti (2008).
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The remainder of this paper is organized as follows. Section 2 presents the model
that is used as a benchmark for the unconditional and conditional moments. The base-
line identification of technology shocks, and details on the specification and estimation
results are documented in Section 3. Section 3 also discussed some robustness of the
results, while most details regarding robustness along various dimensions are provided
in the Appendices B and C. Section 4 concludes.

2. A standard labor market model

2.1 The model

The standard labor market framework referred to in the following discussion nests
search-and-matching on the labor market within a real-business-cycle (RBC) and
growth model as in Merz (1995).3 The model comprises the subsequent equations

max
{Ct�Nt+1�Vt �Kt+1}∞t=0
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βt
(
χ ln(Ct)− N
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t
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Nt+1 = (1 −ψ)Nt +μV 1−η

t (1 −Nt)η


The posting of vacancies Vt creates a cost a and thereby search frictions. Employment
next period is determined by those jobs that remain after exogenous separation ψ and
the new job matches that are formed in this period via a commonly used Cobb–Douglas
matching function with matching elasticityη. The labor force is assumed to be constant,
so that unemployment in period t can be measured by 1−Nt . Job finding per period can
be described by Ft = μ( Vt

1−Nt )
1−η and thus co-moves with labor market tightness, de-

fined as the ratio of vacancies to unemployment. Merz (1995) has shown that the social
planner representation is equivalent to a decentralized problem in which workers and
firms bargain over the wage if the Hosios condition holds. In order to generate results
that are comparable with most studies in the literature (Merz (1995), Shimer (2005),
Mortensen and Nagypal (2007)), I assume the Hosios condition, that is the bargaining
weight is implicitly set equal to the matching elasticity in this setup.

Growth and business cycle fluctuations originate in the following exogenous process
for the general purpose technologyAt :

At = exp(γ+ εat)At−1


3Note that this model uses a version of Merz’s model without endogenous search effort and therefore
abstracts from labor adjustment along an additional margin. It is therefore better comparable to the model
presented in Shimer (2005). Furthermore, unlike the model with endogenous effort, it replicates the Bev-
eridge curve relationship, that is a negative correlation between unemployment and vacancies.
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Shocks to At will be called neutral technology shocks in the following. Neutral technol-
ogy shocks have permanent effects and, hence, output, consumption, the capital stock,
investment and labor productivity grow at the rate γ

1−α along a balanced growth path.
The long-run effect of technology shocks on labor productivity will serve as the identify-
ing restriction in the estimation in Section 3. The variable It measures the price of new
investment goods relative to consumption goods and is assumed to be constant. This
assumption will be relaxed in Section 3.2.3 when we allow for permanent investment-
specific technology shocks. Employment, unemployment and vacancies are stationary.4

Over the business cycle, positive neutral technology shocks increase labor produc-
tivity and, hence, the incentive of firms to post vacancies. As a consequence, the job
finding rate rises after a positive technology shock, while unemployment falls. It is fur-
ther straightforward to add any other, nonpermanent nontechnological source of vari-
ation on productivity, e.g. demand shocks. As long as extensions of the model do not
affect the validity of the identification, the empirical results documented below remain
equally valid. Hall (1997) suggested preference shocks as an important driving force of
labor market fluctuations. I consider preference shocks as shocks to the marginal rate
of substitution between consumption and leisure. This means that the parameter χ is
replaced by a stochastic process of the form ln(xt)= ρx ln(xt−1)+ εxt . As agents want to
consume more the higher is xt , they save less, and capital and output fall. At the same
time, agents would like to work more. Within a search-and-matching context, this in-
tuitively means that agents would accept a lower wage to become employed, which in-
creases the incentives for firms to post vacancies and increases employment. As a con-
sequence, labor productivity falls after a preference shock of this sort.

The labor market model outlined above differs in many respects from the standard
Mortensen and Pissarides (1994) model. Utility is not linear, but follows the standard as-
sumptions in the RBC literature. In addition, due to the explicit modeling of capital and
capital accumulation (i.e., savings) as well as output fluctuations, the RBC setting aims
much more at imitating real fluctuations outside the labor market. Moreover, the identi-
fying assumptions that I use in the empirical assessment are fulfilled in this framework.
While the original Mortensen–Pissarides model potentially accounts for permanent pro-
ductivity (or neutral) technology shocks, it does not allow for investment-specific tech-
nology shocks or other, potentially counteracting, sources of variation in labor produc-
tivity. When addressing issues like the Shimer debate on volatility, features like risk aver-
sion and the possibility of saving will increase the model-generated volatility compared
to the version in Shimer. In that sense, an RBC setup enhances the performance of the
model when viewing Shimer’s productivity shocks as technology shocks. Different to
Shimer, the central question here is not whether a model with technology shocks can
replicate the overall unconditional moments. Instead, I want to investigate whether the
model can match the empirical moments that are conditional on different structural
shocks and how this can help to replicate the overall unconditional moments as well.

4Hence, vacancies are multiplied by Zt =A1/(1−α)
t I

α/(1−α)
t in the budget constraint.
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2.2 Calibration and simulation

To motivate the empirical assessment based on conditional moments, I start by consid-
ering the empirical performance based on unconditional moments. If we believe that
productivity shocks are (mainly) technology shocks, these shocks should, in fact, be
able to generate both the conditional and the unconditional data moments. For this,
I calibrate the model and generate artificial time series from the model, compute the
respective second moments, and compare them to the empirical moments. I use quar-
terly time series data for the United States from 1955:1 to 2004:4, which is also used in
the empirical specification below. The job finding and separation rates are taken from
the worker flow data produced by Robert Shimer.5 Labor productivity (output per hours
of all persons) is the standard nonfarm business measure provided by the U.S. Bureau
of Labor Statistics.

The baseline calibration is shown in Table 1. I set the capital share α= 0
36 in order
to match a labor share of 64% as in Hansen (1985) and McGrattan and Prescott (2010).
The value of α and a technology growth rate of 0
33% replicate the mean growth rate
of labor productivity in my sample which is 0
52%. Given these values, the time dis-
count factor β= 0
9952 then generates an annual real interest rate of 4
1% in the model,
which is in line with McGrattan and Prescott (2005). For a comparable sample, Ríos-Rull
and Santaeulàlia-Llopis (2010) provide annual values for the ratios of capital and con-
sumption to output, which I use to calibrate the quarterly depreciation rate of capital to
δ= 0
0217.

In the utility function, I set χ= 1 in order to formulate preferences in line with Merz
(1995). This will also be the mean value of the stochastic process in the specification
with preference shocks. The parameter φ = 0
5 imposes a Frisch elasticity of 2 in the
baseline model. This number is regarded as the consensus macro estimate of this elas-
ticity according to Chetty, Guren, Manoli, and Weber (2011). In line with Mortensen and
Nagypal (2007), the elasticity of the matching function with respect to unemployment is

Table 1. Baseline calibration of the model.

Parameter Calibration Target

Capital share in production α= 0
36 Labor share of 64%
Growth rate technology shock γ = 0
0033 Qtly. mean prod. growth rate of 0
52%
Discount factor β= 0
9952 SS annual interest rate of 4
1%
Capital depreciation δ= 0
0217 Annual SS ratios k

y = 2
31 and c
y = 0
75

Parameter in utility function χ= 1 Corresponding to Merz (1995)
Parameter in utility function φ= 0
5 Frisch elasticity of 2
Matching function elasticity η= 0
46 Mortensen and Nagypal (2007)
Constant in matching function μ= 1
79 Mtly mean job finding rate of 59%
Separation rate ψ= 0
11 Mtly mean job separation rate of 3
57%
Vacancy posting cost a= 0
02 SS labor market tightness θ= 1

5This is the worker flow data officially posted on the website of Robert Shimer and documented in Shimer
(2012). For additional details, see http://home.uchicago.edu/~shimer/data/flows.

http://home.uchicago.edu/~shimer/data/flows
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set to η= 0
46. Based on this, the constant of the matching function (μ= 1
79) and the
cost of posting vacancies (a= 0
02) are calibrated such that the steady-state labor mar-
ket tightness is equal to one and the respective job finding rate corresponds to the mean
monthly job finding rate of 59
6% in the worker flow data over my sample. The same data
delivers a mean monthly job separation rate of 3
4% which corresponds to ψ= 0
11.

Under the assumption of homogenous workers and a constant labor force, Shimer
(2012) showed that the unemployment rate can be approximated by the steady state un-
employment rate ũ= js

js+jf . Using the values described above, this means that the model
generates a steady-state unemployment rate of 5
79%. Here, in line with Shimer (2005),
it is assumed that the job separation rate does not move over the cycle and, therefore,
does not play a role for fluctuations. This has been criticized by Fujita and Ramey (2009),
among others. For now, I calculate unemployment rate fluctuations by setting the job
separation rate equal to its sample mean. Addressing the criticism, I separately consider
fluctuations in the job separation rate and the resulting movements of the unemploy-
ment rate later on.

The first column of Table 2 (model I) compares the second moments that are gen-
erated from the model driven by neutral shocks only to those in the data. Hence, εit =

Table 2. Model simulation.a

Model I II III IV
Shocks Techn. Shocks Techn. Shocks Pref. Shocks Both Shocks

A: Standard Deviations
JFinding 0
0756 0
0576 0
1593 0
1330

data 0
1542 (0
04�0
08) (0
10�0
14) 0
1542
Unemployment 0
0739 0
0563 0
1601 0
1311

data 0
1542 (0
04�0
08) (0
10�0
14) 0
1542
Productivity 0
0156 0
0116 0
0166 0
0156

data 0
0156 0
0116 0
0166 0
0156

B: Autocorrelations
JFinding 0
9175 0
9177 0
8491 0
8662

data 0
9128 (0
85�0
95) (0
86�0
90) 0
9128
Unemployment 0
8424 0
8452 0
7039 0
7139

data 0
9128 (0
85�0
95) (0
86�0
90) 0
9128
Productivity 0
8640 0
8628 0
9069 0
8767

data 0
8507 (0
86�0
92) (0
90�0
94) 0
8507

C: Cross-Correlations
JFind., Prod. 0
8355 0
8450 −0
8053 −0
2084

data 0
0567 (−0
66�−0
10) (0
52�0
77) 0
0567
Unemp., Prod. −0
7565 −0
7663 0
8963 0
2911

data −0
0567 (0
10�0
66) (−0
77�−0
52) −0
0567

aAll figures are obtained from data simulated from the model with the baseline calibration and shocks that are calibrated
such that the respective empirical standard deviation of productivity is matched. All series are detrended with the smooth
HP-filter as in Shimer (2005). Model I matches the overall unconditional standard deviation of productivity. Model II, driven
by technology shocks only, and model III, driven by preference shocks only, match the respective conditional standard de-
viation of labor productivity. In model IV, the technology shock matches the conditional standard deviation of productivity
and the preference shock is then calibrated such that both shocks match the overall unconditional standard deviation of
productivity.
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εxt = 0. The standard deviation of the neutral technology shock εat is then calibrated
to match the standard deviation of labor productivity. Both the artificial and the actual
data series are detrended with a very smooth Hodrick–Prescott (HP) filter (λ = 105) as
in Shimer so as to relate my results directly to his. In the actual data, the standard de-
viation of the job finding rate and unemployment are about 10 times as large as that in
labor productivity. All series are highly autocorrelated in the first lag. The job finding and
unemployment rates are hardly correlated with productivity in the data.

The comparison with the model moments mirrors the Shimer volatility in unem-
ployment puzzle. First, the standard deviations of job finding and unemployment gen-
erated in the model are less than half of those in the data. Second, the correlation of
unemployment and job finding with productivity is too high in the model compared to
the data. Shimer concluded that no internal propagation mechanism of labor produc-
tivity shocks exists in the model, since the real wage strongly reacts to labor productivity
shocks and, hence, weakens the incentives for firms to post vacancies. To improve its
empirical performance, Shimer and also Hall (2005) proposed to introduce rigid wages
into the standard framework.

Note that the volatility that the model generates with respect to the labor market
variables is higher than in the original model in Shimer (2005). This is partly due to
the choice of certain parameters. A lower Frisch elasticity, closer to a value of 0
5 as
in the micro data, and a higher cost of posting a vacancy generate smaller volatilities
also in this model. The same is true when increasing the value of the matching elasticity
to η = 0
72 as promoted by Shimer. In contrast, many other authors have argued that
Shimer’s volatility in unemployment puzzle disappears for a different calibration of the
model. Hagedorn and Manovskii (2008), for example, have argued in favor of a differ-
ent calibration of the outside option of the workers in combination with a lower weight
of the workers in the wage bargaining. It would be straightforward to implement this
calibration in a decentralized version of the model which departs from the Hosios con-
dition. However, the calibration here serves two purposes: First, it should be relatively
standard. Second, it should reflect the Shimer critique. The next section will then show
that this critique vanishes once the model output is compared to conditional rather than
unconditional moments.

3. Moments conditional on technology shocks

3.1 Identification and estimation

The effects of technology shocks on labor market variables can be investigated within
a structural VAR framework with long-run restrictions based on Blanchard and Quah
(1989). The main idea is to find a mapping that transforms the residuals from a reduced
form VAR into structural residuals such that the latter can be interpreted as certain types
of shocks such as technology shocks. These mappings typically involve assumptions on
the variance–covariance matrix of the structural shocks as well as restrictions on the
effects of these shocks on the variables in the VAR.

Based on Galí (1999), technology shocks are identified via the central assumption
that they are the only shocks that positively affect labor productivity in the long-run.



372 Almut Balleer Quantitative Economics 3 (2012)

In addition, the technology shocks are orthogonal to each of the nontechnology shocks
estimated. These assumptions are implemented by including labor productivity in first
differences and ordered first in the VAR, and then applying a Cholesky decomposition
to the long-run horizon forecast revision variance.6 It has to be noted that many struc-
tural disturbances other than technological innovations can affect labor productivity in
the short and the medium run, but that technology shocks can be distinguished from
nontechnology shocks with respect to their long-run effects on this variable. With this
approach, I do not exactly estimate the model outlined above. Rather, the conditional
moments obtained should hold for a broad class of different model specifications that
fulfill the identifying assumptions. The long-run assumption about the nature of tech-
nology shocks holds in the model presented as well as in many other models, such as
the neoclassical growth model or the New Keynesian model.7

All identification alternatives presented in the following discussion are based on the
same reduced-form VAR, which contains labor productivity, the job finding rate, and
the separation rate. For later comparison with alternative identification schemes, the
relative price of investment is added to the VAR. The reduced-form VAR is estimated
within a Bayesian framework with a Minnesota prior, similar to Canova, Lopez-Salido,
and Michelacci (2007). The Minnesota prior incorporates a unit root in the levels of the
variables included in the VAR and a fixed residual variance that determines the tightness
on own lags, other lags, and potential exogenous variables as well as the decay of the
lags. Using the latter parameter, this prior allows us to generate sensible results for a
large number of lags, as Canova et al. outlined. This addresses an often cited criticism of
the VAR approach (e.g., by Chari, Kehoe, and McGrattan (2008)) that states that in theory
one should employ a VAR with an infinite number of lags (here eight lags are employed)
so as to correctly identify technology shocks using long-run restrictions. Except for the
decay, I use a relatively loose prior in the estimation.8

Furthermore, the VAR is estimated with a trend as suggested by Fernald (2007) and
Canova, Lopez-Salido, and Michelacci (2010). Here, the trend is a dummy that is deter-
ministically broken at 1973:2 and 1997:1. These dates have been considered as break
points in the growth literature, and they replicate the turning points in the job separa-
tion rate and unemployment series.9

The baseline specification is estimated using quarterly time series data for the
United States over the sample 1955:1–2004:4. Apart from the data described in Sec-
tion 2.2, the real price of investment is included in the analysis and will become im-
portant later on when we consider the effects of investment-specific technology shocks.
This series consists of a price index for equipment and software, and a consumption

6See Appendix A.1 for further details.
7It does not hold in endogenous growth frameworks.
8The prior variance of the coefficients depends on three hyperparameters, φ1 = 0
2, φ2 = 0
5, and

φ3 = 105, that determine the tightness and decay on own lags, other lags, and exogenous variables. The
decay parameter is set to d = 7.

9See Fernald (2007) for empirical evidence on the trend breaks. Appendix C presents robustness checks
to this specification along various dimensions including different priors, different break points for the
trend, and no trend as well as different lag lengths in the VAR.
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price deflator that is chain weighted from nondurable, service, and government con-
sumption. The standard data from the National Income and Product Accounts (NIPA)
have been criticized for not taking into account the price-per-quality change in the in-
vestment goods of interest (see Gordon (1990)). I use the quarterly series generated by
Fisher (2006) that is based on the measure of Cummins and Violante (2002) and that
takes these flaws into account.10 Labor productivity and the relative price of investment
are included in growth rates in the VAR, while the job finding and separation rates are in-
cluded in levels. Unemployment is then deducted from the dynamics of the job finding
rate and the separation rate, respectively.

3.2 Results

3.2.1 The Shimer puzzle Table 3 depicts the historical decomposition of the actual time
series into the technology and nontechnology (or residual) components. These compo-
nent series are generated assuming the exclusive presence of the respective shock and
using information on the first lags in the sample. Detrending the resulting series with
the smooth HP filter as in Shimer then delivers the business-cycle components of inter-
est. The historical decomposition documents the ability of the single shocks to replicate

Table 3. Historical decomposition of baseline identification.a

Unconditional
Sample

Conditional Moments

Technology Residual

A. Standard Deviations
JFind. and Unemp. 0
1542 0
0548 0
1229

(0
04�0
08) (0
10�0
14)

Productivity 0
0156 0
0116 0
0166
(0
01�0
02) (0
01�0
02)

B. Autocorrelations
JFind. and Unemp. 0
9128 0
9189 0
8869

(0
85�0
95) (0
86�0
90)

Productivity 0
8507 0
8927 0
9208
(0
86�0
92) (0
90�0
94)

C. Cross-Correlations
JFind., Prod. 0
0567 −0
4360 0
6739

(−0
66�−0
10) (0
52�0
77)

Unemp., Prod. −0
0567 0
4360 −0
6739
(0
10�0
66) (−0
77�−0
52)

aAll series are detrended with the smooth HP filter as in Shimer (2005). Unemployment is calculated with a job separation
rate that is constant and set equal to its mean value over the sample. For the conditional moments, the series are simulated
with the respective shock operating only. The point estimate is the median; the confidence intervals are 68% Bayesian bands
from the posterior distribution.

10The series by Jonas Fisher was extended by Ricardo DiCecio. I thank both for making their data avail-
able to me.
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exactly those moments in the data that have been used for judging the empirical perfor-
mance of the model.11

Volatility is measured by the standard deviation in panel A. The standard deviations
of the component series of the job finding rate and unemployment that are driven by
technology shocks are less than half of the overall sample volatility. In fact, if the model
is calibrated to match the standard deviation of labor productivity that is conditional on
technology shocks (model II in Table 2), the standard deviation of the job finding rate
and the unemployment rate generated in the model is close to and lies within the con-
fidence bands of the standard deviation that is conditional on technology shocks. As a
result, conditional on technology shocks, the model works well to replicate the volatili-
ties in these two central variables and, consequently, the Shimer critique does not apply.

While the technology-shock-driven model works well to generate the volatility that
is conditional on technology shocks, it, however, still fails to explain the overall volatility
in the sample. In fact, a large part of the volatility is still unexplained in the “residual”
disturbances as depicted in the last column of Table 3. As they are important for the
overall dynamics, nontechnology sources of volatility, generally referred to as demand
shocks, should consequently be incorporated into the standard model.

Hall (1997) proposed a candidate for these residual shocks, namely preference
shocks or shocks to the marginal rate of substitution between consumption and leisure.
Hall decomposed macroeconomic variables into fluctuations that originate in tech-
nology, government spending, and preference shocks. He bases his decomposition on
equations derived from a standard RBC model, but does not use structural VAR tech-
niques for his analysis. He shows that preference shocks account for most of the fluctua-
tions in hours worked. Here, I investigate the extent to which these shocks can enhance
the performance of the labor market model. Note that labeling the residual shocks as
preference shocks potentially sums up a lot of different “demand-type” shocks, includ-
ing shocks to government spending or monetary shocks.12

Model III of Table 2 exhibits the second moments from a model that is driven by pref-
erence shocks only and in which the law of motion of the shock is calibrated to match the
standard deviation of labor productivity that is conditional on nontechnology shocks in
the data (this involves ρx = 0
15 and a very high σx = 0
31). Hence, very large preference
shifts are needed to explain this residual nontechnological variation. These shocks gen-
erate a substantial volatility in the job finding rate and unemployment that is close to
the conditional standard deviation in the data. Working together, both technology and
preference shocks do improve the model with respect to the overall volatility in the labor
market variables as shown in model IV in Table 2.

Table 4 exhibits the full set of results, including the job separation rate and its effect
on the unemployment rate. The estimated standard deviation of the job separation rate
that is conditional on both technology shocks and nontechnology shocks is significantly

11Note that since all data series are detrended with the HP filter, the conditional variances corresponding
to the standard deviations in Table 3 do not add up to the unconditional variance.

12Barnichon (2012) argued that these remaining shocks are monetary policy shocks. A direct estimate of
monetary policy shocks has, however, been shown to have only little influence on labor market variables
that reflect the extensive margin such as worker flows or vacancies (see Ravn and Simonelli (2008)).



Quantitative Economics 3 (2012) New evidence, old puzzles 375

Table 4. Historical decomposition with job separation rate.a

Unconditional
Sample

Conditional Moments

Technology Residual

A. Standard Deviations
JSeparation 0
062 0
0503 0
056

(0
04�0
06) (0
05�0
06)

Unemployment 0
1786 0
0881 0
1409
(0
06�0
12) (0
12�0
16)

B. Autocorrelations
JSeparation 0
6336 0
9256 0
6158

(0
89�0
95) (0
59�0
66)

Unemployment 0
9218 0
9131 0
9109
(0
88�0
93) (0
90�0
92)

C. Cross-Correlations
JSep., Prod. −0
4392 0
3544 −0
6703

(0
11�0
48) (−0
74�−0
59)

Unemp., Prod. −0
1858 0
4613 −0
8014
(0
17�0
63) (−0
88�−0
70)

JSep., Unemp. 0
6845 0
885 0
6302
(0
80�0
92) (0
56�0
69)

JFind., JSep. −0
4404 −0
596 −0
3167
(−0
76�−0
19) (−0
40�−0
19)

aAll series are detrended with the smooth HP filter as in Shimer (2005). For the conditional moments, the series are sim-
ulated with the respective shock operating only. The point estimate is the median; the confidence intervals are 68% Bayesian
bands from the posterior distribution.

positive. In addition, it contributes to a large extent to the volatility of the unemploy-
ment rate, which is substantially higher now. If business cycles are driven by technology
shocks, this result undermines the assumption of a constant separation rate over the
cycle. Instead, this result favors a theoretical context with endogenous rather than ex-
ogenous job separation as in den Haan, Ramey, and Watson (2000).13

3.2.2 The “job finding puzzle” The conditional co-movement of the variables is de-
picted in panel C of Table 3 and also in the impulse responses to a 1 standard devia-
tion technology shock in Figure 1.14 Most prominently, job finding falls after a positive
technology shock, and the conditional correlation between job finding and productivity
is negative. Regardless of the job separation rate, unemployment increases after the fall
in job finding, and the correlation of unemployment and productivity is positive. These
two effects are opposite those in the overall sample and are the exact contrary to what

13Note also that all results discussed also hold for HP-filtered data using the standard parameter λ= 1600.
This is documented in Table 7 in the Appendix.

14The response of unemployment is calculated from the linearized relationship between the approxi-
mated unemployment rate and the responses of the job finding and separation rates according to ût =
f

(s+f )2 ŝt − s
(s+f )2 f̂t , where s and f are the mean values of the two rates, respectively.
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Figure 1. Impulse responses to Galí technology shocks. Responses are in percentage points to
a positive 1 standard deviation shock. Confidence intervals are 68% Bayesian bands.

the standard model proposes. Hence, this result challenges the conventional dynamics
in the standard search-and-matching model in a similar fashion as the results in Galí
(1999), known as the hours puzzle, have challenged the RBC paradigm with frictionless
labor markets.

This result raises three issues that are addressed subsequently. First, how important
are technology shocks to explain the overall business cycle dynamics of the labor market
variables. Second, can we be sure that the structural VAR recovers the correct dynamics
from the actual data. Third, if technology shocks turn out to be important for the dy-
namics and the VAR works well to detect the conditional moments in the data, how do
we explain the puzzling correlation conditional on technology shocks. Moreover, regard-
less of the mechanism that explains the correlations conditional on technology shocks,
a model driven by these shocks is not suitable to explain the overall correlations in the
data: other sources of labor market fluctuations should be taken into account.

A variance decomposition adds up the impulse-response coefficients from the es-
timation to a certain conventional business cycle horizon. This statistic reports the re-
spective contribution of each shock to the overall variance and therefore also highlights
the importance of the shocks relative to each other. Decomposing the business cycle
variance of the Galí identification into the contribution of technology and nontechnol-
ogy shocks, technology shocks explain up to 17% of the business cycle variance of job
finding and over 20% of the variance of unemployment.15 Hence, an appropriate model
should take technology-shock-driven dynamics into account.

The use of structural VARs has been widely disputed in the literature. Most promi-
nently, Chari, Kehoe, and McGrattan (2008) argued that to trust the results from the VAR,
it should be able to replicate the dynamics of the model it refers to when applied to sim-
ulated data. I do this exercise with the model presented in Section 2, allowing for the
presence of both neutral technology and preference shocks. Note that here, the job find-
ing rate increases after a positive technology shock and labor productivity falls after a
preference shock, opposite to the dynamics estimated in the actual data. Nicely, the VAR

15See Table 8 for the full variance decomposition.
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can reproduce the true impulse response to both shocks in the model as documented in
Appendix B. To my knowledge, I am the first to actually test the use of structural VARs in
the context of the search-and-matching model.

Another concern that is often raised in combination with the use of long-run re-
strictions in a structural VAR is the question whether we believe that these restrictions
actually discover shocks that may be interpreted as technology shocks. To address this, I
use an alternative data series that was carefully constructed by Basu, Fernald, and Kim-
ball (2006) as a measure of “purified technology.” I use this measure instead of labor
productivity in the structural VAR and show that the results are very similar to the ones
documented above. I also regress lags of this series on the job finding and separation
rates, the results of which support the negative effect of technology on the job finding
rate. See Appendix B for details and results of this exercise.

Galí explained the drop in hours worked within a sticky price New Keynesian frame-
work. The obvious question to ask is, therefore, whether the natural extension of this
framework, including search-and-matching on the labor market, can equally explain
the drop in the job finding rate. In the case of hours, fixed demand in the short run
leads firms to adjust hours worked after a positive technology shock. Since it is much
more costly to adjust employment rather than hours worked, it is not clear that the
same mechanism works equally well in this context. In their specification with real rigid
wages, Blanchard and Galí (2010) documented that unemployment increases after a
positive productivity shock. Here, labor market tightness and, hence, the job finding rate
move together with unemployment. Barnichon (2012) used a similar reasoning to gen-
erate the fall in labor market tightness that he documents in a structural VAR framework
similar to the one presented here. In both cases, the model is, however, not able to gen-
erate such a large and persistent fall in labor market tightness (and, consequently, the
job finding rate) and respective increase in unemployment as documented here. More-
over, if agents are allowed to adjust along both the intensive and the extensive margin,
short-run adjustment most likely happens through hours worked rather than employ-
ment, contradictory to the evidence provided here.

There are explanations for this empirical finding that are different from a New Key-
nesian setup. Balleer and van Rens (forthcoming) documented that the shocks that have
been identified as neutral technology shocks in the Galí identification are, in fact, pos-
itively biased toward new skills (as they have a positive effect on the wage premium of
high- to low-skilled workers). Consider a framework in which two types of workers are
used in production and are to some degree substitutable. After a positive skill-biased
technology shock, high-skilled workers become more productive than low-skilled work-
ers and overall labor productivity increases. Depending on the elasticity of labor supply
and the degree of substitutability, low-skilled workers will then be substituted out of em-
ployment. The job finding rate for low-skilled workers will drop, while it will potentially
increase for high-skilled workers. If the negative effect on low-skilled workers is greater
than the positive effect on high-skilled workers, the overall job finding rate drops and
unemployment increases.

Regardless of the mechanism, a model driven by technology shocks is again not
suitable to explain the overall dynamics in the data. Rather, nontechnology shocks are
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needed to model the unconditional dynamics in the data. Reconsidering the preference
shocks from above, these kinds of shocks have been popular in the RBC literature to ex-
plain the empirical correlation of labor productivity with hours.16 Table 2 documents
that the correlations of the job finding rate and unemployment with productivity that
are generated by preference shocks in the model are opposed to the ones conditional
on nontechnology shocks in the data, however. After a positive preference shock, agents
want to consume more and, hence, decrease investments. Capital falls and, after an ini-
tial increase, output falls as a consequence. Due to the increase in employment, labor
productivity falls, which induces a negative correlation of this variable with the job find-
ing rate and a positive correlation with unemployment. Hence, preference shocks are
not suitable to explain the conditional correlations within this setup.

When allowing for a more general production function with a certain degree of sub-
stitutability between different types of skilled labor, preference shocks can indeed gen-
erate a positive correlation between the job finding rate and productivity. As outlined
above, capital falls after a positive preference shock. If capital and high-skilled labor are
substitutes in production, the employment of high skilled workers will increase and, as
they are more productive, so will labor productivity. Balleer and van Rens (forthcoming)
provided evidence for capital–skill substitutability over the business cycle.

As exhibited in Figure 1, job separation significantly increases after a positive tech-
nology shock, contributing to an even larger increase in unemployment. A rise in job
separation after a positive innovation in technology might be due to the fact that not
all of the existing job matches can freely use this new technology. Hence, technological
innovation is embodied in new jobs or is specific to existing vintages. Canova, Lopez-
Salido, and Michelacci (2007) employed a vintage human capital to model “Schumpete-
rian creative destruction” after a neutral technology shock. As is documented in greater
detail in Appendix C, the sign of the job separation effect is not robust, however, in par-
ticular neither when considering different subsamples nor to the inclusion or exclusion
of a trend in the estimation.

3.2.3 Robustness Based on Greenwood, Hercowitz, and Krusell (1997), Fisher (2006)
addressed the issue that fluctuations in labor productivity might be generated not only
by factor-neutral technological progress, but also by investment-specific technologi-
cal innovations. Consequently, investment-specific technological progress satisfies the
identifying assumption for the Galí technology shocks and, hence, invalidates the in-
terpretation that these shocks are factor-neutral. Fisher proposed a strategy to sepa-
rately estimate neutral and investment-specific technology shocks, and documents that
the latter contribute to a larger extent to growth and cyclical fluctuations of macroe-
conomic variables (in particular, of output and hours worked) than neutral technology.
Investment-specific technological progress thus provides a potential additional source
of variation in the job finding rate and unemployment.

In the original Mortensen and Pissarides framework, it is not possible to distin-
guish between these two sources of variation in labor productivity, whereas the model
in Section 2 can differentiate between these two shocks. Similar to Fisher (2006), It can

16See, for example, Bencivenga (1992) on the Dunlop–Tarshis observation.
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be referred to as investment-specific technology which makes new investment goods
cheaper relative to consumption goods and consequently drives the real price of new
investments down.17 AsAt , It follows a random walk with drift according to

It = exp(ν+ εit)It−1


Through capital accumulation, investment-specific technology favors new investments,
leads to new capital formation and hence has a positive effect on output and labor pro-
ductivity. Just like after positive neutral technology shocks, the job finding rate increases
and unemployment falls after a positive investment-specific technology shock. How-
ever, since the formation of capital takes time, productivity increases with a lag in re-
sponse to investment-specific technological progress. This increases the overall stan-
dard deviation of the job finding rate and unemployment in the model in which both
types of technology shocks operate. Furthermore, the correlation between the job find-
ing rate and productivity is less than in the model with neutral shocks only. However,
these effects are not large enough to replicate the unconditional data moments.18

I estimate the effects of both neutral and investment-specific technology shocks
on the labor market dynamics using the identification strategy in Fisher (2006): Only
investment-specific technology shocks affect the investment price in the long run and
only technology shocks (both investment-specific and neutral) may be sources of long-
run fluctuations in labor productivity. In addition, the long-run effect of investment-
specific technology shocks on labor productivity is equal to α

1−α , which is consistent
with a Cobb–Douglas production function with capital share α. All of these identifying
assumptions hold in the model with investment-specific technological progress.

As outlined in more detail in Appendix C, the results for the Fisher identification sup-
port all results from the baseline identification documented above: Technology shocks
generate standard deviations in the job finding rate and unemployment that are close
to the one produced within the model, but that are a lot smaller than the unconditional
volatilities. In addition, positive investment-specific technology shocks induce a fall in
the job finding rate and an increase in the unemployment rate. Over and above this as-
sessment, Appendix C also provides the robustness of the results to changes in the spec-
ification of the reduced form VAR, such as prior, lag length or trend, as well as to the use
of alternative measures of labor market dynamics in the estimation.

4. Conclusion

Starting from the recent ongoing debate on the empirical performance of the Morten-
sen–Pissarides search-and-matching model, this study provides an important contri-

17This can also be described as 1
Pt

. Greenwood, Hercowitz, and Krusell (2000) derive this one-sector rep-
resentation of the model from a two-sector version with a consumption and an investment sector. Empir-
ically, investment-specific technological progress is believed to be responsible for the persistent fall in the
real price of equipment goods from 1955 until 2000 as measured by Cummins and Violante (2002) among
others.

18When simulating the model, the growth rates and standard deviations of the two types of technology
shocks are calibrated to match the moments of labor productivity and the investment price, which results in
γ = 0
0074 and ν = −0
0117 for our sample. The mean growth rate of labor productivity then equals 1

1−αγ+
α

1−α ν. Please contact the author for a table of the model moments.
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bution to the debate, as it judges the empirical performance of the model on the basis
of moments conditional on technology shocks rather than on unconditional moments.
My analysis breaks down the second moments of labor productivity, the job finding, job
separation rate and unemployment rate into the contributions of technology and non-
technology shocks. These shocks are identified within a structural VAR framework with
conventional long-run restrictions and a combination of long-run zero and sign restric-
tions.

I find that technology shocks cannot be the source of the high volatility in the job
finding rate and unemployment present in the data. As a result, the standard deviation
of these variables that is generated from a standard model replicates the volatility con-
ditional on technology shocks. A large part of the volatility remains unexplained in the
residual from the structural estimation. This residual might be called nontechnology
or demand shock. To mirror the overall volatility in the data, the model should be aug-
mented with an additional nontechnological source of volatility rather than with respect
to the propagation of technology shocks as proposed by Shimer. Here, I investigate an
idea from Hall (1997) that preference shocks in the form of shocks to the marginal rate of
substitution between consumption and leisure are important for labor market dynam-
ics. I show that these shocks add a lot of volatility to the model when matching their
respective conditional moments.

Technology shocks induce a negative co-movement between job finding and pro-
ductivity, and a positive co-movement between unemployment and productivity, while
the respective figures in the overall sample are directly the opposite. Put differently,
job finding falls and importantly contributes to an increase in unemployment after a
positive technology shock. This result contradicts the effects generated in the standard
search-and-matching model. Furthermore, additional non-technological disturbances
are needed to replicate the unconditional correlation between productivity, the job find-
ing rate, and unemployment.

Both the fall in the job finding rate after technology shocks and the importance of
non-technology shocks point to the fact that a more general production function is
needed to understand the empirical labor market dynamics, both on a conditional and
an unconditional level. A potential candidate is a production function in which high and
low skilled labor are substitutes. If technology shocks as identified by the Galí identifi-
cation are skill-biased as documented by Balleer and van Rens (forthcoming), then the
substitution of low-skilled in favor of high-skilled workers can explain the drop in the
total job finding rate. In addition, this type of production function could replicate the
empirical labor market dynamics generated by preference shocks.

Appendix A: Identification and Estimation

A.1 Standard Long-Run Identification

Identification involves finding a mapping A of the residuals from a reduced form VAR
into so-called structural residuals such that these can be interpreted as technology
shocks. More precisely, name vt the residuals from a reduced form VAR with n variables



Quantitative Economics 3 (2012) New evidence, old puzzles 381

and E[vtv′
t] =Ω. The relationship between the structural and the reduced form residu-

als is then et =Avt , which induces AΣeA′ =Ω. The remaining assumptions necessary
to pin down A then need to come from restrictions on the matrix of long-run effects.
These assumptions can be incorporated as zero restrictions in the matrix of long-run
effects C ≡ ∑∞

i=0ΦiA, whereΦi are the impulse-response coefficients.
In the case of the Galí identification, all identified shocks, that is, the neutral tech-

nology shock plus the remaining n−1 nontechnology shocks, are assumed to be orthog-
onal. In addition, the variance of the structural residuals is normalized such that Σe = I.
If labor productivity is ordered first in the VAR, a lower triangular structure of the matrix
C satisfies Galí’s assumption that only neutral technology shocks drive labor productiv-
ity in the long run. This is easily obtained by performing a Cholesky decomposition of
the variance of the k-step-ahead forecast error ηt�k =Xt+k − Et(Xt+k), which is equal
to

MSE(k)=
(

k∑
i=0

Φi

)
Ω

(
k∑
i=0

Φi

)′

19

In the application, k= ∞ has to be approximated by some large value; here k is 80 quar-
ters. It has to be noted that this procedure uniquely pins down the effect of the neutral
technology shock on all variables in the VAR and that the result is not affected by the
additional (unnecessary) zero restrictions in the matrix of long-run effects.

The reduced form VAR for all baseline specifications is estimated in a Bayesian
framework in the main application. More precisely, I obtain 1000 draws of the posterior
distribution of the reduced form coefficients and then apply the identification proce-
dure to each of them to produce draws of the distribution of the structural coefficients.20

The point estimates exhibited then correspond to the median and the confidence inter-
vals to the 16th and 84th percentiles of the posterior distribution.

A.2 Fisher identification

In the Fisher identification, I impose the identifying assumption for neutral and
investment-specific technology shocks as in Fisher (2006): Only investment-specific
technology shocks affect the investment price in the long run and only technology
shocks (both investment-specific and neutral) may be sources of long-run fluctuations
in labor productivity. In addition, a third restriction imposes that the long-run effect of
investment-specific technology shocks on labor productivity is equal to α

1−α , which is
consistent with investment-specific random walk shocks and a Cobb–Douglas produc-
tion function with capital share α, such as in the model presented in Section 2.

19See, for example, Uhlig (2004). Note that the variables important for identification, here labor produc-
tivity, need to enter in first differences in the VAR for this equation to hold.

20This approach goes back to Canova (1991) and Gordon and Leeper (1994), and is feasible if the system
is just identified, that is, if a unique mapping exists between draws of the residual variance–covariance
matrix and draws of the identification matrixA.
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I implement these restrictions using a decomposition of the matrix of long-run ef-
fects, similar to the Galí identification.21 First, if the real investment price is ordered first
and labor productivity is ordered second in the VAR, the matrix of long-run effects may
be lower triangular so as to impose the first two restrictions. In addition, the third re-
striction implies that c21

c11
= α

1−α , where cii are the respective elements of the matrix of
long-run effects C.

Since the lower triangular structure already imposes the sufficient number of condi-
tions for the identification ofA, I need to relax one of the other assumptions to maintain
exact identification. Here, the third restriction results in a positive correlation between
neutral and investment-specific technology shocks. Hence, Σe is no longer diagonal, but
rather

Σe =
⎡
⎣ 1 ρ O

ρ 1 O

O O I

⎤
⎦ 


Naming Λ the lower triangular Cholesky factor from the decomposition of the k-step-
ahead forecast error, the identification matrix is thenA= FB with F = (∑k

i=0Φi)
−1 and

B=
⎡
⎣ 1 0 O

b
√

1 + b2 O

O O I

⎤
⎦ 


With b= ( α
1−αλ11 −λ21)/λ22, with λii being the elements ofΛ. I set α= 1

3 as in the model
calibration. The correlation between the two technology shocks is pinned down as ρ=

−b√
(1+b)2 .

Appendix B: Robustness—Are the estimated shocks really

technology shocks?

B.1 Using artificial data from the model

As Galí (1999) documented, the result that hours worked fall after a positive technology
shock challenges the empirical validity of the technology-shock-driven RBC model. In
one of the most well known contributions to the debate on the hours puzzle, the use of
long-run restrictions in structural VARs and its application to test the validity of macroe-
conomics models has been harshly criticized by Chari, Kehoe, and McGrattan (2008).
Chari et al. simulated data from the baseline RBC model and used it in a simple VAR
containing labor productivity and hours worked as in Galí. They compared the resulting
impulse responses to the “true” ones from the model. With their calibration and speci-
fication, the VAR is not able to replicate the theoretical increase in hours worked after a
positive technology shock.

21Note that Fisher imposed his restrictions in an instrumental variable framework similar to Shapiro
and Watson (1988). I thank Fabio Canova for the solution of the implementation of the Fisher restrictions
as explained here.
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To address these concerns, I test the validity of the structural VAR as employed in
Section 3 with artificial data generated from the model presented in Section 2. I gener-
ate 1000 simulations of labor productivity and the job finding rate of 184 quarters, the
length of the actual sample. For this, I use the version of the model that is driven by both
technology and preference shocks. Chari et al. argued that the VAR performs badly in the
presence of nontechnology shocks that do not only play a minor role. Here, the prefer-
ence shock plays a substantial role for the business cycle variation, as can be seen from
the model simulation in Table 2.

I then apply the baseline VAR to this artificial data. More precisely, the VAR is esti-
mated using a Minnesota prior with 8 lags and a decay of 7 in the specification. Note
that this is a key difference to the specification in Chari, Kehoe, and McGrattan (2008).
With this procedure, we can impose a much longer lag structure onto the VAR, which is
consequently less prone to “lag-truncation bias” as Chari et al. phrased it. Unlike in the
baseline specification, there is no trend (or broken dummy) used here as, clearly, there
are no such trends in either the productivity or the job finding series. As documented
below, the trend does, however, not change the results in the actual data.

Figure 2 exhibits the estimated impulse responses using both the artificial data and
the theoretical responses from the model. The confidence bands for the estimated re-
sponses are 2 standard deviations of the sample means from the 1000 simulations. Most
importantly, the VAR generates an increase in the job finding rate after both the tech-

Figure 2. Impulse responses with simulated data. Dashed lines are model responses to 1 stan-
dard deviation technology and preference shocks; solid lines are estimated responses from sim-
ulated data. Confidence bands are 2 standard deviations from 1000 simulations.
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nology and the preference shock, as implied by the model. Overall, the estimated re-

sponses are quite close to the theoretical responses. This supports the assertion that the

structural VAR used here can be used to verify the validity of the model in the actual

data.

B.2 Comparison to an alternative measure of technology

A recent contribution from Basu, Fernald, and Kimball (2006) (BFK) further supports the

findings from Galí (1999). These authors provided a measure of technological progress—

derived as a “sophisticated” Solow residual from a very different exercise than the one

in Galí—that also induces a contractionary effect on hours worked. Here, I use this mea-

sure to support the effect of technology on the job finding and separation rates from my

estimation in two different ways. First, I incorporate their measure of total factor pro-

ductivity (TFP) instead of labor productivity into my structural VAR with long-run re-

strictions. Neutral technology shocks are then the only shocks that move TFP in the long

run. As depicted in Figure 3, the effects of these shocks on the job finding rate, the job

separation rate, and unemployment are very similar to the effects from the estimation

with labor productivity.

Second, as suggested by Basu, Fernald, and Kimball (2006), I regress four lags of their

technology measure (dz) on job finding and job separation. Here, I detrend the two rates

as in the VAR by regressing them on a dummy trend broken at 1973:2 and 1997:1. Ta-

ble 5 shows the results; for impulse responses, one could simply add the estimated co-

efficients. Here, TFP has a negative effect on the job finding rate. The effect on the job

separation rate is also negative, but since this effect is small (and insignificant), unem-

ployment still increases after a shock to TFP.

Figure 3. Impulse responses to BFK technology shocks. Responses in percentage points to a
positive 1 standard deviation shock. Confidence intervals are 68% Bayesian bands.
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Table 5. Regression on BFK measure.a

Regressor

Dependent Variable dz dz(−1) dz(−2) dz(−3) dz(−4)

JFinding −0
6250∗ −0
3429 −0
4441∗ −0
5339∗ −0
3447
JSeparation −0
1473 0
0305 −0
0835 −0
1753 −0
1848

aThe asterisk (*) denotes significance based on 1 standard error bands.

Appendix C: Robustness—Investment-specific technology shocks, data,
and specification

C.1 Investment-specific technology shocks

As pointed out by Fisher (2006), fluctuations in labor productivity might be generated
not only by factor-neutral technological progress, but also by investment-specific tech-
nological innovations. This section investigates whether the results from our baseline
specification with neutral technology shocks are robust to separately estimating the ef-
fect of neutral and investment-specific technology shocks on the job finding rate and
unemployment. In order to identify the two shocks, we implement the assumptions
from Fisher (2006) as described in Section A.2.

The historical decomposition for the Fisher identification supports the results from
the baseline identification documented above. Both types of technology shocks, as well
as both technology shocks taken together, generate standard deviations in the job find-
ing rate and unemployment that are much smaller than the unconditional standard de-
viations, but quite close to those produced from the model (with both shocks). Once
more, sources other than technology are necessary to understand the unconditional
volatility in the data.22

As described in Section A.2, neutral and investment-specific technology shocks
are correlated in the Fisher identification due to the third restriction on the effect of
investment-specific technology shocks on labor productivity. Hence, their effects on
the labor market variables are similar, that is the job finding rate falls and the unem-
ployment rate increases after a positive investment-specific technology shock. However,
these effects are not as strong as after a neutral technology shock. Job separation does
not react significantly to an investment-specific technology shock. In the Fisher identi-
fication, investment-specific shocks explain about 13% of the business cycle variation of
labor productivity and over 15% on impact and at least 6% in the subsequent quarters of
the business cycle variation in the job finding rate and unemployment. Neutral shocks
play a much larger role for the variation of these three variables, however.23

22Table 6 depicts the conditional standard deviation of both shocks. A full table for the historical decom-
position of the Fisher identification can be provided by the author upon request. Note that here, the two
technology shocks are not orthogonal. Hence, the historical decomposition is not truly a decomposition.
Technology shocks and the residual disturbances are orthogonal, however.

23A figure with the impulse responses and a table for the variance decomposition can be provided by the
author upon request.
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Table 6. Robustness of the restricted Fisher identification.a

Conditional Standard Deviation Impulse Response

Job Finding Unemployment Job Finding

i-Shock n-Shock i-Shock n-Shock i-Shockb n-Shock

Baseline 0
0627 0
0667 0
0692 0
0972 −, sign. −, sign.

Baseline specification with Minnesota prior changed to
4 lags, decay 7 0
0651 0
071 0
0808 0
1129 −, sign. −, sign.
12 lags, decay 7 0
069 0
0702 0
847 0
1053 −, sign. −, sign.
8 lags, decay 4 0
579 0
0477 0
0745 0
0689 −;+, not sign. −, not sign.
3 lags, decay 1 0
0533 0
0567 0
0706 0
0809 −, not sign. −, not sign.

Flat prior (OLS equivalent) with
2 lags 0
0511 0
0609 0
727 0
0971 −, not sign. −, not sign.
3 lags 0
0533 0
0649 0
0737 0
0899 −;+, not sign. −, not sign.

K and K priorc 0
651 0
0738 0
689 0
1037 −, sign. −, sign.

Trend specification
No break 0
0667 0
0595 0
058 0
0494 −, sign. −, sign.

Fisher subsamples without break
1955:I–1979:II 0
0828 0
0853 0
0784 0
0895 −, sign. −, sign.
1982:III–2004:IV 0
0352 0
059 0
0777 0
0402 −;+, sign. −, sign.

Fujita and Ramey subsample without break
1976:III–2004:IV 0
0424 0
0699 0
0622 0
0528 −;+, sign. −, sign.

aHere, −;+ indicates initial drop, then hump-shaped increase.
bDescribes the effect on impact.
cKadiyala and Karlsson prior with Minnesota structure, same parameters as in baseline specification.

Note that the Galí and the Fisher identification strategies perform two different de-
compositions of the long-run variance matrix of the investment price, productivity and
hours worked, due to the different ordering. This means that, by construction, the Fisher
identification does not deliver technology shocks that induce the same effect on price
and productivity as the Galí identification. Thus, the Fisher identification does not pro-
vide a decomposition of the Galí technology shocks. The estimated neutral technology
shocks from the Fisher identification deliver very similar results to the neutral shocks
from the Galí identification, however.

The third restriction of the Fisher identification plays an important role for the es-
timated dynamics that follow from an investment-specific technology shock. In par-
ticular, the dynamics of the job finding and unemployment rate that follow from an
investment-specific technology shock are substantially different when including the ad-
ditional restriction or not. Without the restriction, the job finding rate increases and
unemployment falls after an investment-specific technology shock. This explains why
studies with a similar focus as that of this paper, such as Canova, Lopez-Salido, and
Michelacci (2010) or Ravn and Simonelli (2008) who do not add this third restriction,
document different responses of labor market variables to investment-specific technol-
ogy shocks. However, without the third restriction, the effect of the investment-specific
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shocks on labor productivity is negative. Consequently, these shocks neither can be in-
terpreted as technology shocks in the tradition of Galí nor do they correspond to labor
productivity shocks that drive the labor market dynamics in the search-and-matching
model. It is puzzling that the literature has not paid any attention to this while strongly
debating the response of hours worked to both shocks.

C.2 Specification

This section investigates the robustness of the two main results: the low standard devia-
tion conditional on technology shocks in job finding and unemployment, and the drop
in the job finding rate after positive innovations of technology. Since the neutral shocks
from the Fisher identification are very similar to those from the Galí identification, I doc-
ument the results for the Fisher identification only. Table 6 summarizes the results.

The first set of robustness checks deals with the prior and the lag length in the esti-
mation of the reduced form VAR. Clearly, the baseline specification with the Minnesota
prior is different from a standard ordinary least squares (OLS) specification with 2–4 lags
in the VAR. In the Minnesota prior, a high decay parameter is necessary for a large num-
ber of lags to generate both significant and sensible results. Using a smaller number of
lags together with a smaller decay on these lags or, similarly, a flat prior (OLS equiva-
lent) for the estimation of the reduced form VAR, qualitatively supports the findings in
the baseline specification, but does not deliver significant results.

The results are robust to relaxing the assumption of a fixed residual variance within
a Normal–Wishart prior structure. The prior suggested by Kadiyala and Karlsson (1997)
employs the same mean for the coefficients as the Minnesota prior and generalizes the
Minnesota prior in terms of a non-diagonal, unknown residual variance. Compared to
the Minnesota prior, the coefficient variance additionally weights the effect of the ex-
ogenous variables on a variable with its respective variance and fixes φ1 = 1.

The second set of robustness checks addresses the presence of trends in the data.
The baseline specification includes a broken dummy trend in the specification that is
controversial. In fact, the question of whether to include a trend into the specification is
closely related to the debate on how to specify hours worked in a similar structural VAR.
Here, it has been shown that if they are specified in first differences or are HP-filtered,
hours worked fall after a positive Galí-type technology shock, while they increase after
the same type of shock when specified in levels (see Galí (1999) and Christiano, Eichen-
baum, and Vigfusson (2003), respectively). The fall in hours worked after a positive tech-
nology shock contradicts the standard RBC paradigm and has become famous as the
“hours puzzle” in the literature. A trend like the one applied in the baseline removes
slow-moving components from the series and is, therefore, related to taking first differ-
ences of the labor market variables. Canova, Lopez-Salido, and Michelacci (2010) argued
that if the variables are specified in levels, long-run restrictions may pick up the slowly
moving components of the variables, even though they aim to explain business cycles
fluctuations.

Without the dummy breaks, the job finding rate still decreases after positive inno-
vations of both technology shocks. This means that the “job finding” puzzle is robust to
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including or not including a trend in the specification. Note further that job separation
now falls significantly after both shocks. In fact, it falls by such a large extent that the
unemployment rate falls in the longer horizon, which reflects the result from the hours
debate.

In addition, the results from the entire sample are compared to results for subsam-
ples suggested by Fisher (2006). Here, no trend is incorporated into the specification, but
the results are robust to an inclusion of trend breaks as in the baseline specification. In
the latter sample, investment-specific technology shocks induce an initial fall in the job
finding rate and a subsequent (borderline) significant increase. Job separation does not
react to a neutral shock, but decreases significantly after an investment-specific technol-
ogy shock. Hence, these shocks do generate dynamics different from the neutral shocks
in this sample.

C.3 Data

The worker flow data of Shimer and the respective business cycle facts are not without
controversy in the literature. Fujita and Ramey (2009) also calculated worker flows from
the CPS. The Fujita and Ramey data set does not encompass the same sample used by
Shimer; it ranges from 1976:3 to 2004:4.24 As stated by the authors, the standard devia-
tion of the job separation rate is higher and that of job finding is lower in their data series
compared to Shimer. With respect to the dynamics of unemployment, this suggests a
larger role for the first series. Job separation is also more persistent, and the correlations
of the job finding and separation rates with productivity are much lower than in the
Shimer series. Figure 4 shows that the responses to technology shocks in both data sets
are quite similar. Note that job separation decreases after a positive technology shock,
which is mainly due to the difference in the sample rather than to the difference in the
measurement of the data.

Figure 4. Shimer versus Fujita–Ramey. Solid lines depict Shimer data, broken lines show Fujita
and Ramey data. Responses are in percentage points to a positive 1 standard deviation shock.
Confidence intervals are 68% Bayesian bands.

24I thank Shigeru Fujita for making the data available to me.
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Appendix D: Additional tables

Table 7. Model simulation with λ= 1600.a

Model I II III IV
Shocks Techn. Shocks Techn. Shocks Pref. Shocks Both Shocks

A: Standard Deviations
JFinding 0
0516 0
0339 0
1061 0
1045

data 0
1011 (0
02�0
05) (0
07�0
10) 0
1011
Unemployment 0
0532 0
0349 0
1156 0
1134

data 0
1011 (0
02�0
05) (0
07�0
10) 0
1011
Productivity 0
0105 0
0065 0
0089 0
0105

data 0
0105 0
0065 0
0089 0
0105

B: Autocorrelations
JFinding 0
8185 0
8207 0
7365 0
7377

data 0
8112 (0
68�0
87) (0
71�0
80) 0
8112
Unemployment 0
6577 0
6645 0
4883 0
5020

data 0
8112 (0
68�0
87) (0
71�0
80) 0
9128
Productivity 0
6357 0
6326 0
7827 0
7291

data 0
6917 (0
63�0
80) (0
70�0
75) 0
6917

C: Cross-Correlations
JFind., Prod. 0
9090 0
9032 −0
6984 −0
3758

data 0
139 (−0
87�−0
46) (0
45�0
73) 0
139
Unemp., Prod. −0
6673 −0
6648 0
8567 0
5455

data −0
139 (0
45�0
87) (−0
73�−0
45) −0
139

aAll figures are obtained from data simulated from the model with the baseline calibration and shocks that are calibrated
such that the respective empirical standard deviation of productivity is matched. All series are detrended with a HP-filter with
λ= 1600. Model I matches the overall unconditional standard deviation of productivity. Model II, driven by technology shocks
only, and model III, driven by preference shocks only, match the respective conditional standard deviation of labor productivity.
In model IV, the technology shock matched the conditional standard deviation of productivity and the preference shock is then
calibrated such that both shocks match the overall unconditional standard deviation of productivity.

Table 8. Contribution of neutral shocks to variance.a

Quarters 1 8 16 32

Productivity 35
84 55
72 74
67 88
29
(15
98�58
11) (36
87�72
97) (62
21�84
67) (82
73�92
33)

Investment price 11
90 14
30 14
10 12
86
(4
60�21
08) (5
39�25
84) (5
01�27
10) (4
02�27
07)

Job finding 12
87 17
03 18
47 18
54
(3
78�28
18) (4
29�35
45) (5
13�38
13) (5
12�38
71)

Job separation 10
97 12
20 11
85 11
95
(1
97�24
74) (2
66�28
16) (2
74�27
47) (2
85�27
38)

Unemployment 15
52 18
04 19
16 19
36
(5
01�31
79) (4
57�36
70) (5
38�39
50) (5
48�39
87)

aThe values for the displayed shocks and the (omitted) residual disturbances add up to 100 for each variable at each time
horizon. The point estimate is the median, the confidence intervals are 68% Bayesian bands from the posterior distribution.
All numbers are in percent.
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