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Do disaster expectations explain household portfolios?

SULE ALAN
Faculty of Economics and CFAP, University of Cambridge and College of Administrative Sciences,
Koc University

It has been argued that rare economic disasters can explain most asset pricing
puzzles. If this is the case, perceived risk associated with a disaster in stock mar-
kets should be revealed in household portfolios. That is, the framework that solves
these pricing puzzles should also generate quantities that are consistent with the
observed ones. This paper estimates the perceived risk of disasters (both proba-
bility and expected size) that is consistent with observed portfolios and consump-
tion growth between 1983 and 2004 in the United States. I find that the portfolio
choices of households that have less than a college degree can be partially ex-
plained by expectations of stock market disasters only if one allows for a large
probability of labor income loss at the same time. Such disaster expectations,
however, are not revealed in the portfolios of educated and wealthier households:
simple per-period participation costs of the stock market coupled with preference
heterogeneity explain their participation and investment patterns.
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1. INTRODUCTION

Following Mehra and Prescott’s seminal (1985) article, a large body of research has ac-
cumulated which proposes solutions to the “equity premium puzzle.” Various strands
of the literature consider preference respecifications (Campbell and Cochrane (1999),
Bansal and Yaron (2004)), market frictions and preference heterogeneity (Constan-
tinides, Brav, and Geczy (2002)), and model uncertainty (Weitzman (2007)). An alterna-
tive strand of the literature emphasizes the limitations of the postwar historical return
data. The observed equity premium can be rationalized if the standard model takes into
account the possibility of rare but disastrous market events (such as occurred before the
postwar period).

This idea was first proposed by Reitz (1988) and extended by Barro (2006) and Barro
and Ursua (2008). Barro (2006) analyzed 20th century disasters using gross domestic
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product (GDP) and stock market data from 35 countries. He suggested that a disaster
probability of 1.5-2% a year, with an associated decline in per capita GDP of 15-64%
from peak to trough, goes a long way to explain the equity premium puzzle. In follow-
up work using aggregate consumption data from 21 countries, Barro and Ursua (2008)
calibrated the disaster probability to 3.6% a year with an associated 22% decline in con-
sumption from peak to trough. More recently, Gabaix (2008) proposed a framework in
which disasters have varying intensity. This framework can explain, in addition to the
equity premium puzzle, many other asset pricing puzzles such as excess volatility, the
value premium, and the upward sloping nominal yield curve.

The equity premium puzzle has a spectacular manifestation in household micro-
data: most recent empirical evidence suggests that at least 50% of households in any
developed country do not hold equities directly or indirectly (the stock market par-
ticipation puzzle). Moreover, in contrast to the predictions of the standard model, we
observe a great deal of heterogeneity in the share of risky assets (stocks) in household
portfolios even after conditioning on stock market participation and controlling for in-
come and wealth (see Bertaut (1998), Guiso, Haliassos, and Japelli (2002), and Wachter
and Yogo (2010)). Given the rather impressive equity premium in the postwar period,
a particular difficulty in reconciling the standard model with observed facts is explain-
ing why younger households often hold both risk-free and risky assets. In its standard
form, life cycle portfolio theory with labor income risk and return uncertainty predicts
that households that are early in their life cycle should take advantage of the high equity
premium and hold large positions in stocks. In fact, the model often predicts a 100%
share of stocks in the financial portfolios of young investors (the portfolio specialization
or small saver puzzle).

This paper is motivated by the idea that if rare economic disasters can solve the pric-
ing puzzles, they should also explain the observed quantities (household portfolio hold-
ings). Put differently, perceived risk associated with a disaster in stock markets should be
revealed in household portfolios. This idea could be tested in two ways. One could take
historically calibrated values for the probability of disasters and expected size (from, for
example, Barro (2006)) and apply them to a life cycle model with assumed preference
parameter values to show how close one can get to observed life cycle profiles. Instead,
I chose to jointly estimate disaster expectations (both probability and expected size) and
preference parameters from observed portfolios, and then judge whether the estimates
are plausible compared to the historically calibrated values. Moreover, I chose to use a
much richer and realistic version of the consumer problem than the original Mehra-
Prescott model and the one assumed by Reitz (1988) and Barro (2006). Estimating the
entire structural model gives me the opportunity to test several other explanations of eg-
uity premium against an explanation based on economic disasters. If the correct quan-
tities are not revealed in an environment that is a lot more flexible than the original,
the explanation of the equity premium based on rare disasters would be significantly
weakened.

The results in this paper suggest that the expectations of rare disasters can, to a
certain extent, explain the portfolios of uneducated households only if it is reinforced
with an extreme (and rather implausible) labor market stress. Such expectations are not
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revealed in the portfolios of more sophisticated and wealthy households that are be-
lieved to be the relevant portion of the population in terms of aggregate wealth and asset
prices.

The structural estimation reported in this paper brings together three large sur-
veys conducted in the United States: the Survey of Consumer Finances (SCF) (1983-
2004), which contains detailed wealth and portfolio allocation information, the Con-
sumer Expenditure Survey (CEX) (1983-2004), which contains detailed durable and non-
durable expenditure information, and, finally, the Panel Study of Income Dynamics
(PSID) (1983-1994), which allows me to calibrate group-specific income process param-
eters. Limited heterogeneity in all parameters is allowed for by estimating the structural
parameters separately for four groups (two birth cohorts by two education levels). I also
go significantly beyond the existing literature and allow for preference heterogeneity
within groups.

Except for the old and more educated group, the probability of a rare disaster and
expected disaster size are estimated precisely. The point estimates for the perceived dis-
aster probability range from 1% (less educated young) to 5% (more educated young).
The estimated probability of a disaster is not statistically different from zero for the old
and more educated households (the wealthiest households in the sample). Per-period
participation costs (approximately 1% of the permanent income) and heterogeneity in
the coefficient of relative risk aversion (value of 4 at the 25th percentile and 9 at the 75th
percentile) appear to be sufficient to explain the portfolios of these households.

The remainder of the paper is organized as follows: The next section presents the
structural model used in the estimation. Section 3 discusses the estimation method and
the auxiliary environment. Section 4 presents the data. Section 5 discusses the results.
Section 6 concludes.

2. THE MODEL

I assume that the expected utility function is intertemporally additive over a finite life-
time and the subutilities are isoelastic. The problem of the generic consumer # is

max E g(ch’t+j)1_y ! (1)
1S T-w a+a ]

where C is nondurable consumption, vy, is the household-specific coefficient of relative
risk aversion, and 8, is the household-specific rate of time preference. The coefficient of
relative risk aversion and the rate of time preference are assumed to be distributed log
normally across households such that Iny;, ~ N(u,, o) and Iné;, ~ N(us, 03), respec-
tively.! The ideal setup would be to assume a joint distribution for the preference pa-
rameters and to estimate all five distribution parameters (w, oy, ws, 0s, py,s). However,
given the core question, such an addition would increase the complexity of the problem

1The unboundedness of the discount rate and the coefficient of relative risk aversion do not pose any dif-
ficulty in estimation, because I use six-point Gaussian quadrature to approximate the distributions, which
inevitably bounds possible ranges.
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without offering any useful insight. Here, I already go beyond what has been done in
the literature in terms of preference heterogeneity and assume parameter heterogene-
ity one at a time. That is, when the coefficient of relative risk aversion is assumed to be
heterogenous, the discount rate heterogeneity is closed down, and when discount rate
heterogeneity is assumed, the heterogeneity in the coefficient of relative risk aversion is
closed down. In the end, 1 let the data determine which model fits better.?

The end of life T is assumed to be certain. It would be straightforward to incorporate
stochastic mortality into the model, but, again, this addition is not likely to significantly
affect the results. Following Deaton (1991), I define the endogenous state variable cash
on hand as the sum of financial assets and labor income and it evolves as

Xz+1=(1+rt€+1)5t+(1+’")3t+Yt+1, 2)

where r/ i is the stochastic return from the risky asset, and r is the risk-free rate, S; is the
amount of wealth invested in the risky asset, and B; is the amount of wealth invested in
the risk-free asset.

Note that housing is not included in this model of portfolio choice and consumption.
There are two reasons for this exclusion (besides the additional complexity it would add
to the solution). First, the purpose of the exercise reported in this paper is to determine
whether the original Mehra—Prescott (1985) model augmented with disaster risk as in
Barro (2006), which is argued to have solved the asset pricing puzzle, yields the correct
quantities (portfolio holdings and consumption growth). Second, adding another risky
asset to the portfolio choice set would necessarily lead to smaller estimated disaster
probabilities. This is because with house price risk, the model will need smaller disaster
probabilities to fit the data on quantities. Thus, if I find that the data, seen through the
lens of the original model, imply small or zero disaster probabilities, this is very strong
evidence against the disaster risk explanation of the asset pricing puzzle.

Turning to the model, following Carroll and Samwick (1997), Y;. is stochastic labor
income, which follows the exogenous stochastic process

Y1 =PrUpta, 3)
Pii1=G1PiNiq. 4)

Permanent income, P;, grows at the rate G, ; and is subject to multiplicative indepen-
dent and identically distributed (i.i.d.) shocks, N;. Current income, Y3, is composed of a
permanent component and a transitory shock, U,. I adopt the convention of estimating
the earnings growth profile by assuming G; = f(¢, Z,), where ¢ represents age and Z; are
observable variables relevant for predicting earnings growth. I also assume that the tran-
sitory shocks, Uy, are distributed independently and identically, take value 0 with some
small but positive probability, and are otherwise log normal: In(U;) ~ N (—0.50-5, o-bzt).
Similarly, permanent shocks N; are i.i.d. with In(N;) ~ N(-0.5 0'%, 0'3). By assuming that

2Alan and Browning (2010) were the first to estimate a joint distribution of the intertemporal allocation
parameters using food expenditure data in the PSID. The model of consumption in that paper is much
simpler than the model used here.
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innovations to income are independent over time and across individuals, I assume away
aggregate shocks to income. However, aggregate shocks are not completely eliminated
from the model since I assume the return process is common to all agents, and, as ex-
plained below, I allow a link between market disasters and low income realizations.

Introducing a risk of a zero income realization into the life cycle model was proposed
by Carroll (1992) and adopted by many subsequent papers.? It is important to note that
introducing a risk of a zero income realization into the standard model does not by it-
self solve the problem of portfolio specialization or limited participation. Although it
generates diversified portfolios at the low end of the wealth distribution, it also triggers
prudence, which leads to rapid wealth accumulation early in the life cycle. If the ob-
served postwar equity premium were the expected return, some of this wealth would be
channeled into the stock market and the model would still predict counterfactually high
stock market participation and large risky asset shares at young ages.

Returning to the model description, the excess return of the risky asset is assumed
to bei.i.d.:

rf+1—r=,u+gt+1, (5)

where u is mean excess return and ¢, 1 is distributed normally with mean 0 and variance
2. Agents face a small but positive probability of a disastrous market downturn. When
such an event occurs, a large portion of the household’s stock market wealth evaporates
(return of —¢ percent where ¢ > 0). Moreover, when the asset market is hit by a disas-
ter, the probability of a zero income realization increases (from a small calibrated value
to 7 percent). It is important to note that in the case of such a disaster, stock market
participants lose ¢ percent of their stock market wealth and face a 7 percent chance of
zero labor income for the whole year, whereas nonparticipants face only the job loss risk
(7 percent chance of zero labor income for the whole year). I do not allow innovations
to excess return to be correlated with innovations to permanent or transitory income
in normal market times. Allowing for such a correlation is straightforward and would
reduce the ex ante disaster probability and disaster size needed to match the data. How-
ever, the empirical support for such a correlation is very weak (see Heaton and Lucas
(2000), Davis and Willen (2000)), so I set it to zero.*

3Since income realizations of zero are rarely observed in the data, it may be more realistic to assume that
a labor market stress may be in the form of having to collect unemployment benefits for a given period.
One of the models I test against the benchmark presented here assumes a floor above zero for minimum
income realizations.

4This assumption, coupled with i.i.d. disasters has important implications for the structural estimates.
If stock market disasters are modelled as a persistent process, they would be even more painful for the
agents, leading to smaller probability estimates to fit the model. Furthermore, if disasters are modelled to
be correlated with permanent income (they are correlated only with transitory income in this paper), stock
markets would seem even riskier for the agents. Both these extensions would lead to smaller probability
estimates in the context of this paper. Note that the evidence on the correlation between stock markets and
permanent income is weak for annual frequency, as noted by Heaton and Lucas (2000), but strong for the
business cycle frequency (see Lynch and Tan (2011)). Similar argument is valid, albeit weaker, if transitory
shocks (unemployment spells) ware modelled more persistently.
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One important assumption I make is that the risk-free rate is not affected by a disas-
trous market downturn. This may not be true, as one may think that a disaster in stock
markets would push down government bond yields, leading to a still higher equity pre-
mium, or one may think of a warlike disaster where governments totally or partially de-
fault. Incorporating a perceived probability of government default can be done in the
way Barro (2006) suggested. However, separately identifying such a probability (assum-
ing the size of the default is the same as the size of the stock market decline as in Barro
(2006)) from a stock market disaster probability is empirically challenging. Given that
there exists no clear pattern regarding how government bonds will perform in disastrous
times, I assume that the risk-free rate is not affected by a potential market disaster.®

The optimization problem involves solving the recursive Bellman equation via back-
ward induction. I divide the life cycle problem into two main sections: The individual
starts working life at the age of 25 and works until 60. He retires at 60 and lives until 80.
During his retirement he receives social security income each period which is equal to a
fraction 7 of his permanent income at the age of 60. The recursive problem is

(CH
1—vy

Vi( X, Pr) =maX{
Sl 6)

1
+ H—SEtVH-l[(l + rf+1)St + A +7r)B:+ Yy, Pt+1]}

subject to borrowing and short-sale constraints
Sl = 0’ Bt = 07

where V;(-) denotes the value function.

The structure of the problem allows me to normalize the necessary variables by di-
viding them by permanent income (see Carroll (1992)). Doing this reduces the number
of endogenous state variables to 1, namely the ratio of cash on hand to permanent in-
come. The Bellman equation after normalizing is

{(q)l—y 1

+——=E(G N )"

| Z =
1(x;) = max -y 170

st,by

(7
x Vil + rf_H)st + (A +7r)bt/Gy1Np1 + Uz+1]},

X N B C
Wherex,=F’,s,:ﬁ,b,:ﬁ,andctzﬁzxt—st—b[.

I assume away the bequest motive; therefore, the consumption function cr and the

value function V' (cr) in the final period are ¢y = x7 and V' (x7) = )ilT_—;, respectively. To
obtain the policy rules for earlier periods, I define a grid for the endogenous state vari-
able x and maximize the above equation for every point in the grid.

When the model is augmented with a per-period participation cost, the solution re-

quires some additional computations. Now the optimizing agent has to decide whether

5Barro (2006) showed that T bills did quite well in the United States during the great depression, whereas
partial default on government debt occurred in Germany and Italy during WWII.
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to participate in the stock market before he decides how much to invest. This is done by
comparing the discounted expected future value of participation and that of nonpartic-
ipation in every period. This results in the optimization problems

Vi, 1) = nolalx<V°<xt, 1),V (xi, 1)), 8)
where
()= 1
VO(Xt, 1) = Isl?,%),({ 1t_ y + l—I——SEtVtH (X741, It+1]} 9
subject to
X1 =1 4+1bt/GrpaNp1 + Uy, (10)

where I, is a binary variable representing participation at time ¢. The term V(x,, I,)
denotes the value the consumer gets by not participating, regardless of whether he has
participated in the previous period or not, that is, exit from the stock market is assumed
to be costless:®

| ()= 1
Vi(xe, Ir) = TSItI%Pr( 1—y + H—SEth+1[xt+1a I ] (11)
subject to
X1 =41 )8+ A+ 1)b]/GryiNy1 + Uy — F6, (12)

where ! (x,, I,) is the value the consumer gets by participating, and F¢ is the fixed per-
period cost to permanent income ratio, which is zero if the household does not have
any stock market investment and is positive if the consumer has some stock market
investments. The per-period cost considered here is not a one-time fee. It has to be paid
(annually in this framework) as long as the household holds some stock market wealth.
It can be thought of as the value of time spent to follow markets and price movements
in addition to actual trading fees. Since it is related to the opportunity cost of time, it is
plausible to formulate it as a ratio to permanent income.’

In each time period, the household first decides whether to invest in the stock mar-
ket (or stay in it if they are already in) by comparing the expected discounted value
of each choice. Then, conditional on participation, the household decides how much
wealth to allocate to the risky asset. If they chose not to participate, the only savings
instrument is the risk-free asset which has a constant return r. Further details of the
solution method are given in Appendix A.

61t is plausible to assume that the agent incurs some transaction cost by exiting stock market. Consider-
ing different types of transaction costs associated with the stock market participation would make estima-
tion infeasible and does not add any insight to the point made in this paper. See Vissing-Jorgensen (2002)
for a detailed treatment of stock market participation costs.

"This assumption is fairly standard in the literature. With this simplifying but justifiable assumption,
I reduce the total number of state variables to two: age (exogenous) and cash on hand (endogenous).
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3. ESTIMATION OVERVIEW
3.1 Simulating auxiliary statistics

The structural estimation is performed for four different groups (birth year—education
cohorts). Households are first grouped according to their broad educational attainment.
Households with heads who have less than a college degree are labelled as “less ed-
ucated”; those who have a college degree or higher are labelled as “more educated.”
Within these groups, households are further divided according to their birth year co-
horts. Households with heads who were born before 1946 are labelled as “old”; those
born after 1946 are labelled as “young.” The details of the sample selection are given
in the next section. The estimation procedure is an application of simulated minimum
distance (SMD), which involves matching statistics from the data and from a simulated
model.? For the benchmark estimation, I allow the discount rate, 8, or the coefficient of
relative risk aversion, v, to be heterogenous across groups and log normally distributed
within a group. When the coefficient of relative risk aversion is assumed to be homoge-
nous, it is still allowed to differ across the four groups. Similarly, when the discount rate
is assumed to be homogenous, it is still allowed to differ across the four groups.

The simulation procedure takes a vector of structural parameters ¥ = {u,, (0'%), s,
(a-g), p, ¢, m, k}, where

wy is the mean log coefficient of relative risk aversion

0'3 is the variance of the log coefficient of relative risk aversion (set to zero if cr§ > 0)
ws is the mean log-discount rate

0'(% is the variance of the log-discount rate (set to zero if 03 > 0)

p is the probability of disaster

¢ is the size of expected loss in case of disaster

7 is the probability of zero income in case of disaster

k is the per-period stock market participation cost.

This vector of structural parameters solves the underlying dynamic program described
in the previous section. The resulting age- and discount rate- (or coefficient of relative
risk aversion) dependent policy functions are used to simulate consumption, portfolio
share, and participation paths for H householdsfor¢=1, ..., T. To perform simulations,
Ineed two T x H matrices (for permanent and transitory income shocks) and two H x 1
vectors (for initial wealth to income ratio and discount rates, or coefficient of relative
risk aversion) of standard normal variables® in addition to actual realized stock returns
from 1983 to 2004.

8A description of the general SMD procedure is given in Appendix B.

9Iflnx ~ N(a, b), we can simulate draws from a log normal by taking x ~ exp(a +bN (0, 1)), where N (0, 1)
denotes the standard Normal. The mean and variance of x are given by u, = exp(a)y/exp(b?) and o2 =
exp(2a) exp(bz)(exp(bz) —-1.
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As discussed in the data section, the lack of panel data on consumption, wealth, and
income forces me to use some complementary data techniques. This means having to
replicate the limitations of the actual data in the simulated data to obtain consistent
estimates. To do this, the procedure first simulates the balanced panel of consumption,
portfolio shares, and participation for all households, and then selects observations to
replicate the structure of the cross section data. For example, suppose we have 234 25-
year-olds and 567 26-year-olds in the youngest cohort in the SCE The procedure will
pick 234 25-year-old households from the simulated paths, then will pick 567 26-year-
olds (different households, as we are creating a cross section to imitate the data), and
so on. In the end, these simulated data are used to calculate all wealth related auxiliary
parameters (described below).

For consumption, the process is more involved. As described below, natural auxil-
iary parameters to describe consumption behavior are the mean and the variance of
consumption growth. Since the construction of these auxiliary parameters requires ob-
serving households for at least two periods and the CEX is repeated cross section,'? I use
the quasi-panel methods developed by Browning, Deaton, and Irish (1985) and used
by many other researchers. This method amounts to taking the cross section averages
of consumption within a given cohort (controlling for some time-invariant household
characteristics) and then generating consumption growth using these means.

3.2 Choosing an auxiliary environment

I now need to choose statistics of the data—so-called auxiliary parameters (aps)—that
are matched in the SMD step; I denote these Ay, ..., Ax. As always, we have a trade-off
between the closeness of the aps to structural parameters (the “diagonality” of the bind-
ing function; see Gourieroux, Monfort, and Renault (1993) and Hall and Rust (2002))
and the necessary ability to calculate the aps quickly. Many of the aps defined below are
closely related to the underlying structure, but none of the aps is a consistent estima-
tor of any parameter of interest; rather, they are chosen to give a good, parsimonious
description of the joint distribution of consumption, financial wealth, and stock market
returns across cohorts.

The first ap relates to the total financial wealth: it is the median financial wealth
(finw) to permanent income ratio. This helps me identify the discount rate:

Ao1 = median(finw). (13)

The next six aps (Agp—A¢7) are smoothed age profiles of participation and portfolio
shares. I summarize age profiles with a quadratic polynomial, that is, I first run the re-
gressions

share = Ap; + Agzage + )\04age2 + &, (14)
part = Ags + Aggage + )\07age2 +v, (15)

10The CEX has a rotating quarterly panel dimension that I do not use here. This is explained in the data
section.
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where part is a dummy variable that equals 1 if the household owns stocks and equals
0 otherwise, and share is the portfolio share of stocks in the household’s financial port-
folio. The next two aps are the mean and standard deviation of the portfolio share of
stocks conditional on participation. As subsequently becomes clear, these aps play an
important role, in conjunction with consumption aps, in pinning down the coefficient
of the relative risk aversion parameter and the perceived disaster probability:

Aog = mean(share|part = 1), (16)

Agyo = std(share|part =1). (17)

The next two aps relate to consumption; they are the mean and standard deviation of
consumption growth. The effect of family size changes (Asize) on consumption growth
is removed via an initial regression:

Alog C = {y + {1Asize + €. (18)
Then

Ao = o, (19)

A1 = std(e). (20)

The remaining two aps are the unconditional mean of the portfolio share of stocks and
of the participation rate, respectively:

A2 = mean(share), (21)

A13 = mean(part). (22)

While the median financial wealth to permanent income ratio and the mean consump-
tion growth rate help to identify the mean discount rate, the variation in consumption
growth helps to identify the elasticity of intertemporal substitution (the reciprocal of the
coefficient of relative risk aversion). Thus, I have 13 aps to estimate 7 structural param-
eters, leaving me with 6 degrees of freedom. In principle, one can have many more aps
(second, third, and fourth moments, covariances, etc.), but I believe that the auxiliary
environment described above is a sufficiently rich and intuitive characterization of the
joint distribution of parameters of interest.

It is important to emphasize that separately identifying the probability and the size
of the disastrous event is difficult in this setting. Simply put, there may be many combi-
nations of these two parameters that lead to the same auxiliary environment. However,
repeated reestimation with a large set of different starting values converged to the same
estimates, suggesting that the model is at least locally identified within the restricted
parameter space. These restrictions include lower and upper bounds for the preference
parameters (naturally imposed by the discretization process), positivity constraints for
variances and probabilities, and negativity constraint for the disaster size.
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4. DATA
4.1 Pseudo-panel construction

I work with two distinct repeated cross-sectional data sets to obtain the aps. One of the
sets contains data on consumption and the other contains data on financial wealth. Us-
ing these data, I create a pseudo-panel following Browning, Deaton, and Irish (1985).
This technique involves defining cells based on birth cohorts and other time invariant
or perfectly predictable characteristics (typically education, sex, and race), and then fol-
lowing the cell mean of any given variable of interest over time.

I use the American Consumer Expenditure Survey (CEX) for consumption expendi-
ture information. The data cover the period between 1983 and 2004. The expenditure
information is recorded quarterly with approximately 5000 households in each wave.
Every household is interviewed five times, four of which are recorded (the first interview
is practice). Although the attrition is substantial (about 30% at the end of the fourth
quarter), the survey is considered to be a representative sample of the U.S. population.
I select married households whose head was self-identified as white. Households that
do not report nondurable consumption for all four quarters are excluded, as I use an-
nual nondurable consumption expenditure to generate my consumption aps. My non-
durable consumption measure excludes medical and education expenditures and all
durable expenditures. Annual nondurable consumption for each household is obtained
by aggregating over four quarters.

After generating the real annual consumption measure for each household, I create
a pseudo-panel for nondurable consumption. As described earlier, first I divide the sam-
ple into two broad groups by level of education: college and higher (referred to as more
educated) and less than college (referred to as less educated). Then I define two birth
cohorts for each education group, giving four groups in total. I restrict the age range to
25-59. The reason, as explained in the results section, is that it becomes increasingly dif-
ficult to model portfolio holdings as households approach retirement age. I calculate the
mean of the logarithm of real annual consumption for each group for each year I have
data.!! The mean and the standard deviation of consumption growth over time (after
removing family size effect) constitute my consumption aps.

For asset information, I use the American Survey of Consumer Finance (SCF), which
covers the same time period as the CEX. The information on financial wealth and portfo-
lio allocation is recorded at the household level and is available through the family files.
The SCF contains the most comprehensive wealth data available among industrialized
countries. It is a cross section that is repeated every 3 years. Note that the CEX provides
annual expenditure information, whereas wealth information is available triennially in
the SCE This limitation is also replicated in the simulated data. It is important to note
that wealth aps are generated using SCF weights, as SCF oversamples wealthy house-
holds. Finally, imputations in the SCF are taken into account when boostrapping the
variance—covariance matrix of the aps.

The fact that one can control the order of aggregation is one of the great advantages of the pseudo-
panel technique. Since I have to generate a consumption growth measure later on, I first take logs of house-
hold consumption and then calculate the mean. Related studies using aggregate data lack this luxury (as
the sum of logs does not equal the log of sums).
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I restrict the sample from the SCF in the same way that I restricted the CEX and de-
fine the same groups. Variables of interest from this data source are the share of stocks
in households’ financial portfolios (portfolio share), stock market participation indica-
tor, portfolio shares conditional on participation, and financial wealth to permanent in-
come ratio.'? A household’s financial portfolio is defined as the sum of all bonds, stocks,
certificate of deposits, and mutual funds. Assets such as trust accounts and annuities
are excluded, as they are not incorporated in my life cycle model. I also exclude check-
ing and savings accounts, as they are kept mostly for household transactional needs and
my model abstracts from liquidity issues. Risky assets are defined as all publicly and
privately traded stocks as well as all-stock mutual funds. Bonds, money market funds,
certificates of deposit, and bond funds altogether constitute the risk-free asset.

4.2 Initial conditions and other parameters

Following standard practice in the literature, I restrict the number of structural param-
eters that I estimate and I calibrate the others. In principle, all the parameters could
be estimated through the structural routine, including the income process parameters.
However, this extra complication does not add any insight to the point made in the pa-
per, as the real issue is to estimate the perceived disaster parameters that justify ob-
served household portfolios. I use the Panel Studies of Income Dynamics (PSID) to cali-
brate the parameters of income processes (1983-1992). The variances of innovations to
permanent income and transitory income are estimated separately for all four groups.
Earnings growth profiles are estimated separately for the two education levels and are
taken as common for both cohorts within an education level.

Table 1 presents the estimates. It has been argued that the ex post variation in in-
dividual income may not accurately represent the true uncertainty that the individual

TaBLE 1. Estimated parameters of income processes.?

Estimated std of Estimated std of
Permanent Shocks Transitory Shocks
Less educated Young 0.12 0.12
(0.01) (0.01)
old 0.15 0.13
(0.01) (0.01)
More educated Young 0.11 0.10
(0.01) (0.004)
old 0.12 0.10
(0.01) (0.01)

aStandard errors are given in parentheses. Mean predictable income growth for the
more and less educated are 0.018 and —0.001, respectively. Source: PSID 1983-1992.

12Permanent income for each household is the predicted values obtained from the regression of labor
income on age, occupation, and industry dummies. This estimation (although imperfect) is quite standard
in the literature.
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is facing. In particular, households may have several informal ways to mitigate idiosyn-
cratic background risk that an econometrician cannot observe. If this is the case, we
tend to overestimate actual income variances. Bound and Krueger (1991) and Bound
(1994) suggested that roughly one-third of estimated variance is due to mismeasure-
ment. Therefore, I use two-thirds of the estimated value of the permanent income vari-
ance and use the actual estimated value for the transitory income variance.

I set the risk-free rate to 2% and the mean equity return is taken to be 6% with a stan-
dard deviation (std) of 20% (these values seem to be the consensus; see Mehra (2008)).
I set the probability of a zero income realization to 0.00302 (as estimated by Carroll
(1992)).

Since I do not observe all households at the beginning of their life cycle (i.e., at
age 25), I need to estimate an initial wealth distribution to initiate simulations. One
approach is to assume that initial assets to permanent income ratios are drawn from
a log-normal distribution, and to estimate the mean and standard deviation using all
25-year-olds in the data (see Gourinchas and Parker (2002), Alan (2006)). The immedi-
ate objection to this approach is that it is unrealistic to think that older cohorts started
out with the same level of initial wealth as younger cohorts.!3 Unfortunately, we cannot
possibly know the level of wealth the older cohorts had when they were young.

To overcome this problem, I devise a novel way to initialize the simulations. For each
household I observe, I start the simulations using its observed wealth to permanent in-
come ratio. For example, say I need to simulate life cycle paths of a household that I ob-
serve at the age of 40 in year 1998, with wealth to permanent income ratio of 2.5. I start
the simulations of this household by assuming that the initial wealth to permanent in-
come ratio is 2.5, using the policy functions that are relevant for 40-year-olds and actual
stock market returns starting in 1998. This household’s paths are simulated until the
head is 59. This way, I exactly replicate the age structure of the SCE including the major
shortcomings of the data (missing values, triennial structure, and absence of a panel).

5. ESTIMATION RESULTS

The benchmark models I estimate have seven structural parameters:

V= {uy, (03), ps, (03), p, b, 7, k).

Parameters are estimated for four groups separately, assuming discount rate and coeffi-
cient of relative risk aversion heterogeneity one at a time (referred to as y heterogeneity
and 6 heterogeneity, respectively, from here on). For all groups, y heterogeneity yielded
the lowest chi-squared criterion. Therefore, all further analyses in this section are based
on models with y heterogeneity (benchmark) and I do not discuss 8 heterogeneity.'*

13 Ameriks and Zeldes (2004) pointed out the problems of estimating age profiles using cross-sectional
data. As the age profiles of portfolio shares are generated by the SCF (cross-sectional data) in this paper,
getting the initial wealth conditions right is crucial for the consistency of the structural estimates.

14Qverall fit and parameter estimates for 8 heterogeneity are not very different from those with y hetero-
geneity; see the last row of Table 3 for the overall fit. Homogeneity of discount rates is rejected by all groups.
Full results for 6 heterogeneity are available on request.
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TAaBLE 2. Goodness of fit.

Degrees of Less Educated (x?) More Educated (x?)

Model Parameter Restrictions Freedom Young Oold Young Oold

1 (benchmark) — 6 38.6 24.7 705.0 100.2

2 % =0 (nested in 1) 7 49.5 30.8 1384 544.6

3 % =0, income floor 7 1923 393.0 969.2 488.4
(nonnested)

4 p=¢=0,7=0.0032 9 947.5 764.0 6056 104.9
(nested in 1)

5 p=¢= 0-3 =k=0, 11 40,545 8063 11,938 702.7

7 =0.0032 (nested in 1)

5.1 Discussion of the fit

Before turning to the parameter estimates, I illustrate the general features of the fit. To do
this, I estimate a number of restricted variants of the benchmark model. Table 2 presents
my goodness of fit results. The first model is the unrestricted model with seven structural
parameters and vy heterogeneity (model 1, benchmark). The overall fit is quite reason-
able, even though the model is rejected for all four groups based on the chi-squared
criterion. One perhaps not very surprising result is that the fit is better for the less edu-
cated group. The likely reason for a better fit for the less educated is that financial wealth
is more homogenous (as well as low) and much less skewed for this group. It is, on the
other hand, too skewed and heterogenous for the more educated to be captured by this
model. The particular effect of y heterogeneity can be seen by examining the second
row of the same table, where y heterogeneity is closed down. Increases in chi-squared
statistics are sizable enough to warrant rejection of y homogeneity for all groups. How-
ever, the jumps in the chi-squared values are much larger for the educated group (from
705 to 1384 for the young; from 100 to 545 for the old), suggesting a higher degree of pref-
erence heterogeneity among this group. The rejection of homogeneity for the educated
group is mainly because the consumption growth and wealth moments of the educated
are more dispersed than those of the uneducated in the data, and the preference hetero-
geneity captures part of this dispersion.

The next alternative model I consider replaces the possibility of a zero income real-
ization with the possibility of realizing a strictly positive income floor. This assumption
is perhaps more realistic for the more educated households. For example, individuals
may lose their jobs and settle for a small fraction of their current income for a year (col-
lecting unemployment benefits, for example). I assume that in normal times this prob-
ability is 4% (roughly the natural rate of unemployment in the United States) and the
fraction is 30%. As in the benchmark case, I let the probability of such situations arising
during the disaster be a free parameter to be estimated. I estimate this model by closing
down preference heterogeneity, so the fair comparison would be against model 2, where
v heterogeneity is closed down. Note also that this model is not nested in the benchmark
model and should be viewed as an alternative instead of a restricted variant. As can be
seen in the third row of the table, the fit for this model is much better for the educated



Quantitative Economics 3 (2012) Do disaster expectations explain portfolios? 15

TABLE 3. Auxiliary parameters and simulated counterparts for the less educated.?

Less Educated

Ausiliary Young old

Parameters Data Simulated Data Simulated

Aot 0.08 0.08 0.10 0.10
(0.48) 0.17)

A2 0.06 0.06 —0.45 -0.27
(0.01) (0.16)

Aoz —0.002 —0.002 0.02 0.009
(0.01) 0.23)

Ao 0.000 0.000 ~0.00 —0.000
(0.10) (0.35)

Aos 0.015 0.19 -1.15 0.968
(0.53) (0.93)

Ao 0.019 —0.008 0.05 —0.05
(0.54) (1.1)

o7 0.000 0.000 ~0.00 0.00
(0.51) (1.2)

Aog 0.47 0.45 0.46 0.43
(0.90) (0.82)

Ao9 0.30 0.27 0.32 0.30
2. 7* .7

Mo —0.01 0.001 —0.001 0.02
(1.3) (0.23)

A1 0.05 0.05 0.05 0.02
(0.25) (2.9)*

A2 0.10 0.10 0.12 0.12
(0.26) (0.16)

A3 0.21 0.19 0.27 0.24
(0.64) (0.61)

aAbsolute ¢-ratios are given in parentheses. *, significant at 5%.

group; chi-squared values go down from 1384 to 969 and from 545 to 488 for the young
and the old, respectively. This suggests that the risk of a zero income realization is not a
good assumption for these households. The opposite is observed for the less educated:
large jumps in chi-squared values from 59.5 to 1923, and from 30.8 to 393 for the young
and the old, respectively.

The possibility of a disaster does not seem to be a good assumption for older and
more educated households as suggested by the statistics in the fourth row of Table 2
(model 4). This variant of the model is estimated by closing down the disaster possi-
bility while keeping y heterogeneity.!® In fact, for these households, even the simplest
model with no heterogeneity, no disaster expectations, and no entry cost does not lead
to a huge jump in the chi-squared criterion (model 5, X%l = 702.7), while such a variant
makes the fit hopeless for all other groups; see the last row. The essential point from this

15The chi-squared increment between the benchmark and model 4 is X% =104.9—-100.2 = 4.7. Given that
the critical value for X% is 7.81 at 95%, the model 4 restrictions are not rejected.
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table is that the standard model has serious difficulties explaining household portfolios
and this difficulty cannot be overcome by assuming expectations of a market disaster.
Although this explanation seems to go some distance to explain the behavior of house-
holds with very little financial wealth, keep in mind that these are not the individuals
who are relevant for prices.

The natural question to ask is, Why does the model need nonzero disaster proba-
bilities for the uneducated to fit the data, while they are not needed for the educated?
Technically, the probability of a painful crash in the stock market and its correlation
with unemployment (zero income spell) help depress portfolio shares and participation
for all agents, but this is particularly needed to match the portfolios of the uneducated
group. The standard model implies almost 100% shares in stocks at the low saving lev-
els, so that the estimation procedure needs to depress portfolios of the uneducated a lot
more. This can easily be done via disaster expectations, but the real action comes from
the hedging demand created by the correlation between the crash and unemployment.
Implications of this correlation are very painful for the uneducated, since labor income
is the most important lifetime resource to finance consumption for this group. Given
that the stock market participation of the educated group is generally higher and they
hold most of the shares in the economy, such probabilities are not needed to fit their
portfolios (after adding some participation costs to account for some of the nonpartici-
pation).

An economically meaningful way to see where the fit fails is to look at the ¢-ratios
for the difference between data aps and their simulated counterparts calculated at esti-
mated structural parameters. This is shown in Table 3 for the less educated and in Table 4
for the more educated. For the less educated, only a couple of the ¢-ratios point to rejec-
tion, whereas for the more educated, most of the simulated aps do not come close to
their data counterpart. The biggest failure comes from the first ap (A;)—the median fi-
nancial wealth to permanent income ratio. As can be seen in the first row of Table 4, the
model persistently generates higher aps than the data.

How do the simulated life cycle profiles of portfolio holdings look compared to the
data? Figures 1 and 2 depict life cycle stock market participation and portfolio share pro-
files calculated at the estimated structural parameters (see Table 5) superimposed on
their data counterparts. Profiles obtained from restricted models (see Table 2) are also
superimposed for a more general comparison. As can be seen from these figures, sim-
ulated participation and portfolio share paths from the unrestricted model (model 1)
closely track their data counterparts for the less educated groups, and shutting down vy
heterogeneity does not visibly worsen the fit; see Figure 1. Note also that the standard
model (model 5) is absolutely hopeless. The life cycle profiles do not seem to track their
data counterparts as closely for the more educated group, consistent with estimation
results; see Figure 2. What is particularly disturbing in this figure is that the model per-
sistently generates a hump shape for shares and participation that does not exist in the
data.

Figure 3 tell us exactly where each model fails. It depicts simulated age profiles of
conditional portfolio shares (at the estimated parameter values) and their data counter-
parts. The first and most important thing to note is that the degree of small saver puzzle
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TABLE 4. Auxiliary parameters and simulated counterparts for the more educated.?

More Educated
Yo Id

Auxiliary ovng o

Parameters Data Simulated Data Simulated

Aot 0.28 0.55 0.64 0.98
(13)* 3.7

A2 —0.18 -1.76 —0.50 -2.21
(9.4)* (1.2)

Aoz 0.01 0.09 0.02 0.09
9.1)* (1.2)

Xoa —0.00 —0.001 —0.00 —0.001
(8.8)* (1.3)

Aos —0.45 -2.32 —0.86 -3.09
(7.3)* (0.80)

Ao 0.03 0.12 0.05 0.13
(6.8)* (0.71)

o7 —0.00 —0.00 —0.00 —0.001
(7.1)* (0.61)

Ao 0.53 0.64 0.52 0.63
a1 (7.8)*

Ao9 0.30 0.25 0.31 0.30
(11)* (1.6)

Ao 0.007 0.009 0.01 0.02
(0.35) (1.7)

A1l 0.039 0.014 0.06 0.09
(2.2)* (1.4)

A2 0.29 0.24 0.33 0.39
(4.9)* (2.3)*

M3 0.54 0.38 0.63 0.60
(11)* (0.74)

aAbsolute ¢-ratios are given in parentheses. *, significant at 5%.

diminishes, especially for the less educated, when we allow for the possibility of disas-
ters. Models 1 and 2 deliver lower portfolio shares in earlier life, and so are much more
congruent with the data. This is obviously not the case for the more educated. Note that
the main reason for the decisive rejection of the model for the more educated (large
chi-squared criterions) is the fact that conditional shares are low and very precisely es-
timated in the data. Such low conditional shares are hard to match given the financial
wealth of this group.

5.2 Disaster expectations

I now turn to the structural estimates based on the benchmark model. Table 5 presents
the estimates for all four groups.'® Except for the old and more educated group, the

16Although the asymptotic standard errors are unreliable for these types of models, I still report them.
The precision can be judged in an economically more meaningful way by considering the proximity of the
aps generated from the data and from the simulated data at the estimated values; see Tables 3 and 4.
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TABLE 5. Structural estimates.?

Less Educated More Educated
Young old Young old
Mean of log coefficient of relative risk aversion () 0.42* 0.31 1.17* 1.80*
(0.12) (0.20) (0.11) (0.06)
Std of log coefficient of relative risk aversion (o) 0.020 0.009 0.167* 0.601*
(0.07) (0.10) (0.09) (0.18)
Discount rate (6) 0.17* 0.19* 0.06* 0.28*
(0.06) (0.04) (0.02) (0.08)
Probability of disaster (p) 0.007* 0.024* 0.051* 0.0004
(0.001) (0.008) (0.002) (0.014)
Size of disaster (¢) 0.81* 0.70* 0.41* 0.0001
(0.11) (0.13) (0.03) (0.013)
Probability of zero income increase of disaster () 0.38* 0.16* 0.004 0.0004
(0.056) (0.04) (0.005) (0.06)
Per-period participation cost (k) 0.00 0.00 0.004* 0.007*
(0.00) (0.01) (0.001) (0.003)
)(é for y heterogeneity 38.6™* 247 705.0** 100.2**
X% for 8 heterogeneity 44.3 25.8 1008 468.5

aAsymptotic standard errors are given in parentheses. **, preferred model; *, significant at 5%.

probability of a disaster and the expected size of the disaster are estimated precisely.
The point estimates for the perceived disaster probability range from 1% (less educated
young) to 5% (more educated young). For the less educated, the expected size estimates
are very large (80% and 70% for the young and the old, respectively). The probability of a
zero income realization in the case of a disaster is implausibly high for the less educated
young (38%). It is not as large for the less educated old (16%). The estimated probability
of a disaster is not statistically different from zero for the old and more educated. Consis-
tent with the earlier discussion on goodness of fit, the more educated older cohort (the
wealthiest households in the sample) do not appear to expect such disasters. The very
fact that these households drive aggregate wealth casts serious doubt on an explanation
of the equity premium based rare disasters.

How do my estimates compare with Barro’s (2006) calibrated values? The real stock
market return was —16.5% per year between the years 1929 and 1932 in the United
States, implying over a 50% decline in the stock market wealth in 4 years. Since disasters
are assumed to strike in an i.i.d. fashion (as in Reitz (1988) and Barro (2006)), the size es-
timates are not directly comparable, but can be interpreted as total expected wealth loss
in the event of a disaster. On the other hand, I can directly compare my estimated disas-
ter probabilities with Barro’s calibrated values. An estimate of 80% loss seems to be too
large, especially since it is coupled with 38% probability of zero income realization for
the less educated young. For this group, the estimated disaster probability is about 1%.
For the old and less educated, this parameter is estimated to be around 2%. These esti-
mates are perfectly in line with Barro’s calibrated values (1.5-2%). However, for the more
educated young, although the expected size estimate seems reasonable (41%), the esti-
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mated disaster probability is around 5%, which is too high compared to the calibrated
values in Barro (2006) and Barro and Ursua (2008).

5.3 Other findings

A striking result of the estimation is that there is substantial variation in preference pa-
rameter estimates across education groups, but not so much across birth cohorts within
education groups. Consistent with Alan and Browning (2010), the less educated seem to
have a lower relative risk aversion.!” Discount rate estimates seem very high, especially
for the older cohorts (28% for the old and more educated). The coefficient of relative
risk aversion estimates are in line with estimates based on microdata on consumption
(see Attanasio, Banks, Meghir, and Weber (1999), Gourinchas and Parker (2002)), espe-
cially for the less educated. In general, estimates based on consumption data generate
a lower coefficient of relative risk aversion compared to estimates based on wealth data
(see Cagetti (2003)). Overall, consumption based estimates of the coefficient of relative
risk aversion range between unity and 3. The range I estimate is much wider: the median
coefficient of relative risk aversion for the oldest less educated cohort is estimated to be
1.36 (my lowest estimate), and that for the oldest more educated cohort is estimated to
be 6.1 (my highest estimate). In terms of heterogeneity within cohort—-education cells,
the more educated group is the most heterogenous (consistent with the goodness of
fit tests). Not surprisingly, the old and more educated group is the most heterogenous,
with coefficients of relative risk aversion of 4 and 9 at the 25th and 75th percentiles. The
same estimates for the young and more educated are 2.9 and 3.6.!8 It is important to
note that rejection of preference homogeneity does not necessarily mean that there is
a genuine underlying preference heterogeneity. In fact, it is extremely hard to identify
preference heterogeneity using the cross-sectional dispersion of consumption growth.
For example, measurement error in consumption, taste shocks, and heterogeneity in
income processes can generate significant dispersion in consumption growth across
agents, even with homogenous preference parameters. Such dispersion in consumption
growth can be observationally equivalent to the dispersion generated by the genuine
preference heterogeneity.

Another interesting result in this paper is that participation cost estimates are zero
for the less educated, but are positive and significant for the more educated. There is
now a sizable body of research promoting transaction cost based explanations of the
portfolio and equity premium puzzles (see, for example, Alan (2006) and other refer-
ences therein). The idea is that households face costs associated with participating and

17This result contradicts Calvet, Campbell, and Sodini (2007); it is mainly the outcome of the constant
relative risk aversion specification. Prudence is linked to risk aversion in this specification, and the fact that
educated people hold stocks and accumulate wealth is consistent with the high coefficient of relative risk
aversion (and high prudence); the negative effect of high risk aversion on stock holding is dominated by the
positive effect of prudence on wealth accumulation.

18Table 5 reports the mean log coefficient of relative risk aversion and its standard deviation. The median
values and percentiles that I report here come from the simulation of the relevant log-normal distribution
(at the estimated parameters) for 100,000 households for each group.
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TABLE 6. Composition of the structural estimates of the benchmark and restricted model 4.2

Less Educated More Educated
Young Oold Young Oold
Coefficient of relative risk aversion, benchmark () 1.52 1.36 3.22 6.05
Coefficient of relative risk aversion, restricted (y) 1.66 2.04 2.22 4.21
Discount rate, benchmark () 0.17 0.19 0.06 0.28
Discount rate, restricted (5) 0.15 0.14 0.16 0.25
Per-period participation cost, benchmark () 0.0% 0.0% 0.4% 0.7%
Per-period participation cost, restricted (k) 1.0% 2.15% 1.5% 2.94%

2The restricted model (model 4 in Table 2) sets disaster probabilities to zero.

trading in the stock market. The definition of these costs is usually very broad; it incor-
porates a range of things from simple trading fees to the opportunity cost of time spent
on portfolio management. While such transaction costs go some way to reconcile ob-
served patterns of stock market participation, they are not sufficient to explain other
observed portfolio features, particularly shares conditional on participation. When I re-
formulate the risk associated with investing in the stock market by allowing for the pos-
sibility of a disaster (affecting labor earnings as well as stock market wealth), then partic-
ipation, portfolio shares, and shares conditional on participation come down to reason-
able levels, making the participation cost assumption unnecessary for the less educated.
However, these costs still seem to be important for the more educated, especially for the
older cohort, where the per-period participation cost is estimated to be approximately
1% of permanent income.

It is worthwhile to note that participation cost seems to act counterintuitively in the
model at first: It is not required to fit the portfolios of the uneducated, but seems to be
important for the educated. The reason behind this is that it is modelled as a fraction
of permanent income. This makes participation cost important for the high permanent
income group. After depressing the portfolio shares and participation through hedging
demand generated by disaster expectations and unemployment, portfolios of the uned-
ucated do not need participation cost to fit the model. To illustrate this point, in Table 6
I present the structural estimation results of the restricted model (model 4 in Table 2)
where disaster expectations are closed down. One can immediately see that in the ab-
sence of disaster expectations, the standard model tries to get a better fit by using the
participation cost and preference heterogeneity. Here, the estimated participation costs
are all positive for all groups (even for the uneducated), but the chi-squared values are
very large, except for the old and educated, for whom we did not detect disaster expecta-
tions in the first place. It is also important to note that if, instead, a constant per-period
cost were assumed for all agents (like monetary trading costs), it would have less of an
effect on the wealthy households’ portfolios unless it was implausibly high.

Overall, the results suggest that allowing for rare disasters does lead the life cycle
portfolio choice model to fit the household portfolio data well for some households,
albeit not the ones that are driving the aggregate wealth. Preference heterogeneity and
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participation costs appear to be better explanations for the portfolio decisions of wealth-
ier households. If we are to accept the explanation of equity premium based on eco-
nomic disasters, we should, at the very least, be able to infer the expectation of such dis-
asters from the quantities held by the wealthy households. The message from the data is
mixed at best.

6. CONCLUSION

This paper evaluates the argument that rare economic disasters, once taken into ac-
count, can solve asset pricing puzzles. It is natural to assess whether correct quanti-
ties can be obtained from a framework that claims to yield correct prices. I show that it
is difficult to reconcile actual quantities in the microdata with this explanation. If re-
turn expectations include a small probability of a disastrous market event, observed
household portfolio holdings and consumption growth can be reconciled with the stan-
dard intertemporal model only for households that possessvery little wealth. Even for
these households, such reconciliation is not possible without assuming a serious labor
market stress at the time of the stock market disaster. Portfolio decisions of wealthier
households can be better explained by a combination of preference heterogeneity and
transaction costs. I estimate virtually zero probability of disaster for these households.
One could add housing to the model estimated in this paper. However, as noted above,
adding another risky asset to the portfolio choice set would necessarily lead to smaller
estimated disaster probabilities. This is because with house price risk, the model will
need smaller disaster probabilities to fit the data on quantities. Thus the disaster risk ex-
planation of the asset pricing puzzle cannot be rescued by adding housing to the model.

I do not test the disaster explanation directly against explanations based on prefer-
ence respecifications. Such explanations include the internal and external habit models
proposed by Constantinides (1990), Campbell and Cochrane (1999), and Abel (1990).
The common feature of these preference respecifications is that they increase effective
risk aversion. In terms of the implied life cycle paths of portfolios, such models behave
similarly to models with extreme uninsurable income risk. In both cases, the marginal
utility of consumption can become extremely high (near zero consumption, the subsis-
tence level, or the habit level). The limitation of all of these explanations is that when the
effective risk aversion is high, so is prudence. This implies counterfactually high finan-
cial wealth accumulation and, consequently, counterfactually high stock market partic-
ipation over the life cycle. Even though one can match overall mean conditional and
unconditional portfolio shares with such models, the implied life cycle profiles will not
look anything like their data counterparts in other dimensions. Explanations based on
business cycle risk (a way to correlate stock returns with labor earnings indirectly) may
be a more promising route as in Lynch and Tan (2011). However, the need to reconcile
other aspects of intertemporal behavior such as consumption and savings within the
same framework remains crucial.

APPENDIX A: SOLUTION AND SIMULATION METHODS

The standard life cycle model for portfolio choice described in Section 2 is solved via
backward induction by imposing a terminal wealth condition. Simply put, in the last
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period of life, all accumulated wealth has to be consumed, so the policy rule for con-
sumption is

T =XT
and for stocks and bonds is

st =0, br =0.
Therefore, the last period’s value function is the indirect utility function

1-y

X
Vr(xT) = 1i

To solve for the policy rules at T — 1, I discretize the state variable cash on hand to per-
manent income ratio x. The algorithm first finds the investment in risky and risk-free
assets that maximizes the value function for each value in the grid of x. Then another
optimization is performed where the generic consumer has only the risk-free asset to
invest in. Values of both optimizations are compared and the rule that results in a higher
value is picked. The value function at T — 1 is the outer envelope of the two value func-
tions. Since I use a smooth cubic spline to approximate value functions, nonconvexities
due to taking the outer envelope of two functions do not pose any numerical difficulty.

APPENDIX B: SIMULATED MINIMUM DISTANCE

Here I present a short account of the simulated minimum distance (SMD) method
as applied generally to panel data (see Hall and Rust (2002) and Browning, Ejrnees,
and Alvarez (2010) for details). Suppose that we observe 7 = 1,2,..., H units over
t =1,2,...,T periods, recording the values on a set of Y variables that we wish to
model and a set of X variables that are to be taken as conditioning variables. Thus we
record {(Y1, X1), ..., (Yy, Xg)}, where Y}, is a T x [ matrix and X, is a T x k matrix.
For modelling, we assume that Y given X is identically and independently distributed
over units with the parametric conditional distribution F(Y}|X}; 0), where 0 is an m-
vector of parameters. If this distribution is tractable enough, we could derive a likeli-
hood function and use either maximum likelihood estimation or simulated maximum
likelihood estimation. Alternatively, we might derive some moment implications of this
distribution for observables and use the generalized method of moments to recover es-
timates of a subset of the parameter vector. Sometimes, however, deriving the likeli-
hood function is extremely onerous; in that case, we can use SMD if we can simulate
Y; given the observed X and parameters for the model. To do this, we first choose
an integer S for the number of replications and then generate S * H simulated out-
comes {(Y!, X1), ..., (Y}, Xm), (Y2, X1), ..., (Y}, Xp)}; these outcomes, of course, de-
pend on the model chosen (F(-)) and the value 6 takes in the model.

Thus we have some data on H units and some simulated data on § * H units that
have the same form. The obvious procedure is to choose a value for the parameters that
minimizes the distance between some features of the real data and the same features
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of the simulated data. To do this, define a set of auxiliary parameters that are used for
matching. In the Gourieroux, Monfort, and Renault (1993) indirect inference procedure,
the auxiliary parameters are maximizers of a given data-dependent criterion that consti-
tutes an approximation to the true data generating process. In Hall and Rust (2002), the
auxiliary parameters are simply statistics that describe important aspects of the data.
I follow this approach. Thus I first define a set of J auxiliary parameters,

H

1 ; .
yf:EZgJ(Yh,Xh), j:l,Z,...,J, (23)
h=1

where J > m, so that I have at least as many auxiliary parameters as model parameters.
The J vector of auxiliary parameters derived from the data is denoted by y?. Using the
same functions g/(-), I can also calculate the corresponding values for the simulated
data,

1
S+xH

S H
'y}sz ZZgJ(YZ,Xh), j=1,2,...,J, (24)
s=1 h=1

and denote the corresponding vector by y°(6). Identification follows if the Jacobian of
the mapping from model parameters to auxiliary parameters has full rank:

rank(ngS(H)) =m with probability 1. (25)

This effectively requires that the model parameters be “relevant” for the auxiliary pa-
rameters.

Given sample and simulated auxiliary parameters, I take a J x J positive definite
matrix W and define the SMD estimator as

fsmp = argmeian(e) —y2YW (yS(6) — ¥P). (26)

The choice I adopt is the (bootstrapped) covariance matrix of y”. Typically we have
J > m; in this case, the choice of weighting matrix gives a criterion value that is dis-
tributed as a y2(J — m) under the null that we have the correct model.
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