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Continuity and differentiability of expected value functions in
dynamic discrete choice models

Andriy Norets
Department of Economics, Princeton University

This paper explores the properties of expected value functions in dynamic dis-
crete choice models. The continuity with respect to state variables and parame-
ters, and the differentiability with respect to state variables are established under
fairly general conditions. The differentiability with respect to parameters is proved
when some state variables do not affect the state transition probabilities and, thus,
the expected value functions. It is shown that such variables are needed so as to
apply the implicit function theorem used in the proof. The results are of particular
relevance to estimable dynamic discrete choice models.
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1. Introduction

A dynamic discrete choice model (DDCM) is a dynamic program with discrete con-
trols. These models are widely employed in many different areas of economics, espe-
cially in empirical work. Early applications and methodological contributions in this
area include Wolpin (1984), Miller (1984), Pakes (1986), Rust (1987), Hotz and Miller
(1993), Keane and Wolpin (1994), Aguirregabiria and Mira (2002), Bajari, Benkard, and
Levin (2007), Su and Judd (2008), Ackerberg (2009), Imai, Jain, and Ching (2009), and
Norets (2009). For a much more extensive list of references, see the literature surveys by
Eckstein and Wolpin (1989), Rust (1994), and Aguirregabiria and Mira (2007).

Continuity and differentiability of the expected value functions in DDCMs are some-
times assumed and exploited without justification. Popular solution methods for DD-
CMs involve the approximation of the expected value functions by polynomials or
splines in state variables (Keane and Wolpin (1994)). In this case, at least continuity in
state variables is required. In more recent solution and estimation methods for DDCMs
(Imai, Jain, and Ching (2009), Norets (2009, forthcoming)), continuity and, perhaps, dif-
ferentiability of the expected value functions with respect to model parameters can be
fruitfully exploited. The likelihood function of DDCMs can involve the expected value
functions; see Rust (1994). Although a standard proof of the asymptotic normality of
the maximum likelihood estimator assumes the third-order differentiability of the likeli-
hood, first-order differentiability combined with some regularity conditions can suffice;
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see, for example, Theorems 5.39 and 7.2 in van der Vaart (1998). Similarly, differentia-
bility can be helpful in deriving the asymptotic properties of the generalized method of
moments estimator (Hansen (1982)). Differentiability is also important in implementa-
tion of estimation procedures, as it permits the application of efficient gradient-based
numerical optimization algorithms.

Thus, there seems to be a need in the literature on DDCMs for a set of general and
easy to verify sufficient conditions for continuity and differentiability of the expected
value functions. There are well known results for continuity and differentiability of the
value function as a function of state variables for dynamic models with continuous con-
trols; see Benveniste and Scheinkman (1979) or Stokey and Lucas (1989) for a textbook
treatment. To the best of my knowledge, Rust (1988) is the only researcher who deals
with these issues for DDCMs. He established the differentiability of the expected value
function as a function of parameters for a special class of models with conditionally in-
dependent and additive utility shocks.

In this paper, I show that the value function is jointly continuous in state variables
and parameters under fairly general conditions. The differentiability of the expected
value functions with respect to the state variables is trivial, and amounts to interchang-
ing the order of differentiation and integration operations. To establish sufficient condi-
tions for the differentiability of the expected value function with respect to parameters,
I use an implicit function theorem for Banach spaces. Sufficient conditions for differ-
entiability include smoothness of per-period utility functions and state transition den-
sities. The most restrictive part of the sufficient conditions for differentiability is that
some state variables are assumed not to affect the state transition probabilities and thus
the expected value functions. The obtained sufficient conditions are more general than
those in Rust (1988): the utility shocks do not have to be additive, they do not have to be
conditionally independent under all possible decisions, and there might be fewer shocks
than there are alternatives.

Somewhat surprisingly, the state variables that do not affect the state transition
probabilities are needed for applicability of the implicit function theorem; in particular,
for the differentiability of the Emax operator. This seems to be the paper’s most inter-
esting result. It provides an additional justification for using state variables that do not
affect the state transition probabilities in DDCMs. Including these variables is also use-
ful for making the model consistent with any possible realization of the data (Rust (1994,
p. 3102)), for constructing feasible Bayesian estimation algorithms (Norets (2009)), and
for making conditional choice probabilities well defined.

The obtained sufficient conditions for continuity and differentiability are easy to
check in applications. This is illustrated by examples.

In the following section, I set up a dynamic discrete choice model. Sections 3 and 4
present continuity and differentiability results. Section 5 concludes with a brief discus-
sion. Proofs are gathered in the Appendix.

2. Setup of DDCMs

In a dynamic discrete choice model, the agent chooses an alternative dt from a finite set
of available alternatives D in each period t. The per-period utility u(st� dt;θ) depends on
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the chosen alternative, current state variables st ∈ S, and a vector of parameters θ ∈ Θ.
The state variables are assumed to evolve according to a controlled first-order Markov
process with a transition probability denoted by F(dst+1|st� dt;θ). A density of the transi-
tion probability with respect to a generic measure ν is denoted by f (st+1|st� dt;θ). Time is
discounted with a factor β. The agent maximizes a lifetime utility given by the expected
discounted sum of the per-period utilities. In the recursive formulation, the lifetime util-
ity of the agent or the value function is given by the Bellman equation

V (st;θ) = max
dt∈D

{u(st� dt;θ)+βEV(st� dt;θ)}� (1)

where the expected value function, EV(s�d;θ), is defined by

EV(s�d;θ) =
∫

V (s′;θ)f (s′|s�d;θ)ν(ds′)� (2)

This formulation embraces a finite horizon case if time t is included in the vector of the
state variables.

In estimable DDCMs, the vector of state variables includes variables unobserved by
econometricians. These variables play the role of econometric errors, which are nec-
essary in estimable models. They are often denoted by ε, while the states observed by
the econometrician are denoted by x. In a popular framework of Rust (1987), these vari-
ables enter utility functions additively (u(st� d;θ)= u(xt�d;θ)+εt�d) and are assumed to
be conditionally independent (f (st+1|st� dt;θ) = f (εt+1|xt+1;θ)f (xt+1|xt�dt;θ)). Under
these assumptions and other regularity conditions, Rust (1988) established the differen-
tiability of the expected value functions. In this paper, I do not start with these assump-
tions. Moreover, the distinction between the observed and unobserved states is not cru-
cial for the results obtained, herein. However, it might be useful to keep this distinction
in mind in interpreting some examples and assumptions below.

Bhattacharya and Majumdar (1989) showed that the optimal lifetime utility satisfies
the Bellman equation (1) and that there exists an optimal Markovian policy that solves
the Bellman equation under the following assumption.

Assumption 1.

(i) S is a nonempty, complete, and separable metric space.

(ii) u(s�d;θ) is continuous in s.

(iii) R(s�θ) = ∑∞
k=0 β

kuk(s�θ) <∞, for all s and θ, where

uk(s�θ)= max
d

∫
uk−1(s

′� θ)F(ds′|s�d�θ) and u0(s�θ)= max
d

|u(s�d�θ)|�

(iv)
∫
φ(s′)F(ds′|s�d�θ) is continuous in s for |φ(s)| ≤R(s�θ).

Parts (i) and (ii) are assumed hereafter. All the results in this paper will assume con-
ditions guaranteeing that parts (iii) and (iv) are satisfied.
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3. Continuity

Proposition 1. If Θ and S are compact, ν(S) < ∞, u(s�d;θ) is continuous in (s�θ), and
f (s′|s�d;θ) is continuous in (s′� s� θ), then V (s;θ) and E{V (s′;θ)|s�d;θ} are continuous
in (s�θ).

The details of the proof are given in the Appendix. The argument closely follows the
standard proof of the continuity of value functions with respect to the state variables.
Under compactness and continuity, Assumption 1 is clearly satisfied. The Bellman oper-
ator Γ is defined on the Banach space of bounded functions V :S×Θ →R (the standard
argument for continuity in s defines Γ on functions from S):

Γ (V )(s;θ) = max
d

{
u(s�d;θ)+β

∫
V (s′;θ)f (s′|s�d;θ)ν(ds′)

}
� (3)

It is a contraction and it takes the set of continuous bounded functions into itself. Since
the set of continuous bounded functions is closed, the unique fixed point of the Bellman
operator is continuous in (s�θ).

Dynamic discrete choice models used in empirical work often have unbounded state
space and unbounded per-period utility functions. In this case, the Bellman operator
might not have the contraction property and the approach described in the previous
paragraph does not directly apply. Lippman (1975) and Bhattacharya and Majumdar
(1989) proposed sufficient conditions under which a power of the Bellman operator Γ J

is a contraction on a Banach space with a weighted sup norm, where J is a finite posi-
tive integer. I extend this approach to establish the continuity of the value functions in
the state variables and parameters for DDCMs with unbounded state space. The idea
of the extension is the same as for the bounded case. The following restrictions on the
primitives of DDCMs are assumed.

Assumption 2. There exist a continuous function w :S × Θ → R, 1 ≤ w(s�θ) < ∞
∀(s�θ) ∈ S ×Θ and a positive integer m such that ‖maxd |u(s�d;θ)|‖wm ≤M < ∞.

The weighted sup norm is defined by ‖V (s�θ)‖wm = sups�θ |V (s�θ)|w(s�θ)−m. The fol-
lowing facts about the weighted sup norm can be established along the same lines as
similar facts about the usual sup norm: (i) the space of functions bounded in ‖·‖wm , Bwm ,
is a Banach space; (ii) continuous functions in Bwm are a closed set. The weighted sup
norm is introduced to make the value functions bounded (in problems with unbounded
per-period utilities, the value functions are unbounded in the usual norm). The bound-
edness is useful for establishing the contraction property. Intuitively, the boundedness
of the value function in the weighted sup norm is achieved when per-period utilities do
not grow too fast in states relative to the probability of realization for these states. Precise
mathematical conditions are given in the assumptions below. Example 1, which follows,
demonstrates that it is not difficult to verify these assumptions in models with explicit
parametric forms of transition probabilities and per-period utilities. In particular, the
example constructs a weight function for a model with normally distributed and serially
correlated utility shocks.
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Assumption 3. There is b > 0 such that for (s�θ) ∈ S ×Θ,

max
d

∫
w(s′� θ)nf (s′|s�d;θ)ν(ds′) ≤ (w(s�θ)+ b)n� n = 1�2� � � � �m�

Assumption 4. The transition density f (s′|s�d;θ) is continuous in (s�θ) for any d ∈ D.
For any s, d, θ there exist ε > 0, f s�d�θ(s

′), and ws�d�θ(s
′) such that

∫
ws�d�θ(s

′)m ·f s�d�θ(s′)×
ν(ds′) < ∞ and if ‖(s̃� θ̃)− (s�θ)‖< ε, then

ws�d�θ(s
′)f s�d�θ(s′) ≥w(θ̃� s̃)f (s′|s̃� d; θ̃)� (4)

Proposition 2. Under Assumptions 2–4, (i) the lifetime utility of the agent satisfies the
Bellman equation for a fixed parameter θ; (ii) there exists a positive integer J such that the
operator Γ J is a contraction on Bwm ; thus the Bellman equation has a unique solution;
(iii) V (s;θ) and E{V (s′;θ)|s�d;θ} are continuous in (s�θ).

The following example illustrates that the imposed assumptions are sufficiently gen-
eral and easy to verify for models used in empirical applications of DDCMs.

Example 1. Let the per-period utility be given by u(st� d;θ)= u(θ�d)+ sdt , where u(θ�d)

is continuous in θ. The vector of state variables includes card(D) components: s =
{sd�d ∈ D}. The components of s evolve according to independent AR(1) processes:
s′d ∼ N(ρdsd�σ

2
d). In this model, the state variables can be interpreted as serially cor-

related preference shocks unobserved by econometricians. The correlation coefficients
ρd ∈ [−1�1] and the variances σ2

d ≤ σ2 < ∞ are included in the vector of parameters θ.
Let m = 1 and w(s�θ) = maxd |u(θ�d)| + 1 + ∑

d s
2
d . Obviously, ‖maxd |u(s�d;θ)|‖wm ≤ 1

and Assumption 2 is satisfied. Assumption 3 holds as well since∫
w(s′� θ)f (s′|s�d;θ)ds′ = max

d
u(θ�d)+ 1 +

∑
d

[(ρdsd)2 + σ2
d] ≤ w(s�θ)+ b�

where b= card(D)σ2. Let ws�d�θ(s
′)= w(s�θ)+ δ, δ > 0 and

f s�d�θ(s
′) =

∏
d

cd exp{−0�5(σd + 1)−2(s′d − ρdsd)
2}�

where cd is sufficiently large for (4) to hold. Such cd exists since [−0�5(σd ± ε)−2(s′d −
(ρd ± ε)(sd ± ε))2 + 0�5(σd + 1)−2(s′d − ρdsd)

2] is bounded above in s′d for sufficiently
small ε. Thus, Assumption 4 is satisfied.

4. Differentiability

4.1 Differentiability with respect to state variables

This section provides sufficient conditions for the differentiability of the expected value
function EV(s�d;θ) defined in (2) with respect to state variables. A partial derivative
∂EV(s�d;θ)/∂sj with respect to a component of s, sj , exists if differentiation and inte-
gration operations can be interchanged in (2). Sufficient conditions for that are given in
the following proposition.
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Proposition 3. Under Assumptions 2–4, EV(s�d;θ) is continuously differentiable in s if
for all j, ∂f (s′|s�d;θ)/∂sj exists and satisfies all the conditions on f (s′|s�d;θ) imposed in
Assumption 4.

4.2 Differentiability with respect to parameters

The following simple example illustrates that differentiability with respect to (w.r.t.) pa-
rameters can fail even if per-period utility functions and transition densities are smooth.

Example 2. Let the per-period utility be given by u(s�d1;θ) = θ1s and u(s�d2;θ) = θ2,
and let s be independent and identically distributed (i.i.d.). For θ1 = 0, the future ex-
pected value function (which does not depend on the current state and decision)
EV(θ)= max{0� θ2}/(1 −β) is not differentiable at (θ1� θ2)= (0�0).

Thus, there is a need to provide a precise characterization of the conditions that
guarantee differentiability. For this purpose, I apply the implicit function theorem for
Banach spaces to the Bellman equation. Rust (1988) also used this theorem to prove
the differentiability of the expected value function in parameters for a special class of
DDCMs with conditionally independent and additive utility shocks. Below, I introduce
the notation and describe the implicit function theorem. In Proposition 4, I show that
the sufficient conditions for differentiability in the implicit function theorem require
the policy function to be almost surely unique, even when small perturbations are intro-
duced in the expected value functions. This in turn implies that there must be some state
variables that do not affect state transition probabilities and thus the expected value
functions (Proposition 5). After I establish that the state variables that do not affect the
expected value function are needed for the applicability of the implicit function theo-
rem, I assume the presence of such variables in developing a set of sufficient conditions
for differentiability (Proposition 6). In Proposition 7, I provide a set of sufficient condi-
tions that are easier to verify in applications. I illustrate this in Example 3, which veri-
fies sufficient conditions for the differentiability in several versions of a stylized model
of work hours choice. The example also demonstrates that the sufficient conditions for
differentiability developed here considerably generalize Rust’s results for additive con-
ditionally independent utility shocks. In particular, the example shows that the utility
shocks do not have to be additive, they do not have to be serially independent under all
possible decisions, and there might be fewer shocks than there are alternatives.

Let Cwm denote the set of continuous functions from S to R bounded in ‖ · ‖wm .
Let v(·) = {v(·� d) ∈ Cwm�d ∈ D} and let Ccard(D)

wm denote a Cartesian product of card(D)

copies of Cwm . Assume that the weight function wm does not depend on parameters θ,
an assumption that is not restrictive if the parameter space is compact. Define an ana-
log of the Bellman operator for the expected value function (also called Emax operator)
Λ :Ccard(D)

wm ×Θ → C
card(D)
wm as

Λd(v(·)�θ)(s) =
∫

max
d′ {u(s′� d′;θ)+βv(s′� d′)}f (s′|s�d;θ)ν(ds′) (5)
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and Λ(v(·)�θ) = {Λd(v(·)�θ)�d ∈ D}. For a given value of the parameter vector θ, the
expected value functions EV(s�θ) = {EV(s�d�θ)�d ∈ D} solve the functional equation in
v(·),

Φ(v(·)�θ)= O� (6)

where Φ = (I −Λ), and O and I are 0 and 1 in the space of operators on Ccard(D)
wm . Equa-

tion (6) is an alternative representation of the Bellman equation.
For a fixed parameter vector θ0, let EV0(s) = EV(s�θ0) and let U be a neighborhood of

(EV0� θ0). According to the implicit function theorem in Kolmogorov and Fomin (1989),
EV(s�θ) is differentiable in θ at θ0 if the following conditions hold:

IFT1. Φ(v�θ) is continuous at (EV0� θ0).

IFT2. Φ(EV0� θ0) =O.

IFT3. The Fréchet derivative ∂Φ(v�θ)/∂v exists in U .

IFT4. ∂Φ(v�θ)/∂v is continuous at (EV0� θ0).

IFT5. The inverse of the operator ∂Φ(EV0� θ0)/∂v, denoted by [∂Φ(EV0� θ0)/∂v]−1, ex-
ists.

IFT6. ∂Φ(v�θ)/∂θ exists in U .

IFT7. ∂Φ(v�θ)/∂θ is continuous at (EV0� θ0).

The following proposition describes an important implication of the differentiability
of Φ(v�θ) in v.

Proposition 4. Condition IFT3 implies Assumption 5.

Assumption 5. Let Ŝ(v�θ) = {s′ : arg maxd′∈D[u(s′� d′;θ) + βv(s′� d′)] is single valued}.
For any (v�θ) ∈U and any (s�d), F(Ŝ(v�θ)|s�d;θ)= 1.

Assumption 5 is very strong. It is stronger than the requirement of the almost sure
(a.s.) uniqueness of the policy function.1 The a.s. uniqueness of the policy function has
to hold even if some small perturbations are introduced into the expected value func-
tion in the Bellman equation. Proposition 4 is proved in the Appendix. The proof can be
described as follows. When the arguments of max in the Emax operator Λd are equal on
a set of states of positive probability (Assumption 5 fails), then even very small changes
in v in different directions can lead to different maximizers inside Λd and, correspond-
ingly, to quite different changes in values of Λd . The formal proof makes these ideas
more precise.

1Almost sure uniqueness of the policy function by itself is an important property for estimable DDCMs
since it is needed for choice probabilities to be well defined. Also, from the proof of Proposition 4, it appears
to be necessary for the differentiability of the expected value functions. Whether its stronger version in
Assumption 5 is necessary for differentiability and whether it can be established without states that do not
affect transition probabilities are interesting questions for future research.
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Proposition 5 below shows that under very reasonable conditions, Assumption 5 re-
quires that some state variables not affect state transition probabilities and thus the ex-
pected value functions. The intuition behind this is that when all state variables do af-
fect the expected value functions, it is possible to construct slightly perturbed versions
of the expected value functions that make arg max in Assumption 5 multivalued on a set
of positive probability, which violates Assumption 5.

Proposition 5. Suppose that F(·|s�d�θ0) and the Lebesgue measure on S are mutually
absolutely continuous, and Assumption 5 holds. If the optimal decision at θ0 is not the
same for all states, then there must be at least one state variable that does not affect the
transition probability and, as a result, the expected value function.

Proposition 6 lists sufficient conditions for the differentiability of the expected value
function w.r.t. parameters.

Proposition 6. If Assumption 5 holds, Θ and S are compact (wm is a constant), ν(S) <
∞, u(s�d;θ) and ∂u(s�d;θ)/∂θj are continuous in (s�θ), f (s′|s�d;θ) and ∂f (s′|s�d;θ)/∂θj
are continuous in (s′� s� θ), then IFT1–IFT7 hold and E{V (s′;θ)|s�d;θ} is differentiable in
θ on Θ.

It might be possible to generalize this result to the unbounded state space case with
methods similar to those used to establish the continuity results for the unbounded state
space in Section 3. It is certainly possible to do so for some special cases (this was done
in Rust (1988) for additive conditionally independent utility shocks).

Assumption 5 is the only nontrivial condition for the differentiability of the expected
value functions. Let us try to find useful sufficient conditions for Assumption 5 to hold.
From Proposition 5, we know that such conditions have to include the existence of state
variables that do not affect the transition probabilities and the future expected value
functions. For a given d ∈ D, let us denote such state variables by εd and denote the rest
of the state variables by xd , so that s = (xd�εd) and

f (s′|s�d;θ)= f (s′|xd�d;θ) (7)

for any d. This is more general than Rust’s conditional independence assumption: εd =
ε, xd = x, and f (s′|s�d;θ) = f (ε′|x′;θ)f (x′|x�d;θ) for any d. Let εd1�d2 denote the set of
state variables that are contained in both εd1 and εd2 , and let xd1�d2 denote the rest; thus,
s = (εd1�d2�xd1�d2).

Proposition 7. (i) Assumption 5 holds if for any d�d1� d2 ∈D, s, x′
d1�d2

, θ ∈Θ, and c ∈R,
the set of variables ε′

d1�d2
is nonempty and

Pr
[
ε′
d1�d2

:u(s′� d1;θ)− u(s′� d2;θ) = c|x′
d1�d2

� s�d;θ] = 0� (8)

(ii) Equation (8) is satisfied when the distribution of ε′
d1�d2

conditional on (x′
d1�d2

� s�d�

θ) is absolutely continuous and equation u(s′� d1;θ) − u(s′� d2;θ) = c defines one of the
components of ε′

d1�d2
as a continuous function of the other components.
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The following example illustrates that condition (8) is easy to verify in applications
using Proposition 7(ii).

Example 3. Consider a stylized model of work hours choice. Let us assume that there
are three possible alternatives: full-time work, part-time work, and leisure. Define the
per-period payoff of choosing alternative d by

u(s�d) = exp{αd · s0 + γd�1 · s1 + γd�2 · s2 + γd�3 · s3}�
where vector s0 can include age, experience, and other personal characteristics, and
scalars sd , d ∈ {1�2�3}, are stochastic shocks. In an estimable DDCM, s0 can represent
state variables observed by econometricians and the other shocks can represent unob-
served state variables. The transition law for s0 is not important for the results below
and, therefore, is not specified here. Let f (·|·) and f0(·) be densities with respect to the
Lebesgue measure that are positive on their compact support S.

Case 1 (γi�j = 1{i=j}): In this case, sd is an alternative specific utility shock. If sd is i.i.d.
f0(·), then εd1�d2 = (s1� s2� s3) and Proposition 7(ii) applies immediately.

Case 2 (γ1�1 = γ3�3 = 1, γ2�1�γ2�3 ∈ (0�1), and γ1�2 = γ1�3 = γ2�2 = γ3�1 = γ3�2 = 0):
Thus, s2 is not present in the model and s1 can be interpreted as a shock to the util-
ity of work and s3 can be interpreted as a shock to the utility of leisure. Assume that
s′3 is i.i.d. f0(·) and s1 follows a first-order Markov process s′1 ∼ f (·|s1) for all d. In
this case, εd1�d2 = s3 for any (d1� d2) and Proposition 7 applies, since for any (d1� d2),
u(s�d1)− u(s�d2) = c either never holds or holds for a unique value of s3.

Case 3 (γ1�3 = γ2�1 = γ3�2 = 0 and γ1�1 = γ1�2 = γ2�2 = γ2�3 = γ3�3 = γ3�1 = 1): Assume
that when alternative d is chosen, sd follows a first-order Markov process s′d ∼ f (·|sd),
and when d1 �= d is chosen, in the next period sd is an i.i.d. draw s′d ∼ f0(·). In this setup,
ε1�2 = {s3}, ε1�3 = {s2}, and ε2�3 = {s1}. Note that

u(s�1)− u(s�2) = exp{α1 · s0 + s1 + s2} − exp{α2 · s0 + s2 + s3} = c

for some c either cannot hold or implies

s3 = log[exp{α1 · s0 + s1 + s2} − c] − (α2 · s0 + s2)�

which holds with probability 0. The other two cases, u(s�1) − u(s�3) = c and u(s�2) −
u(s�3) = c, are symmetric to this one. Thus, Proposition 7 applies.

As can be seen from the above example, Propositions 6 and 7 considerably general-
ize Rust’s results for additive conditionally independent utility shocks. In particular, the
utility shocks can be multiplicative, they can be serially correlated, and there might be
fewer shocks than there are alternatives.

5. Discussion

The continuity with respect to state variables and parameters, and the differentiabil-
ity with respect to state variables of the expected value functions in DDCMs are estab-
lished in this paper under fairly general conditions. The differentiability with respect
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to parameters is established when some state variables do not affect the state transi-
tion probabilities and thus the expected value functions. The sufficient conditions of
the implicit function theorem used in the proof are actually not satisfied unless such
variables are present. It seems unlikely that the expected value functions are differ-
entiable and the implicit function theorem does not apply (in general, it is of course
possible). Perhaps if the expected value functions can be shown to belong to some
special classes with more structure than the class of bounded continuous functions
(for example, monotone expected value functions in dynamic binary choice models),
then differentiability can be established without the implicit function theorem for the
Banach space of bounded continuous functions. This conjecture is left for future re-
search.

Appendix

Proof Proposition 1. The proof closely follows the standard proof of the continuity of
value functions with respect to the state variables (see, for example, Chapters 3 and 4 of
Stokey and Lucas (1989)). Let us consider the Bellman operator Γ on the Banach space
of bounded functions B with the sup norm: V :S × Θ → R defined in (3). Blackwell’s
sufficient conditions for contraction are satisfied for this operator, so Γ is a contraction
mapping on B. The set of continuous functions C is a closed subset in B. Thus, it suffices
to show that Γ (C) ⊂ C (this trivially implies that the fixed point of Γ is a continuous
function).

Let V (s;θ) be a continuous function in B (V ∈ C). Let us show that Γ (V ) is also con-
tinuous.

|Γ (V )(s1;θ1)− Γ (V )(s2;θ2)|

≤ max
d

∣∣∣∣u(s1� d;θ1)− u(s2� d;θ2)

+β

∫
V (s′;θ1)f (s

′|s1� d;θ1)ν(ds
′)−β

∫
V (s′;θ2)f (s

′|s2� d;θ2)ν(ds
′)

∣∣∣∣ (9)

≤ max
d

|u(s1� d;θ1)− u(s2� d;θ2)|

+βmax
d

∣∣∣∣
∫

[V (s′;θ1)f (s
′|s1� d;θ1)− V (s′;θ2)f (s

′|s2� d;θ2)]ν(ds′)
∣∣∣∣�

Given ε > 0, there exists δ1 > 0 such that ‖(s1;θ1) − (s2;θ2)‖ < δ1 implies maxd |u(s1� d;
θ1)− u(s2� d;θ2)| < ε/2:

∣∣∣∣
∫

[V (s′;θ1)f (s
′|s1� d;θ1)− V (s′;θ2)f (s

′|s2� d;θ2)]ν(ds′)
∣∣∣∣

(10)
≤ max

d
sup
s′

|V (s′;θ1)f (s
′|s1� d;θ1)− V (s′;θ2)f (s

′|s2� d;θ2)| · ν(S)�
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Since V (s′;θ)f (s′|s�d;θ) is continuous on compact S×S×Θ, for ε > 0 there exists δd2 > 0
such that ‖(s1� s

′;θ1)− (s2� s
′;θ2)‖ = ‖(s1;θ1)− (s2;θ2)‖ < δd2 implies

sup
s′

|V (s′;θ1)f (s
′|s1� d;θ1)− V (s′;θ2)f (s

′|s2� d;θ2)| < ε

2ν(S)
�

Thus, for δ = min{δ1�mind δ
d
2 }, ‖(s1;θ1) − (s2;θ2)‖ < δ implies |Γ (V )(s1;θ1) − Γ (V )(s2;

θ2)| < ε. So Γ (V ) is a continuous function. The continuity of E{V (s′;θ)|s�d;θ} follows
from the continuity of V (s′;θ) by an analogous argument. �

Proof of Proposition 2. (i) Bhattacharya and Majumdar (1989, p. 376) showed that

R(s�θ)≤M2m−1

[
(1 −β)−1w(s�θ)m + bm

∞∑
k=0

kmβk

]
<∞� (11)

Therefore, part (iii) of Assumption 1 is satisfied. Consider sn → s and∫
φ(s′)f (s′|sn�d�θ)dν(s′) (12)

for |φ(s)| ≤ R(s�θ). From (11), |φ(s)| is bounded by a linear function of w(s�θ)m. There-
fore, Assumption 4 implies that the dominated convergence theorem is applicable to
(12) and part (iv) of Assumption 1 follows.

(ii) For fixed θ, the result is established in Lippman (1975). See also Bhattacharya
and Majumdar (1989, pp. 376–377). Since Lippman (1975) used different notation, the
outline of the argument is presented below to rule out any confusion. For V1� V2 ∈ Bwm ,

|Γ (V1)− Γ (V2)(s;θ)| ≤ βmax
d

∣∣∣∣
∫

[V1(s
′;θ)− V2(s

′;θ)]f (s′|s�d;θ)ν(ds′)
∣∣∣∣ (13)

≤ β‖V1 − V2‖wm max
d

∣∣∣∣
∫

w(s′;θ)mf(s′|s�d;θ)ν(ds′)
∣∣∣∣ (14)

≤ β‖V1 − V2‖wm(w(s�θ)+ b)m� (15)

The induction argument of Lippman (1975, pp. 1228–1229) applies from here on without
any changes. It implies

‖Γ JV1 − Γ JV2‖wm ≤ βJ[1 + Jb]m‖V1 − V2‖wm�

We can choose J sufficiently large so that βJ[1 + Jb]m < 1. The claim is proved.
(iii) The set of continuous functions C ⊂ Bwm is closed. Thus, it suffices to show that

Γ (C) ⊂ C. Let (sn�θn) → (s�θ). The claim follows if for a continuous V ∈ C,

lim
n→∞

∫
V (s′� θn)f (s′|sn�d�θn)dν(s′) =

∫
V (s′� θ)f (s′|s�d�θ)dν(s′)�

First, note that by the continuity, V (s′� θn)f (s′|sn�d�θn) → V (s′� θ)f (s′|s�d�θ). Second,
from Assumption 4, for a sufficiently large N and all n ≥ N ,

|V (s′� θn)f (s′|sn�d�θn)| ≤ ‖V ‖wmw(s′� θn)f (s′|sn�d�θn) ≤ ws�d�θ(s
′)f s�d�θ(s′)�
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Thus, the dominated convergence theorem applies. The continuity of E{V (s′;θ)|s�d;θ}
follows from the continuity of V (s′;θ) by an analogous argument. �

Proof of Proposition 3. Consider snj → sj :

EV(s−j� s
n
j � d;θ)− EV(s�d;θ)

snj − sj

=
∫

V (s′;θ)
f (s′|s−j� s

n
j � d;θ)− f (s′|s�d;θ)

snj − sj
ν(ds′) (16)

=
∫

V (s′;θ)
∂f (s′|s−j� s̃

n
j (s

′)�d;θ)
∂sj

ν(ds′)�

where the last equality follows from the intermediate value theorem. For each s′,

∂f (s′|s−j� s̃
n
j (s

′)�d;θ)
∂sj

→ ∂f (s′|s−j� sj� d;θ)
∂sj

�

Note that |V (s′;θ)| ≤ R(s′� θ). As we discussed in the proof of Proposition 2, R(s′� θ) is
bounded by a linear function of w(s′� θ)m. This fact and Assumption 4 for ∂f (s′|s−j� sj� d;
θ)/∂sj imply that the absolute value of the integrand in (16) is bounded by an integrable
function for all sufficiently large n. Thus, the existence of partial derivatives follows by
the dominated convergence theorem. Essentially the same argument establishes con-
tinuity in (s�θ) of the partial derivatives, since V (s;θ) is continuous under Assump-
tions 2–4. �

Proof of Proposition 4. The proposition is proved by contradiction. For a bounded
nonnegative function h, consider the right limit

lim
t→+0

[Λd(v + th�θ)(s)−Λd(v�θ)(s)]/t

= lim
t→+0

β

∫ [
max
d′ [u(s′� d′;θ)+β(v + th)(s′� d′)]

(17)
− max

d′ [u(s′� d′;θ)+βv(s′� d′)]
]
/tF(ds′|s�d;θ)

= β

∫
max

d′∈arg max
d̃
[u(s′�d̃;θ)+βv(s′�d̃)]

h(s′� d′)F(ds′|s�d;θ)�

where the last equality follows by the dominated convergence theorem. Similarly, the
left limit is

β

∫
min

d′∈arg max
d̃
[u(s′�d̃;θ)+βv(s′�d̃)]

h(s′� d′)F(ds′|s�d;θ)�

If Assumption 5 does not hold (in other words, arg max
d̃
[u(s′� d̃;θ) + βv(s′� d̃)] is multi-

valued on a set of positive F(·|s�d;θ) measure), then the right and the left limits will be
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different for h satisfying the condition h(s′� d1) > h(s′� d2) for any s′ and d1 > d2. There-
fore, the Gâteaux derivative ∂Λd/∂v does not exist. Since the existence of the Fréchet
derivative implies the existence of the Gâteaux derivative, the Fréchet derivative of Λd

w.r.t. v also does not exist. �

Proof of Proposition 5. The proposition is proved by contradiction. We assume that
for all d ∈ D, all of the state variables affect the transition probability and then show
that under the proposition conditions, there exists an alternative that gives the decision-
maker strictly higher lifetime utility than any other alternative at all state variables. For
ε > 0 define

Sε =
{
s′ :d1 ∈ arg max

d̃
[u(s′� d̃� θ0)+βEV0(s

′� d̃)]� d2 �= d1�

(18)
0 ≤ u(s′� d1� θ0)− u(s′� d2� θ0)+β(EV0(s

′� d1)− EV0(s
′� d2)) < ε

}
�

Suppose Sε is nonempty for all ε > 0. Choose ε > 0 so that if ‖v− EV0 ‖< ε, then (v�θ0) ∈
U . By continuity of u and EV0, Sε contains a ball with positive radius. This ball contains
a point s∗ with the unique optimal decision d∗

1 = arg max
d̃
[u(s∗� d̃� θ0)+βEV0(s

∗� d̃)] be-

cause F(Ŝ(EV0� θ0)|s�d�θ0) = 1 by Assumption 5. By continuity of u and EV0, d∗
1 is the

unique optimal decision for any s′ in a ball Bδ(s
∗) with center s∗ and sufficiently small

radius δ > 0. The radius δ can be chosen so that Bδ(s
∗) ⊂ Ŝ(EV0� θ0) ∩ Sε and for all

s′ ∈ Bδ(s
∗), the condition in (18) holds for d∗

1 and for some fixed d∗
2 .

Define function v∗ as v∗(s′� d) = EV0(s
′� d) if d �= d∗

2 ; v∗(s′� d∗
2) = EV0(s

′� d∗
2) for s′ /∈

Bδ(s
∗) and v∗(s′� d∗

2) = β−1(u(s′� d∗
1� θ0)−u(s′� d∗

2� θ0))+βEV0(s
′� d∗

1) for s′ ∈ Bδ/2(s
∗). For

s′ ∈ Bδ(s
∗)\Bδ/2(s

∗), choose v∗(s′� d∗
2) so that v∗(s′� d∗

2) is continuous and ‖EV0 −v∗‖< ε,
for example, by linear interpolation between points on the boundaries of Bδ(s

∗) and
Bδ/2(s

∗) along the line going through s′ and s∗ as shown in Figure 1. This definition of
v∗ requires that the expected value function depend on all the state variables and that is
where the corresponding assumption is used. This continuous v∗ violates Assumption 5
since ‖EV0 −v∗‖< ε and (v∗� θ0) ∈U , and arg maxd[u(s′� d�θ0)+β(v∗(s′� d)] is not single
valued on Bδ/2(s

∗) and F(Bδ/2(s
∗)|s�d�θ0) > 0 as the Lebesgue measure is absolutely

Figure 1. Linear interpolation for v∗(s′� d∗
2), s′ ∈ Bδ(s

∗) \Bδ/2(s
∗).
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continuous w.r.t. F(·|s�d�θ0). Therefore, under Assumption 5, there must exist ε > 0
such that Sε is empty. Then the optimal decision must be unique for all s′ ∈ S. If the
optimal decision is unique for all states, then the continuity of u and EV0 implies that
the optimal decision is the same for all states. �

Proof of Proposition 6.
IFT1. It suffices to show that if (vn�θn) → (EV0� θ0), then Λd(v

n�θn) → Λd(EV0� θ0)

for any d ∈D and

|Λd(v
n�θn)(s)−Λd(EV0� θ0)(s)|

=
∣∣∣∣
∫ [

max
d′ {u(s′� d′;θn)+βvn(s′� d′)}f (s′|s�d;θn)

− max
d′ {u(s′� d′;θ0)+βEV0(s

′� d′)}f (s′|s�d;θ0)
]
ν(ds′)

∣∣∣∣
≤

∫ ∣∣∣max
d′ {u(s′� d′;θn)+βvn(s′� d′)} − max

d′ {u(s′� d′;θ0)+βEV0(s
′� d′)}

∣∣∣
× f (s′|s�d;θn)ν(ds′)
+

∫ ∣∣∣max
d′ {u(s′� d′;θ0)+βEV0(s

′� d′)}
∣∣∣|f (s′|s�d;θn)− f (s′|s�d;θ0)|ν(ds′)�

Note that |maxd′ {u(s′� d′;θn) + βvn(s′� d′)} − maxd′ {u(s′� d′;θ0) + βEV0(s
′� d′)}| ≤

maxd′ |u(s′� d′;θn)−u(s′� d′;θ0)|+βmaxd′ |vn(s′� d′)−EV0(s
′� d′)|. Since u(·) and f (·|·) are

uniformly continuous, ‖vn − EV0 ‖ → 0, and ‖u(·)+βEV0(·)‖ <∞, then |Λd(v
n�θn)(s)−

Λd(EV0� θ0)(s)| converges to zero uniformly in s.
IFT2. The condition holds by the formulation of the problem.
IFT3. If the Gâteaux derivative exists and is linear, bounded, and continuous, then

the Fréchet derivative exists (and is equal to the Gâteaux derivative). First, let us show
that the following expression is equal to the Gâteaux derivative of Λd with respect to v at
(v�θ) ∈U evaluated at s:

∂Λd(v�θ)(h)(s)

∂v
= β

∫ [∑
d′

1
{
d′ = arg max

d̃
[u(s′� d̃;θ)+βv(s′� d̃)]

}
h(s′� d′;θ)

]

× f (s′|s�d;θ)ν(ds′)�

where 1{d′ = arg max
d̃
[u(s′� d̃;θ) + βv(s′� d̃)]} = 0 whenever the arg max is not single val-

ued. It is the case if the following expression converges to zero uniformly in s:

Λd(v + th�θ)(s)−Λd(v�θ)(s)

t

−β

∫ [∑
d′

1
{
d′ = arg max

d̃
[u(s′� d̃;θ)+βv(s′� d̃)]

}
h(s′� d′;θ)

]

× f (s′|s�d;θ)ν(ds′)
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=
∫

1
Ŝ
(s′)

(
t−1

[
max
d′ [u(s′� d′;θ)+β(v + th)(s′� d′)]

− max
d′ [u(s′� d′;θ)+βv(s′� d′)]

]

−β

[∑
d′

1
{
d′ = arg max

d̃
[u(s′� d̃;θ)+βv(s′� d̃)]

}
h(s′� d′;θ)

])

× f (s′|s�d;θ)ν(ds′)
=

∫
Bt(s

′)f (s′|s�d;θ)ν(ds′) ≤
∫

|Bt(s
′)|fν(ds′)�

where a finite upper bound f on f (s′|s�d;θ) exists since f (·|·) is continuous on a com-
pact. By Assumption 5, for all s′ ∈ Ŝ, arg max

d̃
[u(s′� d̃;θ) + βv(s′� d̃)] is single valued and

Bt(s
′) becomes equal to zero for all sufficiently small t. The integral

∫ |Bt(s
′)|fν(ds′)

does not depend on s and converges to zero by the dominated convergence theorem
(|Bt(s

′)| ≤ 2‖h‖ and ν is assumed to be finite in the bounded case). The obtained Gâteaux
derivative of Λ is linear in h. Its norm is equal to β. Linear bounded operators are con-
tinuous. Thus, the Fréchet derivative of Λ exists.

IFT4. Let (θn� vn) → (θ0�EV0). We need to show that

sup
‖h‖≤1

sup
s

∣∣∣∣∂Λd(θ
n� vn)(h)(s)

∂v
− ∂Λd(θ0�EV0)(h)(s)

∂v

∣∣∣∣ → 0�

∣∣∣∣∂Λd(θ
n� vn)(h)(s)

∂v
− ∂Λd(θ0�EV0)(h)(s)

∂v

∣∣∣∣
≤

∫ [∑
d′

1
{
d′ = arg max

d̃
[u(s′� d̃;θn)+βvn(s′� d̃)]

}
h(s′� d′)

]

× (f (s′|s�d;θn)− f (s′|s�d;θ0))ν(ds
′)

(19)

+
∫

1
Ŝ
(s′)

[∑
d′

1
{
d′ = arg max

d̃
[u(s′� d̃;θn)+βvn(s′� d̃)]

}
h(s′� d′)

−
∑
d′

1
{
d′ = arg max

d̃
[u(s′� d̃;θ0)+βEV0(s

′� d̃)]
}
h(s′� d′)

]

× f (s′|s�d;θ0)ν(ds
′)

≤ ‖h‖
∫

|f (s′|s�d;θn)− f (s′|s�d;θ0)|ν(ds′)+
∫

B1
n(s

′)f (s′|s�d;θ)ν(ds′)�

where B1
n is the integrand in (19). By the same argument as in IFT3 for Bt and by the

uniform continuity of f (·|·), the last two integrals converge to zero uniformly in s and
‖h‖ ≤ 1.

IFT5. Since∥∥∥∥∂Λ(EV0� θ0)

∂v

∥∥∥∥ = β< 1
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and

∂Φ(EV0� θ0)

∂v
= I − ∂Λ(EV0� θ0)

∂v

the inverse exists and is given by

[
∂Φ(EV0� θ0)

∂v

]−1

=
∞∑
t=0

[
∂Λ(EV0� θ0)

∂v

]t
�

IFT6. Let g be an element of the Banach space that includes Θ. By an argument sim-
ilar to the one in IFT3, the following expression is the Fréchet derivative of Λd with re-
spect to the parameter vector θ:

∂Λd(v�θ)(g)(s)

∂θ

=
∫

max
d′ [u(s′� d′;θ)+βv(s′� d′)] ·

[∑
j

∂f (s′|s�d;θ)
∂θj

gj

]
ν(ds′)

+
∫ (∑

d′
1
{
d′ = arg max

d̃
[u(s′� d̃;θ)+βv(s′� d̃)]

}[∑
j

∂u(s′� d′;θ)
∂θj

gj

])

× f (s′|s�d;θ)ν(ds′)�
In this argument, interchanging the differentiation and integration operations is also
justified by the dominated convergence theorem, since the partial derivatives of u(s′� d′;
θ) and f (s′|s�d;θ) are assumed to be continuous on a compact and thus are bounded.

IFT7. The continuity of ∂Λd(v�θ)(g)(s)/∂θ in (v�θ) is established by the same argu-
ment as the one in IFT4. �

Proof of Proposition 7. (i) Define operator Λ on the space of vector functions whose
di component does not depend on ε′

di
. Since x′

d1�d2
includes x′

d1
and x′

d2
, we can set c =

β[v(x′
d2
� d2)− v(x′

d1
� d1)]. Then (8) immediately implies Assumption 5.

Part (ii) of the proposition holds because the Lebesgue measure of a graph of a con-
tinuous function is zero. �
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