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We develop an indirect inference approach relying on a linear supply and demand
model serving as an auxiliary model to provide the first full empirical test of the
rational expectations commodity storage model. We build a rich storage model
that incorporates a supply response and four structural shocks and show that
exploiting information on both prices and quantities is critical for relaxing previous
restrictive identifying assumptions and assessing the empirical consistency of the
model’s features. Finally, we carry out a structural estimation on the aggregate
index of the world’s most important staple food products. Our estimations show
that supply shocks are the main drivers of food market dynamics and that our
storage model is consistent with most of the moments in the data, including the
high price persistence so far the subject of a long-standing puzzle.
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1. INTRODUCTION

Speculative storage by allowing the transfer of commodities from one period to another
and by allowing prices to react immediately to news about future market conditions
is a crucial determinant of commodity price dynamics. While this insight is well rec-
ognized empirically (see, e.g., Kilian and Murphy, 2014, Letta et al., 2022), the theory
underpinning this behavior is far from being empirically validated. Despite being widely
used in many applied and policy works (Gouel, 2013, Porteous, 2019, Steinwender, 2018),
the framework provided by the rational expectations storage model was rejected by the
first estimations of Deaton and Laroque (1992, 1996). Deaton and Laroque found that a
simple storage model while able to account qualitatively for many of the stylized facts
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of commodity price dynamics is not able to match the level of price autocorrelation
observed in the data. Subsequent work offered some solutions to raise the persistence
induced by the model and better match this central feature of the data (Cafiero et al.,
2011, 2015, Gouel and Legrand, 2017, Bobenrieth et al., 2021), but all these studies build
on Deaton and Laroque’s approach where the model is estimated only on prices, which
requires restrictive identifying assumptions, such as assuming only one source of shocks
when using likelihood-based techniques, and prevents estimation of all the model param-
eters. This seriously limits storage models’ usefulness in studying how price fluctuations
are driven by the underlying shifts in supply and demand, in assessing the respective
importance of these supply and demand shocks, and in using this structural model to
run counterfactual and welfare analyses for policy purposes.

In this work, we build and estimate a rich rational expectations storage model with
the aim of assessing its empirical validity beyond its ability to fit price dynamics. To
achieve this, we depart from the standard model setup estimated so far. Specifically, we
extend the simple storage model to include: (i) a supply response, (ii) long-run trends in
prices and quantities, (iii) a persistent demand shock, and (iv) three supply shocks with
different timings. Next, we demonstrate how to leverage the information contained in
the joint dynamics of quantities and prices to identify all the structural parameters of the
model. Finally, we take our enhanced storage model to five time series representing the
global grains market, which we capture through an aggregate index of the world’s most
important staple food products.1 We find that our model successfully reproduces the
observed high price autocorrelation, with the transfer of inventories over time playing
a crucial role in explaining this phenomenon. However, this is only achieved when
combined with the other features of the model. We also show that, when fully specified,
the storage model can effectively match the key moments of the global food market.
Importantly, with our econometric strategy that exploits the joint dynamics of price and
quantity, we can empirically assess the overall consistency of the model’s combined
extensions while identifying more formally which ones help to match the moments in
the data.

The following considerations guided the construction of our model. Estimating a
supply and demand model presents the usual problem of simultaneity bias with equilib-
rium price and quantity that are jointly determined. Correct identification in this setting
requires accounting for unobservable shifts in each curve. Considering this, we build
on the recent innovation in this literature by Roberts and Schlenker (2013) who use the
storage theory to find an appropriate instrument to estimate supply elasticities in storable
commodity markets. While storage theory inspires their econometric strategy to identify
demand and supply elasticities, they do not develop a storage model consistent with
their strategy. In contrast, we introduce in our model various demand and supply shocks,
with heterogeneous timing, guided by the specific timing of events during the growing
season, by the theoretical structure implicit behind Roberts and Schlenker’s instrumental
variable estimation approach and by the moments in the data.

Despite the richness of our model compared to most models in the storage literature,
it remains quite stylized, and particularly compared to the number of observables. More

1These are maize, rice, soybeans, and wheat.
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precisely, with only four shocks driving the fluctuations of five observables, the model
presents a stochastic singularity. This is an obstacle to a likelihood-based estimation
since, by construction, the model could not be expected to account for the richness of
the data. A classical solution to this issue would consist in adding measurement errors to
the observables. However, this paper being the first structural estimation of a rich storage
model, we prefer to analyze its empirical performance more transparently. Instead, to
deal with the stochastic singularity, we adopt an estimation approach that can be applied
despite it, which allows us to choose the dimensions of the data to match, and which
remains fully transparent with respect to the factors driving the estimation. This approach
is the indirect inference proposed in Gourieroux et al. (1993) and Smith (1993). It is a
simulated moment-based method in which the model is estimated by targeting parameter
estimates from an auxiliary model. Put simply, indirect inference is based on the use of
an auxiliary model as a statistical model which provides a rich description of the features
in the data. This auxiliary model, which here is the supply and demand model of Roberts
and Schlenker (2013), is estimated on both the true data and on simulated data from
the structural model, and the structural model parameters are adjusted to minimize the
distance between both sets of estimates from the auxiliary model. This approach allows
us to exploit an econometric literature where intuitions about which moment is driving a
parameter estimation are more explicit than full-information techniques. Also interesting
with this approach is that it can be applied in the absence of information about stocks
which are generally not available or too noisy to be of use.

We apply this indirect inference approach on the data used by Roberts and Schlenker
(2013), which includes five observed variables: price, expected price, demand, production,
and yield shock. This allows us to estimate all the parameters of the model. Using these
estimates, we present two sets of results. First, we evaluate the ability of our extended
storage model to capture the empirical time series properties of both price and quantity
data. We assess the performance of the estimated storage model by comparing the
covariances based on model simulations and those based on observations. Generally,
the covariances are similar for simulations and observations, suggesting that the model
is able to mimic the main moments in the data. Interestingly, our results raise a new
puzzle: the model proves unable to match the correlations between price and quantities,
consumption as well as production, which are much lower in the data than in the model.

Second, a credible solution to the price autocorrelation puzzle can be found by
accounting for some key features of the international grains market. Based on our esti-
mations, we can rank the different factors according to their relative contributions to the
observed one-year autocorrelation in prices, with storage being the largest contributor,
followed by the long-run trend in prices, autocorrelated demand shocks, and supply news
shocks.

Our work relates to three strands of research. The first strand studies the theoretical
and empirical properties of storage models. Our model builds on earlier studies that
introduce similar features separately. For example, Wright and Williams’s (1982) competi-
tive storage model includes an elastic supply. Williams and Wright (1991), Chambers and
Bailey (1996), Deaton and Laroque (1996), and Routledge et al. (2000) introduce auto-
correlated shocks. Several papers (e.g., Lowry et al., 1987, Osborne, 2004, Gouel, 2020)
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use production shocks with different timings. Dvir and Rogoff (2014) develop a storage
model with trending quantities, and Bobenrieth et al. (2021) introduce a supply trend
that generates quantity and price trends. Relative to this literature, our use of information
on both price and quantities enables us to disentangle the effects of the core storage
theory from the set of auxiliary assumptions needed for inference. Indeed, along three
dimensions—the persistence of the demand shock, the supply elasticity, and the size and
cross-correlation of the supply shocks—the dynamics of quantities play a critical role
because price data alone cannot identify any of them.

The second strand is a literature that uses structural vector autoregressions (SVAR)
to study commodity markets. This approach, one of the most popular for the empirical
analysis of commodity markets, is used, for example, to study the role of supply and
demand shocks in commodity markets (Kilian, 2009, Carter et al., 2017, Baumeister
and Hamilton, 2019), the role of news shocks (Känzig, 2021), and the role of speculative
storage (Kilian and Murphy, 2014, Cross et al., 2022). Compared to this SVAR literature, our
paper provides one of the first fully structural approach in the commodity price literature
allowing to identify the various shocks in a theoretically consistent way (another paper
doing it with a structural model, but without storage and for the oil market, is Bornstein
et al., 2023) and to analyze the role of speculative storage.

Last, our approach bridges two literature: the literature on the estimation of storage
models and the literature on the estimation of dynamic stochastic general equilibrium
(DSGE) models, which conceptually and numerically are close to storage models. The
estimation of storage models has been so far restricted to small models too stylized
to capture the richness of these markets. This was also the case for DSGE models up
to the contributions of Smets and Wouters (2003, 2007), who show how to build and
estimate DSGE model with rich stochastic structures. We follow Smets and Wouters
by adding a rich set of structural shocks to a storage model. Our estimation approach
also borrows from the DSGE literature where indirect inference is commonly applied.2

In this literature, the auxiliary model is often a SVAR and the estimations depend on
targeting the impulse responses (e.g., Rotemberg and Woodford, 1997, Christiano et al.,
2005, Ruge-Murcia, 2020).3 In our case, we show that a system of linear equations based
on the instrumental variable model in Roberts and Schlenker (2013) is enough to capture
the dynamic relationships of interest (as in Guvenen and Smith, 2014), including the
strong nonlinearities.4 However, a SVAR should also work since Carter et al. (2017) use
this framework to approximate a storage model and Ghanem and Smith (2022) adapted

2This paper is not the first to estimate a storage model by indirect inference. Michaelides and Ng (2000)
employed this approach in a Monte Carlo comparison of simulation estimators. However, as Michaelides
and Ng (2000) followed Deaton and Laroque by estimating their model only on prices, the various auxiliary
models they consider are all based on univariate time-series models.

3Indirect inference is also used in macroeconomics for a purpose other than estimating models: testing
them (e.g., see Le et al., 2011). In this case, indirect inference consists in using a Wald statistic to test an
estimated DSGE model against a reference statistical model, typically a VAR.

4Since commodities cannot be consumed before being produced, there is a nonnegativity constraint on
inventories. This zero lower bound on storage introduces an essential nonlinearity which carries through
into nonlinearity of the predicted commodity price series.
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in a SVAR Roberts and Schlenker’s IV model, which provides the basis for our auxiliary
model.

The rest of the paper is as follows. Section 2 describes the storage model. Section 3
presents the econometric strategy which starts by deriving the instrumental variable ap-
proach consistent with the model followed by the indirect inference approach. Section 4
describes the data and gives descriptive statistics. Section 5 discusses the estimation
results, assesses the model fit on moments not included in the estimation, and analyzes
the role of storage in price dynamics. Section 6 concludes the paper.

2. THE MODEL

This section presents the storage model to be estimated. Although the storage model
is used to explain short-run dynamics in commodity markets, long-run dynamics can
potentially affect short-run incentives and should not been neglected in the model. Con-
sumption and production of food increase over time due to rising population numbers,
income growth, and technological progress. There is a large literature analyzing the na-
ture of the long-run trends in commodity prices (see section 4.2). We allow equilibrium
quantity and price to have trends to account for these long-run dynamics. We work with
trends in equilibrium variables because these trends can be directly estimated from the
data, contrary to structural trends such as demand and cost trends, which are not ob-
servable.5 Since, for simulation purposes, the storage model must be a stationary model,
we first present the storage model with trends, and second, we express it in terms of the
detrended variables, which shows how the trends affect agents’ incentives.

2.1 Nonstationary model

2.1.0.1 Producers A representative producer makes its production decision and pays
for inputs one period before bringing its output to the market. The production choice
represented by the acreage is made in period t and denoted Ht. The producer decision
is affected by two shocks: ηt, a planting-time yield shock, and ωt, a cost shock. The
planting-time yield shock represents the component of yield shock that is observable by
the producer when planting, for example, related to the field conditions during planting,
the groundwater level, and the seasonal weather forecasts. Roberts and Schlenker (2013)
also take the example of the soybean rust, which is observable from the previous growing
season. The cost shock is also observable by the producer and aggregates a variety of
shocks, for example, related to fertilizers, seeds, labor, and fuel. Realized production
differs from planned production because of an unpredictable harvest-time yield distur-
bance denoted ϵt+1. The shocks are normal with zero mean and no autocorrelation, and
their respective variances are σ2η , σ2ω , and σ2ϵ .

Although in reality, planting-time and harvest-time yield shocks may be correlated,
because of the rational expectations assumption, there is no need to introduce a correla-
tion between ηt and ϵt+1 in the model. If producers are efficient forecasters (in the sense

5See Appendix A for the same model developed with structural trends; this Appendix links equilibrium
and structural trends.
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of Nordhaus, 1987), they will account for the existing correlation, and their forecasting
errors should be independent of the observables at period t. In other words, ϵt+1 can
be interpreted as the yield forecast error at planting time, which because of rational
expectations must be uncorrelated to any period-t variable.

We cannot exclude the possibility of a correlation between the two planting-time
shocks, ηt and ωt, since a year with low yield prospects, for example, could be also
associated with higher marginal costs to achieve the same level of production. Therefore,
we assume they are correlated with a coefficient ρη,ω ∈ (−1,1).

The producer’s problem in period t can be written as

max
Ht≥0

βEt
(
Pt+1Ht e

ηt+ϵt+1
)
− Γt (Ht) e

ωt+gpt, (1)

where 0 < β < 1 is the annual discount factor which is assumed to be fixed, Et is the
expectation operator conditional on period t information, Pt+1 is the price, Γt(·) is a
nonstationary, differentiable, and convex production cost function, and gp is the price
trend. The solution to this problem is given by the following first-order condition

β eηt Et (Pt+1 e
ϵt+1) = Γt

′ (Ht) e
ωt+gpt . (2)

At each period, the producer rationally plants up to the point where the expected marginal
benefit equals the marginal production cost.

From an econometric perspective, we assume that only the combined yield shock
is observable and that it is not possible to observe ηt and ϵt+1 separately. We there-
fore introduce ψt+1 = ηt + ϵt+1 as the observable yield shock. Final production Qt+1 =

Ht exp(ψt+1), is also observable in publicly available statistics. Note that assuming a
multiplicative cost shock separable from the other costs implies that this shock can be
moved to the left-hand side of equation (2) where it would play the same role in final
production as the planting-time yield shock, the only difference being that the yield shock
is observable with noise ex-post in ψt+1 but not the cost shock. Since ωt can be moved to
the left-hand side, this means it might capture also some incentive shocks (e.g., because
of changes to agricultural and trade policies or because of price changes in competing
crops).

2.1.0.2 Storers For the storage sector, we assume free entry, competitive behavior, and
risk-neutrality. To store an amount Xt ≥ 0 from period t until t+ 1 competitive storers
incur several costs. They incur an opportunity cost because they have to buy one period
before being able to sell. Following most of the storage literature (Gustafson, 1958, Stein-
wender, 2018, Wright and Williams, 1982, 1984), we assume that storers incur a physical
cost of storage proportional to the stored quantity, kP̄tXt, where P̄t is the price on the
deterministic growth path (i.e., in the absence of shocks) and k ≥ 0 is the per-unit physical
storage cost expressed as a percentage of this price. To be compatible with a model that
ultimately could be expressed in terms of stationary variables, the per-unit storage cost
must be assumed either to be null (the assumption adopted in Bobenrieth et al., 2021)
or as adopted here to follow the same trend as the price. We assume no deterioration of
stored grains, and the working paper version of this article shows that it is impossible to
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estimate separately a per-unit storage cost and a rate of deterioration, because the same
moments identify the two parameters (Gouel and Legrand, 2022).6

Under this structure of costs and the assumption of rational expectations, the repre-
sentative storer maximizes its expected profit,

max
Xt≥0

Et
[(
βPt+1 − Pt − kP̄t

)
Xt
]
. (3)

which taking account of the non-negativity constraint on storage yields the following
arbitrage condition

βEtPt+1 − Pt − kP̄t ≤ 0, = 0 if Xt > 0. (4)

When the expected price is too low to cover the purchase and storage costs (i.e.,
βEtPt+1 ≤ Pt + kP̄t), no stocks are held. Conversely, when the expected price covers
the purchase and storage costs, stocks are acquired up to the level where the expected
marginal profit is null: βEtPt+1 = Pt+ kP̄t, which involves an intertemporal relationship
between current and expected prices.

Total marginal storage costs equal kP̄t − (β − 1)EtPt+1, which shows that a key
difference between per-unit storage cost and the opportunity cost lies in the fact that the
opportunity cost is a storage cost that rise with the (expected) price level.

2.1.0.3 Final demand Non-speculative demand for commodities can be affected by
a variety of shocks: income, policy (e.g., public support for biofuels), and preference
shocks (see e.g. Carter et al., 2011, Chen et al., 2010, Gilbert, 1989). For parsimony, we
gather these different shocks in one demand shock µt, and since such shocks are likely
to be persistent, we assume µt to be autocorrelated. Final demand for the good is the
product of a downward sloping demand function Dt(Pt) with a demand shock, exp(µt),
where µt follows a first-order autoregressive process with autocorrelation ρµ ∈ [0,1) and
innovation υ ∼N

(
0, σ2υ

)
:

µt+1 = ρµµt + υt+1. (5)

2.1.0.4 Equilibrium The market clears when the sum of previous remaining stocks and
production equals the final demand for immediate consumption plus the speculative
demand for stocks:

Xt−1 +Ht−1 e
ηt−1+ϵt =Dt (Pt) e

µt +Xt. (6)

6We do not consider the possibility of an upper bound on storage capacities (Oglend and Kleppe, 2017)
because, contrary to oil and gas, grains can be stored outside dedicated facilities. In addition, we follow
the tradition of Wright and Williams and Deaton and Laroque by assuming away any negative (nonlinear)
storage cost related to the concept of “convenience yield”. The latter refers to the value of having stocks close
at hand despite a seeming loss i.e., at a spread between expected and current prices below the full carrying
costs (Kaldor, 1939, Working, 1949, Brennan, 1958). Assuming away convenience yield has the benefit of
parsimony as only one parameter k can represent storage costs. The limit is that expected prices can only
fall with respect to current prices in the absence of inventories (see Williams, 1986, for a full analysis of the
concept of convenience yield).
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2.2 Stationary model

Detrended variables and functions are denoted in lower case and relate to their trending
counterparts based on the following relations

Pt+1 = pt+1 e
gpt, (7)

Dt (Pt) = egqt d (pt) , (8)

Γt
′ (Ht) = γ′ (ht) , (9)

where gq is the assumed rate of growth of quantities. In equation (7), the fact that the
price trend in t is applied to the price in t+ 1 comes from equation (1), where the price
trend enters through the cost to produce quantities, which in turn will determine the
prices in the next period.

For reasons of market equilibrium, all equilibrium quantities—final consumption,
production, and stocks—must share the same multiplicative trend gq for equation (6)
to be made stationary. Note that we are working here with equilibrium trends, trends
in equilibrium quantities and prices. The fact that in equilibrium, all quantities share
the same trend does not preclude that demand and production costs may be exposed to
different structural trends (see Appendix A). The equilibrium quantity trend results from
the combined effects of demand and production cost trends that are not modeled here
(see equation (S.8)). Similarly, the price trend emerges when demand and cost trends do
not perfectly offset each other (see equation (S.6)).

Defining detrended stocks and acreage using

Xt = xt exp (gqt) and Ht−1 = ht−1 exp (gqt) , (10)

we can replace the trending quantities by their detrended counterparts in the above
market clearing equation (6):

xt−1 e
−gq +ht−1 e

ηt−1+ϵt = d (pt) e
µt +xt. (11)

The multiplication of xt−1 by exp(−gq) shows that, on average, stocks have to increase
just to keep pace with the increased production and demand (for gq > 0), so the detrended
past stocks are discounted to maintain them at a level comparable to other detrended
quantities.

Similarly, since P̄t+1 = p̄ exp(gpt) where p̄ is the deterministic steady-state price, the
storage non-arbitrage equation (4) can be expressed with detrended variables as

β egp Et pt+1 − pt − kp̄≤ 0, = 0 if xt > 0. (12)

The presence of exp(gp) in the equation shows that in the stationary model, the price
trend is equivalent to adjusting the opportunity cost of storage. Intuitively, a negative
price trend—as empirically found in section 4—raises the opportunity cost because, since
prices tend to decrease over time, a higher expected price is required to maintain the
same level of stocks. Associated with the price trend, the condition gp <− logβ ensures
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that inventories are costly and is a necessary condition for the existence of a stationary
rational expectations equilibrium,7 which is always satisfied for decreasing trends.8

In equation (11), five variables are predetermined: stocks, acreage, and the three
shocks. Four of these variables are combined in a single state variable, total available
supply st, as follows

st ≡ xt−1 e
−gq +ht−1 e

ηt−1+ϵt . (13)

Applying previous transformations to the equilibrium equations leads to the following
system of three stationary equilibrium equations associated with three equilibrium
variables:

ht : β e
ηt−ωt Et (pt+1 e

ϵt+1) = γ′ (ht) , (14)

xt : β e
gp Et pt+1 − pt − kp̄≤ 0, = 0 if xt > 0, (15)

pt : st = xt + d (pt) e
µt . (16)

It can be seen that, in the stationary model, while the price trend is equivalent to a
change in the opportunity cost of storage, the quantity trend does not directly affect
the incentives. However, it affects them indirectly through its scaling of past stocks in
equation (13). One unit of stocks is less valuable with a positive quantity trend than the
same unit without any quantity trend. So a positive quantity trend is equivalent to an
increase in the opportunity cost of storage, albeit a one harder to quantify than that
coming from the price trend.

2.3 Functional forms

For consistency with Roberts and Schlenker’s framework and for simplicity, we assume
that the stationary demand function takes an isoelastic form such that

d (pt) = d̄

(
pt
p̄

)αD
, (17)

where d̄ is the deterministic steady-state demand (equal also to steady-state production
since stocks are not held at the deterministic steady state), and αD < 0 is the price
elasticity of demand. Similarly, the stationary marginal cost function is assumed to be
isoelastic:

γ′ (ht) = βp̄

(
ht
d̄

)1/αS

, (18)

where αS > 0 is the supply elasticity. Because of the assumed specifications with variables
expressed relative to the deterministic steady state, these demand and marginal cost
functions depend only on parameters that can be interpreted directly.

7It corresponds to the assumption 2 of Deaton and Laroque (1992).
8See Bobenrieth et al. (2021) for a thorough treatment of the behavior of a storage model with price trend.
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Under these assumptions, the four model equations can be expressed as

st
d̄

=
xt−1

d̄
e−gq +

ht−1

d̄
eηt−1+ϵt , (19)

ht
d̄

=

[
eηt−ωt Et

(
pt+1

p̄
eϵt+1

)]αS
, (20)

β egp Et

(
pt+1

p̄

)
− pt
p̄

− k ≤ 0, = 0 if
xt
d̄
> 0, (21)

st
d̄

=
xt
d̄

+

(
pt
p̄

)αD
eµt . (22)

From these equations, we see that the only effect of the deterministic steady-state quantity
(d̄) and price (p̄) is that they scale the value of the variables.

Note that these assumed functional forms and the stochastic assumptions imply
E[d−1(d̄ exp(ψ−µ))]<∞, which rules out bubble models such as Bobenrieth et al. (2002).

2.4 Model solution

Equations (5) and (19)–(22) represent a nonlinear rational expectations system based
on the exogenous state variable µt, the endogenous state variable st, and the response
variables ht, xt, and pt driven by the innovations {ηt, ωt, ϵt, υt}. This system does not
have a closed form solution and must be solved numerically to allow for a structural
estimation. The solution to the rational expectations system takes the form of policy
functions which describe the control variables as functions of the contemporaneous
state variables. Different definitions of the state space can be employed. Given that
for the numerical solution we use a projection method, it is important for speed and
precision to reduce if possible the number of state variables. So far, only some of the
predetermined variables have been combined in the availability, but a further reduction
in the dimensionality of the problem can be achieved.

Instead of working with the acreage ht, we can work with qet+1 =Et qt+1 exp(−σ2ϵ /2) =
ht exp(ηt), which is the expected production corrected for the mean harvest-time shock
and which is given by

qet+1 = d̄ eηt
[
eηt−ωt Et

(
pt+1

p̄
eϵt+1

)]αS
. (23)

In this case, the transition equation is defined as

st+1 = xt e
−gq +qet+1 e

ϵt+1 . (24)

We combine the two planting-time shocks that appear in equation (23) to form the aggre-
gate planting-time shock φt ≡ (1 + αS)ηt − αSωt. φt summarizes the effective planting-
time shocks, is observable by the producer, and allows for a further simplification of the
supply equation:

qet+1 = d̄ eφt
[
Et

(
pt+1

p̄
eϵt+1

)]αS
. (25)
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We can see also that in the absence of demand for stock, the market clearing equa-
tion (16) collapses to st = d(pt) exp(µt). This simplification implies that, in this situation,
the availability and the demand shock can be combined into a variable that we define as
net availability, s̃t ≡ st exp(−µt), i.e., availability in the market corrected for the demand
shock.

From the above, we see that it is possible to reduce the number of state variables to
3 by replacing ηt and ωt by φt. We also substitute the availability by the net availability,
therefore we define the policy functions on the set of state variables {s̃t,φt, µt}:

qet+1/d̄=Q (s̃t,φt, µt) , (26)

xt/d̄=X (s̃t,φt, µt) , (27)

pt/p̄=P (s̃t,φt, µt) . (28)

To simplify the succeeding expressions, the policy functions are expressed as the variables
divided by the steady-state values. Combining the equations defining the model shows
that the policy functions for all {s̃t,φt, µt} have to satisfy:

P (s̃t,φt, µt) =max

{(
s̃t/d̄

)1/αD ,

β egp Et
[
P
([

X (s̃t,φt, µt) e
−gq +Q (s̃t,φt, µt) e

ϵt+1

]
e−µt+1 ,φt+1, µt+1

)]
− k,

}
, (29)

eφt

{
Et

[
P
([

X (s̃t,φt, µt) e
−gq +Q (s̃t,φt, µt) e

ϵt+1

]
e−µt+1 ,φt+1, µt+1

)
eϵt+1

]}αS

=Q (s̃t,φt, µt) . (30)

Equation (29) reveals that two regimes exist. The first regime holds when speculators
stockpile in the expectation of future prices covering the full carrying and purchasing
costs. The second regime refers to the stockout situation with empty inventories, where
the market price is determined only by the final demand for consumption. In the absence
of stocks, the equation collapses to P(s̃t,φt, µt) = (s̃t/d̄)

1/αD , which shows that in this
case the only relevant state variable for price determination is net availability. However,
the other two state variables determine the production level given that production is
based on forward-looking behavior affected by shocks observable at planting time. In
other words, unlike in a model where there is a single i.i.d. shock driving all the commodity
price fluctuations, the threshold price above which there is no storage is no longer
constant and depends on the demand and planting-time supply shocks.

This model has no closed-form solution which means its solution must be approxi-
mated numerically. Cafiero et al. (2011) show that the precision of the numerical solution
is important in the context of estimating a storage model involving simulations; lack
of precision could bias the estimates. Thus, we need to balance the need for a solution
that is both precise and fast, because the model must be solved at each iteration of the
estimation procedure. In Appendix, section B, we propose a new solution method to the
storage model based on recent developments in the literature (Maliar and Maliar, 2014)
which satisfies this tradeoff.
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3. ECONOMETRIC PROCEDURE

Not all of the storage model variables are observable. For example, stock levels are avail-
able from the United States Department of Agriculture (USDA) statistics but for many
countries they are based on USDA estimates in the absence of official statistics, and so
are likely to be affected by measurement errors.9 In this paper, we use the five observable
variables proposed by Roberts and Schlenker (2013): price, expected price, consumption,
production, and yield shock: [pt,Et pt+1, ct, qt,ψt]. The consumption variable will be built
using information about stock variations. While stock variations can be affected by mea-
surement errors, those are less important than for stock levels in which errors come from
the estimate of initial stock levels plus the accumulation of errors in past stock variations.

Our storage model includes fourteen parameters, nine of which are estimated in
combination and gathered in the row-vector θ ∈Θ. The other five parameters are fixed or
are estimated separately from the procedure described below. As already mentioned, the
only role played by the steady-state quantity and price values is to scale the averages of
the model variables, hence without loss of generality they are fixed to 1. It is well-known
that it is difficult to identify the real discount factor, and especially in short samples
involving annual data. Therefore, in structural estimations of storage models it tends to
be kept constant. We fix the annual real interest rate at 2%, the value commonly used in
the storage literature. It is in line also with Barro and Sala-i-Martín (1990) who derive a
mean short-term interest rate of 1.87% for the period 1959–89 for nine OECD countries
for which historical data are available. Following the sharp rise to rates of about 5% in the
1980s, the world real interest rate began to decline and reached an average yearly level of
about 2% in the mid 2000s (IMF, 2014, Chapter 3). Annual rates of growth of quantities
and prices, gq and gp, are characterized by the trending behavior of the data (discussed in
section 4.2).

Below, we present two estimation strategies. The first is an instrumental variable
approach which is in line with Roberts and Schlenker (2013) with the difference that we
can derive the equations to estimate from the storage model equations whereas Roberts
and Schlenker (2013) had to rely on intuitions from a storage model to propose their
estimation strategy. This approach allows us to estimate directly four parameters (αS , αD ,
ρµ, and συ) but leaves five parameters unidentified. The second strategy is the indirect
inference approach. It relies on the supply and demand model from the instrumental
variables approach, which is used to build an auxiliary model and enables identification
of all the parameters. The small- and large-sample properties of these two estimation
strategies are studied with a Monte Carlo analysis in Appendix C.

3.1 Instrumental variables approach

To ease the notations, our instrumental variables approach is presented with stationary
variables. However, the estimations on the observations are based on trending variables.

9The measurement error related to USDA stock levels can be large due to frequent data revisions. E.g., in
May 2001 and November 2015, the USDA raised Chinese grain stocks by 164 million tons or by more than
10% of 2001 global production, and Chinese maize stocks by 23.8 million tons or nearly 2.5% of 2015 global
production of maize.
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To account for the trends in the variables, flexible trends are added to each equation
following Roberts and Schlenker (2013).

3.1.1 Production Expressed in logarithm, the supply equation (20) is

log qt = log
(
ht−1 e

ψt
)
= log

(
d̄/p̄αS

)
+αS (ηt−1 − ωt−1)+αS log (Et−1 (pt e

ϵt))+ψt. (31)

In this equation, ηt−1 − ωt−1 and Et−1[pt exp(ϵt)] are not observable. However, it is pos-
sible to use the expected price Et−1 pt to proxy for the true producer price incentives,
which leads to the following estimation equation

log qt = aq + bq log (Et−1 pt) + cqψt + uq,t. (32)

Since the planting-time shocks are present in the residuals, uq,t, and are correlated with
the expected price, an ordinary least square (OLS) estimation would suffer from an
omitted variable bias. Therefore, following Roberts and Schlenker (2013), we instrument
the expected price by the lagged yield shocks ψt−1. Under the model assumptions, lagged
yield shocks are correlated with the expected prices because storage implies that past
yield shocks have contemporaneous effects on prices through the availability in the
market, and they are not correlated with the planting-time shocks and thus with the
residuals. The first-stage equation is

log (Et−1 pt) = aEp + bEpψt−1 + cEpψt + uEp,t. (33)

This supply-side estimation strategy deserves a few comments. First, substituting
the expected price Et−1 pt for the producer incentive price Et−1[pt exp(ϵt)] creates a bias
because the former does not include the correlation between the harvest-time yield shock
and the price. This implies that bq will not be a consistent estimator of αS with the size of
the bias depending on the conditional covariance between pt and ϵt. The bias is expected
to be negative.10 The size of this bias can only be assessed using the policy function of the
storage model once all parameter values are known. For the parameter values estimated
in this paper, the bias is an order of magnitude smaller than the standard errors.11 The
Monte Carlo analysis in the Appendix sheds light on this issue.

Second, though this regression allows us to estimate only the supply elasticity, it
provides indirect information on the other parameters. Specifically, the estimation of cq
provides information on a combination of the other supply parameters. Neglecting the
previously mentioned bias and assuming that bq log(Et−1 pt) = αS log(Et−1[pt exp(ϵt)]),
we can write

log qt − bq log (Et−1 pt) = aq + cqψt + uq,t = log
(
d̄/p̄αS

)
+ αS (ηt−1 − ωt−1) +ψt. (34)

10log(Et−1[pt exp(ϵt)]) can be decomposed in log(Et−1 pt) + log(1 + covt−1(pt, exp(ϵt))/Et−1 pt) and
since a positive harvest-time yield shock should be associated with lower prices and conversely, we can expect
covt−1(pt, exp(ϵt))< 0 and log(Et−1[pt exp(ϵt)])< log(Et−1 pt), which leads bq to be a downward-biased
estimate of supply elasticity. See Gouel (2020, Appendix) for a more detailed analysis of this bias.

11One cannot exclude larger biases for other combinations of parameters.
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A standard OLS estimator formula gives cq as a function of the model’s parameters:

cq =
cov (log qt − αS log (Et−1 pt) ,ψt)

varψt
(35)

=
cov (αS (ηt−1 − ωt−1) +ψt,ψt)

varψt
(36)

= 1+ αSση
ση − ρη,ωσω

σ2ψ
. (37)

This (omitted variable bias) formula implies that, if ρη,ω ≥ 0, then cq ≤ 1 + αSσ
2
η/σ

2
ψ ≤

1 + αS . It turns out that cq can exceed 1 + αS only if ρη,ω < 0, an implication that will be
useful later to make the link between the 2SLS and the indirect inference estimates.

Similarly, the residuals can be used to obtain a measure of the total supply shock,
which we denote ϑ. As for cq , we can reorganize equation (32) to get

log qt − log
(
d̄/p̄αS

)
− bq log (Et−1 pt) = cqψt + uq,t = αS (ηt−1 − ωt−1) +ψt = ϑt. (38)

Thus, although cq and uq,t cannot be used to directly identify any structural parameter,
they provide information when used in the subsequent indirect inference approach.

Third, the occurrence of stockouts could raise concerns about the instrument’s
strength. In the complete absence of stocks, prices are not intertemporally linked, and
past yield shocks do not influence current prices, so they are not a relevant instrument. If
stockouts are occasional, the model alternates between the presence of stocks in which
lagged yields are correlated with expected prices and the absence of stocks in which
there is possibly no correlation. Thus, the more frequent the stockouts, the weaker the
instrument. Whether lagged yields are an instrument strong enough in this setup is an
empirical issue discussed in section 5 and the Monte Carlo analysis in the Appendix.
Hendricks et al. (2015) raise a related issue by noting that the observable yield shock ψt
is likely correlated with the planting-time shocks, ηt−1 and ωt−1 (by construction in our
model), and hence including it as a control variable mitigates the omitted variable bias.
In this context, there is a tradeoff between the consistency of a 2SLS estimate and the
higher precision of an OLS estimate. Based on our structural model and the Monte Carlo
experiment, we contribute to this debate on whether instrumental variables are useful
for estimating supply elasticity.

3.1.2 Consumption From equation (17), logged consumption (denoted ct), is given by

log ct = log (d (pt) e
µt) = log

(
d̄/p̄αD

)
+ αD log pt + µt. (39)

By calculating log ct − ρµ log ct−1 and using equation (5), we can recover the innovation
υt in the demand equation:

log ct = (1− ρµ) log
(
d̄/p̄αD

)
+ αD log pt − αDρµ log pt−1 + ρµ log ct−1 + υt. (40)

The fact that υt is unobservable but correlated with pt implies that an OLS estimation
of equation (40) would again lead to an omitted variable bias. We solve this by instru-
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menting prices with the yield shocks. Thus, the estimation equation is

log ct = ac + bc log pt + cc log pt−1 + dc log ct−1 + uc,t, (41)

with the associated first stage

log pt = ap + bpψt + cp log pt−1 + dp log ct−1 + up,t. (42)

Note that this approach identifies all the demand-side parameters: αD and ρµ in
the equation, and συ as the standard deviation of the residuals, uc,t. This approach
differs slightly from that in Roberts and Schlenker (2013) where equation (39) is estimated
directly using

log pt = ap + bpψt + up,t (43)

as first stage, since Roberts and Schlenker’s focus is on the demand elasticity and not
the other parameters. These two approaches are asymptotically equivalent in terms of
estimating the demand elasticity.

Since equation (41) includes a lagged dependent variable, a condition for dc to be
consistently estimated is the absence of serial correlation in the residuals, which will be
tested using the test proposed by Cumby and Huizinga (1992) which is valid for models
that have endogenous regressors. Even in the absence of serial correlation in the residuals,
standard estimators of autoregressive models are biased in finite sample. We correct for
the finite sample bias using Orcutt and Winokur’s (1969) formula: ρ̂µ = (1+ T d̂c)/(T − 3),
where T is the sample length.

3.2 Indirect inference approach

Indirect inference requires the selection of an auxiliary model. Here, we use the supply and
demand model presented above, with some adjustments. The auxiliary model consists of
the following system of equations estimated by OLS:12

log qt = aq + bq log (Et−1 pt) + cqψt + uq,t, (44)

log (Et−1 pt) = aEp + bEpψt−1 + cEpψt + uEp,t, (45)

log ct = ac + bc log pt + cc log pt−1 + dc log ct−1 + uc,t, (46)

log pt = ap + bpψt + cp log pt−1 + dp log ct−1 + up,t, (47)

ψt = aψ + uψ,t. (48)

A fundamental assumption of the indirect inference method is that the parameters from
the auxiliary model bring information about all structural parameters.13 This assumption

12Note that instead of this auxiliary model, we could have used one in which the supply and demand
equations are estimated by 2SLS, as laid out in the previous section. This approach leads to similar results but
with larger standard errors caused by the loss of precision related to the instrumentation. See the working
paper version of this article for details (Gouel and Legrand, 2022).

13Formally, this assumption requires that the derivative of the binding function which links the structural
to the auxiliary parameters (∂ζ(θ)/∂θ) is full-column rank (Assumption A4 in Gourieroux et al., 1993).

http://qeconomics.org


16 Submitted to Quantitative Economics

explains why, in addition to the supply and demand equations, we have included the
first-stage equations and equation (48): by having one equation associated with each
observable, we ensure sufficient moments in the auxiliary model.

Using the selected auxiliary model, we can define the objective using a subset of the
model parameters, which excludes the intercepts since these are only informative about
the steady-state values which we normalize to unity: ζ = [bq, cq, σuq , bEp, cEp, σuEp , bc, cc,

dc, σuc , bp, cp, dp, σup , σuψ ]. Note that this auxiliary model is almost equivalent to a subset
of the parameters of a VAR(1) model.14

This auxiliary model has two important benefits. First, since it involves only linear
regressions, it is trivial to estimate and avoids burdening the indirect inference procedure
with a computationally costly auxiliary model.15 Second, it is transparent regarding
the relationships between the auxiliary model and the storage model parameters. For
instance, bq is asymptotically equal to the supply elasticity plus the omitted variable bias,
which is a function of the size of the cost shock σω . From equation (37), cq and similarly
σuq are both nonlinear combinations of αS , σϵ, ση , σω , and ρϵ,ω . From Hendricks et al.
(2015), cEp relates to the predictability of the yield shocks and thus to ση . In equation (46),
bc consists of the demand elasticity plus the omitted variable bias, which is related to ρµ
and συ , themselves informed by dc and σuc . In equation (47), cp connects to the first-order
autocorrelation of log p, which depends directly on the storage cost k, conditional on
the other parameters. Intuitively, lower storage costs imply more storage and, in turn,
a higher price autocorrelation and vice versa (Gouel and Legrand, 2017, Figure 2). In

equation (48), we get σuψ , which equals
√
σ2ϵ + σ2η and ensures that the model aims to fit

the standard deviation of yields, an aggregate shock we observe. Finally, the inclusion of
σuEp and σup is almost equivalent to including the standard deviations of the price and
the expected price in the objective. It ensures that the estimated model will also aim to fit
these targets.

We use ζT to denote the 15 × 1 vector of the auxiliary model estimates from the
observations of length T + 1. In contrast, ζiT (θ) denotes the counterpart of ζT estimated
on artificial data generated by the storage model for a given set of parameters θ. We
simulate τ ≥ 1 samples of size T + 1+ tburn. The first tburn = 50 simulations are dropped
as burn-in periods to remove the influence of the initial state. We use the final T + 1

simulations for the estimations but drop the first due to the lagged variables appearing in
the auxiliary model. The indirect inference estimator then is

θ̂ = argmin
θ∈Θ

[
ζ̂T − 1

τ

τ∑
i=1

ζ̂iT (θ)

]′
W

[
ζ̂T − 1

τ

τ∑
i=1

ζ̂iT (θ)

]
, (49)

where W is a 15× 15 symmetric nonnegative definite weighting matrix. This estimator
minimizes the weighted distance between the auxiliary model parameters estimated

14We thank the editor for this insight.
15See Li (2010) and Guvenen and Smith (2014) for other papers that rely on linear equations estimated by

OLS as the auxiliary model in an indirect inference setting. In addition, based on a Monte Carlo analysis of
various estimators of the storage model, Michaelides and Ng (2000, Section 6) advise against using nonlinear
auxiliary models because of the risk of non-convergence and the increased computation time.
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using actual data and those estimated using data simulated from our structural storage
model.

For the weighting matrix used in the objective W , we use a diagonal matrix with
elements that are the inverse of the variance of the estimate of ζT . We calculate this using
the formulas for standard errors robust to heteroskedasticity for the standard regression
parameters (bq, cq, bEp, cEp, bc, cc, dc, bp, cp, dp), and using the following formulas for the
standard deviations (σuq , σuEp , σuc , σup , σuψ ):

var (σ) =
σ2

2 (T − l)
, (50)

where T − l is the degree of freedom of the corresponding regression. Classical minimum
distance estimators, of which the indirect inference is part, suffer from small-sample
bias when the optimal weighting matrix calculated on observations is used (Altonji and
Segal, 1996). As a result, a common simplification in the indirect inference literature is
to use a diagonal of the optimal weighting matrix calculated on observations (see, e.g.,
Christiano et al., 2005, Ruge-Murcia, 2020). While this choice of a diagonal matrix limits
the small-sample bias, it also leads to neglecting interactions between parameters. Still,
this issue remains limited in our setting where the number of target parameters does not
exceed by much the number of structural parameters. We further explore the sensitivity
to the choice of the weighting matrix in Appendix D.2.2.

As for the optimization routine, at every step of the minimization a new set of param-
eters θ is proposed. For this new θ, a numerical solution of the storage model is computed
using the algorithm proposed in Appendix B.1. The resulting policy functions are then
used to simulate the model starting from the deterministic steady state and using random
shocks drawn at the beginning of the estimation procedure and kept fixed throughout.

In line with Gourieroux et al. (1993), the variance-covariance matrix for the parameter
estimates converges asymptotically to(

1 +
1

τ

)(
J ′WJ

)−1
J ′WΩ−1WJ

(
J ′WJ

)−1
, (51)

where J = (1/τ)
∑τ
i=1E[∂ζ̂

i
T (θ)/∂θ] is a 15 × 9 full rank matrix, evaluated by central

difference at θ = θ̂, and Ω is the optimal weighting matrix. We estimate the optimal
weighting matrix at the solution by Monte Carlo simulations using the following formula
(Le et al., 2011)

Ω−1 =
1

K

K∑
i=1

ζ̂iT (θ̂)− 1

K

K∑
j=1

ζ̂jT

(
θ̂
)ζ̂iT (θ̂)− 1

K

K∑
j=1

ζ̂jT

(
θ̂
)′ , (52)

whereK = 1,000 is the number of samples of size T+1+tburn we simulate to calculate this
matrix. Calculating the optimal weighting matrix this way has two benefits. First, with K
large enough, it removes the short-sample bias inherent to the estimation on observations.
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Second, as shown by Le et al. (2011, 2016), in presence of misspecifications, this model-
restricted variance-covariance matrix has more power to reject the null hypothesis that
the model is correct than the data-based variance-covariance matrix.16

Since it is costly to evaluate the objective in equation (49), because it requires a
new solution and additional simulations of the storage model for each updated set of
parameters, and in the absence of analytical derivatives, we employ for minimization a
derivative-free algorithm, BOBYQA (Powell, 2009). We also use bounds to avoid exploring
parameter values outside their domain of definition and those that would make solving
the model difficult (see table S.11). Furthermore, to limit the risk of finding only a local
optimum, the optimization algorithm starts from 500 different initial values of θ, except
for the Monte Carlo experiments in the Appendix, which uses a unique starting point.
Finally, although it is costly to solve for the rational expectations equilibrium of the
model, it is less costly to simulate from it. Therefore, we choose τ = 200 to minimize the
simulation-related uncertainty in the estimates.

4. OVERVIEW OF THE GRAINS MARKET

With some small modifications, our data series is constructed following Roberts and
Schlenker (2013) but for completeness we present all the different choices along with the
descriptive statistics.

4.1 Data

The observations include five annual time series—price, expected price, consumption,
production, and yield shock—for a caloric aggregate of the four basic staples: maize, rice,
soybeans, and wheat. Information on quantities come from the Food and Agriculture
Organization statistical database (FAO, 2020) with data for 1961–2017 on production,
stock variations, yield and area harvested. Consumption is obtained by subtracting
stock variations from total production. Following Roberts and Schlenker (2013), the four
commodities are aggregated into calories using the conversion ratios in Williamson and
Williamson (1942).

For country i, crop l, and κl the caloric content of a ton of crop l, the global annual
yield shocks Ψt are computed according to the approach proposed by Hendricks et al.
(2015):

Ψt =

∑
l

∑
i

AlitκlYlit∑
l

∑
i

AlitκlŶlit
=
∑
l

∑
i

ρlitΨlit, (53)

16We could also have used this optimal weighting matrix to test the overidentification restrictions by
building a Wald statistic as proposed in Gourieroux et al. (1993, Section 4). However, our Monte Carlo
experiments point to important size distortions for the associated chi-square test, making it unreliable (this
is a frequent problem in this type of structural approach, see, e.g., Michaelides and Ng, 2000, Ruge-Murcia,
2007, 2012).
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where Alit is the harvested area, Ylit is the yield, Ŷlit is the trend yield, and

ρlit =
AlitκlŶlit∑

l′

∑
i′

Al′i′tκl′ Ŷl′i′t
(54)

is the weight of the country-crop shocks in the aggregate shock. Yields are decomposed
multiplicatively into a trend yield and a yield shock: Ylit = ŶlitΨlit. The trend yield is
obtained from the model prediction regressing the logarithm of yield over 4-knot natural
cubic spline with the corresponding observation deleted. The trend yield model has to
be run separately for each country, crop, and year. The prediction is corrected for the
transformation bias introduced by the logarithm using the residual variance of the trend
yield model. All countries are included in the calculation but the smallest contributing
less than 0.5% to a crop’s world production are aggregated.

This data construction implies that the yield shock in the model corresponds to the
logarithm of the yield shock calculated here, ψt = logΨt, and the acreage in the model
corresponds in the data to Ht−1 =Qt/Ψt =

∑
l

∑
iAlitκlŶlit. Following the discussion

in Hendricks et al. (2015), this definition has implications for the interpretation of the
supply elasticity as represented in the model. The model supply elasticity combines an
acreage elasticity and an average trend yield effect related to changes in the composition
of growing areas across countries associated with price changes. Hendricks et al. (2015)
argue that to avoid this composition effect the supply elasticity should be estimated
based only on acreages. In the present context of a market model, it is the total supply
elasticity that matters since this determines the price.

There are several sources of price information, but it is important to choose the
prices that are the most consistent with the model. For example, the annual prices in
Deaton and Laroque (1992) are from the World Bank and are obtained by averaging prices
over the calendar year, which can induce spurious correlations due to mixing different
marketing seasons (Guerra et al., 2015). The model includes two prices: the current price
Pt, which is the price received by the farmers at harvest time and paid by consumers, and
the expected price Et−1Pt, which corresponds to the farmers’ rational expectations at
planting time about the price Pt they will receive at harvest time. Since Gardner (1976), it
is common to use futures prices in place of the unobservable expected price. This is a
valid approach if futures prices are unbiased predictor of spot prices, which is not true for
all commodities but is true for the commodity prices studied here according to Chinn and
Coibion (2014).17 Given the annual time-frame of the model, we take futures contracts
with a one-year horizon. For consistency, Pt is the corresponding futures contract at
delivery. Following Roberts and Schlenker (2013), we use prices from the Chicago Board
of Trade futures for the main month following each crop harvest (i.e., December for maize
and wheat, November for rice and soybeans).18 Monthly prices are obtained by averaging
the daily prices observed during each month. Futures prices for rice started trading in

17However the lack of convergence for several grain futures have partly altered this property during the
period 2005–10 (Garcia et al., 2015).

18At the beginning of the series, not all futures contracts extended one year in advance. In these cases, we
use the average price for the first month the contract was traded.
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1986. Due to lack of data, we exclude rice from our calculation of the price index (which
is in line with Roberts and Schlenker, 2013). Futures prices are deflated by the US CPI and
aggregated into a single caloric price index series using the caloric weights, ρlit, derived
in equation (54):

Pt =

∑
l ̸=rice

(∑
i

ρlit

)
Plt|t/κl∑

l ̸=rice

∑
i

ρlit
and Et−1Pt =

∑
l ̸=rice

(∑
i

ρlit

)
Plt|t−1/κl∑

l ̸=rice

∑
i

ρlit
, (55)

where Plt|t−n denotes the real crop-l futures price at time t− n for delivery at time t.

4.2 Nonstationarity

The storage model in sections 2 and 3 assumed that the logs of price and quantity are
characterized by linear time trends, and provided theoretical predictions for deviations of
the variables from this linear trend. As we will show in this section, the actual trends in the
data are more complicated. Our empirical strategy is to compare the model’s predictions
for deviations from a linear time trend with the observed deviations from a cubic spline.
This section discusses our reasons for doing this and the possible ramifications.

Figures 1 and 2 plot the constructed production, consumption, and price series used
for inferences thereafter. In line with the model trend assumptions, these series do not
appear stationary. There is an extensive literature on the nature of trends in commodity
prices, which was motivated by the Prebisch–Singer hypothesis of a secular deterioration
in primary commodity prices relative to the prices of manufactured goods (e.g., Ghoshray,
2010, Lee et al., 2006). An important takeaway from this literature is that, over long periods,
it is necessary to account for possible breaks in deterministic trends to avoid spurious
rejection of the assumption of a deterministic trend.19 We thus test for stationarity using
the endogenous two-break Lagrange Multiplier (LM) unit root test developed by Lee and
Strazicich (2003, 2013) and Lee et al. (2006). These LM tests allow for one or two structural
breaks with or without a linear or quadratic deterministic trend under both the null and
alternative hypotheses.

Although our econometric models call for variables in logarithms, the literature widely
acknowledges that unit root tests are highly sensitive to data transformation, which is
also likely to transform the underlying trends (Corradi and Swanson, 2006). For example,
while quantities in levels exhibit an almost linear trend up to the mid-2000s, this is less
evident in logarithms. We, therefore, apply the variable tests in levels (results are reported
in Appendix table S.12, panel A). The null hypothesis of difference stationarity is rejected
for all the variables, either with one or two breaks, using the bootstrap critical values
given by Lee et al. (2006).20 More precisely, for production and consumption, the unit

19It is well-known that omitting possible structural breaks can lead to a bias resulting in the retention of
the unit root null hypothesis when it should be rejected (Perron, 1989, DeJong et al., 1992, Zivot and Andrews,
1992).

20Based on 5,000 replications of sample sizes T = 100.
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FIGURE 1. World caloric production and consumption, and their trend for 1961–2017. The y-axis
is the number of people that hypothetically could be fed 2,000 kilocalories per day diet based on
consumption of only the four commodities.
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FIGURE 2. Real caloric prices at delivery. The y-axis is the annual cost of 2,000 kilocalories per day.

root assumption is rejected at the 5% significance level with two structural breaks in 1982
and 2000, and 1984 and 2007. Regarding the spot and expected prices, the two-break
LM test with a quadratic trend rejects the null hypothesis at the 5% level with a single
estimated break occurring in 1979 and 1980.21

21It is interesting to note that if we assume two breaks for prices, the dates correspond to two food crises
after which food prices settled at higher average levels. This also applies to consumption in relation to a
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Overall, these tests support our choice of deterministic trends modeling. However,
there is a mismatch between the log-linear trends assumed in the model and the trend
flexibility needed to make the data stationary. Indeed, observed variables detrended
using a log-linear trend cannot be considered stationary (see table S.12, first row of panel
B), which prevents the direct mapping of the model variables to the observations. Put
another way, the observed variables need to be detrended using a more flexible trend
specification than what is accounted for in the theory, and we explain below the origins
and consequences of this discrepancy.

Using log-linear trends in the model is motivated by the fact that an infinite horizon
model with such trends can be expressed as a set of stationary equations, as proposed in
section 2.2. This is no longer true with more flexible deterministic trends, such as splines
or polynomials. Our storage model is the first to include long-run demand and cost trends,
leading to rich long-run dynamics. Moreover, we are unaware of any existing approaches
to build a storage model with more flexible trends that would remain compatible with
an infinite horizon rational expectations framework.22 Such a discrepancy between the
flexibility of theoretical and empirical trends is common in macroeconomic models,
where a trend that is theoretically consistent with a growth path may not be flexible
enough to render the data stationary (Fernández-Villaverde et al., 2016, Section 8.4).

Since DSGE and storage models are primarily built to explain short-run fluctuations,
the fact that they do not match long-run variations might be of secondary concern.
However, this is not always the case not only because long-run fluctuations can impact
short-run incentives, as shown by Bobenrieth et al. (2021) in the context of the storage
model, but also because removing long-run variations from the data is not always innocu-
ous (Canova, 2014). In our case, this discrepancy may have consequences, but, in the
absence of a more general model, we cannot quantify them. One likely example of such
discrepancy is the period starting in 2007, when biofuels mandates in Europe and United
States led to higher demand for agricultural commodities and higher prices (Wright,
2014). In the absence of a regime-switching trend, this new regime is not accounted for in
the model and part of the higher prices is absorbed by the spline trend. We leave further
investigation of this issue to future work.

In practice, we handle the trends as follows. Since our econometric models use vari-
ables in logarithms, we need log-detrended variables. To be consistent with Roberts
and Schlenker’s empirical approach, we adopt their natural cubic spline specification to
model the trend and consider three levels of flexibility, with three to five knots, in the esti-

regime change in 2007, which followed the implementation of the biofuels mandates in Europe and the
United States (Wright, 2014).

22A couple of recent contributions to the econometrics of trending storage models have not faced the same
problem (Bobenrieth et al., 2021, 2022). More precisely, Bobenrieth et al. (2021, 2022) develop estimation
methods applied to a trending storage model and estimate the trend alongside some structural parameters,
with the second paper introducing a one-step method that allows for the calculation of standard errors.
However, these approaches are applicable provided the trends in the structural model are consistent with
the observed trends, which requires commodities with log-linear price trends—an assumption rejected in
our sample.
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mations.23 We further confirm the stationarity of the detrended variables by running the
usual augmented Dickey–Fuller (ADF), Phillips–Perron (PP), and Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) unit root tests. The results are reported in table S.12, panel B, with
an increasing degree of flexibility going from the top to the bottom of each column. Except
for the variables detrended with a linear trend or with three knots, we find all transformed
series to be stationary at the 1% significance level. In other words, a natural cubic spline
with three knots—i.e., flexibility equivalent to a quadratic trend—is not flexible enough
to transform price and quantity data into stationary series. Since the four-knot spline
involves the minimum flexibility needed to obtain stationary data, this is our preferred
trend specification. As a robustness check, we also test for more and less flexible trends.

For the instrumental variables approach, following Roberts and Schlenker, we aug-
ment all the first- and second-stage equations with trend variables generated by natural
cubic splines with three to five knots. For the indirect inference approach, we proceed in
two steps. First, we detrend all variables by regressing their logarithms on spline variables
and taking the exponential of the residuals as the detrended values. Second, we estimate
the auxiliary model on these detrended variables.24

Values for the trend parameters gq and gp are needed to simulate the storage model.
In contrast to the other parameters, these are estimated separately before applying the
indirect inference. In the theoretical model, consumption and production, as well as the
demand and supply prices, show common trends, denoted as gq and gp, respectively.
We estimate gq = 2.54% by regressing the logarithm of quantities (consumption and
production) on a common linear trend, and similarly estimate gp =−2.03% using the log
of prices.

4.3 Descriptive statistics

In this section we present some descriptive statistics for the detrended data and discuss
their implications for the estimation of the storage model.

Table 1 contains the correlation between the detrended real prices at delivery. It
shows that crop prices are strongly correlated with one another, and all but rice have a
correlation with the grains index in excess of 0.88. These high correlations are indicative
of the large substitution possibilities between these basic staples. We observe that crop
prices are correlated more strongly to the grain index than to the prices of any of the other
crops, except for the correlation between rice and soybeans. These high correlations
support use of an aggregated caloric index to measure the state of the world grain market.
In addition to the issues involved in solving and estimating a multi-crop storage model,
an estimation based on the separate crops considered would risk mixing own-price and
cross-price elasticities.

23Unless indicated otherwise, when natural cubic splines are used, their knots are located according to
the percentiles method suggested in Harrell (2001): 1967, 1989, 2011 for 3 knots; 1964, 1981, 1997, 2014 for 4
knots; and 1964, 1976, 1989, 2002, 2014 for 5 knots.

24Note that, in our setting, the combination of an auxiliary model based on linear regressions and a
detrending using splines implies, by the Frisch–Waugh–Lovell theorem, that it is equivalent to jointly estimate
trend and auxiliary parameters on observations or to do it in two steps as done here. This property ensures the
consistency of the trend’s treatment between the instrumental variable and indirect inference approaches.
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TABLE 1. Correlation coefficients of detrended real prices at delivery, 1961–2017 (except rice,
1986–2017)

Commodity Maize Rice Soybeans Wheat

Maize
Rice 0.662
Soybeans 0.858 0.772
Wheat 0.790 0.611 0.776
Grains 0.923 0.688 0.887 0.959

Notes: Prices are detrended using a natural cubic spline using four knots. “Grains” includes the caloric aggre-
gate of maize, soybeans, and wheat.

Table 2 reports the autocorrelations and standard deviations in the data used to es-
timate the model. The first-order autocorrelations of spot and futures prices are both
greater than 0.57. The storage model’s inability to match these high serial correlation
levels in prices for a range of storable commodities initially led Deaton and Laroque
(1992, 1996) to reject this model.25 Consumption persistence is also substantial with a
first order autocorrelation coefficient of 0.64 which suggests the inclusion in the model
of a persistent demand shock.26 Production and yield shocks have small and insignifi-
cant autocorrelation in line with our model assumption of supply shocks without serial
correlation.

TABLE 2. Autocorrelation and standard deviation of log detrended caloric data, 1961–2017

One-year Two-year Standard
Variable autocorrelation autocorrelation deviation

Demand price (log(pt)) 0.576 0.167 0.236

Supply price (log(Et pt+1)) 0.652 0.236 0.192

Consumption (log(ct)) 0.642 0.302 0.019

Production (log(qt)) 0.042 −0.095 0.028

Yield shock (ψt) 0.148 0.050 0.023

The pattern of the standard deviations is coherent with a storage model with small
elasticities. The coefficient of variation of quantities is one order of magnitude lower than
the coefficient of variation of prices. Consumption volatility is lower than production
volatility, which is consistent with a smoothing by storage associated with larger supply
than demand shocks. Put simply, without storage, yearly changes in production levels
would have to be matched by corresponding variations in consumption levels. The
standard deviation of the yield shock accounts for 82% of that of production, suggesting
the importance of these shocks for the variations in production. Finally, the lower volatility
of the expected compared to the spot price is as predicted and is consistent with the
“Samuelson effect”: decreasing futures price volatility based on the contract horizon.

25Deaton and Laroque ruled out the presence of trend in commodity prices and so rejected the storage
model on its failure to match much larger autocorrelations.

26The high consumption persistence is robust to detrending in level or logarithm and to the number of
spline knots.
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Table 3 displays the correlation coefficients of all the detrended variables in logarithm.
The correlations with obvious counterparts in the model have the expected signs. Current
and expected prices are strongly correlated, consistent with equation (4) in the presence of
inventories frequently held. The fact that production and consumption are not perfectly
correlated is another indication of the role played by storage. The observed negative
correlation between consumption and price suggests that the changes in consumption
stem from movements along the demand curve and from shifts in the demand curve.
Were they due only to changes along the demand curve the correlation would be close to
−1.

TABLE 3. Correlation coefficients of log detrended caloric data, 1961–2017

Demand price Supply price Consumption Production
Variable (log(pt)) (log(Et pt+1)) (log(ct)) (log(qt))

Demand price (log(pt))

Supply price (log(Et pt+1)) 0.935

Consumption (log(ct)) −0.488 −0.451

Production (log(qt)) −0.406 −0.270 0.395

Yield shock (ψt) −0.532 −0.498 0.527 0.775

5. ESTIMATION

5.1 Structural parameters

Before analyzing the results obtained by indirect inference in section 5.1.2, we report the
2SLS and OLS estimates of the supply and demand equations. These estimates provide
direct values for some parameters (αD , αS , συ , ρµ, and σϑ), and indirect information
about the others.

5.1.1 Instrumental variable estimations Tables 4 and 5 present the supply and demand
estimates. To enable comparison with Roberts and Schlenker (2013), we replicate these
estimates in Appendix (Tables S.13 and S.14) for a shorter sample (1962–2007) which
corresponds to the sample length they used. The Appendix tables have some minor
differences with the Table 1 in Roberts and Schlenker. These are due to two deviations
from their approach: a slightly different procedure to construct the yield shock (in line
with Hendricks et al., 2015), and the detrending of yields using a 4-knot spline rather than
a 3-knot spline which is more consistent with our longer sample.

Table 4 reports the estimations of the supply equation. For the 2SLS estimates, the
Cumby–Huizinga test rejects the hypothesis of residuals without serial correlation. We
nevertheless report standard errors and diagnostic tests that are robust only to het-
eroskedasticity. Not only is this the most conservative choice in this particular setting
but it also allows us to use the same type of standard errors for the supply and demand
equations as well as for the weighting matrix of the indirect inference approach. 2SLS
estimates of the supply elasticity are around 0.08, slightly lower than the values obtained
by Roberts and Schlenker (2013). However, comparison with table S.13 shows that the
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TABLE 4. Supply equation estimation

(1) (2) (3)

Panel A. 2SLS
Supply elasticity bq 0.088 0.075 0.082

(0.038) (0.026) (0.026)

Shock cq 1.153 1.154 1.137

(0.194) (0.141) (0.150)

Panel B. First stage
Lagged shock bEp −4.045 −3.783 −3.821

(1.474) (0.991) (0.993)

Shock cEp −2.470 −2.382 −2.343

(1.927) (1.382) (1.334)

Panel C. OLS
Supply elasticity bq 0.135 0.058 0.061

(0.014) (0.013) (0.012)

Shock cq 1.298 1.103 1.078

(0.154) (0.099) (0.107)

σu2SLS
q

0.028 0.015 0.015

σϑ2SLS 0.038 0.031 0.030

σuEP 0.228 0.165 0.166

σuOLS
q

0.026 0.015 0.015

σϑOLS 0.039 0.030 0.029

First stage F -stat 7.531 14.567 14.811

p-value for Hausman test 0.172 0.414 0.302

p-value for Cumby–Huizinga test (panel A) 0.000 0.004 0.004

Observations 56 56 56

Spline knots 3 4 5

Notes: Standard errors robust to heteroskedasticity in parenthesis.

difference is entirely explained by our longer sample. The cq estimates are always above
1 + αS (although not significantly). According to the discussion in section 3.1.1, this
indicates a negative correlation between the two planting-time shocks (η and ω). The
estimations using four and five knots are similar but present small differences with the
estimations using three knots which is in line with the previous stationarity test results.
Consistent with Hendricks et al.’s (2015) insights, the OLS and 2SLS supply elasticity
estimates show only small and insignificant differences indicating that using the yield
shock as a control variable helps to mitigate the omitted variable bias. This is further
confirmed by the Hausman test which fails to reject the null of exogenous expected prices.
However, the Monte Carlo analysis in the Appendix shows that in such short samples,
the Hausman test tends to fail to reject the exogeneity despite prices being endogenous
by construction. Therefore, we do not follow the Hausman test and for the comparisons
that will follow our benchmark estimate is the 2SLS with four knots. For this specification,
total supply shocks have a standard deviation σϑ equal to 0.031, a value slightly above the
standard deviation of production in table 2.

Table 5 presents the estimation results of the demand equation. The demand elasticity
estimates are higher in absolute values than in Roberts and Schlenker (2013), which again
seems to result from using a longer sample (see table S.14). We use equation (41) to
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TABLE 5. Demand equation estimation

(1) (2) (3)

Panel A. 2SLS
Demand elasticity bc −0.051 −0.065 −0.060

(0.028) (0.026) (0.027)

Lagged price cc 0.041 0.019 0.014

(0.016) (0.014) (0.014)

Lagged demand dc 1.054 0.535 0.442

(0.070) (0.159) (0.203)

Panel B. First stage
Shock bp −4.287 −4.112 −4.014

(0.882) (0.937) (1.056)

Lagged price cp 0.569 0.486 0.498

(0.087) (0.105) (0.111)

Lagged demand dp 1.446 −0.130 0.523

(0.745) (1.690) (2.012)

Panel C. OLS
Demand elasticity bc −0.012 −0.021 −0.018

(0.010) (0.010) (0.010)

Lagged price cc 0.015 −0.005 −0.010

(0.010) (0.011) (0.011)

Lagged demand dc 0.949 0.547 0.413

(0.044) (0.118) (0.162)

Panel D. 2SLS using Roberts and Schlenker’s approach (eqs. (39) for 2nd stage and (43) for 1st)
Demand elasticity bc −0.069 −0.079 −0.066

(0.049) (0.023) (0.023)

σu2SLS
c

0.018 0.016 0.016

σuP 0.180 0.180 0.180

σuOLS
c

0.016 0.014 0.013

σ
u2SLS, RS
c

0.049 0.020 0.017

σµ2SLS 0.019 0.018

First stage F -stat (panel A) 23.627 19.252 14.443

p-value for Hausman test (panel A) 0.137 0.043 0.054

p-value for Cumby–Huizinga test (panel A) 0.851 0.199 0.057

First stage F -stat (panel D) 16.668 27.501 22.935

p-value for Hausman test (panel D) 0.000 0.029 0.052

p-value for Cumby–Huizinga test (panel D) 0.000 0.014 0.045

Observations 56 56 56

Spline knots 3 4 5

Notes: Standard errors robust to heteroskedasticity in parenthesis, except for panel D where they are also
robust to autocorrelation. The lagged demand estimates in panel A are bias adjusted (Orcutt and Winokur,
1969).

estimate both the demand elasticity and autocorrelation of the demand shock. This
contrasts with Roberts and Schlenker (2013) who use equation (39) which identifies
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only the demand elasticity. By comparing the results in panels A and D, we see that
the estimates do not differ significantly between these two approaches.27 The Cumby–
Huizinga test cannot reject the hypothesis of absence of serial correlation in the residuals
for equation (41) (but not for equation (39)), which is a necessary condition for the
consistent estimation of autoregressive terms. Estimates of the autocorrelation of the
demand shocks differ depending on the number of knots. ρµ estimated along with a
3-knot spline is not statistically different from 1, indicating a nonstationary demand.
This value confirms the results in section 4.2, which shows that a 3-knot spline is not
sufficiently flexible to obtain stationary series.28 A higher number of knots reduces ρµ
by reducing the autocorrelation in the data, but at 0.53 (0.16) and 0.44 (0.20) for four
and five knots the estimates are similar. The last parameter which can be identified from
the demand estimation is the standard error of the demand shock. Using 4- and 5-knot
splines, συ (estimated by σu2SLS

c
) is about 0.016, which is slightly lower than the volatility

of consumption observed in the raw data reported in table 2.
Except for the supply equation with three knots all first-stage F -statistics exceed the

standard threshold of 10. For the first-stage of supply, the coefficient of contemporaneous
yield shock is negative which is consistent with a positive supply shock decreasing the
prices but barely significant, indicating the limited predictability of yield shocks. The
coefficient of the lagged yield shock is negative and significant because a lagged posi-
tive supply shock increases current availability through its effect on storage and thus
depresses prices. Similarly, the supply shock in the first-stage of the demand equation is
significantly negative.

Were the residuals of the demand and supply equations correlated, a more efficient
strategy would be a three-stage least squares (3SLS). For the three degrees of flexibility
considered, the correlation between the residuals is small at 0.16, −0.09, and −0.09.
This low correlation means that the 2SLS and 3SLS results are very similar and thus the
latter are not reported here. Since the standard deviation of the residuals of the supply
equation σuq can be expressed as a function of the various supply shocks, the lack of
correlation between the residuals supports our assumption of no correlation between
demand innovations υt and supply shocks.

5.1.2 Indirect inference estimations We followed Roberts and Schlenker by presenting
the instrumental variable results for natural cubic spline trends with three to five knots.
However, both the unit-root tests and the estimates from table 5 suggest that 3-knot spline
estimations could be problematic since the trend is not sufficiently flexible to stationarize
the series. Moreover, a 3-knot spline creates numerical problems in the indirect inference
approach because the storage model is difficult to solve for values of ρµ close to 1. Hence,
in the following indirect inference approach, we vary the number of knots only between
four and five. The estimation results are presented in table 6.

Most parameters are estimated precisely for both trend specifications despite the
rather short sample size. The exceptions are the correlation between the planting-time

27Monte Carlo simulations (not reported in Appendix) show that using equation (41) instead of equa-
tion (39) leads to slightly smaller RMSE, consistent with the fact that more spherical residuals should make
the estimator more efficient.

28Since ρµ is estimated above 1 for a 3-knot spline, it is not possible to calculate σ2SLS
µ in table 5.
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TABLE 6. Estimation results for the indirect inference approach

4-knot spline 5-knot spline

Estimate Standard error Estimate Standard error

ρµ 0.702 (0.081) 0.682 (0.086)

ρη,ω −0.443 (0.295) −0.370 (0.289)

σω 0.188 (0.031) 0.185 (0.030)

ση 0.014 (0.005) 0.014 (0.005)

σϵ 0.020 (0.004) 0.020 (0.004)

συ 0.019 (0.003) 0.018 (0.003)

k 0.037 (0.026) 0.034 (0.026)

αD −0.068 (0.019) −0.059 (0.018)

αS 0.086 (0.017) 0.086 (0.016)

σφ 0.027 (0.005) 0.026 (0.004)

σψ 0.025 (0.002) 0.025 (0.002)

σµ 0.026 (0.006) 0.024 (0.006)

σϑ 0.034 (0.004) 0.033 (0.004)

Notes: σφ =
√

(1 + αS)2σ2η + (αSσω)2 − 2ρη,ωαS(1 + αS)σησω , σψ =
√
σ2η + σ2ϵ , σµ = συ/

√
1− ρ2µ, and

σϑ ≡
√
σ2ϵ + σ2φ. The standard errors of σφ, σψ , σµ, and σϑ are calculated using the Delta method.

shocks (ρη,ω) and the per-unit storage cost (k). This limited precision for these two
parameters is consistent with the large standard errors obtained in table S.3 for the Monte
Carlo analysis. For ρη,ω , this is also consistent with the lack of precision in table 4 of the
estimates of cq − 1 from which ρη,ω is derived.

The parameters estimated using both methods (i.e., ρµ, συ , αD , αS , and σϑ), do not
differ significantly across methods, but precision is greater with indirect inference as
suggested by the Monte Carlo studies. Although not significantly different from the 2SLS
estimates, the indirect inference estimate of ρµ is sufficiently higher to be a potential
concern and could indicate some model misspecification. This intuition is confirmed
later by the limited fit of some demand-related moments.

The volatility of the cost shock σω is about 19% which is an order of magnitude larger
than the estimates of the other shocks. However, the cost shock has no direct effect on
quantities. Making it comparable to the other shocks requires its multiplication by αS
which produces 1.6% with four and five knots that is a contribution similar to the planting-
time yield shock ((1 + αS)ση). In the Monte Carlo analysis, such a large cost shock would
make the 2SLS estimation of the supply equation very imprecise because the lagged
yield shock would be a weak instrument, and could also create a wide gap between the
OLS and the 2SLS estimates. This is not fully consistent with the results in table 4 where
the OLS and 2SLS estimates are similar, indicating possible overestimation of σω . The
planting-time shocks η and ω can be aggregated in the shock φ. The standard deviation
of φ exceeds the standard deviation of harvest-time yield shock σϵ, which indicates that
the majority of supply shocks is known before deciding to produce. Finally, these three
supply shocks can be aggregated together. The last row in table 6 shows that the standard
deviation of the resulting total supply shock ϑ is about 30% larger than the standard

http://qeconomics.org


30 Submitted to Quantitative Economics

deviation of the demand shock, µ. The historical role of demand and supply shocks in
past food price crises is discussed in Appendix D.3 using a historical decomposition

The per-unit storage cost (k) is estimated at 3.7% of the steady-state price with four
knots. By combining the opportunity costs related to the interest rate and the price
trend, we obtain an estimated total annual storage cost of around 7.6% at the steady
state (k + 1− β expgp). Note that estimating the model without a price trend—i.e., by
setting gp = 0—barely changes the parameter estimates, apart from the storage cost,
which increases by 2%, exactly the opportunity cost implied by the downward price trend.
The cost created by the positive quantity trend also contributes to higher storage costs
but cannot be characterized analytically and is thus ignored in this discussion. Similar
to the price trend, assuming a constant interest rate different from the 2% assumed
here would lead to the same total annual storage costs but with a different physical cost,
k. Simulations based on a model calibrated on the estimated parameters predict an
occurrence of stockouts of 11%.29

Overall, these results suggest that our indirect inference approach returns fairly pre-
cise parameter estimates that are reasonably consistent with the 2SLS estimates. Ap-
pendix D.1 examines how close the parameters of the auxiliary model are when estimated
on observations and on simulations. Appendix D.2 addresses some of the potential con-
cerns about these estimations, including the roles of data, the weighting matrix, and each
moment in the estimation process. All sensitivity analyses confirm the picture presented
here. Since the differences across trend specifications are small, all subsequent analyses
are based on the estimation using the 4-knot spline, our preferred trend specification.

5.2 Inspecting the model fit on other moments

We next assess the performance of the estimated storage model by comparing the vari-
ances and covariances based on model simulations and those based on observations (as
typically done following the estimation of DSGE models, e.g., Smets and Wouters, 2003).
Recall that so far the empirical performance of estimated storage models was judged
based only on their ability to replicate price-based moments given that only prices were
used for the estimations. By focusing on second-order moments calculated up to one lag
for each of our 5 observables, our empirical setting now allows evaluation of the model fit
over 40 moments (which could be mapped to the 40 parameters of a VAR(1) model). The
results of this exercise are presented in table 7 which includes all the moments calculated
on the detrended observations, their standard deviation calculated by bootstrap, and the
corresponding moments from the simulated model. Note that some of these moments
were included in the auxiliary model—either directly (σψ as σuψ ) or indirectly (ϕlnp(1) as
cp)—but many others were not and therefore constitute a good test of the model’s overall
quantitative performance.30 The majority of the moments are similar for observations

29Since the solution method involves linear interpolation over a sparse grid, it cannot precisely identify
stockouts. Instead of zero stocks, very small values will be predicted. Thus, a stockout is defined here as a
stock level below 1E-4, which corresponds to 0.1% of the average demand.

30A more formal test would have followed Le et al. (2011, 2016) by using indirect inference to test the stor-
age model against a VAR(1) model based on the five observables. Since our informal moments comparison
leads to a clear rejection of the estimated model, there is no need for a more sophisticated approach at this
stage.
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and simulations, indicating that our extended storage model is generally able to replicate
the main dynamics in the data. This applies in particular to the first-order autocorrelation
of price, the subject of long-standing debates since Deaton and Laroque (1992).31

TABLE 7. Comparison of actual and model-based second-order moments

Moment Observed St. dev. Simulated Moment Observed St. dev. Simulated

σlnp 0.236 0.023 0.262 ϕlnp,ln c(1) −0.469 0.125 0.191

σln c 0.019 0.002 0.018 ϕlnp,ln q(1) 0.104 0.156 −0.014

σln q 0.028 0.002 0.031 ϕlnp,lnEp(1) 0.643 0.069 0.628

σlnEp 0.193 0.018 0.180 ϕlnp,ψ(1) −0.274 0.142 −0.183

σψ 0.024 0.002 0.025 ϕln c,lnp(1) −0.326 0.109 0.205

ϕlnp(1) 0.576 0.110 0.560 ϕln c,ln q(1) 0.184 0.110 0.299

ϕln c(1) 0.642 0.146 0.568 ϕln c,lnEp(1) −0.300 0.118 0.182

ϕln q(1) 0.042 0.140 −0.011 ϕln c,ψ(1) 0.304 0.127 0.187

ϕlnEp(1) 0.652 0.116 0.607 ϕln q,lnp(1) −0.257 0.110 0.216

ϕψ(1) 0.146 0.142 0.001 ϕln q,ln c(1) 0.323 0.110 0.353

ϕlnp,ln c(0) −0.488 0.102 0.083 ϕln q,lnEp(1) −0.212 0.116 0.093

ϕlnp,ln q(0) −0.406 0.103 −0.182 ϕln q,ψ(1) 0.067 0.134 −0.142

ϕlnp,lnEp(0) 0.939 0.017 0.871 ϕlnEp,lnp(1) 0.566 0.094 0.535

ϕlnp,ψ(0) −0.534 0.118 −0.454 ϕlnEp,ln c(1) −0.508 0.116 0.293

ϕln c,ln q(0) 0.395 0.109 0.591 ϕlnEp,ln q(1) 0.070 0.147 0.044

ϕln c,lnEp(0) −0.452 0.106 0.284 ϕlnEp,ψ(1) −0.358 0.129 −0.137

ϕln c,lnψ(0) 0.529 0.116 0.463 ϕlnψ,lnp(1) −0.162 0.108 −0.120

ϕln q,lnEp(0) −0.271 0.115 −0.024 ϕlnψ,ln c(1) 0.334 0.127 0.124

ϕln q,ψ(0) 0.775 0.050 0.831 ϕlnψ,ln q(1) −0.115 0.122 0.002

ϕlnEp,ψ(0) −0.500 0.118 −0.291 ϕlnψ,lnEp(1) −0.203 0.115 −0.226

Notes: Moments calculated over 100,000 sample observations from the asymptotic distribution simulated
with a storage model calibrated with the indirect inference estimates with a 4-knot spline from table 6.
ϕ(1) denotes first-order serial correlation and ϕi,j(l) = cor(it−l, jt) denotes lth-order correlation be-
tween variable i and j. Statistics involving Ep refer to Et pt+1, e.g., ϕlnp,lnEp(0) = cor(lnpt, lnEt pt+1).
Standard deviation calculated by bootstrapping the dataset of detrended variables using 5,000 bootstrap
replications.

However, it can be seen that the storage model fails to match some moments (14 lie
outside the 10% bootstrap confidence interval including 11 outside the 5% confidence
interval). These moments mostly relate to two aspects. Six moments are related to con-
sumption and its (lagged) covariance with current and expected prices. In particular, the
model fit related to the negative correlation between consumption and spot prices is
problematic: cor(lnpt, ln ct) =−0.49 on observations but 0.08 on simulations. Logically,
given the strong autocorrelation of both prices and consumption combined with the
strong correlation between current and expected prices, this issue persists with a lag
as well as if we consider expected instead of current prices.32 A similar problem arises

31However, this is not surprising since this moment was included in the objective function through the
parameter cp.

32It is worth noting that consumption is actually a reconstructed variable based on the difference between
production and stock variations. In other words, part of this mismatch might simply be due to an artifact of
the data construction and measurement errors in the global stock variations.
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for four moments related to production and its (lagged) covariance with current and
expected prices.

The correlation between consumption and price is governed in the model by the
demand elasticity and the relative size of the supply and demand shocks. Indeed, in
the absence of demand shocks the correlation would be −1. The higher the variance
of demand shocks, the higher the correlation which can even turn positive for demand
shocks with a sufficiently large variance. The indirect inference estimations lead to higher
demand shock autocorrelation and larger variance of demand shocks compared to those
obtained using 2SLS. These differences between 2SLS and indirect inference could con-
tribute to explaining the difficulty related to fitting the consumption-price correlation
and confirm a likely model misspecification.

Similar mechanisms apply to the correlation between production and prices, which
is governed by the supply elasticity and the relative size of demand and supply shocks.
Then again, without supply shocks and a positive supply elasticity, production and prices
would be positively correlated as production would increase with demand shocks. At the
other extreme, without demand shocks and an inelastic supply, the correlation would
be negative as supply shocks would depress prices. Hence, the inability to match the
negative correlation between production and price could also come from demand shocks
too large relative to supply shocks, which would be consistent with the previous problem.

5.3 The role of storage in market dynamics

The introduction of many new features in our storage model calls for investigation of
their respective contributions to the price and quantity dynamics generated by the
model. In this section, we explore the role of storage in the movement of prices based
on the alternative exclusion of the various model features. To save space, we restrict the
discussion to six moments of interest: price autocorrelation which since Deaton and
Laroque (1992) is the benchmark metric used to assess the performance of the storage
model, price, consumption as well as production volatilities, and the correlation between
price and consumption, and price and production. ϕlnp,ln c(0) and ϕlnp,ln q(0) are of
particular interest because in the previous section we showed that the model struggles
to match these moments; thus, it is helpful to examine which model characteristics is
driving their behavior. Table 8 reports the results of this exercise as well as the same
moments calculated on the raw and detrended data for comparison.33

Switching off the model features one at a time allows us to analyze their respective
contributions to price persistence. The trend captured by the 4-knot spline explains
one-third of the 0.87 one-year autocorrelation in the raw data (i.e., difference between the
rows “Trending data” and “Detrended data”). Regarding the remaining serial correlation
explained by the benchmark model, the various model features contribute jointly and
nonlinearly to the persistence. This prevents us from uniquely decomposing their contri-
butions. Nonetheless, we can informally rank them in descending order of importance

33Note that the row “Detrended data” represents the same information as the column “Observed” in
table 7.
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TABLE 8. Role of model assumptions in price and quantity dynamics

Data or model ϕlnp(1) σlnp σln c σln q ϕlnp,ln c(0) ϕlnp,ln q(0)

Trending data 0.87 0.46 – – – –
Detrended data 0.58 0.24 0.019 0.028 −0.49 −0.41

1. Benchmark 0.56 0.26 0.018 0.031 0.08 −0.18

2. ρµ = 0 0.38 0.21 0.017 0.029 −0.33 −0.50

3. ρµ = 0, συ = σµ 0.38 0.23 0.022 0.030 −0.04 −0.38

4. αS = 0 0.65 0.30 0.014 0.024 0.10 −0.17

5. gq = 0 0.57 0.26 0.018 0.031 0.08 −0.17

6. gp = 0 0.60 0.24 0.018 0.032 0.19 −0.14

7. k = 0.018 0.60 0.24 0.018 0.032 0.19 −0.14

8. ση = 0 0.53 0.25 0.017 0.027 0.19 −0.12

9. σω = 0 0.54 0.25 0.016 0.026 0.20 −0.11

10. ση = 0, σϵ = σψ 0.53 0.26 0.017 0.030 0.09 −0.20

11. σω = ση = 0, σϵ = σψ 0.51 0.26 0.017 0.028 0.15 −0.16

12. ρµ = 0, συ = σµ, αS = 0 0.25 0.20 0.022 0.026 0.06 −0.36

13. ρµ = 0, συ = σµ, αS = 0, ση =

0, σϵ = σψ, gq = 0

0.26 0.21 0.022 0.028 0.00 −0.40

14. ρµ = 0.535, συ = 0.016 0.46 0.23 0.016 0.030 −0.26 −0.39

15. k =∞ 0.16 0.45 0.025 0.025 −0.59 −0.59

Notes: Moments calculated over 100,000 sample observations from the asymptotic distribution simulated
with models calibrated with the indirect inference estimates with 4-knot spline from table 6, except for the
parameter values indicated in the first column.

as follows: the smoothing effect of storage, the autocorrelation coefficient of demand
innovations, and the presence of planting-time shocks.

Comparing model 1 to model 2 shows the contribution of demand persistence, which
increases the price autocorrelation from 0.38 to 0.56. This result contrasts with Deaton
and Laroque’s (1996) estimation results for a model with autocorrelated supply shocks.
Indeed, Deaton and Laroque found that almost all of the serial correlation in prices was
attributable to the persistence of shocks, not speculative storage. The key difference with
our findings lies in our use of quantities as observables. This ensures that any shock
autocorrelation must be compatible with the quantity dynamics, which is not necessarily
the case if we rely solely on price data. The contribution of planting-time shocks is much
more modest and can be observed from the difference between models 10 and 1, with an
increase from 0.53 to 0.56. Planting-time shocks contribute to price persistence by linking
periods: shocks at planting time affect production and, therefore, prices in the following
period. However, since these shocks are immediately observed, they also affect current
prices due to the intertemporal link created by storage. Storage is thus key to inducing
price persistence. In model 15, where storage is shut down, the autocorrelation decreases
to 0.16. This figure should be compared to the price autocorrelation in model 13, in which
all model features, except for storage, are turned off, making it the closest to the simplest
model estimated in Deaton and Laroque (1996).34 In this setup—where only storage
explains price persistence—the price autocorrelation is less than half of its benchmark

34The only differences are the use of an isoelastic demand function and multiplicative shocks, while
Deaton and Laroque (1996) use a linear demand function and additive shocks.
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value. This demonstrates that storage alone does not explain price persistence; rather, it
does so only in combination with other features. This also suggests that to match the true
persistence of prices, estimation of the simpler version of the storage model considered
in the literature so far would require lower storage costs. Finally, the inclusion of a supply
response has an ambiguous effect on price autocorrelation. Comparing the benchmark
model to model 4 shows that an elastic supply decreases price serial correlation. On
the other hand, in the absence of an autoregressive exogenous demand process—i.e.,
comparing models 3 with 12—a supply response increases price persistence.

The simulations of the estimated model raise a new puzzle about the inability of the
model to match the price-consumption correlation. This moment is explained by the
respective roles of the demand and supply shocks in driving price movements, combined
with the demand elasticity. At the extreme without demand shocks, the correlation would
be −1. Therefore, removing planting-time shocks (models 8–11) or the supply response
(model 4) would only decrease the role of supply shocks and exacerbate the problems
related to this moment. Some improvement can be achieved by removing the persistence
of the demand shock (models 2–3) or increasing the storage cost (model 15), but both lead
to a lower fit of the price autocorrelation. The indirect inference approach overestimates
ρµ by 0.168 and συ by 0.003 compared with the 2SLS approach. Comparing models 2
and 3 with the benchmark shows that overestimation of ρµ would contribute only a little
to solving this puzzle. However, setting the size of the demand shock equal to its 2SLS
estimate level, in addition to ρµ (model 14), would bring the simulated moment closer
to the observed moment, inside the 99% bootstrap confidence interval but outside the
95% interval. In other words, the covariance mismatch between consumption and price
might be due in part to the overstatement of both the persistence and variance of the
demand shocks.

Likewise, the inability of the estimated model to match the price-production correla-
tion also seems to be related to the demand-side estimates. Then again, setting ρµ and
συ to their 2SLS values is enough to obtain a perfect fit of this moment.

As for the price volatility, it is well explained by the model if we remove the large share
of this volatility caused by the trend (as shown for two other commodities in Bobenrieth
et al., 2021). Storage explains the order of magnitude of the price fluctuations. Indeed,
without storage, the price volatility implied by our model would be 73% higher (model
15). The other model components contribute much less but in the expected direction. For
example, the autocorrelation of the demand innovations reduces the ability of storage to
smooth these shocks. Indeed, compared with the benchmark model 1, the price variance
is lower in model 3 when the shock to consumption demand µt collapses to an i.i.d.
normal error term. Thus, speculative storage can smooth transitory shocks but is less
efficient in the case of persistent disturbances.

Overall, the effects of the various model features on consumption and production
volatility have the expected signs. We next discuss the effects of the model variants not
considered so far. In model 5, the positive trend on quantities gq is removed. As discussed
in section 2.2 this boils down to decreasing storage costs which slightly increases price
persistence. In model 6, the negative trend on price gp is removed. Because the price
trend directly affects the storers’ incentives, for a value similar to gq it has a stronger
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impact on the autocorrelation in prices. In addition, a comparison of models 6 with 7
shows that the impact of the price trend gp is very similar to the effect of a corresponding
decrease in the per-unit storage cost k (i.e., decreasing it by β[1− exp(gp)]).

6. CONCLUSIONS

This paper proposes a new empirical strategy to estimate a rational expectations storage
model. It requires five observables (current price, expected price, production, consump-
tion, and supply shock) and reliance on a simple linear supply and demand model as
the auxiliary model in an indirect inference approach. Including quantities as well as
prices within the set of observables is crucial because it allows estimation of all the model
parameters which is important to empirically validate the model and run counterfactual
simulations for policy applications. Although the key role of storage for mediating the
dynamics of commodity prices has long been acknowledged and has been exploited
widely in finance and economics, so far a full empirical validation of a rational expec-
tations storage model has not been carried out. To apply our approach, we chose the
empirical setting of the global grains market following Roberts and Schlenker (2013), who
use an instrumental variable strategy motivated by storage theory. While they estimate
only a subset of the structural parameters, their strategy provides a good benchmark for
comparing our indirect inference estimates. We also used their estimating equations to
choose our auxiliary model.

Our results show that the long-standing price autocorrelation puzzle highlighted by
Deaton and Laroque (1992, 1996) can be solved convincingly by accounting for sufficient
features of the market for grains, such as (in descending order of importance): storage, a
long-run price trend, autocorrelated demand shocks, and producers’ incentive shocks
associated with an elastic supply.

While our estimated storage model is able to rationalize many of the observed mo-
ments, it fails to reproduce the observed levels of the negative correlation between price
and quantities. Finding a solution to this issue will be critical to estimate the model
using full-information likelihood techniques which are likely to be more sensitive to such
misspecification. Here, we can only speculate about possible sources of misspecification
in our approach. A first is the aggregation of different commodities, which may introduce
aggregation bias. A second is the deterministic arbitrage relationship assumed for storage
which creates a stochastic singularity between price and expected price. This arbitrage
equation is standard in the storage literature, but there are alternatives that include a
shock to the cost of storage such as in Knittel and Pindyck (2016). A third possible source
of misspecification is the assumption that all wedges between quantities and prices are
accounted for by structural shocks. This could be avoided by assuming the presence of
measurement errors as is commonly assumed when estimating DSGE models (Canova,
2014). Despite these limits, this paper has proved that a simple storage model is able to
capture the most important dynamic features of a global commodity market.

While the present paper follows Roberts and Schlenker (2013) and focuses on the
grains market, our empirical methodology could be applicable to other storable com-
modity as long as there is an observable demand or supply shock (e.g., a demand shock
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based on freight rates as suggested by Kilian, 2009). This development could also help
link the rational expectations storage literature to the estimation of VARs for commod-
ity prices (e.g., Kilian and Murphy, 2014, Baumeister and Hamilton, 2019). Unlike the
macroeconomic literature where the interaction between the VAR and DSGE modeling is
fruitful, in research on commodity price dynamics rational expectations storage models
have so far not been considered relevant empirical models.
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