
D Additional Tables and Figures

D.1 Power Plots

In Section 4.3, we presented truncated power plots for the first and third configurations in order to make the horizontal

axes the same as that of the second power plot. Here we present plots showing the entire “S” shape of the power

curves for MT and MT2 under all three configurations.

Figure 2: Reject probability under various ⌧s for the alternative hypothesis

D.2 Comparing Super Population and Finite Population Inference

In this section, we compare the coverage properties of confidence intervals constructed using our proposed variance

estimator versus two other well-known estimators, under both the super and finite population approaches to inference.

First, we revisit the setting introduced in Section 4.2, but now we consider only the matched-tuples design (MT),

and construct confidence intervals for the parameter �⌫1
�1

using one of three variance estimators:

1. the variance estimator V̂⌫,n introduced in Section 3.1,

2. a standard heteroskedasticity-robust variance estimator obtained from the regression in (4), and

3. the block-cluster variance estimator considered in Theorem 3.4.

For the super population simulations, we generate the data as in Section 4.2. For the finite population simulations,

we simply use each DGP to generate the covariates and outcomes once, and then fix these in repeated samples.

Table 8 presents coverage probabilities and average confidence interval lengths (in parentheses) with varying

sample sizes, based on 2, 000 Monte Carlo replications. As expected given our theoretical results, V̂⌫,n delivers

exact coverage in large samples under the super-population framework in all cases, whereas the robust variance

estimator and BCVE are both generally conservative. In the finite population framework, we find that both V̂⌫,n and

BCVE deliver exact coverage for some model specifications in large populations, but all three methods are generally

conservative. V̂⌫,n displays some under-coverage in small populations relative to BCVE, but as the population size

increases, V̂⌫,n generally produces narrower confidence intervals.
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Next, we repeat the above exercise using a calibrated simulation design analogous to that used in Section 4.3,

but utilizing the wave 6 data from Fafchamps et al. (2014). To construct our data generating process, we run an

OLS regression of Yi on a constant and the seven covariates Xi employed for matching, obtaining �̂ and residuals ✏̂.

Subsequently, for d 2 {0, 1, 2} we compute Yi(d) based on the following model:

Yi(d) = X 0
i�̂ + (Xi � X̄i)

0�̂ · � · d+ ✏i ,

with Xi drawn from the empirical distribution of the data and ✏i ⇠ N(0, var(✏̂)). Note that when � = 0 we obtain

a model with a constant treatment e↵ect of zero, but that as � increases so does the amount of treatment e↵ect

heterogeneity. For the super-population simulations, the data is re-generated for each of the Monte Carlo replications.

For the finite population simulations, the data is generated only once and then fixed in repeated samples. In each

experimental assignment we match the units into triplets and assign one unit to each of d 2 {0, 1, 2}.

Table 9 presents coverage probabilities and average confidence interval lengths (in parentheses) for the parameter

�⌫ = E[Yi(1) � Yi(0)], based on 2,000 Monte Carlo replications. Our first observation is that given the results for

� = 0, it is clear that the covariates Xi explain little of the variation in experimental outcomes in our simulation

design since all three variance estimators obtain exact coverage. However, as we artificially increase the amount of

treatment e↵ect heterogeneity by increasing the parameter �, we find that, in line with our theoretical results, both

the robust variance estimator and BCVE become slightly conservative. Moreover, in the finite population framework,

V̂⌫,n starts to become conservative as well.

D.3 Calibrated Simulation Design Details

In this section we provide details for the calibrated simulation study considered in Section 4.3. Following Branson et al.

(2016), we consider data obtained from the New York Department of Education, who were considering implementing

a 25 factorial experiment to study five new intervention programs: a quality review, a periodic assessment, inquiry

teams, a school-wide performance bonus program and an online resource program; details about each of these programs

can be found in Dasgupta et al. (2015). The data-set contains covariate information for 1, 376 schools. As in Branson

et al. (2016), we consider experimental designs constructed using nine covariates which were deemed likely to be

correlated with schools’ performance scores: total number of students, proportion of male students, enrollment rate,

poverty rate, and five additional variables recording the proportion of students of various races.

Since the NYDE has yet to run such an experiment, and given the limitations of the available dataset, we select

one covariate (“number of teachers”) from the original dataset to use as the potential outcome under control, and

then construct the potential outcomes under the various treatment combinations using the model described in Section

4.3. Specifically, we first demean and standardize all 9 covariates (denoted X̃i), and then estimate a parameter vector

� by ordinary least squares in the following linear model specification for Yi(�1,�1, . . . ,�1):

Yi(�1,�1, . . . ,�1) = �(�1,�1,...,�1)X̃
0
i� + ✏i , (16)

where �(�1,�1,...,�1) = �1 as defined in Section 4.3. Table 10 presents the regression results. For each treatment

combination d, we then compute Yi(d) using the model from Section 4.3 given by

Yi(d) = ⌧ ·
 
d(1) +

PK
k=2 d

(k)

K � 1

!
+ �dX̃

0
i� + ✏i ,
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Super Population Finite Population

Model Method 4n=40 4n=80 4n=160 4n=480 4n=1000 4n=40 4n=80 4n=160 4n=480 4n=1000

1

V̂⌫,n 0.9340 0.9445 0.9435 0.9460 0.9470 0.9620 0.9550 0.9335 0.9445 0.9535
(1.810) (1.253) (0.881) (0.508) (0.351) (2.002) (1.547) (0.923) (0.480) (0.354)

Robust 0.9855 0.9910 0.9930 0.9890 0.9920 0.9905 0.9895 0.9860 0.9950 0.9970
(2.375) (1.727) (1.226) (0.714) (0.495) (2.373) (1.891) (1.208) (0.702) (0.506)

BCVE 0.9350 0.9470 0.9400 0.9455 0.9455 0.9185 0.9390 0.9405 0.9470 0.9525
(1.821) (1.262) (0.885) (0.509) (0.351) (1.822) (1.475) (0.938) (0.483) (0.354)

2

V̂⌫,n 0.9295 0.9395 0.9400 0.9525 0.9505 0.9495 0.9375 0.9405 0.9370 0.9520
(1.897) (1.299) (0.896) (0.509) (0.352) (1.829) (1.309) (0.848) (0.505) (0.354)

Robust 0.9850 0.9905 0.9955 0.9965 0.9955 0.9870 0.9820 0.9970 0.9945 0.9980
(2.489) (1.809) (1.290) (0.751) (0.522) (2.337) (1.560) (1.354) (0.749) (0.540)

BCVE 0.9185 0.9395 0.9415 0.9545 0.9515 0.9340 0.9395 0.9425 0.9415 0.9530
(1.858) (1.282) (0.893) (0.508) (0.352) (1.789) (1.311) (0.852) (0.518) (0.356)

3

V̂⌫,n 0.9445 0.9545 0.9600 0.9435 0.9450 0.9970 0.9790 0.9975 0.9890 0.9945
(2.499) (1.702) (1.193) (0.679) (0.469) (2.439) (1.710) (1.144) (0.686) (0.468)

Robust 0.9800 0.9915 0.9920 0.9905 0.9910 1.0000 0.9985 1.0000 0.9995 1.0000
(3.080) (2.222) (1.593) (0.922) (0.640) (3.112) (2.228) (1.485) (0.916) (0.654)

BCVE 0.9915 0.9940 0.9980 0.9960 0.9965 0.9995 0.9995 1.0000 1.0000 1.0000
(3.748) (2.578) (1.811) (1.032) (0.714) (3.766) (2.628) (1.729) (1.015) (0.709)

4

V̂⌫,n 0.9355 0.9480 0.9375 0.9445 0.9470 0.9310 0.9345 0.9540 0.9535 0.9640
(1.889) (1.319) (0.927) (0.534) (0.371) (1.674) (1.292) (1.015) (0.562) (0.373)

Robust 0.9470 0.9680 0.9580 0.9635 0.9655 0.9435 0.9560 0.9695 0.9685 0.9770
(1.931) (1.406) (1.005) (0.584) (0.406) (1.751) (1.410) (1.085) (0.599) (0.407)

BCVE 0.9550 0.9740 0.9700 0.9710 0.9750 0.9730 0.9760 0.9750 0.9760 0.9815
(2.208) (1.543) (1.077) (0.617) (0.428) (2.190) (1.572) (1.149) (0.655) (0.432)

5

V̂⌫,n 0.9315 0.9435 0.9495 0.9465 0.9530 0.9620 0.9615 0.9735 0.9625 0.9680
(2.012) (1.386) (0.962) (0.550) (0.381) (2.244) (1.153) (0.975) (0.554) (0.377)

Robust 0.9530 0.9660 0.9790 0.9770 0.9850 0.9805 0.9870 0.9950 0.9870 0.9875
(2.152) (1.570) (1.117) (0.650) (0.452) (2.472) (1.415) (1.162) (0.655) (0.448)

BCVE 0.9615 0.9730 0.9790 0.9785 0.9845 0.9610 0.9915 0.9930 0.9880 0.9870
(2.419) (1.667) (1.155) (0.662) (0.458) (2.506) (1.530) (1.151) (0.656) (0.453)

6

V̂⌫,n 0.9065 0.9290 0.9305 0.9425 0.9505 0.9105 0.9675 0.9655 0.9715 0.9665
(4.730) (3.361) (2.388) (1.388) (0.961) (4.846) (3.244) (2.233) (1.425) (1.025)

Robust 0.9425 0.9600 0.9615 0.9660 0.9670 0.9625 0.9835 0.9855 0.9835 0.9765
(5.001) (3.624) (2.606) (1.521) (1.055) (5.392) (3.449) (2.437) (1.549) (1.090)

BCVE 0.9560 0.9675 0.9660 0.9725 0.9735 0.9670 0.9875 0.9865 0.9865 0.9860
(5.623) (3.930) (2.767) (1.595) (1.101) (5.886) (3.812) (2.537) (1.611) (1.166)

Table 8: Coverage rate and average CI length (parentheses) under the super and finite population approaches
to inference

where X̃i is drawn from the empirical distribution of the data and ✏i ⇠ N(0, 0.1), where we note that 0.1 is approxi-

mately equal to the sample variance of the residuals of the regression in (16).

D.4 More Results for the Empirical Application

In this section we repeat our analysis for the data on long-term e↵ects obtained through the final round (wave 7) of

surveys from the original paper. For the analysis of long-term e↵ects, we follow the same procedure as in the original

paper, except we additionally drop the four groups with sizes ranging from 5 to 8. Note that the estimated e↵ects

are di↵erent for the fixed-e↵ect regression. This is because, as in the analysis in the original paper, we do not drop

45



Super Population Finite Population

Model Method 3n=60 3n=120 3n=360 3n=750 3n=1200 3n=60 3n=120 3n=360 3n=750 3n=1200

� = 0

V̂⌫,n 0.949 0.943 0.946 0.946 0.952 0.950 0.940 0.955 0.946 0.953
(225.457) (160.525) (92.715) (64.226) (50.706) (225.896) (159.946) (92.607) (64.235) (50.771)

Robust 0.950 0.943 0.950 0.947 0.952 0.947 0.943 0.955 0.951 0.955
(223.224) (160.560) (93.791) (65.160) (51.503) (224.081) (160.511) (93.731) (65.128) (51.553)

BCVE 0.948 0.938 0.943 0.940 0.946 0.953 0.944 0.954 0.943 0.950
(229.461) (162.261) (92.762) (64.198) (50.674) (230.041) (161.019) (92.765) (64.089) (50.685)

� = 1

V̂⌫,n 0.940 0.946 0.953 0.960 0.959 0.946 0.941 0.947 0.948 0.953
(229.287) (164.518) (94.925) (65.239) (51.591) (233.870) (165.423) (94.580) (65.390) (51.554)

Robust 0.936 0.955 0.961 0.970 0.963 0.945 0.950 0.954 0.958 0.960
(230.262) (166.659) (97.449) (67.499) (53.449) (232.131) (167.113) (97.281) (67.482) (53.420)

BCVE 0.936 0.945 0.957 0.961 0.959 0.949 0.946 0.950 0.950 0.956
(232.063) (165.622) (95.388) (65.468) (51.662) (237.561) (166.805) (94.836) (65.553) (51.658)

� = 3

V̂⌫,n 0.947 0.949 0.963 0.966 0.957 0.948 0.952 0.953 0.947 0.952
(251.942) (180.451) (101.057) (70.280) (55.300) (253.653) (177.162) (102.184) (70.042) (55.324)

Robust 0.961 0.962 0.978 0.977 0.975 0.951 0.961 0.962 0.968 0.968
(255.377) (188.130) (108.362) (76.242) (60.466) (257.964) (185.413) (109.376) (75.993) (60.422)

BCVE 0.947 0.955 0.969 0.971 0.963 0.958 0.957 0.954 0.959 0.961
(256.837) (185.391) (103.913) (72.470) (57.259) (260.735) (181.843) (105.186) (72.325) (57.091)

� = 5

V̂⌫,n 0.945 0.947 0.966 0.964 0.957 0.940 0.959 0.978 0.968 0.966
(285.897) (199.748) (111.957) (78.191) (60.960) (284.327) (200.163) (113.900) (77.267) (60.890)

Robust 0.959 0.965 0.986 0.981 0.977 0.955 0.970 0.986 0.983 0.982
(295.771) (215.171) (125.135) (88.824) (70.149) (293.489) (215.318) (127.164) (88.177) (70.040)

BCVE 0.949 0.958 0.975 0.976 0.970 0.949 0.962 0.981 0.975 0.975
(296.164) (209.731) (119.286) (83.916) (65.873) (293.557) (209.593) (121.447) (83.287) (65.842)

Table 9: Coverage rate and average CI length (parentheses) under the super and finite population approaches
to inference

entire quadruplets from our dataset whenever one member of the quadruplet was missing due to non-response in the

final survey round.
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coef std err z P> |z| [0.025 0.975]

constant 2.824e-06 0.007 0.000 1.000 -0.014 0.014
Total -0.9808 0.016 -60.609 0.000 -1.012 -0.949
nativeAmerican 0.0374 0.054 0.699 0.485 -0.068 0.143
black 2.9378 3.175 0.925 0.355 -3.285 9.160
latino 2.6158 2.836 0.922 0.356 -2.942 8.174
asian 1.6866 1.822 0.926 0.355 -1.884 5.258
white 1.9064 2.150 0.887 0.375 -2.308 6.121
male -0.0379 0.007 -5.355 0.000 -0.052 -0.024
stability 0.0045 0.007 0.636 0.525 -0.009 0.018
povertyRate -0.1818 0.011 -16.350 0.000 -0.204 -0.160

Table 10: Model (16) OLS Regression Results

All High initial Low initial

firms Males Females Profit women Profit women

(1) (2) (3) (4) (5)

Cash treatment 18.02 56.17 -8.43 -15.32 -3.84
OLS (29.66) (67.95) (18.25) (38.99) (17.14)

without group In-kind treatment 31.59 62.02 4.63 42.10 -13.40
fixed e↵ects (21.63) (40.60) (20.97) (48.82) (16.08)

Cash=in-kind (p-val) 0.680 0.938 0.484 0.171 0.554

Matched-Tuples

Cash treatment 18.02 56.17 -8.43 -15.32 -3.84
(26.07) (60.09) (17.25) (42.10) (16.60)

In-kind treatment 31.59 62.02 4.63 42.10 -13.40
(19.47) (39.02) (18.57) (45.30) (14.32)

Cash=in-kind (p-val) 0.641 0.931 0.456 0.147 0.556

Table 11: Point estimates and standard errors for testing the treatment e↵ects of cash and in-kind grants
using di↵erent methods (wave 7)
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