D Additional Tables and Figures

D. 1 Power Plots

In Section 4.3, we presented truncated power plots for the first and third configurations in order to make the horizontal axes the same as that of the second power plot. Here we present plots showing the entire " S " shape of the power curves for MT and MT2 under all three configurations.

Figure 2: Reject probability under various $\tau \mathrm{s}$ for the alternative hypothesis

D. 2 Comparing Super Population and Finite Population Inference

In this section, we compare the coverage properties of confidence intervals constructed using our proposed variance estimator versus two other well-known estimators, under both the super and finite population approaches to inference. First, we revisit the setting introduced in Section 4.2, but now we consider only the matched-tuples design (MT), and construct confidence intervals for the parameter $\Delta_{\nu_{-1}^{1}}$ using one of three variance estimators:

1. the variance estimator $\hat{\mathbb{V}}_{\nu, n}$ introduced in Section 3.1,
2. a standard heteroskedasticity-robust variance estimator obtained from the regression in (4), and
3. the block-cluster variance estimator considered in Theorem 3.4.

For the super population simulations, we generate the data as in Section 4.2. For the finite population simulations, we simply use each DGP to generate the covariates and outcomes once, and then fix these in repeated samples.

Table 8 presents coverage probabilities and average confidence interval lengths (in parentheses) with varying sample sizes, based on 2,000 Monte Carlo replications. As expected given our theoretical results, $\hat{\mathbb{V}}_{\nu, n}$ delivers exact coverage in large samples under the super-population framework in all cases, whereas the robust variance estimator and BCVE are both generally conservative. In the finite population framework, we find that both $\hat{\mathbb{V}}_{\nu, n}$ and BCVE deliver exact coverage for some model specifications in large populations, but all three methods are generally conservative. $\hat{\mathbb{V}}_{\nu, n}$ displays some under-coverage in small populations relative to BCVE, but as the population size increases, $\hat{\mathbb{V}}_{\nu, n}$ generally produces narrower confidence intervals.

Next, we repeat the above exercise using a calibrated simulation design analogous to that used in Section 4.3, but utilizing the wave 6 data from Fafchamps et al. (2014). To construct our data generating process, we run an OLS regression of Y_{i} on a constant and the seven covariates X_{i} employed for matching, obtaining $\hat{\beta}$ and residuals $\hat{\epsilon}$. Subsequently, for $d \in\{0,1,2\}$ we compute $Y_{i}(d)$ based on the following model:

$$
Y_{i}(d)=X_{i}^{\prime} \hat{\beta}+\left(X_{i}-\bar{X}_{i}\right)^{\prime} \hat{\beta} \cdot \gamma \cdot d+\epsilon_{i}
$$

with X_{i} drawn from the empirical distribution of the data and $\epsilon_{i} \sim N(0, \operatorname{var}(\hat{\epsilon}))$. Note that when $\gamma=0$ we obtain a model with a constant treatment effect of zero, but that as γ increases so does the amount of treatment effect heterogeneity. For the super-population simulations, the data is re-generated for each of the Monte Carlo replications. For the finite population simulations, the data is generated only once and then fixed in repeated samples. In each experimental assignment we match the units into triplets and assign one unit to each of $d \in\{0,1,2\}$.

Table 9 presents coverage probabilities and average confidence interval lengths (in parentheses) for the parameter $\Delta_{\nu}=E\left[Y_{i}(1)-Y_{i}(0)\right]$, based on 2,000 Monte Carlo replications. Our first observation is that given the results for $\gamma=0$, it is clear that the covariates X_{i} explain little of the variation in experimental outcomes in our simulation design since all three variance estimators obtain exact coverage. However, as we artificially increase the amount of treatment effect heterogeneity by increasing the parameter γ, we find that, in line with our theoretical results, both the robust variance estimator and BCVE become slightly conservative. Moreover, in the finite population framework, $\hat{\mathbb{V}}_{\nu, n}$ starts to become conservative as well.

D. 3 Calibrated Simulation Design Details

In this section we provide details for the calibrated simulation study considered in Section 4.3. Following Branson et al. (2016), we consider data obtained from the New York Department of Education, who were considering implementing a 2^{5} factorial experiment to study five new intervention programs: a quality review, a periodic assessment, inquiry teams, a school-wide performance bonus program and an online resource program; details about each of these programs can be found in Dasgupta et al. (2015). The data-set contains covariate information for 1, 376 schools. As in Branson et al. (2016), we consider experimental designs constructed using nine covariates which were deemed likely to be correlated with schools' performance scores: total number of students, proportion of male students, enrollment rate, poverty rate, and five additional variables recording the proportion of students of various races.

Since the NYDE has yet to run such an experiment, and given the limitations of the available dataset, we select one covariate ("number of teachers") from the original dataset to use as the potential outcome under control, and then construct the potential outcomes under the various treatment combinations using the model described in Section 4.3. Specifically, we first demean and standardize all 9 covariates (denoted \tilde{X}_{i}), and then estimate a parameter vector β by ordinary least squares in the following linear model specification for $Y_{i}(-1,-1, \ldots,-1)$:

$$
\begin{equation*}
Y_{i}(-1,-1, \ldots,-1)=\gamma_{(-1,-1, \ldots,-1)} \tilde{X}_{i}^{\prime} \beta+\epsilon_{i} \tag{16}
\end{equation*}
$$

where $\gamma_{(-1,-1, \ldots,-1)}=-1$ as defined in Section 4.3. Table 10 presents the regression results. For each treatment combination d, we then compute $Y_{i}(d)$ using the model from Section 4.3 given by

$$
Y_{i}(d)=\tau \cdot\left(d^{(1)}+\frac{\sum_{k=2}^{K} d^{(k)}}{K-1}\right)+\gamma_{d} \tilde{X}_{i}^{\prime} \beta+\epsilon_{i}
$$

Model	Method	Super Population					Finite Population				
		$4 n=40$	$4 n=80$	$4 n=160$	$4 n=480$	$4 n=1000$	$4 n=40$	$4 n=80$	$4 n=160$	$4 n=480$	$4 n=1000$
1	$\hat{\mathbf{V}}_{\nu, n}$	0.9340	0.9445	0.9435	0.9460	0.9470	0.9620	0.9550	0.9335	0.9445	0.9535
		(1.810)	(1.253)	(0.881)	(0.508)	(0.351)	(2.002)	(1.547)	(0.923)	(0.480)	(0.354)
	Robust	0.9855	0.9910	0.9930	0.9890	0.9920	0.9905	0.9895	0.9860	0.9950	0.9970
		(2.375)	(1.727)	(1.226)	(0.714)	(0.495)	(2.373)	(1.891)	(1.208)	(0.702)	(0.506)
	BCVE	0.9350	0.9470	0.9400	0.9455	0.9455	0.9185	0.9390	0.9405	0.9470	0.9525
		(1.821)	(1.262)	(0.885)	(0.509)	(0.351)	(1.822)	(1.475)	(0.938)	(0.483)	(0.354)
2	$\hat{\mathbb{V}}_{\nu, n}$	0.9295	0.9395	0.9400	0.9525	0.9505	0.9495	0.9375	0.9405	0.9370	0.9520
		(1.897)	(1.299)	(0.896)	(0.509)	(0.352)	(1.829)	(1.309)	(0.848)	(0.505)	(0.354)
	Robust	0.9850	0.9905	0.9955	0.9965	0.9955	0.9870	0.9820	0.9970	0.9945	0.9980
		(2.489)	(1.809)	(1.290)	(0.751)	(0.522)	(2.337)	(1.560)	(1.354)	(0.749)	(0.540)
	BCVE	0.9185	0.9395	0.9415	0.9545	0.9515	0.9340	0.9395	0.9425	0.9415	0.9530
		(1.858)	(1.282)	(0.893)	(0.508)	(0.352)	(1.789)	(1.311)	(0.852)	(0.518)	(0.356)
3	$\hat{\mathbb{V}}_{\nu, n}$	0.9445	0.9545	0.9600	0.9435	0.9450	0.9970	0.9790	0.9975	0.9890	0.9945
		(2.499)	(1.702)	(1.193)	(0.679)	(0.469)	(2.439)	(1.710)	(1.144)	(0.686)	(0.468)
	Robust	0.9800	0.9915	0.9920	0.9905	0.9910	1.0000	0.9985	1.0000	0.9995	1.0000
		(3.080)	(2.222)	(1.593)	(0.922)	(0.640)	(3.112)	(2.228)	(1.485)	(0.916)	(0.654)
	BCVE	0.9915	0.9940	0.9980	0.9960	0.9965	0.9995	0.9995	1.0000	1.0000	1.0000
		(3.748)	(2.578)	(1.811)	(1.032)	(0.714)	(3.766)	(2.628)	(1.729)	(1.015)	(0.709)
4	$\hat{\mathbb{V}}_{\nu, n}$	0.9355	0.9480	0.9375	0.9445	0.9470	0.9310	0.9345	0.9540	0.9535	0.9640
		(1.889)	(1.319)	(0.927)	(0.534)	(0.371)	(1.674)	(1.292)	(1.015)	(0.562)	(0.373)
	Robust	0.9470	0.9680	0.9580	0.9635	0.9655	0.9435	0.9560	0.9695	0.9685	0.9770
		(1.931)	(1.406)	(1.005)	(0.584)	(0.406)	(1.751)	(1.410)	(1.085)	(0.599)	(0.407)
	BCVE	0.9550	0.9740	0.9700	0.9710	0.9750	0.9730	0.9760	0.9750	0.9760	0.9815
		(2.208)	(1.543)	(1.077)	(0.617)	(0.428)	(2.190)	(1.572)	(1.149)	(0.655)	(0.432)
5	$\hat{\mathbb{V}}_{\nu, n}$	0.9315	0.9435	0.9495	0.9465	0.9530	0.9620	0.9615	0.9735	0.9625	0.9680
		(2.012)	(1.386)	(0.962)	(0.550)	(0.381)	(2.244)	(1.153)	(0.975)	(0.554)	(0.377)
	Robust	0.9530	0.9660	0.9790	0.9770	0.9850	0.9805	0.9870	0.9950	0.9870	0.9875
		(2.152)	(1.570)	(1.117)	(0.650)	(0.452)	(2.472)	(1.415)	(1.162)	(0.655)	(0.448)
	BCVE	0.9615	0.9730	0.9790	0.9785	0.9845	0.9610	0.9915	0.9930	0.9880	0.9870
		(2.419)	(1.667)	(1.155)	(0.662)	(0.458)	(2.506)	(1.530)	(1.151)	(0.656)	(0.453)
6	$\hat{\mathbb{V}}_{\nu, n}$	0.9065	0.9290	0.9305	0.9425	0.9505	0.9105	0.9675	0.9655	0.9715	0.9665
		(4.730)	(3.361)	(2.388)	(1.388)	(0.961)	(4.846)	(3.244)	(2.233)	(1.425)	(1.025)
	Robust	0.9425	0.9600	0.9615	0.9660	0.9670	0.9625	0.9835	0.9855	0.9835	0.9765
		(5.001)	(3.624)	(2.606)	(1.521)	(1.055)	(5.392)	(3.449)	(2.437)	(1.549)	(1.090)
	BCVE	0.9560	0.9675	0.9660	0.9725	0.9735	0.9670	0.9875	0.9865	0.9865	0.9860
		(5.623)	(3.930)	(2.767)	(1.595)	(1.101)	(5.886)	(3.812)	(2.537)	(1.611)	(1.166)

Table 8: Coverage rate and average CI length (parentheses) under the super and finite population approaches to inference
where \tilde{X}_{i} is drawn from the empirical distribution of the data and $\epsilon_{i} \sim N(0,0.1)$, where we note that 0.1 is approximately equal to the sample variance of the residuals of the regression in (16).

D. 4 More Results for the Empirical Application

In this section we repeat our analysis for the data on long-term effects obtained through the final round (wave 7) of surveys from the original paper. For the analysis of long-term effects, we follow the same procedure as in the original paper, except we additionally drop the four groups with sizes ranging from 5 to 8 . Note that the estimated effects are different for the fixed-effect regression. This is because, as in the analysis in the original paper, we do not drop

Model	Method	Super Population					Finite Population				
		$3 n=60$	$3 n=120$	$3 n=360$	$3 n=750$	$3 n=1200$	$3 n=60$	$3 n=120$	$3 n=360$	$3 n=750$	$3 n=1200$
$\gamma=0$	$\hat{\mathbb{V}}_{\nu, n}$	$\begin{aligned} & 0.949 \\ & (225.457) \end{aligned}$	$\begin{aligned} & 0.943 \\ & (160.525) \end{aligned}$	$\begin{aligned} & 0.946 \\ & (92.715) \end{aligned}$	$\begin{aligned} & 0.946 \\ & (64.226) \end{aligned}$	$\begin{aligned} & 0.952 \\ & (50.706) \end{aligned}$	$\begin{aligned} & 0.950 \\ & (225.896) \end{aligned}$	$\begin{aligned} & 0.940 \\ & (159.946) \end{aligned}$	$\begin{aligned} & 0.955 \\ & (92.607) \end{aligned}$	$\begin{aligned} & 0.946 \\ & (64.235) \end{aligned}$	$\begin{aligned} & 0.953 \\ & (50.771) \end{aligned}$
	Robust	$\begin{aligned} & 0.950 \\ & (223.224) \end{aligned}$	$\begin{aligned} & 0.943 \\ & (160.560) \end{aligned}$	$\begin{aligned} & 0.950 \\ & (93.791) \end{aligned}$	$\begin{aligned} & 0.947 \\ & (65.160) \end{aligned}$	$\begin{aligned} & 0.952 \\ & (51.503) \end{aligned}$	$\begin{aligned} & 0.947 \\ & (224.081) \end{aligned}$	$\begin{aligned} & 0.943 \\ & (160.511) \end{aligned}$	$\begin{aligned} & 0.955 \\ & (93.731) \end{aligned}$	$\begin{aligned} & 0.951 \\ & (65.128) \end{aligned}$	$\begin{aligned} & 0.955 \\ & (51.553) \end{aligned}$
	BCVE	$\begin{aligned} & 0.948 \\ & (229.461) \end{aligned}$	$\begin{aligned} & 0.938 \\ & (162.261) \end{aligned}$	$\begin{aligned} & 0.943 \\ & (92.762) \end{aligned}$	$\begin{aligned} & 0.940 \\ & (64.198) \end{aligned}$	$\begin{aligned} & 0.946 \\ & (50.674) \end{aligned}$	$\begin{aligned} & 0.953 \\ & (230.041) \end{aligned}$	$\begin{aligned} & 0.944 \\ & (161.019) \end{aligned}$	$\begin{aligned} & 0.954 \\ & (92.765) \end{aligned}$	$\begin{aligned} & 0.943 \\ & (64.089) \end{aligned}$	$\begin{aligned} & 0.950 \\ & (50.685) \end{aligned}$
$\gamma=1$	$\hat{\mathbb{V}}_{\nu, n}$	$\begin{aligned} & 0.940 \\ & (229.287) \end{aligned}$	$\begin{aligned} & 0.946 \\ & (164.518) \end{aligned}$	$\begin{aligned} & 0.953 \\ & (94.925) \end{aligned}$	$\begin{aligned} & 0.960 \\ & (65.239) \end{aligned}$	$\begin{aligned} & 0.959 \\ & (51.591) \end{aligned}$	$\begin{aligned} & 0.946 \\ & (233.870) \end{aligned}$	$\begin{aligned} & 0.941 \\ & (165.423) \end{aligned}$	$\begin{aligned} & 0.947 \\ & (94.580) \end{aligned}$	$\begin{aligned} & 0.948 \\ & (65.390) \end{aligned}$	$\begin{aligned} & 0.953 \\ & (51.554) \end{aligned}$
	Robust	$\begin{aligned} & 0.936 \\ & (230.262) \end{aligned}$	$\begin{aligned} & 0.955 \\ & (166.659) \end{aligned}$	$\begin{aligned} & 0.961 \\ & (97.449) \end{aligned}$	$\begin{aligned} & 0.970 \\ & (67.499) \end{aligned}$	$\begin{aligned} & 0.963 \\ & (53.449) \end{aligned}$	$\begin{aligned} & 0.945 \\ & (232.131) \end{aligned}$	$\begin{aligned} & 0.950 \\ & (167.113) \end{aligned}$	$\begin{aligned} & 0.954 \\ & (97.281) \end{aligned}$	$\begin{aligned} & 0.958 \\ & (67.482) \end{aligned}$	$\begin{aligned} & 0.960 \\ & (53.420) \end{aligned}$
	BCVE	$\begin{aligned} & 0.936 \\ & (232.063) \end{aligned}$	$\begin{aligned} & 0.945 \\ & (165.622) \end{aligned}$	$\begin{aligned} & 0.957 \\ & (95.388) \end{aligned}$	$\begin{aligned} & 0.961 \\ & (65.468) \end{aligned}$	$\begin{aligned} & 0.959 \\ & (51.662) \end{aligned}$	$\begin{aligned} & 0.949 \\ & (237.561) \end{aligned}$	$\begin{aligned} & 0.946 \\ & (166.805) \end{aligned}$	$\begin{aligned} & 0.950 \\ & (94.836) \end{aligned}$	$\begin{aligned} & 0.950 \\ & (65.553) \end{aligned}$	$\begin{aligned} & 0.956 \\ & (51.658) \end{aligned}$
$\gamma=3$	$\hat{\mathbb{V}}_{\nu, n}$	$\begin{aligned} & 0.947 \\ & (251.942) \end{aligned}$	$\begin{aligned} & 0.949 \\ & (180.451) \end{aligned}$	$\begin{aligned} & 0.963 \\ & (101.057) \end{aligned}$	$\begin{aligned} & 0.966 \\ & (70.280) \end{aligned}$	$\begin{aligned} & 0.957 \\ & (55.300) \end{aligned}$	$\begin{aligned} & 0.948 \\ & (253.653) \end{aligned}$	$\begin{aligned} & 0.952 \\ & (177.162) \end{aligned}$	$\begin{aligned} & 0.953 \\ & (102.184) \end{aligned}$	$\begin{aligned} & 0.947 \\ & (70.042) \end{aligned}$	$\begin{aligned} & 0.952 \\ & (55.324) \end{aligned}$
	Robust	$\begin{aligned} & 0.961 \\ & (255.377) \end{aligned}$	$\begin{aligned} & 0.962 \\ & (188.130) \end{aligned}$	$\begin{aligned} & 0.978 \\ & (108.362) \end{aligned}$	$\begin{aligned} & 0.977 \\ & (76.242) \end{aligned}$	$\begin{aligned} & 0.975 \\ & (60.466) \end{aligned}$	$\begin{aligned} & 0.951 \\ & (257.964) \end{aligned}$	$\begin{aligned} & 0.961 \\ & (185.413) \end{aligned}$	$\begin{aligned} & 0.962 \\ & (109.376) \end{aligned}$	$\begin{aligned} & 0.968 \\ & (75.993) \end{aligned}$	$\begin{aligned} & 0.968 \\ & (60.422) \end{aligned}$
	BCVE	$\begin{aligned} & 0.947 \\ & (256.837) \end{aligned}$	$\begin{aligned} & 0.955 \\ & (185.391) \end{aligned}$	$\begin{aligned} & 0.969 \\ & (103.913) \end{aligned}$	$\begin{aligned} & 0.971 \\ & (72.470) \end{aligned}$	$\begin{aligned} & 0.963 \\ & (57.259) \end{aligned}$	$\begin{aligned} & 0.958 \\ & (260.735) \end{aligned}$	$\begin{aligned} & 0.957 \\ & (181.843) \end{aligned}$	$\begin{aligned} & 0.954 \\ & (105.186) \end{aligned}$	$\begin{aligned} & 0.959 \\ & (72.325) \end{aligned}$	$\begin{aligned} & 0.961 \\ & (57.091) \end{aligned}$
$\gamma=5$	$\hat{\mathbb{V}}_{\nu, n}$	$\begin{aligned} & 0.945 \\ & (285.897) \end{aligned}$	$\begin{aligned} & 0.947 \\ & (199.748) \end{aligned}$	$\begin{aligned} & 0.966 \\ & (111.957) \end{aligned}$	$\begin{aligned} & 0.964 \\ & (78.191) \end{aligned}$	$\begin{aligned} & 0.957 \\ & (60.960) \end{aligned}$	$\begin{aligned} & 0.940 \\ & (284.327) \end{aligned}$	$\begin{aligned} & 0.959 \\ & (200.163) \end{aligned}$	$\begin{aligned} & 0.978 \\ & (113.900) \end{aligned}$	$\begin{aligned} & 0.968 \\ & (77.267) \end{aligned}$	$\begin{aligned} & 0.966 \\ & (60.890) \end{aligned}$
	Robust	$\begin{aligned} & 0.959 \\ & (295.771) \end{aligned}$	$\begin{aligned} & 0.965 \\ & (215.171) \end{aligned}$	$\begin{aligned} & 0.986 \\ & (125.135) \end{aligned}$	$\begin{aligned} & 0.981 \\ & (88.824) \end{aligned}$	$\begin{aligned} & 0.977 \\ & (70.149) \end{aligned}$	$\begin{aligned} & 0.955 \\ & (293.489) \end{aligned}$	$\begin{aligned} & 0.970 \\ & (215.318) \end{aligned}$	$\begin{aligned} & 0.986 \\ & (127.164) \end{aligned}$	$\begin{aligned} & 0.983 \\ & (88.177) \end{aligned}$	$\begin{aligned} & 0.982 \\ & (70.040) \end{aligned}$
	BCVE	$\begin{aligned} & 0.949 \\ & (296.164) \end{aligned}$	$\begin{aligned} & 0.958 \\ & (209.731) \end{aligned}$	$\begin{aligned} & 0.975 \\ & (119.286) \end{aligned}$	$\begin{aligned} & 0.976 \\ & (83.916) \end{aligned}$	$\begin{aligned} & 0.970 \\ & (65.873) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.949 \\ & (293.557) \end{aligned}$	$\begin{aligned} & 0.962 \\ & (209.593) \end{aligned}$	$\begin{aligned} & 0.981 \\ & (121.447) \end{aligned}$	$\begin{aligned} & 0.975 \\ & (83.287) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.975 \\ & (65.842) \end{aligned}$

Table 9: Coverage rate and average CI length (parentheses) under the super and finite population approaches to inference
entire quadruplets from our dataset whenever one member of the quadruplet was missing due to non-response in the final survey round.

	coef	std err	\mathbf{z}	$\mathbf{P}>\|\mathbf{z}\|$	$[\mathbf{0 . 0 2 5}$	$\mathbf{0 . 9 7 5}]$
constant	$2.824 \mathrm{e}-06$	0.007	0.000	1.000	-0.014	0.014
Total	-0.9808	0.016	-60.609	0.000	-1.012	-0.949
nativeAmerican	0.0374	0.054	0.699	0.485	-0.068	0.143
black	2.9378	3.175	0.925	0.355	-3.285	9.160
latino	2.6158	2.836	0.922	0.356	-2.942	8.174
asian	1.6866	1.822	0.926	0.355	-1.884	5.258
white	1.9064	2.150	0.887	0.375	-2.308	6.121
male	-0.0379	0.007	-5.355	0.000	-0.052	-0.024
stability	0.0045	0.007	0.636	0.525	-0.009	0.018
povertyRate	-0.1818	0.011	-16.350	0.000	-0.204	-0.160

Table 10: Model (16) OLS Regression Results

		All			High initial	Low initial
		firms	Males	Females	Profit women	Profit women
		(1)	(2)	(3)	(4)	(5)
OLS without group fixed effects	Cash treatment	$\begin{gathered} 18.02 \\ (29.66) \end{gathered}$	$\begin{gathered} 56.17 \\ (67.95) \end{gathered}$	$\begin{gathered} \hline-8.43 \\ (18.25) \end{gathered}$	$\begin{aligned} & \hline-15.32 \\ & (38.99) \end{aligned}$	$\begin{gathered} -3.84 \\ (17.14) \end{gathered}$
	In-kind treatment	$\begin{gathered} 31.59 \\ (21.63) \end{gathered}$	$\begin{gathered} 62.02 \\ (40.60) \end{gathered}$	$\begin{gathered} 4.63 \\ (20.97) \end{gathered}$	$\begin{gathered} 42.10 \\ (48.82) \end{gathered}$	$\begin{gathered} -13.40 \\ (16.08) \end{gathered}$
	Cash=in-kind (p-val)	0.680	0.938	0.484	0.171	0.554
Matched-Tuples	Cash treatment	$\begin{gathered} 18.02 \\ (26.07) \end{gathered}$	$\begin{gathered} 56.17 \\ (60.09) \end{gathered}$	$\begin{gathered} -8.43 \\ (17.25) \end{gathered}$	$\begin{aligned} & -15.32 \\ & (42.10) \end{aligned}$	$\begin{gathered} -3.84 \\ (16.60) \end{gathered}$
	In-kind treatment	$\begin{gathered} 31.59 \\ (19.47) \end{gathered}$	$\begin{gathered} 62.02 \\ (39.02) \end{gathered}$	$\begin{gathered} 4.63 \\ (18.57) \end{gathered}$	$\begin{gathered} 42.10 \\ (45.30) \end{gathered}$	$\begin{gathered} -13.40 \\ (14.32) \end{gathered}$
	Cash=in-kind (p-val)	0.641	0.931	0.456	0.147	0.556

Table 11: Point estimates and standard errors for testing the treatment effects of cash and in-kind grants using different methods (wave 7)

