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Abstract. In many set-identified models, it is difficult to obtain a tractable character-
ization of the identified set. Therefore, researchers often rely on non-sharp identification
conditions, and empirical results are often based on an outer set of the identified set.
This practice is often viewed as conservative yet valid because an outer set is always a
superset of the identified set. However, this paper shows that when the model is refuted
by the data, two sets of non-sharp identification conditions derived from the same model
could lead to disjoint outer sets and conflicting empirical results. We provide a suffi-
cient condition for the existence of such discordancy, which covers models characterized
by conditional moment inequalities and the Artstein (1983) inequalities. We also derive
sufficient conditions for the non-existence of discordant submodels, therefore providing a
class of models for which constructing outer sets cannot lead to misleading interpretations.
In the case of discordancy, we follow Masten and Poirier (2021) by developing a method
to salvage misspecified models, but unlike them, we focus on discrete relaxations. We con-
sider all minimum relaxations of a refuted model that restores data-consistency. We find
that the union of the identified sets of these minimum relaxations is robust to detectable
misspecifications and has an intuitive empirical interpretation.
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1. Introduction

A central challenge in the structural estimation of economic models is that the hypoth-
esized structure often fails to identify a single generating process for the data, either due
to multiple equilibria or data observability constraints. In such a context, the economet-
rics of partially identified models have been trying to obtain a tractable characterization
of parameters compatible with the available data and maintained assumptions (hereafter
identified set). A question of particular relevance in applied work is that it is often very
difficult to find a tractable characterization of the identified set and then to obtain a valid
confidence region for it. To avoid this difficulty, a large part of the literature has been trying
to provide a confidence region for an outer set, i.e., a collection of values for the parameter
of interest that contains the identified set but may also contain additional values.1 Because
of its tractability, constructing a confidence region for an outer set has been entertained in
various topics of studies where the parameters of interest are only partially identified, see
for instance Blundell et al. (2007), Ciliberto and Tamer (2009), Aucejo, Bugni, and Hotz
(2017), Sheng (2020), de Paula, Richards-Shubik, and Tamer (2018), Dickstein and Morales
(2018), Honoré and Hu (2020), Chesher and Rosen (2020), Gualdani (2021), and Berry and
Compiani (2023), among many others.

In most empirical studies, obtaining a tight outer set is very often interpreted as evidence
for a small and informative identified set.2 This is because, under correct specification, any
outer set contains the identified set. In this paper, we examine the implications of using
outer sets for models that could be misspecified. We say a model is misspecified if the
identified set of the model parameters is empty. We use refutation and misspecification
interchangeably in this paper.

The first main contribution of this paper is to characterize a class of models for which
outer sets based on non-sharp identification conditions may be discordant. For this class
of models, as long as the model is misspecified, there always exist two sets of non-sharp
identification conditions that fail to detect the violation of the model and at the same
time yield outer sets that are disjoint with each other. Our result covers a large class of

1See Molinari (2020) for a detailed discussion.
2A tight outer set here refers to an outer set that is very small and informative.
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models studied in the partial identification literature, including models whose identified set
is characterized by intersection bounds, conditional moment inequalities, or the Artstein
(1983) inequalities. The discordancy that we find is a negative property because the result
provided by an outer set could entirely be driven by the set of non-sharp identification
conditions chosen by the researcher, and that we could always consider an alternative choice
that provides a result that conflicts with the initial one.

Discordant outer sets only exist when the model is misspecified. In theory, a researcher
could run a model specification test before using an outer set. However, in practice, although
it is possible to construct a non-sharp specification test that only checks the sufficient
conditions for model misspecification, constructing a sharp specification test, which checks
the necessary and sufficient conditions for the emptiness of the identified set, is as challenging
as obtaining a sharp characterization of the identified set. The non-tractability of the latter
is often the motivation to use outer sets in the first place.3

Therefore, our result shows that the usage of outer sets based on non-sharp identification
conditions is an unreliable compromise. It suggests that looking for the sharp characteri-
zation of the identified set must not only be viewed as a theoretical exercise but also has
important empirical relevance. The identified set not only exhausts all the identification
restrictions in the model structure and assumptions but is also immune to the possible
misleading conclusions of discordant submodels.

Our warning against the usage of outer sets based on non-sharp identification conditions
should not discourage researchers from relaxing stringent primitive model assumptions and
replacing them with weaker ones. Although the identified set of a weaker set of primitive
model assumptions is necessarily an outer set of the stringent original model, it is different
from an outer set based on non-sharp identification conditions of the original model. The
identified set, derived from weaker primitive assumptions, has a clear and precise interpre-
tation akin to the empirical content inherent in weaker primitive assumptions due to its
sharpness. In contrast, the choice of non-sharp identification conditions is often driven by
analytical or computational tractability. Researchers often lack primitive interpretations
for the outer set based on these non-sharp identification conditions. These outer sets are
only relevant to the empirical analysis when viewed as conservative bounds for the sharp
results. Yet, this view of conservative bounds could be misleading because, as we show in

3See for instance, Sheng (2020), Gualdani (2021), and the empirical application in Berry and Compiani
(2023, Section 6, footnote 42).
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this paper, the conclusion drawn from these outer sets can be driven entirely by the choice
of non-sharp identification conditions instead of the empirical content of the model.

However, discordant outer sets do not exist in all refuted models, especially when they
are based on weaker primitive assumptions instead of non-sharp identification conditions.
We then derive sufficient conditions for the non-existence of discordant submodels. This
second result characterizes a class of models for which constructing outer sets cannot lead
to misleading interpretations. In this case, outer sets would be conservative but always
robust.

Prior to our work, various papers have been concerned about misspecification in par-
tially identified models. An important focus has been dedicated to analyzing the impact of
model misspecification on standard confidence regions used for set-identified models. Bugni,
Canay, and Guggenberger (2012) analyze the behavior of usual inferential methods for mo-
ment inequality models under local model misspecification. Ponomareva and Tamer (2011)
and Kaido and White (2013) consider the impact of misspecification on semiparametric par-
tially identified models, respectively, in the linear regression model with an interval-valued
outcome and in a framework where some nonparametric moment inequalities are correctly
specified and misspecification is due to a parametric functional form. See also Allen and
Rehbeck (2020) who propose a method for statistical inference on the minimum approx-
imation error needed to explain aggregate data in quasilinear utility models. It is worth
noting that if one tries to find a confidence region for an outer set, none of the inference
methods, including those developed in the previously cited papers, can resolve the specific
issue we are raising here. This is because two non-empty outer sets derived from the same
underlying model structure can lead to discordant results. Adopting one of these outer sets
without checking the validity of the underlying model could lead to misleading conclusions.
Therefore, we need to suggest a more primitive approach to deal with these discordant
results in this paper.

This objective leads to our second main contribution, which consists of providing a
method to salvage models that are possibly misspecified because of the existence of dis-
cordant misspecified submodels or discordant nonempty outer sets. The main intuition is
to construct some minimum relaxation of the full model by removing discordant submodels
until all remaining submodels are compatible. Because there could be multiple ways to
relax a model to restore data consistency, we take the union of the identified set of all these
relaxed models. By doing so, we construct what we call the misspecification robust bound.
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We provide general sufficient conditions under which our misspecification robust bound ex-
ists and also provide an intuitive empirical interpretation for it. Intuitively, we will say that
a hypothesis is robust to misspecification if the hypothesis is compatible with all relaxed
models that are data consistent and is implied by at least one of those data-consistent
relaxed models.

The misspecification robust bound concept is related to the minimally relaxed identified
set introduced in Andrews and Kwon (2019), and to the falsification adaptive set concept
introduced in Masten and Poirier (2021). The primary departure from Masten and Poirier
(2021) lies in our emphasis on discrete relaxations, while Masten and Poirier (2021) focused
exclusively on relaxing assumptions in a continuous manner. In general, the use of discrete
or continuous relaxation depends on the empirical application under scrutiny. We explore
various features of discrete relaxations beyond its formal definition.

It is worth noting that discrete relaxations of misspecified models have been entertained
in various existing papers, see for instance, Manski and Pepper (2000, 2009), Blundell et al.
(2007), Kreider et al. (2012), Chen, Flores, and Flores-Lagunes (2018), Kédagni (2023),
Mourifié, Henry, and Méango (2020), among many others. In these papers, when the initial
model is too stringent, they suggested alternative weaker assumptions that are believed
to be more compatible with the empirical application under scrutiny and for which the
identified/outer set is not empty. However, some alternative reasonable relaxations may
generate results that are discordant with what they suggested. To mitigate this issue, our
misspecification robust bound approach suggests to collect information from all reasonable
discordant minimum relaxations of the initial model.

We organize the rest of the paper as follows. Section 2 introduces two simple leading
examples that will illustrate our main contributions. Section 3 presents our general setting
and main results on the characterization of discordant submodels. Section 4 discusses a class
of models for which constructing outer sets do not lead to misleading interpretations. Section
5 introduces the misspecification robust bound used to salvage misspecified models. Section
6 provides a numerical illustration of the discordancy issue by visiting the widely used entry
game model studied in Ciliberto and Tamer (2009), and also illustrates our misspecification
robust bounds in a return to education example. The last section concludes, and additional
results and proofs are relegated to the appendix.
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2. Introductory examples

Although the main idea of this paper can be applied to general models, we begin with
these two straightforward examples to illustrate our main contributions.

2.1. First leading example: Intersection bounds. Let us consider a special case of
the intersection bounds in Chernozhukov, Lee, and Rosen (2013) in which a parameter θ is
bounded by the conditional mean of an upper and lower bounds,

E[Y |Z = z] ≤ θ ≤ E[Y |Z = z] almost surely, (2.1)

where Y and Y are two observable random bounds and Z is a vector of instrumental
variables. Let Z be the support of Z, and define4

γ ≡ sup
z∈Z

E[Y |Z = z] and γ ≡ inf
z∈Z

E[Y |Z = z]. (2.2)

The identified set of θ is the interval [γ, γ] when γ ≤ γ. We assume the following regularity
condition holds in this example.

Assumption 1. Assume E|Y | < ∞ and E|Y | < ∞. In addition, assume that the condi-
tional expectations E[Y |Z], and E[Y |Z] exist and E[Y |Z] ≤ E[Y |Z] almost surely.

This simple framework encompasses some important treatment effect models, including
discrete and continuous treatment models, see for instance Manski (1990, 1994) and Kim
et al. (2018) among many others.5 In practice, model (2.1) is sometimes implemented by
solving its unconditional version,

E
[
h(Z)(θ − Y )

]
≥ 0 and E

[
h(Z)(Y − θ)

]
≥ 0, (2.3)

where h is some nonnegative function mapping its input to Rm
+ with m < ∞, and the

inequalities in (2.3) are vector inequalities. The inference for (2.3) is typically much simpler
than the inference for the original model (2.1), especially when Z is multi-dimensional. Let
Θ̃(h) be the identified set for θ in model (2.3). As made explicit in the notation, Θ̃(h)

depends on the choice of instrumental function h. However, since (2.1) implies (2.3), we
know that for every choice of h, Θ̃(h) is always an outer set of the interval [γ, γ], the
identified set for θ in model (2.1), i.e., [γ, γ] ⊆ Θ̃(h). This inclusion relation is often used

4The sup and inf operators in (2.2) should be understood as essential supremum and essential infimum
respectively.

5For the sake of conciseness those examples are discussed in more details in Appendix A.1.
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as a justification for using model (2.3). Its identification result Θ̃(h) is often viewed as a
conservative bound for [γ, γ], the identified set for model (2.1).

Our first observation is that the result based on Θ̃(h) is not always reliable. Later in
Section 3.1, we show that when the identified set of (2.1) is empty, i.e., γ > γ, there always
exist two h and h′ such that both Θ̃(h) and Θ̃(h′) are nonempty but Θ̃(h)∩ Θ̃(h′) is empty.
Thus, two researchers could apply the same model on the same data set and yet draw
completely different conclusions from the outer sets by choosing different h functions. For
example, if one observes Θ̃(h) ⊆ (0,+∞) for some h, one should not jump directly to the
conclusion that the sign of θ is positive without verifying the non-emptiness of the identified
set, since in the case of emptiness, there are circumstances under which another researcher
may choose an alternative h′ such that Θ̃(h) ⊆ (−∞, 0).

This caveat of outer sets is somewhat overlooked in the literature. As we listed some
papers in the introduction, it is common for researchers to construct a confidence interval
for an outer set and draw conclusions based solely on its result. If the model is refutable and
a researcher only studies an outer set in the empirical analysis without knowing whether
the identified set is empty or not, results based on an outer set could be misleading in the
intersection-bound model. In section 3, we show that this caveat is indeed a concern for some
widely used partial identification models, and in Section 6, we illustrate this discordancy
issue using the entry game model studied in Ciliberto and Tamer (2009).

On the other hand, there exist models for which constructing outer sets does not lead to
misleading interpretations. In the following, we will introduce a model that belongs to this
category as our second leading example. We study this class of models in more detail later
in Section 4.

2.2. Second leading example: Adaptive Monotone IV (AMIV). Consider the fol-
lowing potential outcome model: Y =

∑
z∈Z 1(Z = z)[Y1zD + Y0z(1 − D)], where the

treatment D is binary and the support Z of instrument Z is discrete and finite. Ydz is
the potential outcome when the treatment and the instrument are externally set to d and
z, respectively. Assume Z is one-dimensional and assume, without loss of generality that
Z = {1, ..., k}. We are interested in the average potential outcomes θd =

∑
z P (Z = z)EYdz

for d ∈ {0, 1}, and then average treatment effect (ATE), i.e., θ1 − θ0. In this framework,
the seminal work of Manski (1990) derived sharp bounds on the ATE under three main
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assumptions: E.1 the bounded support of the potential outcomes, E.2 the exclusion re-
striction, i.e., EYdz = EYdz′ for z 6= z′, and E.3 the mean independence assumption, i.e.,
E[Ydz|Z] = E[Ydz] for all z ∈ Z. However, there are some empirical evidences —for instance
Ginther (2000), where the identified for the ATE proposed by Manski is empty —suggesting
a violation of the set of these assumptions. To be able to say something meaningful on the
ATE in such a context, we introduce the following assumptions, which is one way to relax
Manski’s (1990) assumptions.

For any z ∈ {1, ..., k}, define assumption az to be the collection of the following assump-
tions:

E.1 for each d ∈ {0, 1} and any t ∈ {1, ..., k}, P (Ydt ∈ [ y
d
, yd ]) = 1.

E.2 for each d ∈ {0, 1} and any t ∈ {1, ..., k}, E[Ydt|Z] = E[Ydt] almost surely.
E.3 for each d ∈ {0, 1}, Ydt ≤ Ydt′ for all t ≤ t′, and Ydt = Ydz for all t ≥ z.

Each assumption az has three parts. E.1 requires the potential outcomes to have a
bounded support. E.2 is a mean independence assumption associated to the potential
outcome Ydz. The novelty here is E.3, which is an adaptive relaxation of the exclusion
restriction. Indeed, in the extreme case when z = 1, E.3 is equivalent to the full exclusion
restriction, i.e., Ydz = Ydz′ for all d, z and z′, then E.2 and E.3 are equivalent to E[Yd|Z] =
E[Yd], which is the restriction under which Manski (1990) derived bounds on the ATE. On
the other extreme, when z = k, E.2 and E.3 imply the MIV assumption introduced in
Manski and Pepper (2000), i.e., z1 < z2 ⇒ E[Yd|Z = z1] ≤ E[Yd|Z = z2]. However, when
1 < z < k, we are in a middle-ground situation where the exclusion restriction is relaxed
in such a way that Ydz′ is monotone in z′, but remains flat for z′ ≥ z. See Figure 1 for an
illustration of how Ydz depends on z under E.3.

Because the cut-off point z would be set based on the data through techniques elaborated
in Section 5, we refer to this assumption as the Adaptive Monotone IV (AMIV) assumption.
The economic rationality of the AMIV is that, even if Z is not a valid IV because it could
positively affect the potential outcome, in some empirical contexts, it could be reasonable
to consider that the marginal effect of the IV on the potential outcome becomes null after
a certain cut-off point.

For example, let us consider the well-studied topic of measuring the returns to a college
degree. In this empirical context, researchers have often used parental education as an in-
strumental variable for college education. Nonetheless, some argue that this instrument may
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not be valid. They point out that parents with higher education tend to have children with
better unobserved skills that significantly impact potential earnings, despite the possibility
that the marginal benefit of one extra year of a parent’s education may be diminishing. The
AMIV assumption introduced in this subsection combines these two features. In terms of
our notation, Y is observed wage, D is an indicator for college attendance, Z is parental
education, and Ydz is the potential wage when college attendance D and parental education
Z are externally set to d and z, respectively. In the context here, the AMIV assumption
acknowledges that parental education may positively influence children, while also accom-
modating the potential for its marginal impact to vanish beyond a certain threshold. We
elaborate on this application in Section 6.2.

1 2 3 4 5
z

Ydz

Figure 1. Illustration of restriction E.3 when z = 3 and k = 5.

Notice that by construction, for all z = 1, ..., k − 1, az implies az+1. Therefore, we have
Θ({az}) ⊆ Θ({az+1}) for all z ∈ {1, ..., k − 1}. In section 4, we will show that this nested
structure of the assumptions may lead to a situation where we cannot have discordant
submodels. More generally, we will derive sufficient conditions for the non-existence of
discordant submodels.

When comparing these two leading examples, it is important to recognize that the moti-
vation that leads to the construction of the outer sets or the relaxation of the initial model
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is different. In the first example, the outer sets are generated from non-sharp restrictions
and are only used as a device aiming to provide useful information about the identified set.
This situation usually occurs when one does not know how to conduct inference directly for
the identified set or when the inference for the identified set is computationally intractable
to implement. In Section 3 below, we will explore why such an approach could lead to un-
reliable results. In the second example, the outer sets are introduced in a more constructive
manner aiming to relax a model refuted by the data. They are based on more primitive
assumptions on the latent variables. In such a case, it is often possible to provide a series
of outer sets that are not discordant with others. We will discuss this case in Section 4.

3. Misleading Submodels

We view a model as a collection of constraints on the latent, observable variables, and the
parameters. Throughout the paper, the parameter space Θ is assumed to be some subset
in a metric space, which can be of finite or infinite dimensions. Let A be some nonempty
collection of these constraints. We consider A as the full model (or simply model when
there is no confusion) and, A′ ( A as a submodel. For any nonempty subset A′ ⊆ A, we
use ΘI(A

′) to denote the set of parameter values that satisfy all the constraints in A′. For
each a ∈ A, we abbreviate ΘI({a}) as ΘI(a). Let ∅ denote the empty set. For our purpose,
ΘI(∅) can be an arbitrary nonempty subset of Θ such that ΘI(a) ⊆ ΘI(∅) for any a ∈ A.
For the sake of simplicity, when there is no confusion, we will just use Θ to refer to ΘI(∅).

By definition, ΘI(A
′) ⊆ ΘI(A

′′) if A′′ ⊆ A′. As a result, for any A′ ⊆ A, ΘI(A
′) is

an outer set of ΘI(A). Moreover, we say a submodel A′ is data-consistent if ΘI(A
′) is

nonempty, and call it refuted or misspecified if the reverse is true. Since ΘI(A) ⊆ ΘI(A
′)

for any A′ ⊆ A, if the model A is data-consistent, we know that each A′ ⊆ A is also data
consistent, and ΘI(A

′) ∩ΘI(A
′′) is nonempty for any two submodels A′ and A′′.

In this section, we focus on A that consists of constraints that could be written in terms of
the observable variables and model parameters only. This includes models where the iden-
tified sets are entirely characterized by a set of moment (in)equalities, including generalized
method of moments (GMM) models, or Artstein (1983) inequalities involving only observ-
ables and the parameter of interest. We refer to this type of constraints as identification
conditions. These identification conditions are often derived from primitive assumptions
involving the latent variables. In this restricted framework, we view A as the sharp iden-
tification conditions, and we call A′ nonsharp identification conditions if ΘI(A) ( ΘI(A

′).
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For instance, in the first leading example, the role of A is played by the set of moment
inequalities (2.3) indexed by all instrumental functions h, with ΘI(A) = [γ, γ]. A submodel
A′ ⊆ A could refer to (2.3) for a specific function h, with ΘI(A

′) = Θ̃(h). If [γ, γ] ( Θ̃(h),
then A′ is a nonsharp identification condition.

When identification conditions are written in terms of the observable variables and model
parameters only, they satisfy the following assumption.

Assumption 2. For any A′ ⊆ A, ΘI(A
′) = ∩a∈A′ΘI(a).

For example, all moment (in)equality models satisfy this assumption. This assumption
may not hold when some a ∈ A involves primitive restrictions on latent variables, as is the
case in our second leading example.

In empirical works with partially identified models, researchers often use nonsharp iden-
tification conditions instead of the sharp ones. This is often motivated by two reasons: (i)
sometimes the researchers may not even know the sharp characterization of the identified
set, and (ii) the sharp identification conditions might be computationally intractable given
the existing inferential methods.6 When empirical results are based on an outer set obtained
from nonsharp identification conditions, they are traditionally viewed as conservative yet
valid because these outer sets are always supersets of the sharp identified set obtained using
the sharp identification conditions. However, we are going to present a theorem that shows
that outer sets obtained from nonsharp identification conditions are not always reliable and
could potentially be misleading in the presence of model misspecification. We need the
following assumption for this formal result.

Assumption 3. There exists a collection C of subsets of A such that

(1) ∀A′ ∈ C , A′ is data-consistent and consists of finite elements in A,
(2) ΘI(∪A′∈CA

′) = ΘI(A),
(3) either C is finite or, for each A′ ∈ C , ΘI(A

′) is compact.

To clarify this assumption, we start with the simple case where all the conditions can be
verified for C = {{a} : a ∈ A}. In such a scenario, Assumption 3 breaks down into the
following two parts: (i) every a ∈ A is data-consistent, and (ii) either A is finite or ΘI(a)

is compact for each a ∈ A. Part (i) ensures that A will not be refuted because a specific

6See, for example, Berry and Compiani (2022, Section 6, footnote 42).



12 DISCORDANT RELAXATIONS OF MISSPECIFIED MODELS

a ∈ A is refuted. When A is finite, this is enough to ensure that identification condtions are
not mutually compatible when A is refuted. This reasoning can also apply to cases when A
has infinite elements, given the compactness condition in part (ii) is true. In Assumption 3,
we permit C to be formulated in ways beyond C = {{a} : a ∈ A}. By doing so, ΘI(a) need
not necessarily be compact for each a ∈ A in infinite cases. We only require the identified
set for some finite combinations of a ∈ A is compact. This flexibility is helpful, for example,
when some identification conditions determine the lower bound for parameters, while others
define the upper bound.

We would verify Assumption 3 with C = {{a} : a ∈ A} for the first leading example in the
next subsection. For an example of C being constructed in other ways, see Appendix A.2
where Assumption 3 is verified for conditional moment inequalities models. We are now
ready to state the formal result.

Theorem 1. Under Assumptions 2 and 3, ΘI(A) = ∅ if and only if there exist two finite
subsets A′, A′′ ⊆ A such that both A′ and A′′ are data-consistent and ΘI(A

′)∩ΘI(A
′′) = ∅.

Moreover, when ΘI(A) = ∅, for any data-consistent B ⊆ A, there exists two finite subset
B′, B′′ ⊆ A such that both B∪B′ and B′′ are data-consistent and ΘI(B∪B′)∩ΘI(B

′′) = ∅.

Theorem 1 tells us that when the model is refuted, an outer set derived from one set of
nonsharp identification conditions could be completely different from an outer set obtained
from a different set of nonsharp identification conditions. In such a case, the information
delivered by an outer set depends mainly on which nonsharp identification conditions the
researcher decides to use. Therefore, for this class of models, applied researchers must be
very careful in interpreting outer sets based on nonsharp identification conditions. We will
illustrate this point further with the first leading example in the next subsection. Later,
in Section 6.1, we provide a numerical illustration of Theorem 1 when applied to an entry
game example.

Moreover, Theorem 1 shows that, for any data-consistent nonsharp identification condi-
tion, there always exists another set of nonsharp identification conditions that are discordant
with some of its strengthened versions. This suggests that the issue of discordancy is not
confined to certain pairs of outer sets. When the model is refuted, we can start with any
data-consistent outer set and further tighten its bounds by applying more restrictions. After
incorporating just a finite number of additional restrictions, it will inevitably be in conflict
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with another data-consistent outer set, even if the cardinalities of A and C are uncountably
infinite.

Although Theorem 1 seems to focus essentially on partially identified models, it also
applies to point-identified models. Suppose that each outer set derived from each single
identification condition is a singleton, i.e., ΘI(a) is a singleton for all a ∈ A. Then, Theo-
rem 1 says that the model is misspecified if and only if there exist two different identification
conditions a, a′ ∈ A such that ΘI(a) 6= ΘI(a

′). This is related to a long-existing observation
in point-identified models: whenever a model is over-identified, one can test the model spec-
ification by comparing the point-estimates obtained from different identification conditions.
In point-identified models, the issue of over-identification or misspecification is a direct con-
cern for the researchers. In partially identified models, however, applied researchers tend
to believe that their results are more credible and thus less sensitive to misspecification.
Therefore, they often interpret the tightness of an outer set as a signal of an informative
identified set, as discussed in Molinari (2020) regarding the “usefulness” of outer sets. Theo-
rem 1 provides a different perspective that, for a certain class of models, outer sets could be
misleading. Therefore, applied researchers should be very careful in interpreting outer sets
based on nonsharp identification conditions, even if the model is only partially identified.
In the following, we analyze the implications of Theorem 1 on our first leading example.

3.1. Intersection bounds example continued. To begin, let us construct A in this ex-
ample. Define H+

m to be the space of all nonnegative instrumental functions with dimension
m. More formally, let H+

m ≡ {h : Z 7→ Rm
+ such that E ‖h(Z)‖ < ∞, E ‖Y h(Z)‖ < ∞,

E
∥∥Y h(Z)∥∥ < ∞ and E[hi(Z)] > 0, ∀ i = 1, ...,m}. Let A be the set of all identifica-

tion conditions (2.3) indexed by h ∈ H+
1 . The set A constructed here represents sharp

identification conditions, because (2.1) holds if and only if (2.3) holds for all h ∈ H+
1 .

Next, we verify Assumptions 2 and 3 hold. Note that, for each a ∈ A, ΘI(a) is nonempty
and compact. This is because each a ∈ A corresponds to an h ∈ H+

1 , and because for all
h ∈ H+

1 , the identified set Θ̃(h) for model (2.3) is equal to the following interval

[
E[h(Z)Y ]

E[h(Z)]
,
E[h(Z)Y ]

E[h(Z)]

]
,

which is nonempty and compact under Assumption 1. We can let C = {{a} : a ∈ A}. Then,
ΘI(A

′) is nonempty and compact for all A′ ∈ C . Moreover, ΘI(A) = ΘI(∪A′∈CA
′) by the
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construction of C . Thus, Assumption 3 is satisfied. Since (2.3) are moment inequalities
which only depend on observables and the parameter, Assumption 2 is also satisfied.

Note that, in this example, if B ⊆ A and B consists of m assumptions, then B refers to
the submodel that (2.3) holds for some h ∈ H+

m. As a result, Theorem 1 implies that when
(2.1) is refuted, there must exist some h1 ∈ H+

m1
and h2 ∈ H+

m2
, such that Θ̃(h1) 6= ∅ and

Θ̃(h2) 6= ∅ but Θ̃(h1) ∩ Θ̃(h2) is empty. In fact, because of the specific structures of this
example, we can even obtain the following stronger result.

Proposition 1. Suppose Assumption 1 holds. If the restriction in (2.1) is refuted, i.e.,
γ > γ, then, for any θ in (γ, γ), there exists some h ∈ H+

2 such that Θ̃(h) = {θ}. Conversely,
if there exists some integer m and some h ∈ H+

m such that Θ̃(h) = {θ}, then θ ∈ [γ, γ].

When (2.1) is refuted, Proposition 1 shows that the unconditional moment restrictions can
point identify any element in the crossed bound (γ, γ) with a properly chosen instrumental
function. The width of (γ, γ) depends on the extent of the model violation: the worse
the violation is, the wider this interval would be. In the extreme case where the mean
independence condition is significantly violated such that [EY ,EY ] ⊆ (γ, γ), it implies that
any point in the Manski worst-case bounds can be selected as the point identification result
by a suitable choice of h.

Proposition 1 also sheds some light on the implementation of the inference procedure in
Andrews and Shi (2013), which is one of the most popular inference procedures used for
conditional moment inequalities. Andrews and Shi (2013) converts the conditional moment
inequalities into unconditional moment inequalities in the same way as we transformed, in
the first leading example, (2.1) into (2.3). A notable distinction in Andrews and Shi’s (2013)
approach is that the number of instruments, i.e., the dimension of h in our notation, in-
creases to infinity as the sample size grows. Our results show that the usage of infinite
number of instruments in the limit is crucial to achieve reliable inference results. In con-
trast, if researchers implement their inference but choose an instrumental function with a
finite and fixed dimension, their results could be spuriously informative and misleading, as
underscored in Proposition 1. See also the formal results in Appendix A.2.

It is worth noting that Theorem 1 applies to much more general frameworks. More
precisely, in Appendices A.2 and A.3, we provide sufficient conditions under which Theorem
1 applies to two widely used classes of partially identified models. The first is a class of
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models where the identified set is characterized by the following type of conditional moment
inequalities:

E[m(X,Z; θ)|Z] ≤ 0 almost surely. (3.1)

Here, X ∈ Rk1 and Z ∈ Rk2 are observable random variables, and m(·, · ; θ) ∈ R is some
known integrable function for each θ. If researchers construct outer sets by transforming
(3.1) into finite-dimensional unconditional moment inequalities, then a similar discordancy
issue may happen, as the one we have seen in the first leading example. See Appendix A.2
for more details.

The second class of models that Theorem 1 could be applied to is the class for which
the identified set can be characterized by Artstein’s (1983) inequalities. In her recent
survey, Molinari (2020) shows that this class of models includes simultaneous-move finite
games with multiple equilibria, auction models with independent private values, network
formation models, treatment effect models, etc. In many of those cases, the number of
Artstein’s (1983) inequalities that characterize the (sharp) identified set is extremely high
(very often much higher than the sample size of the data under use). In practice, for the
sake of computational feasibility, empirical researchers often pre-select a finite collection
of Artstein’s inequalities to obtain an outer set. As examples, we could cite Ciliberto and
Tamer (2009), Haile and Tamer (2003), Sheng (2020), Chesher and Rosen (2020), and
Berry and Compiani (2023), among many others. In Appendix A.3, we show that those
pre-selected nonsharp moment inequalities suffer the same issue pointed out in Theorem 1.

In Section 6, we provide a numerical illustration of the discordancy issue by visiting the
widely used entry game model studied in Ciliberto and Tamer (2009). We will explore in
more detail the consequences of this pre-selection procedure when the original model might
be refuted and illustrate the implication of our Theorem 1 in this widely used framework.

4. Compatible Submodels and Minimum Data-Consistent Relaxation

As discussed in the previous section, there could be discordant submodels when the full
model is refuted. However, the falsification of the full model does not necessarily lead
to discordance of the submodels. Unlike in the previous section, we now consider A that
consists of primitive assumptions on latent variables in addition to those on observable
variables and the parameter of interest. In this wider class of models, we will present a
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sufficient condition that ensures that all data-consistent submodels are always compatible
with each other. In this section, for the sake of simplicity, we focus on the case where A
is finite. For the case where A is infinite, similar results could be derived under additional
conditions. We elaborate on those conditions and results in Appendix A.4.

To state our result, we need to introduce a new concept. When the full model is refuted,
we can obtain a data-consistent submodel by dropping or relaxing some of the assumptions.
We say that a data-consistent submodel is a minimum relaxation if we relax the minimum
number of assumptions needed to restore data consistency.

Definition 1. Let Ã be a subset of A. We say Ã is a minimum data-consistent relaxation
of A if ΘI(Ã) is nonempty and for any a ∈ A\Ã, ΘI(Ã ∪ a) is empty.

It is worth noting that the concept of a minimum data-consistent relaxation depends on
how the researcher defines each of the simple assumptions a that constitute A. Therefore,
all the subsequent results relying on the minimum data-consistent relaxation depend on the
way the researcher constructs A. We will return to this point in Section 5.3. Furthermore,
a minimum data-consistent relaxation always exists when A is finite; its existence requires
additional conditions when A is infinite. See Appendix A.4. To illustrate this concept,
let us consider a simple example where A = {a1, a2, a3}. The identified sets of each ai

are all closed intervals in R as shown in Figure 2 with ΘI(a1) = [b, c], ΘI(a2) = [d, e],
ΘI(a3) = [f, g] and f ≤ b ≤ c < d ≤ e ≤ g. Assume also for the purpose of illustration that
ΘI({a, a′}) = ΘI(a) ∩ΘI(a

′) for a, a′ ∈ {a1, a2, a3}.

Figure 2. The three-interval example

b c
ΘI(a1)

d e
ΘI(a2)

f g
ΘI(a3)

In this example, both {a1, a3} and {a2, a3} are minimum data-consistent relaxations.
And, {a3} is not a minimum data-consistent relaxation, since it will remain data-consistent
after including a1 or a2. In general, minimum data-consistent relaxations may or may not
be unique. We will defer the discussion of multiple minimum data-consistent relaxations to
the next section. In this section, we focus on the situation where there exists a unique min-
imum data-consistent relaxation. In fact, the uniqueness of the minimum data-consistent
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relaxation ensures the absence of discordancy issues discussed in the previous section. More
precisely, in Appendix A.5, we show that the existence of two discordant submodels is equiv-
alent to the existence of two minimum data-consistent relaxations that are also discordant
each other under some regularity conditions. Therefore, the uniqueness of the minimum
data-consistent relaxation ensures the absence of discordant sub-models.

The following result describes the conditions under which there exists a unique minimum
data-consistent relaxation.

Theorem 2. Suppose A is finite. Then the following statements are equivalent:

(T2.C1) for any A′ ⊆ A, A′ is data-consistent if and only if all a ∈ A′ are data-consistent.
(T2.C2) There exists a unique minimum data-consistent relaxation A∗.

Theorem 2 through its condition (T2.C1) provides a way to check whether there exists
a unique minimum data-consistent relaxation A∗. Note that Condition (T2.C1) does not
hold in every model: in a general model, each a ∈ A′ being data-consistent is necessary but
not sufficient for A′ to be data-consistent, because individual data-consistent assumptions
might not be mutually compatible when combined. Condition (T2.C1) can be verified by
investigating when each A′ ⊆ A is data-consistent, which could be done even without seeing
the data. In terms of interpretation, condition (T2.C1) implies that all data-consistent
submodels are compatible with each other. It also implies that the set of data-consistent
submodels, i.e., {A′ ⊆ A : ΘI(A

′) 6= ∅}, is closed under the union operation: the union of
data-consistent submodels remains data-consistent.

When the full model A is data-consistent, the unique minimum data-consistent relaxation
A∗ is just equal to A. When A is refuted, A∗ can be viewed as the model learned from the
data by removing all refuted assumptions in A while keeping all the data-consistent ones.
Indeed, condition (T2.C1) suggests that A∗ = {a ∈ A : ΘI(a) 6= ∅}. The interpretation of
A∗ and its role as the unique minimum data-consistent relaxation will be studied further in
Appendix A.6. One way to illustrate condition (T2.C1) is to consider our second leading
example.

4.1. AMIV example continued. Recall that by construction, for all z = 1, ..., k − 1, az
implies az+1. In addition, define a† as the collection of E.1 and E.2. Let A = {a1, ..., ak, a†}
be the collection of all assumptions. Then, the full model A is the classic mean independence



18 DISCORDANT RELAXATIONS OF MISSPECIFIED MODELS

assumption considered in Manski (1990). Within this second leading example, all assump-
tions are nested. That is, for any two a, a′ ∈ A, either a implies a′ or a′ implies a. Therefore,
the data-consistency of a set of assumptions is equal to the data-consistency of the strongest
assumption in that set, which implies the validity of (T2.C1).7 Therefore, (T2.C1) holds
in this example. Theorem 2 then implies that all data-consistent submodels will be com-
patible with each other and there exists a unique minimum data-consistent relaxation A∗.
The following result characterizes the identified set of A∗. To state the result, we use the
following notations: Y d = Y 1(D = d) + y

d
1(D 6= d), Y d = Y 1(D = d) + yd1(D 6= d),

q
dz

= E[Y d|Z = z], and qdz = E[Y d|Z = z].

Proposition 2. Assume that P (Y ∈ [y
d
, yd]

∣∣D = d) = 1 for any d ∈ {0, 1}. Let θ = (θ1, θ0)

be the parameter of interest. Then, model A always has a unique minimum data-consistent
relaxation A∗, and A∗ always contains a†. In addition, for any z = 1, ..., k, az ∈ A∗ if and
only if the following two conditions hold for each d ∈ {0, 1}:

∀z′ < z, max(q
dt

: t ≤ z′) ≤ min(qdt : t ≥ z′) (4.1)

and

max(q
dt

: t = 1, ..., k) ≤ min(qdt : t ≥ z) (4.2)

Hence, az ∈ A∗ implies that az′ ∈ A∗ for all z′ > z. Moreover, if {z : az ∈ A∗} is nonempty,
define z∗ = min{z : az ∈ A∗} and

Γd,z∗ =

∑
z<z∗

P (Z = z)max(q
dt
, t ≤ z) +

∑
z≥z∗

P (Z = z)max(q
dt

: t = 1, ..., k),

∑
z<z∗

P (Z = z)min(qdt : t ≥ z) +
∑
z≥z∗

P (Z = z)min(qdt : t ≥ z∗)

 . (4.3)

Then, ΘI(A
∗) = Γ1,z∗ × Γ0,z∗. If {z : az ∈ A∗} is empty, then ΘI(A

∗) =
[
E[Y 1], E[Y 1]

]
×[

E[Y 0], E[Y 0]
]
.

Remark 1. It is worth noting that, for simplicity, we impose the cut-off z∗ to be the same
for all potential outcomes in E.3; however, we do not need to do so. We can let the data
determine the cut-offs for each potential outcome separately.

7However, it is worth noting this nested structure is not necessary for condition (T2.C1) to hold.
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5. Misspecification Robust Bounds

In this section, we consider cases where there are multiple data-consistent relaxations.
According to Theorem 2, the multiplicity of minimum data-consistent relaxations is a nec-
essary condition for the existence of discordant submodels. Indeed, whenever there are two
mutually incompatible data-consistent submodels, there are at least two minimum data-
consistent relaxations. If there is no reason to favor one submodel over another ex-ante, it
is reasonable to consider all of these relaxations.

Definition 2. Let AR be the set of all minimum data-consistent relaxations. The misspec-
ification robust bound Θ∗

I is defined as Θ∗
I ≡ ∪

Ã∈AR
ΘI(Ã).

The misspecification robust bound concept is similar to the falsification adaptive set
concept introduced in Masten and Poirier (2021). However, a distinctive feature of this
section is that we focus on discrete relaxations, where an assumption is either dropped
or kept, while Masten and Poirier (2021) focuses exclusively on relaxing assumptions in a
continuous way. In general, the type of relaxation depends on the empirical question under
study. In the following, we derive the misspecification robust bound for our two leading
examples.

5.1. Intersection bounds example continued. For the model (2.1), the misspecification
robust bound is given in the following result.

Proposition 3. Suppose Assumption 1 holds, then:

Θ∗
I =



[γ, γ] if γ ≤ γ,

[γ, γ] if γ < γ, P (E[Y |Z] ≤ γ]) > 0 and P (E[Y |Z] ≥ γ]) > 0,

(γ, γ] if γ < γ, P (E[Y |Z] ≤ γ]) = 0 and P (E[Y |Z] ≥ γ]) > 0,

[γ, γ) if γ < γ, P (E[Y |Z] ≤ γ]) > 0 and P (E[Y |Z] ≥ γ]) = 0,

(γ, γ) if γ < γ, P (E[Y |Z] ≤ γ]) = 0 and P (E[Y |Z] ≥ γ]) = 0.

(5.1)

A direct implication of Proposition 3 is that if P (E[Y |Z] ≤ γ) > 0 and P (E[Y |Z] ≥ γ) >

0 hold, which are mild technical requirements, the misspecification robust bound simplifies
to Θ∗

I = [min(γ, γ),max(γ, γ)] whether or not the full model is refuted.

5.2. AMIV example continued. A direct implication of Proposition 2 is that the AMIV
model has a unique minimum data-consistent relaxation A∗ which can be summarized as
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follows: A∗ = {a†} ∪ {az : Equations (4.1) & (4.2) hold}. Therefore, the misspecification
robust bound for the AMIV model is:

Θ∗
I =

{
Γ1,z∗ × Γ0,z∗ if A∗ 6= {a†},[
E[Y 1], E[Y 1]

]
×
[
E[Y 0], E[Y 0]

]
if A∗ = {a†}, (5.2)

where z∗ = min{z : az ∈ A∗}.

5.3. Empirical interpretation of the misspecification robust bound. As we pointed
out earlier, Θ∗

I will depend on how the researcher decides to define the assumptions a that
constitute A. Different constructions of A correspond to different ways to relax a refuted
model. It is inevitable that there almost always exist multiple ways to relax a stringent
and refuted model, and different ways of relaxations would lead to different results. Instead
of drawing a general conclusion about which relaxation approach is superior, we believe it
is important to offer an empirical interpretation of Θ∗

I for a given A. In this way, even if
different researchers may construct A based on their own economic interpretations of the
model, they would have a clear interpretation of their results.

In Theorem 5 in Appendix A.6, we show that the misspecification robust bound Θ∗
I is

both rationalizable and nonconflicting in the following sense:

• (Rationalizable) The statement that Θ∗
I contains the true parameter is implied by

some data-consistent submodel. That is, there exists some data-consistent submodel
A′ ⊆ A such that ΘI(A

′) ⊆ Θ∗
I .

• (Nonconflicting) The statement that Θ∗
I contains the true parameter is not rejected

by any data-consistent submodel. That is, there does not exist a data-consistent
submodel A′ ⊆ A such that ΘI(A

′) ∩Θ∗
I = ∅.

When the full model is refuted, different data-consistent submodels can imply different and
potentially discordant statements on θ. Among all possible statements on θ, we think that
being rationalizable and nonconflicting is a minimum requirement for a statement to be
robust to model misspecification. If a statement fails to be rationalizable, then it is not
implied by any of the data-consistent submodels. If a statement is not nonconflicting, then
it is rejected by some data-consistent submodels.

The fact that Θ∗
I is both rationalizable and nonconflicting gives it an interesting empirical

interpretation. Consider the simple case where θ is a scalar. Suppose we are interested in
the sign of θ. And, suppose Θ∗

I turns out to be within the positive real line, i.e., Θ∗
I ⊆ R++.
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Then, it means that some submodels identify the sign of θ to be positive, and whenever the
sign of θ can be identified by a submodel, the sign of θ is always positive.

In some cases, Θ∗
I is the smallest set that is both rationalizable and nonconflicting. That

is, for any Θ̃ ⊆ Θ, Θ̃ is both rationalizable and nonconflicting if and only if Θ∗
I ⊆ Θ̃. In this

case, Θ∗
I could have richer interpretations. Consider the previous simple example again.

Suppose it turns out that Θ∗
I ∩ R++ 6= ∅ and Θ∗

I ∩ R−− 6= ∅ so that θ ∈ Θ∗
I does not imply

the sign of θ. If we know Θ∗
I is the smallest rationalizable and nonconflicting set, then we

have the following conclusion: neither θ is positive nor θ is negative are rationalizable and
nonconflicting statements. In other words, the value of Θ∗

I in this case implies that the data
and the model cannot provide a clear statement on the sign of θ. Finally, in Theorem 7 in
Appendix A.6, we show that Θ∗

I would be the smallest rationalizable and nonconflicting set
if there exists a unique minimum data-consistent relaxation or the identified set for each
minimum data-consistent relaxation is a singleton.

5.4. Discrete Relaxation versus Continuous Relaxation. As can be seen, the mis-
specification robust bound relaxes a refuted model in a discrete way: an assumption is
either fully kept or dropped during the relaxation. There are many other ways to relax and
salvage a refuted model. One can also relax assumptions continuously as in Masten and
Poirier (2021). In general, different relaxations will lead to different results, and it is hard to
compare all the possible approaches. However, there does exist a special case where discrete
relaxation always leads to more informative results than any other ways of relaxations.

In order to make an adequate comparison, we need to introduce the terminology used in
Masten and Poirier (2021). For any ε ∈ [0, 1] and any a ∈ A, let aε denote the assumption
after relaxing assumption a. The degree of relaxation is measured by ε: when ε = 0,
aε = a; when ε ∈ (0, 1), the assumption a is partially relaxed but the exact form of aε
would depend on the specific way of relaxation chosen by the researcher; when ε = 1, the
assumption a is completely relaxed and aε is a null assumption which does not impose any
restriction. Assume the relaxation is monotone: if ε1 ≤ ε2, aε1 is stronger than aε2 , in the
sense that aε1 implies aε2 . For any δ : A → [0, 1], define A(δ) ≡ {aδ(a) : a ∈ A} as the
perturbed full model. For any two δ1 : A → [0, 1] and δ2 : A → [0, 1], we write δ1 < δ2 if
δ1(a) ≤ δ2(a) for all a ∈ A and δ1(a) < δ2(a) for some a ∈ A. Then, the falsification frontier
(FF) in Masten and Poirier (2021) can be defined as FF = {δ : A → [0, 1] : ΘI(A(δ)) 6=
∅ and there does not exist δ′ such that ΘI(A(δ

′)) 6= ∅,ΘI(A(δ
′)) ( ΘI(A(δ)) and δ′ < δ}.
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We slightly modified the definition of the falsification frontier of Masten and Poirier (2021)
to ensure the nonemptiness of FF in some special cases.8 Then, the falsification adaptive
set Θ†

I is defined as Θ†
I = ∪δ∈FFΘI(A(δ)).

Note that Θ†
I depends on the specific way that one chooses to relax the assumptions. If

one chooses to relax them discretely, i.e., if aε = a1(ε>0) for any ε and a, then Θ†
I is equal

to the minimum data-consistent relaxation Θ∗
I . If one chooses a different way of relaxation,

the Θ†
I is generally different. In some special cases, however, Θ∗

I is always included in Θ†
I no

matter which way of relaxation is chosen. More precisely, whenever for any minimum data-
consistent relaxation Ã, ΘI(Ã) is a singleton, it can be shown that Θ∗

I ⊆ Θ†
I for any type of

relaxation chosen by the researcher. We formally state and prove this result, respectively,
in Theorem 8 in Appendix A.7.

6. Numerical and Empirical Illustrations

In this section, through numerical exercises, we illustrate two of our main theoretical
results. In Section 6.1, we consider the entry game model studied in Ciliberto and Tamer
(2009, CT). We simulate a misspecified entry game model such that the sharp identification
conditions deliver an empty identified set. In such a context, we show that it is possible to
generate multiple non-empty conflicting outer sets by just selecting different sets of nonsharp
identification conditions. This illustrates the discordancy issue raised in Theorem 1. In
Section 6.2, we revisit a return to college application and report the estimated identified
set of the minimum data-consistent relaxation derived under the assumption that parental
education satisfies the AMIV assumption.

6.1. Numerical illustration of discordant outer sets in an entry game model.
Consider an entry game model withm players. Each player i chooses Yi ∈ {0, 1} to maximize
its payoff:

πi = Yi

αi +Xiβ −
∑
j 6=i

δijYj + εi

 (6.1)

8The original definition in Masten and Poirier (2021), written in our notation, is FF = {δ : A →
[0, 1] : ΘI(A(δ)) 6= ∅ and there does not exist δ′ such that ΘI(A(δ′)) 6= ∅ and δ′ < δ}. With our modified
definition, we do not need to worry about the possibility that there is a sequence of {δi : i ≥ 1} such that
δn → δ∗, ΘI(A(δ∗)) = ∅, ΘI(A(δn)) = ΘI(A(δ1)) 6= ∅ and δn+1 < δn for all n ≥ 1.
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where δij is player j’s competition impact on player i, ε = (ε1, ..., εm) ∼ N(0, Im), and
Im is the identity matrix. Denote α = (αi : i = 1, ...,m), δ = (δij : i 6= j), and, let
θ = (α, β, δ) collect all the parameters. We model the players’ behaviour as pure-strategy
Nash equilibrium. Therefore, we restrict the parameter space Θ to be the set of parameters
where pure-strategy equilibria exist with probability 1. This is the same empirical model
used in Ciliberto and Tamer (2009), except for two simplifications: (i) we assume that β is
the same for all players; (ii) we assume that the distribution of ε is known.

Let K be the collection of all subsets of Y ≡ {0, 1}m. Let F denote the joint distribution
of (Y,X) in the data. Define Γ(x, ε; θ) as the set of all pure-strategy Nash equilibria given
(x, ε), the parameter θ and the payoff function in (6.1). As shown in Galichon and Henry
(2011) and equivalently in Beresteanu, Molchanov, and Molinari (2011), θ belongs to the
identified set ΘI(F ) if and only if

∀K ∈ K, PF (Y ∈ K|X) ≤ P(Γ(X, ε; θ) ∩K 6= ∅|X), X − a.s. (6.2)

Equation (6.2) characterized the Artstein (1983) inequalities associated to the entry game
model under study. For each fix covariate x, we have 22

m inequalities to be checked. In this
case, our full model A is defined by the whole set of Artstein’s inequalities, and then its
cardinality is 22

m ×Card(X). This becomes easily non-tractable even for a relatively small
number of firms, i.e., for instance, for a fixed x, and 5 firms we have 22

5
= 4, 294, 967, 296

inequalities to be checked. Therefore, in practice, outer sets are almost always used. Let
A′ be a subset of K. Then, the outer set associated with A′ is

ΘI(F,A
′) ≡

{
θ ∈ Θ : ∀K ∈ A′, PF (Y ∈ K|X) ≤ P(Γ(X, ε; θ) ∩K 6= ∅|X), X − a.s.

}
A′ is a nonsharp identification condition whenever ΘI(F,A

′) 6= ΘI(F,K) ≡ ΘI(F ). In CT,
for each fixed x, they considered the outer set associated with Act defined as Act = {{y} :

y ∈ Y} ∪ {{y}c : y ∈ Y} where {y}c stands for the complement set of {y} in Y. It is worth
noting that whenever m > 2, Act is a nonsharp identification condition.

6.1.1. Data generating process (DGP). In order to illustrate the issue of non-reliability of
the outer sets in presence of misspecification, we generate a joint distribution F from a
game that might be different from the model (6.1). Assume that, in the data generating
process, each player i chooses Yi ∈ {0, 1} to maximize the following payoff instead of (6.1):
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πi = Yi

αi +Xiβ −
∑
j 6=i

δijYj −
∑

j1,j2 6=i

γij1,j2Yj1Yj2 + εi

 . (6.3)

The extra vector of parameter γ ≡ {γij1,j2 : where (i, j1, j2) are mutually different} cap-
tures the second-order competition effect. When γ = 0, the model in (6.1) is correctly
specified. If γ 6= 0, the model in (6.1) is misspecified. To complete the model, we assume
that, whenever there are multiple pure-strategy Nash equilibria, players will choose each
equilibrium with the same probability. We assume that the support of X is a bounded
interval X in Rdim(X). Without loss of generality, we assume X is distributed uniformly in
its support.

In the simulation, we focus on the simple case where γ1j1,j2 = γ∗ for all (j1, j2), and
γij1,j2 = 0 for all (i 6= 1, j1, j2). Then, the joint distribution of (Y,X) generated from
this data generating process is indexed by (θ, γ∗), which we write as Fθ,γ∗ . Note that γ∗

measures the degree of misspecification: the larger the value of γ∗ is, the larger the degree
of misspecification of model in (6.1) is. In the simulation design we impose that m = 3,
dimX = 1, X ∼ U [−1, 1], β = 0.1, α = [1, 1, 1], and δij = 1 for all (i, j). In the following,
we construct outer sets both for the parameter δ and also for a counterfactual outcome in
a counterfactual experiment. In both cases, we will show that we will be able to generate
three outer sets (including the CT outer set) that are discordant with each other and none
of them contains the true value.

6.1.2. Discordant nonsharp identification conditions for δ. Our first objective is to illus-
trate the existence of discordant nonsharp identification conditions. Here, we focus on
the (projected) identified set for δ12 . Given the DGP with (θ, γ∗), the outer set for δ12
associated with the nonsharp identification conditions in A′ is characterized as follows:
Λ(Fθ,γ∗ , A′) = {t : ∃(α, β, δ) ∈ ΘI(Fθ,γ∗ , A′) s.t. δ12 = t}. Now, let us denote by γ∗ct the
maximum degree of misspecification that could not be detected by the submodel Act. More
precisely, we define γ∗ct := sup{γ∗ : Λ(Fθ,γ∗ , Act) 6= ∅}, therefore, Λ(Fθ,γ∗ , Act) is a nonempty
outer set when γ∗ ≤ γ∗ct, and it becomes empty whenever γ∗ > γ∗ct. In Figure 3, we plot
in blue the CT outer set, i.e., Λ(Fθ,γ∗ , Act), at various degree of model misspecification,
for γ∗ ∈ [0, γ∗ct], where 0 corresponds to no misspecification and γ∗ct corresponds to the
maximum degree of misspecification that is not detectable with Act.



DISCORDANT RELAXATIONS OF MISSPECIFIED MODELS 25

0.0 0.1 0.2 0.3 0.4 0.5
γ∗

0.8

0.9

1.0

1.1

1.2

1.3

id
en

ti
fi

ed
se

t
fo

r
δ1 2

Figure 3. Λ(Fθ,γ∗ , Act) at various values of γ∗.

A first remark is that the CT outer set shrinks when the degree of misspecification
increases and at some point it no longer contains the true value. This illustrates that
the tightness of the outer set should not systematically be interpreted as a signal of an
informative identified set but it could just signal a presence of misspecification.

In Appendix A.3, we explain why the findings of Theorem 1 apply to the entry game ex-
ample. So, according to Theorem 1, there must exist some other A′ nonsharp identification
condition which is discordant with Act. Indeed, we are able to find two sets of nonsharp
identification conditions, denoted as A1 and A2, which result in discordant identification
results with Act. In Figure 4, we plot Λ(Fθ,γ∗ , A1) in orange and Λ(Fθ,γ∗ , A2) in green.
Λ(Fθ,γ∗ , A1) suggests values for δ12 that are higher than those suggested by Λ(Fθ,γ∗ , Act)

while Λ(Fθ,γ∗ , A2) suggests values that are lower. When the degree of misspecification is
higher than 0.4, these three outer sets have no overlap.

6.1.3. Discordant counterfactual predictions. In many of the empirical games applications,
applied researchers are very often interested in implementing counterfactual analyses. Inter-
estingly, we observe not only discordant results for the parameters, but we also observe this
phenomenon for counterfactuals. Below, we illustrate a scenario where different outer sets
lead to discordant counterfactual outcomes when the full model is misspecified. Therefore,
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Figure 4. Λ(Fθ,γ∗ , A1) and Λ(Fθ,γ∗ , A2) at various values of γ∗.

we illustrate the fact that the discordancy issue also applies to counterfactual outcomes.
Let us consider a counterfactual where firm 3 is no longer a potential entrant of the market.
This type of counterfactuals would arise, for example, when firm 3 is a foreign firm and is
banned from the home market due to a trade policy, or when firm 3 is merged with other
firms.

Figure 5 plots the different counterfactual predictions of submodels Act, A1, and A2 for
the probability that only one firm enters the market, i.e., the probability of the presence
of a monopoly in a market with characteristics x0 = (0, 0, 0). As we can see clearly, three
submodels give counterfactual predictions that are discordant with each other.

6.2. An empirical illustration for compatible submodels.

6.2.1. Context and Data. Estimating the causal impact of college education on later earn-
ings has always been troublesome for economists because of the endogeneity of the level of
education. To evaluate the returns to schooling, different approaches have been proposed,
and most of them rely on the validity of instruments such as parental education, tuition
fees, quarter of birth, distance to college, etc. The validity of all these IVs has been widely
criticized because of their potential correlation with the children’s unobserved skills.
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Figure 5. P(Y1 + Y2 = 1|X = x0) at various γ∗

In order to accommodate potentially invalid instruments, Manski and Pepper (2000,
2009) introduced the monotone IV (MIV) that does not require the IV to be valid but only
imposes a positive dependence relationship between the IV and potential earnings. For
instance, parental education may not be independent of potential wages, but plausibly does
not negatively affect future earnings. In such a context, bounds on the average return to
education can be derived.

In this application, we will consider the AMIV assumption introduced in Section 4.1. We
consider that parental education can have a positive effect on children’s future earnings, but
this marginal positive effect could plausibly become null after some cut-off. The particularity
of our method is to let this cut-off be determined by the data using our misspecification
robust bounds.

We consider the data used in Heckman, Tobias, and Vytlacil (2001, HTV). The data
consist of a sample of 1,230 white males taken from the National Longitudinal Survey of
Youth of 1979 (NSLY79)9. The data contain information on the log weekly wage, college

9The NLSY79 survey is sponsored and directed by the U.S. Bureau of Labor Statistics, and managed by
the Center for Human Resource Research (CHRR) at The Ohio State University. Interviews are conducted by
the National Opinion Research Center (NORC) at the University of Chicago. See Bureau of Labor Statistics
(2019) for more details.
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education, father’s education, mother’s education, among many other variables. Following
HTV, we consider the college enrollment indicator as the treatment: it is equal to 1 if the
individual has completed at least 13 years of education and 0 otherwise. In this empirical
exercise, we use the maximum of parental education as the candidate instrumental variable.
Some summary statistics are reported in Table 1.

Table 1. Summary Statistics

Total

Observations 1,230

log wage 2.4138 (0.5937)
college 0.4325 (0.4956)
father’s education 12.44715 (3.2638)
mother’s education 12.1781 (2.2781)
max(father’s education, mother’s education) 13.1699 (2.7123)

Average and standard deviation (in the parentheses)

6.2.2. Methodology and results. We start by constructing the 95% confidence region for the
identified sets of the average structural functions E[Yd], d ∈ {0, 1} and the average treatment
effect E[Y1 − Y0] under the Manski (1990) mean independence assumption, denoted as
ΘI(MI), and under the MIV assumption, denoted as ΘI(MIV ). In addition, we construct
an estimate of our misspecification robust bounds under the AMIV assumption, denoted as
Θ∗

I(AMIV ), using the following steps:

(1) The support of our instrument is Z = {0, 1, . . . , 20}. For each z ∈ {0, 1, . . . , 20},
we test the implications (4.1) and (4.2) using the intersection bounds method of
Chernozhukov, Lee, and Rosen (2013), implemented in Chernozhukov et al. (2015).
For each d ∈ {0, 1}, we set z∗d as the smallest z for which we do not reject (4.1)
and (4.2). The use of Chernozhukov et al.’s (2015) Stata package yields a 95%
confidence set for [max(q

dt
: t ≤ z),min(qdt : t ≥ z)] for each z < z∗d, and [max(q

dt
:

t = 1, ..., k),min(qdt : t ≥ z∗d)].
(2) We then plug the 95% confidence bounds obtained from step (1) into the bounds

in Equation (4.3), where we replace P(Z = z) by its sample analog. This procedure
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leads to an estimate of the identified set Γd,z∗ for each d ∈ {0, 1}, which yields an
estimate for the identified set Θ∗

I(AMIV ).10

The same procedure is applied to get an estimate for ΘI(MIV ) except that z∗d is set to 20 for
each d ∈ {0, 1}. Finally, since the identified set for the ATE under the mean independence
assumption denoted as ΘI(MI) takes the form of standard intersection bounds, we use the
Chernozhukov et al. (2015) package to obtain its 95% confidence bounds.

The results are summarized in Table 2. Column (1) shows that the 95% confidence
region for ΘI(MI) is empty. In other words, the data shows clear evidence against the
use of parental education as a valid IV. On the other hand, column (4) shows the result
for ΘI(MIV ).11 As can be seen, we move from an empty identification region to a wide
and non-informative identification region. In contrast, our misspecification robust bounds
provide a nonempty yet relatively smaller set estimate for the ATE. Column (2) shows
estimates of our misspecification robust bounds Θ∗

I(AMIV ) when we allow the cut-offs to
differ across potential outcomes as discussed in Remark 1, while column (3) shows estimates
where the cut-offs are restricted to be the same for both potential outcomes as in Proposition
2. In the former case, we see that our proposed approach almost identifies the sign of the
ATE.

Table 2. Results

(1) (2) (3) (4)

Set estimates/ ΘI(MI) Θ∗
I(AMIV ) Θ∗

I(AMIV ) ΘI(MIV )
95% Conf. Bounds (z∗1 , z

∗
0) = (0, 11) (z∗1 , z

∗
0) = (11, 11)

θ1 ≡ E[Y1] [2.535, 2.815] [2.535, 2.815] [2.412, 2.816] [0.933, 2.815]
θ0 ≡ E[Y0] Empty [2.547, 2.591] [2.547, 2.591] [2.548, 2.814]
ATE ≡ E[Y1 − Y0] Empty [−0.056, 0.268] [−0.179, 0.269] [−1.881, 0.267]

1 All values in column (1) are the 95% confidence intervals.
2 All values in column (2)-(4) are set estimates based on the 95% confidence interval of ΘI(az).

10Because our primarily focus in this paper is about identification, we do not attempt to study the
statistical issues related to the derivation of a valid confidence region for the misspecification robust bound.
We leave this open question for future research.

11We even test the validity of the MIV using the test proposed by Hsu, Liu, and Shi (2019), we do not
reject the MIV assumption even at 10 % level.
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7. Discussion

In this paper, we demonstrate the existence of discordant submodels in a wide range
of models in the presence of model misspecification. This provides another reason why
one should use the sharp characterization of the identified set whenever possible. The
identified set not only exhausts all the identification restrictions in the model structure
and assumptions but also is immune to the possible misleading conclusions of discordant
submodels. Unlike an outer set, the identified set will be empty when the model is refuted
by the data.

In empirical applications where a sharp characterization of the identified set is not
tractable, our results suggest that empirical researchers should exercise caution when work-
ing with nonsharp identification conditions, especially when the bounds they obtain are very
tight. For example, as a robustness check, one could construct the outer sets in different
ways and check for any discordance between them.

Salvaging a refuted model is usually a challenging task, as it often involves some arbitrari-
ness in how the model gets relaxed, and it could sometimes be computationally intractable.
However, things get much easier when the minimum data-consistent relaxation is unique.
In this case, it is apparent which assumptions are consistent with the data and which as-
sumptions are not because all the data-consistent assumptions are compatible with each
other (Theorems 2 and 4). Moreover, the identified set of any data-consistent submodel
can be viewed as a conservative bound for the misspecification robust bound in this case,
making the computation a lot easier.

When the uniqueness of the minimum data-consistent relaxation is beyond reach, one can
still choose to find the misspecification robust bound we proposed in this paper. It always
leads to rationalizable and non-conflicting statements (Theorem 5), and it is sometimes
the most informative rationalizable and non-conflicting statement (Theorem 7). We work
out the misspecification robust bound in some simple examples, but its exact solution
could be too complicated to solve when the underlying model involves many structures. In
those challenging cases, it might be possible to construct an outer set that always covers
the misspecification robust bound proposed in this paper. This type of outer sets will be
immune to the issue raised in this paper. It remains unclear how to construct such outer
sets, but this could be one reasonable step beyond the findings in this paper.
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Appendix A. Additional Results

This appendix collects some additional theoretical results. We put all the proofs in
Appendix C except for very short ones.

A.1. Example of intersection bounds.

Example 1 (Discrete treatment model). Consider a setting where X ≡ {x1, ..., xK} is
the set of all possible treatments. Let Yk be the potential outcome when the treatment
is externally set to xk. The observed outcome Y is defined as follows: Y =

∑
k 1(X =

xk)Yk. Let us define θk ≡ E[Yk] and assume that Yk has a bounded support [y
k
, yk]. The

random bound for Yk can be constructed as follows Y k ≡ Y 1(X = xk) + y
k
1(X 6= xk)

and Y k ≡ Y 1(X = xk) + yk1(X 6= xk). If we assume the mean independence assumption
E[Yk|Z] = E[Yk] we obtain a special case of (2.1).

Discrete treatment models with bounded potential outcomes are usually considered in
Manski’s work. See for instance Manski (1990, 1994) among many others.

Example 2 (Smooth Treatment Model). Consider a smooth treatment model as in Kim
et al. (2018). When the treatment is x, the potential outcome is Y (x) = g(x, ε) where
g is an unknown function, and ε is individual heterogeneous characterization. Assume
g(x, ε) is Lipschitz continuous in x with Lipschitz constant equal to τ . Suppose we are
interested in θx = E[Y (x)]. The lower and upper bounds can be constructed as Y (x) =

Y −‖X − x‖ τ and Y (x) = Y + ‖X − x‖ τ . As in the discrete treatment case, if we assume
E[Y (x)|Z] = E[Y (x)], we obtain model (2.1). As a special case, one can also consider
a linear model with heterogeneous coefficient, Y = X ′β + ε where β is a vector of an
unobserved random coefficient. Suppose the coefficient space for β is [β, β]. Then, Y (x) =

Y +
∑

imin
{
(xi −Xi)βi, (xi −Xi)βi

}
where the subscript i stands for the ith dimension

of the corresponding variables. Similarly, Y (x) = Y +
∑

imax
{
(xi −Xi)βi, (xi −Xi)βi

}
.

A.2. Conditional Moment Inequalities. Let us now consider a more general setting
than the introductory example. Assume the full model is a conditional moment inequality,

E[m(X; θ)|Z] ≤ 0 almost surely (A.1)

where X ∈ Rk1 and Z ∈ Rk2 are observable random variables and m(·, · ; θ) is some known
integrable function with E ‖m(X; θ)‖ < ∞ for each θ. We focus on the case where Z are
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continuous random variables. Random variables X and Z could have overlaps. In practice,
empirical researchers sometimes use the following unconditional model instead:

E[w(Z)m(X; θ)] ≤ 0, (A.2)

where w(·) is some nonnegative weighting function. We want to understand what would
happen when one conduct empirical analysis based on (A.2) when (A.1) happens to be
refuted.

To answer this question, define W+
m to be the set of all m-dimenstional nonnegative

function w which satisfies 0 < E ‖w(Z)‖2 < ∞ and E ‖w(Z)m(X; θ)‖ < ∞ for all θ ∈ Θ.
Define A as the collection of condition (A.2) for all w ∈ W+

1 , i.e.

A := {(A.2) with w : w ∈ W+
1 }

With this definition, any subset B of A with m elements corresponds to the condition which
(A.2) hold for some w ∈ W+

m. By the construction of A, Assumption 2 are satisfied.

To verify Assumption 3, we need to construct a C . Let Z be the support of Z. For any
z ∈ Z and any ε > 0, define function hz,ε as hz,ε(Z) = 1(‖Z − z‖ < ε). Suppose that, for
any z ∈ Z, there exists some θ ∈ Θ and some δ(z) > 0 such that E[m(X; θ)|Z] ≤ 0 for
almost every Z with ‖Z − z‖ ≤ δ(z). Then, for each z ∈ Z and each ε ∈ (0, δ(z)), there
exists some θ ∈ Θ such that E[hz,ε(Z)m(X, θ)] ≤ 0. Define the collection of functions W∗

as W∗ := {hz,ε : ε ∈ (0, δ(z)), z ∈ Z}. Then, we can construct C as

C := {{a} : a ∈ A∗}, where A∗ := {(A.2) with w : w ∈ W∗}. (A.3)

The following proposition shows that this C satisfies Assumption 3 under some regularity
conditions.

Proposition 4. Assume that

(a) there exists a function g(z; θ) such that ( i) for every θ ∈ Θ, E[m(X,Z; θ)|Z] =
g(Z; θ) almost surely; ( ii) g(z; θ) is continuous in z for any given θ; ( iii) g(z; θ) is
continuous in θ for any given z

(b) for any z in the support of Z, there exists some δ(z) > 0 and some θ ∈ Θ such that
E[m(X; θ)|Z] ≤ 0 for almost every Z satisfying ‖Z − z‖ ≤ δ(z).

(c) there exists some function γ(·) such that supθ∈Θ ‖E[m(X; θ)|Z]‖ ≤ γ(Z) almost
surely and E|γ(Z)|2 <∞.

(d) Θ is compact.
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Then, Assumption 3 is satisfied for C constructed in (A.3).

As a result, Theorem 1 can be applied here. In the context of moment inequalities, the
result in Theorem 1 means that (A.1) is refuted if and only if there exists w1 ∈ W+

m1
and

w2 ∈ W+
m2

such that both (A.2) with w = w1 and (A.2) with w = w2 are not refuted
but the identified sets of these two sets of identification conditions have empty intersection.
Moreover, whenever (A.1) is refuted, for any w̃ ∈ W+

m̃ with which (A.2) is data-consistent,
there exists some w1 ∈ W+

m1
and w2 ∈ W+

m2
such that both the (A.2) with w = (w̃, w1) and

(A.2) with w = w2 are data-consistent but their identified sets have empty intersection.

This result complements the findings in Andrews and Shi (2013). In Andrews and Shi
(2013), they propose an inference procedure for models like (A.1). Their inference transform
(A.1) into (A.2) by selecting w in a sub-family of W+

m and letting m→ ∞ as the sample size
increases. Our result shows that increasing m to infinity is crutial to ensure the robustness
of the result if (A.1) could be misspecified. If the dimension of w is fixed, then the empirical
result for (A.2) could be misleading even if the inference controls the size uniformly.

A.3. Random Sets and Choquet Capacity. In this section, we consider models whose
identified set can be described with random sets and choquet capacity functions. Let Y be
a vector of endogenous random variables, and let X be a vector of exogenous observable
covariates. Let Y and X denote the support of Y and X respectively. Here, the parameter θ
of interest could be of infinite dimensions, and its parameter space Θ need not be compact.

Let Γ(θ) be some random closed set in Y which could depend on θ, X and some latent
random variables. Assume P (Y ∈ Γ(θ)) = 1. Artstein (1983) shows that the conditional
distribution of Y given X equals FY |X almost surely if and only if for any compact subset
K of Y, the following inequality holds:

PF (Y ∈ K|X) ≤ L(K,X; θ) almost surely, where L(K,X; θ) := P (Γ(θ)∩K 6= ∅|X) (A.4)

where PF refers to the probability measure corresponding to FY |X . The L(·, X; θ) is often
known as the Choquet capacity function. This type of models plays an important role
in the partial identification literature. We refer to Molinari (2020) for more background
introductions. Often in practice, either PF (Y ∈ K|X) or L(K,X; θ) can be identified from
the data, and the other one can typically be derived or simulated from some additional
assumptions. For the purpose of illustration, we consider the case where Y and X are
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observable so that PF (Y ∈ K|X) can be identified from the data, and assume L(K,X; θ)

is a known function of K and X given θ.

In general, one needs to check (A.4) for all compact sets of Y in order to ensure this col-
lection of moment inequalities is a sharp identification condition. In some circumstances,
checking the inequalities for all compact sets is equivalent to checking the inequalities only
for a subcollection of compact sets, in which case, this subcollection is called the core deter-
mining class in the language of Galichon and Henry (2011). However, in practice, researchers
often pre-select some finite collection K of compact sets that are not core-determining, and
they only check (A.4) for compact sets in this K. For instance, in the treatment effect
literature, the well-known Manski (1994) bounds on the potential outcome distributions
implemented in various applications such as in Blundell et al. (2007), or Peterson (1976)
bounds on competing risk, use only a finite and not sufficient collection of Artstein inequal-
ities. See, respectively, Molinari (2020), and Mourifié, Henry, and Méango (2020) for a
detailed discussion. In empirical games, auction and network applications we can also cite
Ciliberto and Tamer (2009), Haile and Tamer (2003), Sheng (2020), Chesher and Rosen
(2020), among many others who also focused on a finite and not sufficient collection of
Artstein inequalities.12

We want to explore the consequences of this pre-selection procedure when the original
model might be refuted by the data. For simplicity, we focus on the case where Y only
takes a finite number of possible values. In this case, the support Y of Y is a finite set and
the collection of all compact sets in Y is simply the power set of Y, i.e. the collection of all
subsets of Y.

To fit this model into the general framework in Section 3, define A as the collection of
all Artsein’s inequality, i.e.

A := {(A.4) with K : K ⊆ Y}.

With this definition, any subset A′ of A corresponds to testing (A.4) only for a pre-selected
collection of compact sets. In order to apply Theorem 1, we need to verify Assumptions 2
and 3. By the construction of A, Assumption 2 is satisfied. To verify Assumption 3, let us
construct C as

C := {{a} : a ∈ A}. (A.5)

12See Molinari (2020) for a detailed discussion.
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The following proposition provides a sufficient condition under which Assumption 3 is sat-
isfied with this choice of C .

Proposition 5. Let X and Y be the supports of X and Y , respectively. Suppose Y is a
finite set. The parameter space Θ may or may not be compact. Suppose that, for each
y ∈ Y, the following assumptions hold:

(L5.C1) infx∈X P (Y = y|X = x) > 0,
(L5.C2) there exists a sequence θ1, θ2, ... in Θ such that infx∈X L({y}, x; θk) → 1 as k → ∞,

where the inf in the above two conditions refers to the essential infimum. Then, Assumption
3 holds for C defined in (A.5).

As a result, Theorem 1 could be applied here. For any pre-selected collection K of compact
subsets, define ΘI(K) as the set of parameters which satisfy (A.4) for all K ∈ K. In this
context, the result in Theorem 1 means that the model is refuted if and only if there exists
two K1 and K2 such that ΘI(K1) 6= ∅, ΘI(K2) 6= ∅ and ΘI(K1)∩ΘI(K2) = ∅. Moreover, for
any pre-selected collection K of compact sets with ΘI(K) 6= ∅, there always exist two finite
collections K1 and K2 such that ΘI(K∪K1) 6= ∅, ΘI(K2) 6= ∅ and ΘI(K∪K1)∩ΘI(K2) = ∅.

We conclude this subsection with the entry game model as an example. We are going to
verify all the conditions in Proposition 5 for this example.

Example 3 (Entry game). Consider an m-player complete information entry game as in
Ciliberto and Tamer (2009). Assume there are m players, where player i’s payoff function
is specified as

πi = Yi

γi +X ′
iβi −

∑
j 6=i

δijYj + εi


where the Xis are some covariates which might be player i specific, Yi ∈ {0, 1} stands
for player i’s entry decision, and Yj stands for the decision of player j. Here, γi and βi

are player-specific parameter coefficient, and δij > 0 is the parameter that describes the
strategic interaction between player i and j. We assume that Y = (Yi : i = 1, ...,m) is
always a pure-strategy Nash equilibirum.

Assume ε = (ε1, ..., εm) is independent of X and ε follows the normal distribution N(0,Σ).
Let γ = (γ1, ..., γm), β = (β1, ..., βm), and δ = (δij : i 6= j). Let θ = (γ, β, δ,Σ) be the vector
of all parameters. Let Y = {y = (y1, ..., ym) : yi ∈ {0, 1}, i = 1, ...,m} be the set of all
possible entry decisions. For any K ⊆ Y, define L(K,X, θ) to be the probability that at
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least one y ∈ K is a pure-strategy Nash equilibrium given X and θ. In practice, L(K,X, θ)
can often be solved from numerical simulations.

In Galichon and Henry (2011), the identified set of this model is shown to be the set of all
θ which satisfies (A.4) for every subset K of Y. The number of these inequalities increases
with m very quickly in the order of 22m . Galichon and Henry (2011) provide some methods
to reduce the number of inequalities by removing redundant inequalities in (A.4), but, in
general, sharp characterization of the identified set involves a large number of inequalities.
In practice for the sake of computational feasibility, emprical researchers often pre-select
a finite collection K of subsets and only check (A.4) for each K ∈ K. See, for example,
Ciliberto and Tamer (2009), and Ciliberto, Murry, and Tamer (2020).

Let us now check conditions in Proposition 5. Let Θ = Rdim(θ). Condition (L5.C1) in
Proposition 5 is a low-level condition that can be directly verified by the data. In theory,
this condition would hold, for example, if the true data generating process has the following
properties: (i) the support of ε is Rm conditinal on almost every X, and (ii) for each i,
player i’s payoff function is

πi = Yi (g(Xi, Y−i) + εi)

where Y−i = {Yj : j 6= i) and g can be an arbitrary function of (Xi, Y−i) that is bounded
in their support. This class of data generating processes nests the model that we imposed
above, but the true data generating process need not be the same as our model. That
is, Condition (L5.C1) in Proposition 5 holds even if the model is misspecified. Condition
(L5.C2) in Proposition 5 also holds, because for each y ∈ Y, one can have L({y}, x; θk) → 1

by simply fixing β = 0, δ = 0 and let γ → γ∗ where γ∗i = ∞ if yi = 1 and γ∗i = −∞ if
yi = 0.

A.4. Existence and Uniqueness of Minimum Data-consitent relaxation.

Theorem 3. Suppose one of the following two conditions is satisfied,

(T3.C1) A is a finite set.
(T3.C2) For any a ∈ A, ΘI(a) is compact. Moreover, for any B ⊆ A, ΘI(B) = ∩a∈BΘI(a).

Then, there exists some minimum data-consistent relaxation of A. Moreover, for any
data-consistent A′ ⊆ A, there exists some minimum data-consistent relaxation Ã such that
A′ ⊆ Ã.
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Theorem 3 not only establishes the existence of a minimum data-consistent relaxation,
but also shows that any data-consistent subset A′ ⊆ A can be further strengthened into
a minimum data-consistent relaxation by including additional assumptions. It is worth
noting that, when A is a finite set, the result of Theorem 3 does not require any additional
conditions. When A is an infinite set, we need ΘI(a) to be compact for each a ∈ A. In
addition, we need that, for any B ⊆ A, ΘI(B) = ∩a∈BΘI(a), which would hold, for example,
if θ fully describes the distribution of both observed and latent random variables as in a
maximum likelihood setting.

The following theorem studies the uniqueness of the minimum data-consistent relaxation,
and is a generalized version of Theorem 2 in the main text.

Theorem 4. Statement (T2.C1) implies (T2.C2). If either (T3.C1) or (T3.C2) holds,
then (T2.C2) implies (T2.C1).

A.5. Discordancy and multiplicity of minimum data-consistent relaxations.

Proposition 6. Whenever Condition (T3.C1) or (T3.C2) hold we have the following result:
There exists two data-consistent A1, A2 ⊆ A with ΘI(A1) ∩ΘI(A2) = ∅ if and only if there
exists two minimum data-consistent relaxations Ã1 and Ã2 such that ΘI(Ã1)∩ΘI(Ã2) = ∅.

Proof for Proposition 6. We first prove the if part. Suppose there exists two minimum
data-consistent relaxations Ã1 and Ã2 such that ΘI(Ã1) ∩ ΘI(Ã2) = ∅. By the definition
of minimum data-consistent relaxation, both Ã1 and Ã2 are data-consistent subsets of A.
Thus, this proves the existence of two data-consistent A1, A2 ⊆ A with ΘI(A1)∩ΘI(A2) = ∅.

Next, we want to prove the only if part. Suppose that there exists two data-consistent
A1, A2 ⊆ A with ΘI(A1) ∩ ΘI(A2) = ∅. By Theorem 3, there exists two minimum data-
consistent relaxations Ã1 and Ã2 such that A1 ⊆ Ã1 and A2 ⊆ Ã2. Because Ã1 ⊆ A1, we
have ΘI(Ã1) ⊆ ΘI(A1). Similarly, we have ΘI(Ã2) ⊆ ΘI(A2). Because ΘI(A1) ∩ΘI(A2) =

∅, we must have ΘI(Ã1) ∩ΘI(Ã2) = ∅. �

A.6. Empirical Interpretation of Misspecification Robust Bound. As discussed in
Section 5.3, a rationalizable and nonconflicting set has rich interpretations. The follow-
ing theorem shows that the misspecification robust bound Θ∗

I is both rationalizable and
nonconflicting.
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Theorem 5. Suppose either (T3.C1) or (T3.C2) holds. Then, Θ∗
I is both rationalizable

and nonconflicting. That is,

• (rationalizable) there exists some submodel A′ ⊆ A such that ΘI(A
′) ⊆ Θ∗

I and
ΘI(A

′) 6= ∅.
• (nonconflicting) there does not exist a submodel A′ ⊆ A with ΘI(A

′) 6= ∅ such that
ΘI(A

′) ∩Θ∗
I = ∅.

As discussed in Section 5.3, Θ∗
I have even richer explanations when it is the smallest

rationalizable and nonconflicting set. Recall that a set S∗ is the smallest rationalizable
and nonconflicting set, if S∗ is rationalizable and nonconflicting, and S∗ ⊆ S for every
rationalizable and nonconflicting set S. The smallest rationalizable and nonconflicting set
does not always exists. However, the following theorem shows that, under mild conditions,
whenever the smallest rationalizable and nonconflicting set exists, it is equal to Θ∗

I .

Theorem 6. Suppose either (T3.C1) or (T3.C2) holds. Assume

(T6.C1) there does not exist two different minimum data-consistent relaxation Ã1 and Ã2

such that ΘI(Ã1) ( ΘI(Ã2).

Then, whenever the smallest rationalizable and nonconflicting set exists, it is equal to Θ∗
I .

Condition (T6.C1) could be verified from the data. Note that, for any two different
minimum data-consistent relaxations Ã1 and Ã2, we always have ΘI(Ã1 ∪ Ã2) = ∅, i.e. Ã1

and Ã2 are not compatible with each other. As it is unlikely that for two sets Ã1 and Ã2 to
satisfy ΘI(Ã1) ( ΘI(Ã2) while being incompatible with each other, we consider (T6.C1) as
a mild condition. Finally, Condition (T6.C1) would hold, if there is a unique minimum data-
consistent relaxation, or if the identified set of every minimum data-consistent relaxation is
a singleton set. In fact, these two conditions are also sufficient conditions for Θ∗

I being the
smallest rationalizable and nonconflicting set, as shown in the following theorem.

Theorem 7. Suppose either (T3.C1) or (T3.C2) holds. Assume one of the following
cnoditions is satisfied:

(T7.C1) there exists a unique minimum data-consistent relaxation,
(T7.C2) for any minimum data-consistent relaxation Ã, ΘI(Ã) is a singleton.

Then, Θ∗
I is the smallest set that are both rationalizable and nonconflicting.
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A.7. Discrete Relaxation versus Continuous Relaxation.

Theorem 8. Suppose (T7.C2) holds. Then, Θ∗
I ⊆ Θ†

I for any type of relaxation chosen by
the researcher.

Appendix B. Proof of the main results

B.1. Proof of Theorem 1. First of all, note that Assumption 2 implies that for any
A′, A′′ ⊆ A, ΘI(A

′ ∪A′′) = ΘI(A
′) ∩ΘI(A

′′).

If there exists A′, A′′ ⊆ A such that ΘI(A
′) 6= ∅, ΘI(A

′′) 6= ∅ and ΘI(A
′) ∩ ΘI(A

′′) = ∅,
then, ΘI(A) ⊆ ΘI(A

′ ∪ A′′) = ΘI(A
′) ∩ ΘI(A

′′) = ∅. Hence, ΘI(A) = ∅ if there exists
A′, A′′ ⊆ A such that ΘI(A

′) 6= ∅, ΘI(A
′′) 6= ∅ and ΘI(A

′) ∩ΘI(A
′′) = ∅.

Reversely, if ΘI(A) = ∅, we want to show that there exists two finite subsets A′, A′′ ⊆ A

such that ΘI(A
′) 6= ∅, ΘI(A

′′) 6= ∅ and ΘI(A
′) ∩ ΘI(A

′′) = ∅. More specifically, we are
going to show the following statement:

when ΘI(A) = ∅, there exists A′ ∈ C and {A1, ..., An} ⊆ C for some finite n
such that both A′ and A′′ = ∪n

i=1Ai are data-consistent, but ΘI(A
′) ∩ΘI(A

′′) = ∅.
(B.1)

To show (B.1), we consider two cases.

Case 1: the C in Assumption 3 has infinite elements. In this case, ΘI(A
′) is

compact for all A′ ∈ C . Define D := {B : ΘI(B) 6= ∅, and ∃C ′ ⊆ C , B = ∪A′∈C ′A′}.
Because ΘI(A

′) 6= ∅ for all A′ ∈ C , C ⊆ D . Hence, D is nonempty. Moreover, because
intersection of compact sets is compact, we know ΘI(A

′) is compact for any A′ ∈ D .

Note that ⊆ can be viewed as a partial order for elements within D . We are going to
show D has a maximal element in terms of ⊆, i.e. there exists some A′ ∈ C such that you
cannot find an A′′ ∈ D satisfying A′ ⊆ A′′ and A′ 6= A′′.

To show that D has a maximal element in terms of ⊆, we are going to invoke the
Zorn’s lemma. Let Z be an arbitrary nonempty chain in D . That is, Z 6= ∅, Z ⊆ D

and, for any A′, A′′ ∈ Z , either A′ ⊆ A′′ or A′′ ⊆ A′. Define A† := ∪A′∈ZA
′. Then,

ΘI(A
†) = ∩A′∈Z ΘI(A

′). Because Z is a chain, {ΘI(A
′) : A′ ∈ Z } is also a chain in

terms of ⊆. Because Z ⊆ D , ΘI(A
′) is nonempty and compact for any A′ ∈ Z . Hence,

Lemma 1 (stated and proved below) implies that ΘI(A
†) is nonempty. As a result, A† ∈ D .

Moreover, for any A′ ∈ Z , A′ ⊆ A†. Thus, D , as a partially ordered set in terms of ⊆, has
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the following property: every nonempty chain Z in D has an upper bound A† in D . By
Zorn’s lemma, this implies that D has a maximal element in terms of ⊆.

Let A∗ be a maximal element of D in terms of ⊆. Because A∗ ∈ D , ΘI(A
∗) 6= ∅. Because

we have ∩
Ã∈CΘI(Ã) = ΘI

(
∩
Ã∈C Ã

)
= ∅ when ΘI(A) = ∅, A∗ 6= ∪

Ã∈C Ã. Therefore, there
must exist some A′ ∈ C such that A′ is not a subset of A∗. Moreover, because C ⊆ D ,
and because A∗ is a maximal element of D in terms of ⊆, A∗ ∪ A′ /∈ D . This implies that
ΘI(A

∗ ∪A′) = ∅. Because ΘI(A
∗ ∪A′) = ΘI(A

∗) ∩ΘI(A
′), ΘI(A

∗) ∩ΘI(A
′) = ∅. Because

A∗ ∈ D , there exists C ′ ⊆ C such that A∗ = ∪
Ã∈C ′Ã and, hence, ΘI(A

∗) = ∩
Ã∈C ′ΘI(Ã).

Because ΘI(Ã) is compact for each Ã ∈ C ′, Lemma 2 (shown and proved below) implies
that there exists {A1, ..., An} ⊆ C ′ ⊆ C for some finite n such that ΘI(∪n

i=1Ai)∩ΘI(A
′) = ∅

and ΘI(∪n
i=1Ai) 6= ∅. This proves (B.1).

Case 2: the C in Assumption 3 has finite elements. Enumerate C as C = {A1, ..., AK}.
For any k ∈ {1, ...,K}, define Bk = ∪k

i=1Ai. For any k, ΘI(Bk) = ∩k
i=1ΘI(Ai). Define

N = {k ∈ {1, ...,K} : ΘI(Bk) 6= ∅}. Because ΘI(A1) 6= ∅, N is nonempty and 1 ∈ N .
Let n be the largest element in N . By construction, ΘI(Bn) 6= ∅. By Assumption 3,
ΘI(BK) = ΘI(∪K

i=1Ai) = ∅. Therefore, we know n < K and ΘI(Bn+1) = ∅. Because
Bn+1 = Bn ∪ An+1, we know that ΘI(Bn ∪ An+1) = ΘI(Bn) ∩ΘI(An+1) = ∅. This proves
(B.1) with A′ = An+1.

We have proven (B.1) in both above cases, which completes the proof for the first result
of the theorem.

For the second part of the results, when ΘI(A) = ∅, for any B ⊆ A with ΘI(B) 6= ∅,
we want to show there exists two finite subsets B′, B′′ ⊆ A such that ΘI(B ∪ B′) 6= ∅,
ΘI(B

′′) 6= ∅ and ΘI(B ∪ B′) ∩ ΘI(B
′′) = ∅. Let A′ and A′′ be the two finite subsets of A

stated in (B.1). Consider the following two cases:

(1) Suppose ΘI(A
′)∩ΘI(B) = ∅. Then, let B′ = ∅, B′′ = A′. We have that ΘI(B∪B′) 6=

∅, ΘI(B
′′) 6= ∅ and ΘI(B ∪B′) ∩ΘI(B

′′) = ∅.
(2) Suppose ΘI(A

′) ∩ΘI(B) 6= ∅. Then, ΘI(A
′ ∪B) = ΘI(A

′) ∩ΘI(B) 6= ∅. Moreover,
ΘI(A

′ ∪B)∩ΘI(A
′′) = ΘI(B)∩ (ΘI(A

′)∩ΘI(A
′′)) = ∅. Let B′ = A′ and B′′ = A′′.

Then, we have that ΘI(B ∪B′) 6= ∅, ΘI(B
′′) 6= ∅ and ΘI(B ∪B′) ∩ΘI(B

′′) = ∅.

This completes the proof of Theorem 1.
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Lemma 1. Let B be a collection of nonempty compact sets within metric space T . More-
over, suppose B is a nonempty chain in terms of ⊆, i.e. for any B,B′ ∈ B, either B ⊆ B′

or B′ ⊆ B. Then, ∩B∈BB is nonempty.

Proof. For the purpose of contradiction, suppose ∩B∈BB is empty. For any B ∈ B, let
BC denote the complement of B. Because the complement of ∩B∈BB is ∪B∈BB

C , empty
∩B∈BB implies that ∪B∈BB

C = T . Pick an arbitrary B′ ∈ B. The fact that ∪B∈BB
C = T

implies that {BC : B ∈ B} is an open cover of B′. Because B′ is compact, there exists
a finite {B1, ..., Bn} ⊆ B with n < ∞ such that B′ ⊆ ∪n

i=1B
C
i . This is equivalent to

B′ ∩ (∩n
i=1Bi) = ∅. In other words, we can find n + 1 elements in B whose intersection is

empty. This contradicts the assumptiton that B is a chain in terms of ⊆ and that every
set in B is nonempty. �

Lemma 2. Let B be a collection of nonempty compact sets within metric space T and
∩B∈BB 6= ∅. Let B′ be a nonempty compact set in T such that B′ ∩ (∩B∈BB) = ∅. Then,
there exists {B1, ..., Bn} ⊆ B for some finite n such that ∩n

i=1Bi 6= ∅ and B′∩ (∩n
i=1Bi) = ∅.

Proof. Because B′∩ (∩B∈BB) = ∅, we know {BC : B ∈ B} is an open cover of B′. Because
B′ is compact, there must exist a finite subcover {BC

1 , ..., B
C
n } ⊆ {BC : B ∈ B} for B′.

This implies that B′ ∩ (∩n
i=1Bi) = ∅. Finally, because ∩n

i=1Bi ⊇ (∩B∈BB), ∩n
i=1Bi 6= ∅. �

B.2. Proof of Proposition 1. Proposition 1 is an immediate result of the following two
lemmas.

Lemma 3. Suppose Assumption 1 hold and γ < γ. Define the interval W as the following:

W ≡


[γ, γ] if P (E[Y |Z] = γ) > 0 and P (E[Y |Z] = γ) > 0

[γ, γ) if P (E[Y |Z] = γ) > 0 and P (E[Y |Z] = γ) = 0

(γ, γ] if P (E[Y |Z] = γ) = 0 and P (E[Y |Z] = γ) > 0

(γ, γ) if P (E[Y |Z] = γ) = 0 and P (E[Y |Z] = γ) = 0

(B.2)

For any integer m and any h ∈ H+
m, if Θ̃(h) is nonempty, then Θ̃(h) ∩W is nonempty.

Proof of Lemma 3. Since h has m dimensions, we can write h = (h1, ..., hm). Then, Θ̃(h)

can be characterized as Θ̃(h) = [θ, θ], where

θ = max
i

E[hi(Z)Y ]

E[hi(Z)]
and θ = min

i

E[hi(Z)Y ]

E[hi(Z)]
.
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Let us first prove θ ≤ γ. Suppose, for the purpose of contradiction, δ ≡ θ − γ > 0. Let
i′ ∈ argmaxiE[hi(Z)Y ]/E[hi(Z)]. Then, we have

E[hi′(Z)(E[Y |Z]− θ]) = 0 (B.3)

Because δ ≡ θ − γ > 0, E[Y |Z] − θ ≤ −δ. In addition, because hi′ is nonnegative, we
have E[hi′ ]δ ≤ 0, which contradicts to the fact that δ > 0 and E[hi′(Z)] > 0. Moreover, if
P (E[Y |Z] = γ) = 0, then E[hi(Z)Y ] < γ · E[hi(Z)] for all i so that θ < γ.

Similarly, we can show θ ≥ γ, and that θ > γ if P (E[Y |Z] = γ) = 0. These result then
implies that Θ̃(h) ∩W 6= ∅ whenever Θ̃(h) 6= ∅. �

Lemma 4. Suppose Assumption 1 hold and γ < γ. Let W be the interval defined as in
(B.2). Then, for any θ ∈ W, there exists some h ∈ H+

2 such that Θ̃(h) = {θ}.

Proof of Lemma 4. Fix any θ ∈ W. Define S+ = {z : E[Y |Z = z] ≥ θ}, S− = {z : E[Y |Z = z] ≤ θ},
S
+

= {z : E[Y |Z = z] ≥ θ} and S
−

= {z : E[Y |Z = z] ≤ θ}. Note that, for any ϑ > γ,
the definition of γ implies that P (ϑ ≥ E[Y |Z]) > 0. When P (E[Y |Z] = γ) > 0, we also
have P (ϑ ≥ E[Y |Z]) > 0 for any ϑ ≥ γ. Since θ ∈ W, we conclude that P (Z ∈ S

−
) > 0.

Similarly, that θ ∈ W also implies that P (Z ∈ S+) > 0. Moreover, since E[Y |Z] ≤ E[Y |Z]
almost surely, we know S+ ⊆ S

+ and S
− ⊆ S− almost surely. Therefore, P (Z ∈ S−) > 0

and P (Z ∈ S
+
) > 0.

Next, we show there exists some nonnegative function h1 which satisfies E[Y h1(Z)] = θ

and E[h1(Z)] = 1. Define h+1 (z) = 1(z ∈ S+)/P (Z ∈ S+) and h−1 (z) = 1(z ∈ S−)/P (Z ∈
S−). By construction, h+1 and h−1 are nonnegative, and E[h+1 (Z)] = 1 and E[h−1 (Z)] = 1.
Moreover, E[Y h+1 (Z)] ≥ θ ≥ E[Y h−1 (Z)]. Hence, there must exists some q ∈ [0, 1] such that
E[Y (qh−1 (Z)+(1−q)h+1 (Z))] = θ. Let h1 = qh−1 (Z)+(1−q)h+1 (Z). Then, such h1 satisfies
E[Y h1(Z)] = θ and E[h1(Z)] = 1. Similarly, there exists some nonnegative function h2

which satisfies E[Y h2(Z)] = θ and E[h2(Z)] = 1.

Then, E[h1(Z)(θ̃ − Y )] ≥ 0 is equivalent to θ̃ ≥ θ. To see this, note that

E[h1(Z)(θ̃ − Y )] ≥ 0

⇔ E[h1(Z)]θ̃ ≥ E[h1(Z)Y ]

⇔ θ̃ ≥ θ
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where the second equivalence follows from E[Y h1(Z)] = θ and E[h1(Z)] = 1. Similarly, we
can show E[h2(Z)(Y − θ̃)] ≥ 0 is equivalent to θ̃ ≤ θ. Let h = (h1, h2). These equivalence
relation implies that if θ̃ ∈ Θ̃(h), then θ̃ = θ.

Moreover, we have

E[h2(Z)θ] = θ

= E[h2(Z)Y ]

≥ E[h2(Z)Y ]

where the first equality follows from E[h2(Z)] = 1, and the second equality follows from θ =

E[h2(Z)Y ], and the last inequality comes from E[Y |Z] ≤ E[Y |Z] almost surely. Similarly,
we can show E[h1(Z)θ] ≤ E[h1(Z)Y ]. Therefore, θ ∈ Θ̃(h). As a result, Θ̃(h) = {θ}. �

B.3. Proof of Theorem 2. Theorem 2 is a corollary of Theorem 4 which is proved below
in Section C.4.

B.4. Proof of Proposition 2. Recall the notation used in this example: Y d ≡ Y 1(D =

d)+y
d
1(D 6= d), Y d ≡ Y 1(D = d)+yd1(D 6= d), q

dt
≡ E[Y d|Z = t] and qdt ≡ E[Y d|Z = t].

Proposition 2 is an immediate corollary of the following two lemmas.

Lemma 5. In model Y =
∑

z∈Z 1(Z = z)[Y1zD + Y0z(1−D)] where Z = {1, 2, ..., k}. Fix
an arbitrary z∗ = 1, ..., k. Let ΘI,z∗ be the identified set of az∗, i.e. the identified set of E.1,
E.2 and E.3 for z = z∗. Then,

(1) ΘI,z∗ 6= ∅ if and only if the following two conditions hold for each d ∈ {0, 1}:

∀z < z∗, max(q
dt

: t ≤ z) ≤ min(qdt : t ≥ z) (B.4)

and
max(q

dt
: t = 1, ..., k) ≤ min(qdt : t ≥ z∗) (B.5)

(2) if ΘI,z∗ 6= ∅, then ΘI,z∗ = Γ1,z∗ × Γ0,z∗.

Lemma 6. In model Y =
∑

z∈Z 1(Z = z)[Y1zD + Y0z(1−D)] where Z = {1, 2, ..., k}. Let
ΘI be the identified set of a†, i.e. the identified set of E.1 and E.2. Then,

(1) ΘI 6= ∅ if and only if P
(
Y ∈ [y

d
, yd]|D = d

)
= 1 for any d ∈ {0, 1}.

(2) when ΘI 6= ∅, ΘI =
[
E[Y 1], E[Y 1]

]
×
[
E[Y 0], E[Y 0]

]
.

Proof of Lemma 5. The results of this lemma can be divided into the following two parts:
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(1) For any z∗ = 1, ..., k, ΘI,z∗ 6= ∅ only if that (B.4) and (B.5) hold for each d = 0, 1.
Moreover, ΘI,z∗ ⊆ Γ1,z∗ × Γ0,z∗ .

(2) if (B.4) and (B.5) hold, then ΘI,z∗ 6= ∅ and ΘI,z∗ ⊇ Γ1,z∗ × Γ0,z∗ .

Let us now prove these two parts one by one.

Part 1. Fix any d ∈ {0, 1}. Suppose assumption az∗ hold, i.e. assumptions E.1, E.2 and E.3
hold for z = z∗. Assumption E.3 implies that for any z′ < z∗ and t ≤ z′ we have Ydt ≤ Ydz′

so that E[Ydt|Z = z′] ≤ E[Ydz′ |Z = z′]. Due to E.2, we know E[Ydt|Z = z′] = E[Ydt|Z = t],
so that E[Ydt|Z = t] ≤ E[Ydz′ |Z = z′]. Since q

dt
≤ E[Ydt|Z = t], we conclude that

maxt≤z′ qdt ≤ E[Ydz′ |Z = z′]. Similarly, E.3 implies that for any z′ < z∗ and t ≥ z′, we
have Ydz′ ≤ Ydt so that E[Ydz|Z = z′] ≤ E[Ydt|Z = z′]. Because of E.2, and because
qdt ≥ E[Ydt|Z = t], we know that E[Ydz′ |Z = z′] ≤ mint≥z qdt. Hence, for any d ∈ {0, 1},

∀z′ < z∗, max(q
dt

: t ≤ z′) ≤ E[Ydz′ |Z = z′] ≤ min(qdt : t ≥ z′) (B.6)

Now, for any z′ ≥ z∗, E.3 implies that Ydt ≤ Ydz′ for any t ∈ {1, ..., k}. Hence, E[Ydt|Z =

z′] ≤ E[Ydz′ |Z = z′] for all t. Because E.2 implies that E[Ydt|Z = t] = E[Ydt|Z = z′], we
have E[Ydt|Z = t] ≤ E[Ydz′ |Z = z′] for all t, so that max(q

dt
: t = 1, ..., k) ≤ E[Ydz′ |Z = z′].

For any z′ ≥ z∗, assumption E.3 implies that Ydt ≥ Ydz′ for all t ≥ z∗. Hence, E[Ydt|Z =

z] ≥ E[Ydz|Z = z] for all t ≥ z∗. Assumption E.2 then implies that E[Ydt|Z = t] ≥
E[Ydz′ |Z = z′] for all t ≥ z∗, so that min(qdt : t ≥ z∗) ≥ E[Ydz|Z = z]. Hence, we conclude
that for any d ∈ {0, 1}:

∀z′ ≥ z∗, max(q
dt

: t = 1, ..., k) ≤ E[Ydz′ |Z = z′] ≤ min(qdt : t ≥ z∗). (B.7)

Combine (B.6) and (B.7), we conclude that for any d, θd ∈ Γd,z∗ , so that ΘI,z∗ ⊆
Γ1,z∗ × Γ0,z∗ . Moreover, because Assumption E.1, E.2 and E.3 imply (B.6) and (B.7), the
violation of (B.4) and (B.5) implies that ΘI,z∗ = ∅. Equivalently, ΘI,z∗ 6= ∅ only if (B.4)
and (B.5) hold for any d ∈ {0, 1}.

Part 2. We want to prove that (B.4) and (B.5) implies that ΘI,z∗ 6= ∅ and ΘI,z∗ ⊇ Γ1,z∗ ×
Γ0,z∗ . Fix an arbitrary d ∈ {0, 1}. First of all, we are going to prove that one can construct
Ydz which achieves the lower bound in Γd,z∗ , satisfies assumptions E.1-E.3, and is compatible
with the data at the same time.

Define γz for each z = 1, ..., k as follows:



48 DISCORDANT RELAXATIONS OF MISSPECIFIED MODELS

• for z < z∗, let γz be the value which solves

max(q
dt

: t ≤ z) = E[1(D = d)Y |Z = z] + E[1(D 6= d)Y |Z = z]γz

Then, γz ∈ [y
d
, yd] if qdz ≥ max(q

dt
: t ≤ z), which is implied by (B.4).

• for z ≥ z∗, let γz be the value which solves

max(q
dt

: t = 1, ..., k) = E[1(D = d)Y |Z = z] + E[1(D 6= d)Y |Z = z]γz

Then, γz ∈ [y
d
, yd] if max(q

dt
: ∀t) ≤ qdz which is implied by (B.5).

Define Wdz ≡ 1(D = d, Z = z)Y + 1(D 6= d, Z = z)γz. Then, by construction,

E[Wdz|Z = z] =

{
max(q

dt
: t ≤ z) if z < z∗

max(q
dt

: t = 1, ..., k) if z ≥ z∗ (B.8)

which implies that

∀z ≤ t, E[Wdz|Z = z] ≤ E[Wdt|Z = t] (B.9)

∀z ≥ z∗, E[Wdz|Z = z] = max(q
dt

: t = 1, ..., k) (B.10)

Moreover, because γz ∈ [y
d
, yd] for any z ∈ {1, ..., k}, we know P (Wdz ∈ [y

z
, yz]) = 1 for all

z ∈ {1, ..., k}. And, P (Wdz = Y |D = d, Z = z) = 1 for any d and z.

Now, for any t ∈ {1, ..., k}, define, φdt(α) ≡ (1− α)Wdt + αyd and ψdt(α) ≡ (1− α)y
d
+

αWdt. We claim that, for any t 6= z, there exists αtz ∈ [0, 1] which solves the following
equations:

∀t < z, E[Wdz|Z = z] = E[φdt(αtz)|Z = t]

∀t > z, E[Wdz|Z = z] = E[ψdt(αtz)|Z = t].
(B.11)

To see why it is so, note that
∀t < z, E[Wdt|Z = t] = E[φdt(0)|Z = t] and E[φdt(1)|Z = t] = yd,

∀t > z, y
d
= E[φdt(0)|Z = t] and E[φdt(1)|Z = t] = E[Wdt|Z = t].

(B.12)

These results, combined with (B.9), imply that

∀t < z, E[φdt(0)|Z = t] ≤ E[Wdz|Z = z] ≤ E[φdt(1)|Z = t],

∀t > z, E[ψdt(0)|Z = t] ≤ E[Wdz|Z = z] ≤ E[φdt(1)|Z = t].

which implies the existence of αtz ∈ [0, 1] satisfying (B.11) for all t 6= z.

In addition, (αtz : t 6= z) has some extra properties. Because (B.9) holds and E[φdt(α)|Z =

t] is an increasing function of α,

∀t < z < z′, αtz ≤ αtz′ . (B.13)
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Because (B.9) holds and E[ψt(α)|Z = t] is an increasing function of α,

∀z < z′ < t, αtz ≤ αtz′ . (B.14)

Construct Ydz ≡
∑

t<z φdt(αtz) +Wdz +
∑

t>z ψdt(αtz). Because P (Wdz ∈ [y
d
, yd]) = 1,

assumption E.1 holds for this Ydz. Because of (B.11), assumption E.2 holds for this Ydz,
i.e. E[Ydz|Z = t] = E[Ydz|Z = z] for any t, z with t 6= z.

To show assumption E.3 also holds for this Ydz, note that, for any z1, z2 with 1 ≤ z1 <

z2 ≤ k,

• If Z < z1, Ydz1 = φdZ(αZz1) ≤ φdZ(αZz2) = Ydz2 because of (B.13) and because
φdZ(α) is increasing in α.

• If Z = z1, Ydz1 =Wdz1 ≤ φdZ(αZz2) = Ydz2 because of the definition of φdZ(α).
• If z1 < Z < z2, Ydz1 = ψdZ(αZz1) ≤ WdZ ≤ φdZ(αZz2) = Ydz2 because of the

definition of φdZ(α) and ψdZ(α).
• If Z = z2, Ydz1 = ψdZ(αZz1) ≤WdZ = Ydz2 because of the definition of ψdZ(α).
• If z2 < Z, Ydz1 = ψdZ(αZz1) ≤ ψdZ(αZz2) = Ydz2 because of (B.14) and because
ψdZ(α) is increasing in α.

As a result, Ydz1 ≤ Ydz2 almost surely for any z1 ≤ z2. Moreover, because of (B.10),
αtz = αtz′ for any t, z and z′ with t < min(z, z′) and z∗ ≤ min(z, z′). Because of (B.10)
and (B.12), αtz = 0 for any z∗ ≤ t < z, and αtz = 1 for any t > z ≥ z∗. Given these results,
one can show that for any z′ ≥ z∗, Ydz′ =

∑
t<z∗ φdt(αtz∗) +

∑k
t=z∗ Wdt. This implies that

assumption E.3 also holds. So far, we have shown that Ydz constructed above satisfies
assumption az∗ .

Finally, because E[Ydz] = E[Ydz|Z = z] = E[Wdz|Z = z] and because of (B.8), we know∑
z P (Z = z)E[Ydz] achieves the lower bound in Γd,z. Moreover, because P [Ydz = Y |D =

d, Z = z] = 1, this construction of Ydz is consistent with the data. Combine all the above
results, for an arbitrary d ∈ {0, 1}, we have constructed Ydz which satisfies assumption az∗

and, at the same time,
∑

z P (Z = z)E[Ydz] achieves the lower bound of Γd,z.

Similarly, one can construct Ydz which satisfies assumption az∗ and
∑

z P (Z = z)E[Ydz]

achieves the upper bound of Γd,z, by defining γ′z as follows:

• for z < z∗, let γ′z be the value which solves

min(qdt : t ≥ z) = E[1(D = d)Y |Z = z] + E[1(D 6= d)Y |Z = z]γz
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• for z ≥ z∗, let γ′z be the value which solves

min(qdt : t ≥ z∗) = E[1(D = d)Y |Z = z] + E[1(D 6= d)Y |Z = z]γz

Following the same steps as before except replacing γz with γ′z, one can show that the
constructed Ydz satisfies E.1-E.3 and

∑
z P (Z = z)E[Ydz] achieves the upper bound of Γd,z.

Taking convex combinations of the constructions which achieve the upper and lower
bound, every point in Γd,z can be achieved under assumption E.1-E.3. This completes the
proof. �

Proof of Lemma 6. Suppose E.1 and E.2 hold. For any z ∈ {1, 2, ..., k} and any d ∈ {0, 1},
we have

1(Z = z,D = d)Y+1(Z 6= z or D 6= d)y
d
≤ Ydz ≤ 1(Z = z,D = d)Y+1(Z 6= z or D 6= d)yd

Therefore, q
dz

≤ E[Ydz|Z = z] ≤ qdz. Because of E.2, this implies that q
dz

≤ E[Ydz] ≤ qdz.
As a result, E[Y d] ≤

∑
z P (Z = z)EYdz ≤ E[Y d], which proves that ΘI ⊆

[
E[Y 1], E[Y 1]

]
×[

E[Y 0], E[Y 0]
]
. Moreover, when P

(
Y ∈ [y

d
, yd]|D = d

)
= 1 for any d ∈ {0, 1} fails to hold,

E.1 will fail to hold. Hence, ΘI 6= ∅ only if P
(
Y ∈ [y

d
, yd]|D = d

)
= 1 for any d ∈ {0, 1}.

Suppose that P
(
Y ∈ [y

d
, yd]|D = d

)
= 1 for any d ∈ {0, 1} hold. Then, we know that for

each z = 1, ..., k and each d, y
d
≤ q

dz
≤ qdz ≤ yd. Construct Ydz as the following for each z

and d:

Ydz = 1(Z = z,D = d)Y + 1(Z = z,D 6= d)y
d
+ 1(Z 6= z)q

dz
.

By construction, θd =
∑

z P (Z = z)EYdz =
∑

z P (Z = z)q
dz

= E[Y d]. Moreover, one can
check that this construction also satisfies assumptions E.1 and E.2. Similarly, for each d,
we can construct Y ′

dz as

Y ′
dz = 1(Z = z,D = d)Y + 1(Z = z,D 6= d)yd + 1(Z 6= z)qdz.

Again, Y ′
dz satisfies assumptions E.1 and E.2 by construction. In addition, θd =

∑
z P (Z =

z)EY ′
dz = E[Y d]. By considering (Y1z, Y

′
0z), (Y ′

1z, Y0z), (Y1z, Y0z) and (Y ′
1z, Y

′
0z), we conclude

that ΘI is nonempty and ΘI =
[
E[Y 1], E[Y 1]

]
×
[
E[Y 0], E[Y 0]

]
. �

B.5. Proof of Proposition 3. Recall the A in the introductory example is the set of all
condition (2.3) indexed by h ∈ H+

1 .

Let us first show Θ∗
I is equal the interval specified in (5.1). By Lemma 4, we know that

for each θ ∈ (γ, γ), there exists some A′ ⊆ A such that ΘI(A
′) = {θ}. By Theorem 3, there
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exists some minimum data-consistent relaxation A∗ such that A′ ⊆ A∗. Since ΘI(A
′) is

singleton, we know ΘI(A
∗) = ΘI(A

′) = {θ}. Therefore, (γ, γ) ⊆ Θ∗
I .

We claim that if P (E[Y |Z] ≤ γ) > 0, then γ ∈ Θ∗
I and there exists some A′ ⊆ A

with ΘI(A
′) = {γ}. To see why it is so, suppose P (E[Y |Z] ≤ γ) > 0. Then, define

S1 = {z : E[Y |Z = z] ≤ γ} and S2 = {z : E[Y |Z = z] ≥ γ}. Since P (E[Y |Z] ≤
γ) > 0, we know P (Z ∈ S1) > 0. Since γ > γ, we know P (Z ∈ S2) > 0. Now, define
h1(z) = 1 (z ∈ S1) /P (Z ∈ S1) and h2(z) = 1(z ∈ S2)/P (Z ∈ S2). Then, Eh1(Z) = 1,
Eh2(Z) = 1, E[h1(Z)Y ] ≤ γ and E[h2(Z)Y ] ≥ γ. Therefore, there must exists h as
a convex combination of h1 and h2 such that Eh(Z) = 1 and E[h(Z)Y ] = γ. Hence,
γ ∈ Θ̃(h) and Θ̃(h) ∩ (−∞, γ) = ∅. Moreover, for each i = 1, 2, ..., construct hi(z) as
hi(z) = 1(E[Y |Z = z] ∈ [γ, γ + 1/i]). By the definition of γ, we know Ehi(Z) > 0 for each
i ≥ 1. Note that the identified set of (2.3) of hi, Θ̃(hi) is

[
E[hi(Z)Y ]

Ehi(Z)
,
E[hi(Z)Y ]

Ehi(Z)

]
.

Because E[Y |Z] ≤ E[Y |Z] almost surely, the law of iterated expectation implies that γ ∈
Θ̃(hi). Moreover, by construction, for any θ > γ, θ /∈ ∩iΘ̃(hi). Therefore, if we define
H′ = {hi : i ≥ 1} ∪ {h}, we have ∩h∈H′Θ̃(h) = {γ}. This implies that γ ∈ Θ∗

I and there
exists some A′ ⊆ A with ΘI(A

′) = {γ}.

Next, we claim that if P (E[Y |Z] ≤ γ) > 0, then Θ∗
I ∩ (−∞, γ) = ∅. To see this, note

that Lemma 3 implies that for any a ∈ A, ΘI(a) ∩ [γ, γ] 6= ∅. Let A′ be an arbitrary
minimum data-consistent relaxation A′ of A. Because Assumption 2 holds in this example,
the preceding result implies that for any minimum data-consistent relaxation A′ of A, we
know ΘI(A

′) ∩ [γ, γ] 6= ∅. Our claim will be verified if we can prove ΘI(A
′) ∩ (−∞, γ) = ∅.

Suppose not, i.e suppose ΘI(A
′)∩(−∞, γ) 6= ∅. Because ΘI(A

′) is a closed interval, the fact
that ΘI(A

′) ∩ [γ, γ] 6= ∅ implies that γ ∈ ΘI(A
′). Because we’ve proven that ∩h∈H′Θ̃(h) =

{γ}, and because A′ is a minimum data-consistent relaxation, we know ΘI(A
′) = {γ} which

leads to contradiction.

Next, we claim that if P (E[Y |Z] ≤ γ) = 0, then Θ∗
I ∩ (−∞, γ] = ∅. To see this,

note that P (E[Y |Z] ≤ γ) = 0 implies P (E[Y |Z] > γ) = 1. Therefore, for any h ∈ H+
1 ,
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E[h(Z)(θ − Y )] ≥ 0 implies that

E[h(Z)(θ − Y )] ≥ 0

⇒ E[h(Z)Y ] ≤ E[h(Z)]θ

⇔ E[h(Z)E[Y |Z]] ≤ E[h(Z)]θ

⇒ E[h(Z)]γ < E[h(Z)]θ

where the last inequality follows from the fact that P (E[Y |Z] > γ) = 1. Therefore, we
know for any h ∈ H+

1 , Θ̃(h) ∩ (−∞, γ] = ∅. This implies Θ∗
I ∩ (−∞, γ] = ∅.

Following similar steps as above, we can also prove the following results:

• If P (E[Y |Z] ≥ γ) > 0, then γ ∈ Θ∗
I and there exists some A′ ⊆ A with ΘI(A

′) =

{γ}.
• If P (E[Y |Z] ≥ γ) > 0, then Θ∗

I ∩ (γ,+∞) = ∅.
• If P (E[Y |Z] ≥ γ) = 0, then Θ∗

I ∩ [γ,+∞) = ∅.

Combining these results and that (γ, γ) ⊆ Θ∗
I , we conclude that Θ∗

I is equals to the
interval specified in (5.1).

Appendix C. Proofs for Additional Results

C.1. Proof for Proposition 4. We need to verify that the C constructed in (A.3) satisfies
all three requirements in Assumption 3.

First, we are going to show that ∀A′ ∈ C , A′ is data-consistent and consists of finite
elements in A. Fix an arbitrary A′ ∈ C . By the construction of C , A′ only contains one
element in A: (A.2) holds for some w = hz,ε ∈ W∗. By assumption, there exists some
θ ∈ Θ such that E[m(X; θ)|Z] ≤ 0 for all most every Z satisfying ‖Z − z‖ ≤ δ(z). This
implies that this θ must also satisfy (A.2) with w = hz,ε for all 0 < ε < δ(z). This proves
ΘI(A

′) 6= ∅.

Second, we need to prove that ΘI(∪A′∈CA
′) = ΘI(A). Because W∗ ⊆ W+

1 , we know
∪A′∈CA

′ ⊆ A so that ΘI(∪A′∈CA
′) ⊇ ΘI(A). Hence, we only need to show ΘI(∪A′∈CA

′) ⊆
ΘI(A). By assumption, there exists a function g(z; θ) such that (i) for every θ ∈ Θ,
E[m(X,Z; θ)|Z] = g(Z; θ) almost surely; (ii) g(z; θ) is continuous in z for any given θ; (iii)
g(z; θ) is continuous in θ for any given z. Because θ ∈ ΘI(A) if and only if θ satisfy (A.1),
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we know that

θ /∈ ΘI(A) if and only if P (Z ∈ Zθ) > 0 where Zθ := {z ∈ Z : g(z; θ) > 0}.

Fix an arbitrary θ /∈ ΘI(A). Because g(·, θ) is a continuous function of z given θ, Zθ is
an open set of z. Therefore, there must exists some z ∈ Z and ε ∈ (0, δ(z)) such that
{z′ : ‖z′ − z‖ < ε} ⊆ Zθ. As a result, the law of iterated expectation implies that

E[hz,ε(Z)g(Z; θ)] = E[hz,ε(Z)m(X; θ)] > 0.

This means that θ /∈ ΘI(∪A′∈CA
′). Thus, we have proven that θ /∈ ΘI(∪A′∈CA

′) if θ /∈
ΘI(A), which is equivalent to ΘI(∪A′∈CA

′) ⊆ ΘI(A).

Finally, we need to show that ΘI(A
′) is compact for any A′ ∈ C . Fix an arbitrary

A′ ∈ C . By the construction of C , A′ only contains one element in A: (A.2) holds for some
w ∈ W∗. Define κ(θ) := E[w(Z)g(Z; θ)]. Because g(z; θ) is continuous in θ for any given
z, and because, by assumption, supθ∈Θ ‖g(z; θ)‖ = supθ∈Θ ‖E[m(X; θ)|Z = z]‖ ≤ γ(z) and
E|γ(Z)| <∞, and because w(·) is a bounded function, the dominated convergence theorem
implies that κ(θ) is a continuous at any θ ∈ Θ. The law of iterated expectations implies
that E[w(Z)m(X; θ)] = E[w(Z)g(Z; θ)] =: κ(θ). Therefore, ΘI(A

′) = {θ ∈ Θ : κ(θ) ≤ 0}.
Because κ is continuous in θ, we know ΘI(A

′) is a closed set. Because Θ is compact by
assumption, ΘI(A

′) is compact.

C.2. Proof of Proposition 5. We need to verify that C constructed in (A.5) satisfies all
three requirements in Assumption 3

First, we are going to show that ∀A′ ∈ C , A′ is data-consistent and consists of finite
elements in A. Fix an arbitrary A′ ∈ C . By the construct of C in (A.5), A′ is a singleton
set which only contains one element in A: (A.4) holds for some K ⊆ Y. If K = Y, (A.4)
holds for any θ ∈ Θ because L(K,X; θ) = 1 almost surely in this case. If K = ∅, (A.4)
holds for any θ ∈ Θ because PF (Y ∈ K|X) = 0 almost surely in this case.

If K ( Y and K 6= ∅, pick an arbitrary y′ ∈ Y\K. By (L5.C1), we know infx∈X P (Y =

y′|X = x) > 0. Therefore, we know

sup
x∈X

PF (Y ∈ K|X = x) = 1− inf
x∈X

PF (Y /∈ K|X = x) ≤ 1− inf
x∈X

PF (Y = y′|X = x) < 1
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On the other hand, pick an arbitrary y′′ ∈ K, (L5.C2) implies that there exists some
sequence θk ∈ Θ such that

inf
x∈X

L({y′′}, x; θk) → 1 as k → ∞.

Therefore, there must exist some θ∗ ∈ Θ such that infx∈X L({y′′}, x; θ∗) ≥ supx∈X PF (Y ∈
K|X = x). This implies that

sup
x∈X

PF (Y ∈ K|X = x) ≤ inf
x∈X

L({y′′}, x; θ∗) ≤ inf
x∈X

L(K,x; θ∗)

the last equality hold because y′′ ∈ K implies that L({y′′}, x; θ∗) ≤ L(K,x; θ∗) for any x.
The above inequality implies that θ∗ ∈ ΘI(A

′), because

PF (Y ∈ K|X) ≤ sup
x∈X

PF (Y ∈ K|X = x) ≤ inf
x∈X

L(K,x; θ∗) ≤ L(K,X; θ∗) almost surely

Hence, ΘI(A
′) is nonempty. That is, we have shown that every A′ ∈ C is data-consistent.

Second, we need to prove ΘI(∪A′∈CA
′) = ΘI(A). This is trivial, because ∪A′∈CA

′ = A

by the construction of C in (A.5).

Finally, because Y is a finite set, A is a finite set. By the construction of C in (A.5), C

is also a finite set. This completes the proof.

C.3. Proof for Theorem 3. Let us start with two trivial cases: (i) suppose ΘI(A
′) = ∅

for any A′ ⊆ A. Then, ∅ is the minimum data-consistent relaxation in this case; (ii) suppose
ΘI(A) 6= ∅. Then, A is the minimum data-consistent relaxation. Next, let us consider the
following nontrivial case.

Suppose ΘI(A) = ∅ and there exits some A0 ⊆ A such that ΘI(A0) 6= ∅. We are going
to show that there exists some minimum data-consistent relaxation Ã such that A0 ⊆ Ã.
Let’s consider two cases:

Case 1: (T3.C1) holds. Because ΘI(A) = ∅ while ΘI(A
′) 6= ∅, A0 cannot be A so that

A\A0 is nonempty. Because of (T3.C1), A\A0 is a finite set. Enumerate it as A\A0 =

{a1, ..., ak}. Construct A1, ..., Ak iteratively as follows: For any i = 1, ..., k, define Ai =

Ai−1 ∪ {ai} if ΘI(Ai−1 ∪ {ai}) 6= ∅, and define Ai = Ai−1 if otherwise. By construction,
for each i = 1, ..., k, ΘI(Ai) 6= ∅. Moreover, if ai /∈ Ak, we must have ΘI(Ak ∪ {ai}) = ∅
because ΘI(Ai ∪ {ai}) = ∅ and ΘI(Ak ∪ {ai}) ⊆ ΘI(Ai ∪ {ai}). Therefore, Ak must be a
minimum data-consistent relaxation, and A0 ⊆ Ak by construction.
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Case 2: (T3.C2) holds. Define A = {A′ : A′ ⊆ A, A0 ⊆ A′ and ΘI(A
′) 6= ∅}. A

is not empty because A0 ∈ A . We are going to prove that there exists some minimum
data-consistent relaxation Ã such that A0 ⊆ Ã, which is equivalent to show the following
statement:

A has a maximum element Ã ∈ A in terms of partial order ⊆, i.e. there is no A′ ∈ A such that Ã ( A′.

(C.1)
To prove (C.1), we are going to invoke Zorn’s lemma. Let Z be an arbitrary nonempty
chain in A in terms of ⊆. Because Z is a chain, for any A′ and A′′ in Z , there is either
A′ ⊆ A′′ or A′′ ⊆ A′, so that there is either ΘI(A

′) ⊆ ΘI(A
′′) or ΘI(A

′′) ⊆ ΘI(A
′). Define

A† = ∪A′∈ZA
′. Because of (T3.C2), ΘI(A

†) = ∩A′∈Z ΘI(A
′). By Lemma 1, ΘI(A

†) is
nonempty. This implies that A† ∈ A . Moreover, by construction, A′ ⊆ A† for any A′ ∈ Z .
Therefore, we have shown that there exists an upper bound A† in A in terms of partial
order ⊆ for any nonempty chain Z in A . Zorn’s lemma then implies (C.1).

C.4. Proof of Theorem 4. We first prove the first part of the theorem.

(T2.C1) ⇒ (T2.C2): Construct A∗ = {a ∈ A : ΘI(a) 6= ∅}. We are going to show that
A∗ is the only minimum data-consistent relaxation. For any a /∈ A∗, we have ΘI(a) = ∅ by
the construction of A∗. Hence, for any a /∈ A∗, ΘI(A

∗ ∪ {a}) = ∅ because ΘI(A
∗ ∪ {a}) ⊆

ΘI(a). Moreover, (T2.C1) implies that ΘI(A
∗) 6= ∅ because every a ∈ A∗ is data-consistent.

Therefore, A∗ is a minimum data-consistent relaxation.

Suppose, for the purpose of contradiction, there exists another minimum data-consistent
relaxation A′ different from A∗. Because A′ is a minimum data-consistent relaxation, there
is no A′ ⊆ A∗. Therefore, A′\A∗ must be nonempty. Pick an arbitrary a′ ∈ A′\A∗.
Because a′ /∈ A∗, we know ΘI(a

′) = ∅ by the construction of A∗. Therefore, ΘI(A
′) = ∅

because ΘI(A
′) ⊆ ΘI(a

′). This contradicts to the fact that A′ is a minimum data-consistent
relaxation.

If either (T3.C1) or (T3.C2) holds, (T2.C2) ⇒ (T2.C1): Suppose either (T3.C1) or
(T3.C2) hold. Let A∗ denote the unique minimum data-consistent relaxation. First of all,
we are going to prove the following statement:

A∗ = {a ∈ A : ΘI(a) 6= ∅}. (C.2)



56 DISCORDANT RELAXATIONS OF MISSPECIFIED MODELS

Because A∗ is a minimum data-consistent relaxation, ΘI(A
∗) 6= ∅. Because ΘI(A

∗) ⊆ ΘI(a)

for every a ∈ A∗, we know ΘI(a) is nonempty for every a ∈ A∗. This implies that A∗ ⊆
{a ∈ A : ΘI(a) 6= ∅}. To show, A∗ ⊇ {a ∈ A : ΘI(a) 6= ∅}, note that

• when A∗ = A, we have A∗ ⊇ {a ∈ A : ΘI(a) 6= ∅} trivially.
• when A∗ ( A. Pick an arbitrary a′ /∈ A∗. Suppose, for the purpose of con-

tradiciton, ΘI(a
′) 6= ∅. Then, Theorem 3 implies that there exists some mini-

mum data-consistent relaxation Ã with a′ ∈ Ã. Because a′ ∈ Ã and a′ /∈ A∗,
we must have Ã 6= A∗, which contradicts to A∗ being the unique minimum data-
consistent relaxation. Hence, ΘI(a

′) = ∅ for any a′ /∈ A∗, which is equivalent to
A∗ ⊇ {a ∈ A : ΘI(a) 6= ∅}.

This proves (C.2).

Because of (C.2), a ∈ A is data-consistent if and only if a ∈ A∗. Therefore, for any
A′ ⊆ A, all a ∈ A′ are data-consistent if and only if A′ ⊆ A∗. As a result, we can show
(T2.C1) if the following statement is true:

A′ ⊆ A∗if and only if ΘI(A
′) 6= ∅. (C.3)

To see why (C.3) is indeed true, note that

• Because ΘI(A
∗) 6= ∅, and because ΘI(A

∗) ⊆ ΘI(A
′) for any A′ ⊆ A∗, we know

ΘI(A
′) 6= ∅ if A′ ⊆ A∗.

• Fix an arbitrary set A′ with ΘI(A
′) 6= ∅. Because ΘI(A

′) ⊆ ΘI(a) for every a ∈ A′,
we know ΘI(a) 6= ∅ for every a ∈ A′. Because of (C.2), this implies that a ∈ A∗ for
every a ∈ A′, i.e. A′ ⊆ A∗. Thus, we have shown that A′ ⊆ A∗ if ΘI(A

′) 6= ∅.

This completes the proof.

C.5. Proof of Theorem 5. Recall that AR denote the collection of all minimum data-
consistent relaxations. Because either (T3.C1) or (T3.C2) holds, AR is nonempty.

First of all, we are going to prove Θ∗
I is rationalizable. Because Θ∗

I = ∪A′∈AR
ΘI(A

′),
for any minimum data-consitent relaxation Ã, we must have ΘI(Ã) ⊆ Θ∗

I . Becuase AR is
nonempty, we know Θ∗

I is rationalizable.

Second, we are going to prove Θ∗
I is nonconflicting. Fix an arbitrary data-consistent

subset A′ of A. By Theorem 3, there exists a minimum data-consistent relaxation Ã such
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that A′ ⊆ Ã. Because A′ ⊆ Ã, we know ΘI(Ã) ⊆ ΘI(A
′), so that ΘI(A

′) ∩ ΘI(Ã) 6= ∅.
Because Ã ∈ AR and Θ∗

I = ∪
Ã′∈AR

ΘI(Ã
′), we know ΘI(A

′) ∩Θ∗
I 6= ∅.

C.6. Proof for Theorem 6. Suppose the smallest rationalizable and nonconflicting set
exists. Denote it as S∗. We are going to show that S∗ = Θ∗

I when (T6.C1) is true. By
Theorem 5, Θ∗

I is both rationalizable and nonconflicting. Therefore, S∗ ⊆ Θ∗
I . What left to

show is Θ∗
I ⊆ S∗.

Define AR to be the collection of all minimum data-consistent relaxation. Define A1 =

{A′ ∈ AR : ΘI(A
′) ⊆ S∗} and A2 = AR\A1. Because S∗ is rationalizable, there exists some

data-consistent A′ ⊆ A such that ΘI(A
′) ⊆ S∗. By Theorem 3, there exists some Ã ∈ AR

such that A′ ⊆ Ã. Therefore, ΘI(Ã) ⊆ ΘI(A
′) ⊆ S∗. Hence, A1 is not empty.

Because AR = A1 ∪ A2, we know

Θ∗
I =

(
∪A′∈A1ΘI(A

′)
)
∪
(
∪A′∈A2ΘI(A

′)
)
.

Therefore, to show Θ∗
I ⊆ S∗, we only need to show A2 is an empty set. We discuss two

cases:

• Suppose there exists some A∗ ∈ A1 such that ΘI(A
∗) contains at least two different

elements. We are going to show that A2 = ∅ in this case. Suppose, for the purpose
of contradiction, A2 is nonempty. Pick an arbitrary A† within A2. Fix, also, an
arbitrary element a∗ in ΘI(A

∗). Define S′ as follows

S′ =

{
∅ if ΘI(A

∗) ∩ΘI(A
†) 6= ∅

{a∗} if ΘI(A
∗) ∩ΘI(A

†) = ∅

Define S† as

S† := ΘI(A
†) ∪

(
∪A′∈AR

ΘI(A
′)\ΘI(A

∗)
)
∪ S′.

Because ΘI(A
†) ⊆ S†, S† is rationalizable. Because of (T6.C1), ΘI(A

′)\ΘI(A
∗) 6= ∅

for each A′ ∈ AR with ΘI(A
′) 6= ΘI(A

∗), otherwise we would have ΘI(A
′) ( ΘI(A

∗)

for some A′ ∈ AR which violates (T6.C1). As a result, S† ∩ ΘI(A
′) 6= ∅ for any

A′ ∈ AR with ΘI(A
′) 6= ΘI(A

∗). Next, because ΘI(A
†) ∪ S′ and ΘI(A

∗) has
nonempty intersection by the construction of S′, we know that S† ∩ΘI(A

′) 6= ∅ for
any A′ ∈ AR with ΘI(A

′) = ΘI(A
∗). In total, we know S† ∩ ΘI(A

′) 6= ∅ for any
A′ ∈ AR. Because of this result, and because, by Theorem 3, for any A⊆ A, there
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exists some A′ ∈ AR such that ΘI(A
′) ⊆ ΘI(A

′′), we know S† is nonconflicting. So
far, we have shown that S† is both rationalizable and nonconflicting.

Then, we claim that there is no ΘI(A
∗) ⊆ S†. By the construction of S†, S† ∩

ΘI(A
∗) = (ΘI(A

†) ∪ S′) ∩ΘI(A
∗). So, this claim is also equivalent to that there is

no ΘI(A
∗) ⊆ ΘI(A

†) ∪ S′. To see why this claim is true, discuss to cases:
– when ΘI(A

∗) ∩ΘI(A
†) 6= ∅, S′ = ∅. Because of (T6.C1), there is no ΘI(A

∗) (
ΘI(A

†). Because A∗ ∈ A1 and A† ∈ A2, there is no ΘI(A
∗) = ΘI(A

†). In
total, there is no ΘI(A

∗) ⊆ ΘI(A
†). Because S′ = ∅, we know there is no

ΘI(A
∗) ⊆ ΘI(A

†) ∪ S′ is this case.
– when ΘI(A

∗) ∩ ΘI(A
†) = ∅, (ΘI(A

†) ∪ S′) ∩ ΘI(A
∗) = S′ ∩ ΘI(A

∗) = {a∗}.
Because ΘI(A

∗) contains at least two different elements, there is no ΘI(A
∗) ⊆

S′, which implies there is no ΘI(A
∗) ⊆ ΘI(A

†) ∪ S′ is this case.
In total, we have verify the claim that there is no ΘI(A

∗) ⊆ S†. However, because
S∗ is the smallest rationalizable and nonconflicting set, and because S† is both
rationalizable and nonconflicting, there must be S∗ ⊆ S†, which further implies
ΘI(A

∗) ⊆ S† because A∗ ∈ A1. This leads to the contradiction. As a result, A2

must be empty in this case.
• Suppose that, for any A′ ∈ A1, ΘI(A

′) only contains one element. We are going
to show that A2 = ∅ in this case. Suppose, for the purpose of contradiction, that
A2 is nonempty. By the construction of A1 and A2, there is no ΘI(A1) = ΘI(A2)

for any A1 ∈ A1 and A2 ∈ A2. Because of (T6.C1), there is no ΘI(A1) ( ΘI(A2)

for any A1 ∈ A1 and A2 ∈ A2. In total, there is no ΘI(A1) ⊆ ΘI(A2) for any
A1 ∈ A1 and A2 ∈ A2. Because ΘI(A

′) only contains one element for any A′ ∈ A1,
for any S ⊆ Θ, ΘI(A

′) ∩ S 6= ∅ would mean ΘI(A
′) ⊆ S. Therefore, we must have

ΘI(A
′) ∩ΘI(A

′′) = ∅ for any A′ ∈ A1 and A′′ ∈ A2. Define S1 as

S1 = ∪A′∈A1ΘI(A
′).

And, define S2 as

S2 =
(
∪A′∈A2ΘI(A

′)
)
∩ S∗.

Because ΘI(A
′)∩ΘI(A

′′) = ∅ for any A′ ∈ A1 and A′′ ∈ A2, S1∩S2 = ∅. Moreover,
because S∗ is nonconflicting, S∗ ∩ ΘI(A

′) 6= ∅ for each A′ ∈ A2. Therefore, S2 ∩
ΘI(A

′) 6= ∅ for any A′ ∈ A2. This implies that S1 ∪ S2 is nonconflicting. Moreover,
because A1 is nonempty, S1 is rationalizable so that S1 ∪ S2 is also rationalizable.
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As a result, S1 ∪ S2 is both nonconflicting and rationalizable. Next, define

S3 =
(
∪A′∈A2ΘI(A

′)
)
\S∗.

By the definition of A1, S1 ⊆ S∗. Therefore, S1∩S3 = ∅. Also, we have S2∩S3 = ∅
by the construction of S2 and S3. In addition, by the construction of A2, for each
A′ ∈ A2, ΘI(A

′)\S∗ 6= ∅. Therefore, S3 ∩ ΘI(A
′) 6= ∅ for each A′ ∈ A2. This

implies that S1 ∪ S3 is nonconflicting. Moreover, because A1 is nonempty, S1 is
rationalizable so that S1 ∪ S3 is also rationalizable. As a result, S1 ∪ S3 is both
nonconflicting and rationalizable.

So far, we have shown that S1∪S2 is both rationalizable and nonconflicting. And,
we have shown that S1∪S3 is both rationalizable and nonconflicting. Because S∗ is
the smallest rationalizable and nonconflicting set, we must have S∗ ⊆ S1 ∪ S2 and
S∗ ⊆ S1 ∪ S3. In other words,

S∗ ⊆ (S1 ∪ S2) ∩ (S1 ∪ S3)

However, because S1 ∩ S2 = ∅, S1 ∩ S3 = ∅ and S2 ∩ S3 = ∅, we know (S1 ∪ S2) ∩
(S1 ∪ S3) = S1. As a result, we have

S∗ ⊆ S1 (C.4)

We have already shown that we must have ΘI(A
′)∩ΘI(A

′′) = ∅ for any A′ ∈ A1 and
A′′ ∈ A2. Therefore, S1 ∩ ΘI(A

′′) = ∅ for any A′′ ∈ A2. Because A2 is nonempty,
this means that S1 is not nonconflicting. Because of (C.4), this implies that S∗ is
not nonconflicting, which contradicts to the fact that S∗ is both rationalizable and
nonconflicting.

We have shown that A2 must be empty in both of the above cases. This completes the
proof.

C.7. Proof for Theorem 7. By Theorem 5, Θ∗
I is both rationalizable and nonconflicting.

If we could show Θ∗
I ⊆ S for an arbitrary set S that is both rationalizable and nonconflicting,

then Θ∗
I would be the smallest rationalizable and nonconflicting set. Fix an arbitrary set S

that is both rationalizable and nonconflicting.

We first prove that (T7.C1) implies Θ∗
I ⊆ S. Because S is rationalizable, there exists

some data-consistent A′ ⊆ A such that ΘI(A
′) ⊆ S. By Theorem 3, there exits a minimum
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data-consistent relaxation Ã such that A′ ⊆ Ã. Because A′ ⊆ Ã, we know ΘI(Ã) ⊆ ΘI(A
′).

Because of (T7.C1), Θ∗
I = ΘI(Ã). Therefore, Θ∗

I = ΘI(Ã) ⊆ ΘI(A
′) ⊆ S.

Next, we prove that (T7.C2) implies Θ∗
I ⊆ S. Let AR denote the collection of all minimum

data-consistent relaxation. Because S is nonconflicting, we must have ΘI(A
′) ∩ S 6= ∅

for each A′ ∈ AR. For each A′ ∈ AR, because ΘI(A
′) only contains one element under

(T7.C2), ΘI(A
′)∩S 6= ∅ is equivalent to ΘI(A

′) ⊆ S. As a result, we know Θ∗
I ⊆ S because

Θ∗
I = ∪A′∈AR

ΘI(A
′).

C.8. Proof for Theorem 8. Let AR be the set of all minimum data-consitent relax-
ations. Suppose for each Ã ∈ AR, ΘI(Ã) is singleton. Then, we want to show that
Θ∗

I = ∪
Ã∈AR

ΘI(Ã) is a subset of Θ†
I no matter which type of relaxation is chosen by

the researcher.

To show this result, pick an arbitrary Ã ∈ AR. Define δ∗ : A→ [0, 1] as follows: δ∗(a) = 0

if a ∈ Ã, and δ∗(a) = 1 if a /∈ Ã. By construction, ΘI(A(δ
∗)) = ΘI(Ã) only contains one

element. Therefore, we must have δ∗ ∈ FF , because there cannot exist some δ < δ∗ with
ΘI(A(δ)) 6= ∅ and ΘI(A(δ)) ( ΘI(A(δ

∗)). Because this holds for any Ã ∈ AR, we know
Θ∗

I ⊆ Θ†
I .


