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Abstract

Our confidence set quantifies the statistical uncertainty from data-driven group
assignments in grouped panel models. It covers the true group memberships jointly
for all units with pre-specified probability and is constructed by inverting many
simultaneous unit-specific one-sided tests for group membership. We justify our
approach under N,T → ∞ asymptotics using tools from high-dimensional statistics,
some of which we extend in this paper. We provide Monte Carlo evidence that the
confidence set has adequate coverage in finite samples. An empirical application
illustrates the use of our confidence set.
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1 Introduction
Clustering units into discrete groups is one of the oldest problems in statistics (Pearson
1896). It has received interest in the recent econometric literature on grouped panel
models (Hahn and Moon 2010; Lin and Ng 2012; Bonhomme and Manresa 2015; Sarafidis
and Weber 2015; Ando and Bai 2016; Vogt and Linton 2017; Su, Shi, and Phillips
2016; Wang, Phillips, and Su 2018; Vogt and Schmid 2021; Lu and Su 2017; Gu and
Volgushev 2019; Liu et al. 2020; Wang and Su 2021; Mammen, Wilke, and Zapp 2022;
Mehrabani 2022; Mugnier 2022; Chetverikov and Manresa 2022; Yu, Gu, and Volgushev
2023; Mugnier 2023).

In grouped panel models, a data-driven clustering algorithm is used to estimate a latent
group structure. As statistical procedures, clustering algorithms suffer from sampling
errors and produce a noisy version of the true group structure. The existing literature
gives little guidance on how to assess clustering uncertainty in a given application.
Inferential theory for grouped panel models has focused on group characteristics, but is
underdeveloped for assessing the uncertainty about individual group memberships (see
e.g. McLachlan and Peel 2004).

In this paper, we quantify the statistical uncertainty about the true group memberships
in a grouped panel model. As far as we know, we are the first to propose and justify a
rigorous frequentist method to evaluate clustering uncertainty.

In grouped panel models, individual regression curves are heterogeneous and exhibit a
grouped pattern. All units belonging to the same group face the same regression curve.
Group memberships are unobserved and estimated by a clustering algorithm. Clustering
uncertainty means that the algorithm may misclassify some units and assign them an
incorrect regression curve.

We propose a confidence set for group membership that quantifies clustering uncertainty
jointly for all units in the panel. For a panel of N units, an element of a joint confidence
set is an N -dimensional vector that specifies a group assignment for every unit. Our
confidence set gathers all N -dimensional vectors of group assignments that are “not ruled
out by the data” and is guaranteed to contain the vector of the true group memberships
with a pre-specified probability, say 95%.
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The latent groups in a grouped panel model have no natural labels and can only be
identified up to a permutation. For notational convenience, we write our confidence set
using an arbitrary ordering of the groups. We interpret this as a shorthand for linking
units to regression curves. For example, suppose that there is a “group 1” with a slope
coefficient of 0.2 and a “group 2” with a slope coefficient of 0.8. If our confidence set
rules out that unit i belongs to “group 1”, then we take this to mean that unit i does
not face a slope coefficient of 0.2. This interpretation does not depend on the ordering
of the groups. Similarly, if our confidence set determines that units i and j belong to
different groups, then we take this to mean that they face different slope coefficients.

This interpretation of a confidence set assumes that the data are rich enough to recover
the group-specific coefficients. If the data do not provide any clue about the group-specific
coefficients, then we are not able to statistically examine group memberships either. On
the other hand, if the data are known to be “very rich” and group memberships are
guaranteed to be estimated correctly, then our confidence set is not needed.

Settings between these two extreme scenarios are relevant in practice. In Monte
Carlo experiments calibrated to their empirical application, Bonhomme and Manresa
(2015) find that units are frequently misclassified, whereas group-specific coefficients are
estimated precisely (see Table S.III in their supplemental appendix). Dzemski and Okui
(2021) provide a theoretical framework to explain this observation.1 They assume that
unit i faces an error term with unit-specific variance σ2

i . Units with small σi are classified
reliably. Units with large σi are potentially misclassified. Dzemski and Okui (2021) show
that the group-specific coefficients can be estimated consistently if the proportion of
potentially misclassified units is sufficiently small. This is the main setting that we have
in mind for applications of our confidence set. It is less restrictive than assuming, as
is typically done in the literature, that both group-specific coefficients and all group
assignments can be reliably estimated.

Our empirical application illustrates how our confidence set provides new economic
insights. We follow Wang, Phillips, and Su (2019) who estimate a panel model that allows
the effect of a minimum wage on unemployment to vary between US states, depending
on the assignment of each state to one of four latent groups. This group assignment is
potentially estimated with error. We use our confidence set to identify, up to a small
pre-specified error probability, states without clustering uncertainty. In terms of the
framework discussed above, these are states with low values of σi. For these states, we

1For mathematical convenience, the theoretical analysis of clustered panel models often proceeds under
assumptions that rule out any misclassification in the asymptotic limit (see e.g. Bonhomme and
Manresa 2015; Vogt and Linton 2017).
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can identify the state-specific effects of the minimum wage.
Our confidence set can also be used to enhance a plot of the estimated groups by

adding information about clustering uncertainty. We illustrate this in our empirical
application. Providing a plot of the estimated groups is standard practice.2 This is
true even in applications where the group structure is considered merely a nuisance
parameter.3

An alternative to our frequentist approach is Bayesian inference. Fully parametric
grouped-panel models are finite mixtures models that can be estimated by the EM
algorithm (Dempster, Laird, and Rubin 1977). The E-step of the EM algorithm computes
unit-wise posterior probabilities for group membership. These are valid if the units
in the panel are independently drawn from the assumed parametric distribution. Our
frequentist approach is more general. We do not assume a parametric distribution of
the error term and show that our approach is valid for error distributions in a broad
nonparametric class. We also allow for cross-sectional dependence, non-random patterns
of heteroscedasticity, and non-random group assignments. Another advantage of our
procedure is that it allows for joint inference on the N -dimensional vector of all group
memberships, whereas unit-wise posterior probabilities only address uncertainty about
the group membership of a single unit.

Quantifying the uncertainty about the true group structure is a high-dimensional infer-
ence problem. The N -dimensional vector of true group memberships is high-dimensional
since its size grows as N → ∞. To construct a confidence set for this high-dimensional
parameter, we invert a test of the many moment inequalities that characterize group mem-
berships. Testing many moment inequalities is the problem considered in Chernozhukov,
Chetverikov, and Kato (2019). Their test is based on a single test statistic, whereas
ours combines many simultaneous group membership tests for individual units. The
advantage of our approach is that it can be inverted without running a computationally
infeasible exhaustive search over the space of all partitions.

Our confidence set is valid in the presence of weak-dependence and serial correlation,
whereas Chernozhukov, Chetverikov, and Kato (2019) assume independence over time.
We account for serial correlation by using a heteroskedasticity–and–autocorrelation–robust
(HAC) variance estimator (Andrews 1991; Newey and West 1987) when constructing the

2For example, see Figure 2 in Wang, Phillips, and Su (2019), Figure 2 in Bonhomme and Manresa
(2015) and Figure 6 in Wang, Phillips, and Su (2018).

3For example, time-varying unobserved heterogeneity can be controlled by imposing a latent group
structure with group-specific time fixed-effects. In this context, the heterogeneity in the fixed-effect
is a nuisance parameter similar to the interacted fixed effects in, for example, Moon and Weidner
(2023).
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unit-wise test statistics.
The asymptotic analysis of our procedure accounts for the high-dimensional nature

of our setting and allows for weak time-dependence. We build on Chang, Chen, and
Wu (2023) who provide results for HAC estimators and a high-dimensional central limit
theorem for dependent data. Our setting requires extending their approach in different
ways. Specifically, we use a Nasarov-type inequality (Chernozhukov, Chetverikov, and
Kato 2017) to control for the effect of parameter estimation. Moreover, we develop a
regularization scheme for the HAC estimates. This regularization scheme allows us to
control the estimation error in our data-driven critical values by using a comparison
bound based on Li and Shao (2002).

We provide several extensions of our method. First, we suggest alternative critical
values. These are slightly conservative but much easier to compute than our benchmark
critical values. Second, we show that HAC estimation is not needed if there is no serial
correlation. In this case, test statistics based on the usual variance estimators provide
valid confidence sets and are easier to implement than those based on the HAC estimator.
Third, we propose a two-step method, called unit selection, to shrink the cardinality of
the confidence set when there are many units for which clustering uncertainty is low. The
two-step procedure identifies and discards such units. We then construct a confidence
set for the remaining units. The method accounts for errors in the unit selection and
provides a valid confidence set. This additional error control can inflate the confidence
set if unit selection does not eliminate sufficiently many units.

The remainder of this paper is organized as follows. Section 2 introduces the grouped
panel model. Section 3 defines our confidence set for group membership. Section 4
proves the asymptotic validity of our confidence sets. Section 5 discusses the extensions
of our method. Section 6 provides an empirical application. Section 7 presents Monte
Carlo simulations that investigate the validity and power of our confidence set based on
simulation designs inspired by our empirical application. Section 8 concludes.

An R package implementing the methods proposed in this paper is included in the
replication package that is published together with this article.

2 Model
We observe panel data (yit, w

′
it, x

′
it)

′ for units i = 1, . . . , N and time periods t = 1, . . . , T ,
where yit is a scalar dependent variable and wit and xit are covariate vectors. Unit i

belongs to group g0i ∈ G = {1, . . . , G}. Group memberships are unobserved. The data
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are generated from the model

yit = w′
itθ

w + x′
itθg0i + σivit, (1)

where vit is a noise term with variance one and is potentially serially correlated, and σi

is a latent heteroscedasticity parameter. The slope coefficient θw on wit is common to all
units. The slope coefficient on xit is group-specific and given by θg for units i belonging
to group g ∈ G.

We assume that the regressors (w′
it, x

′
it)

′ are uncorrelated with the contemporaneous
error term σivit,

E [(x′
it, w

′
it)

′σivit] = 0. (2)

This assumption does not rule out predetermined regressors such as lagged dependent
variables.

Different estimation strategies for estimating the common and group-specific coef-
ficients (θw and θg) have been proposed in the literature. For example, Bonhomme
and Manresa (2015) estimate slope coefficients θ̂w, θ̂1, . . . , θ̂G and group memberships
ĝ1, . . . , ĝN simultaneously by solving the least-squares problem

(θ̂w, θ̂1, . . . , θ̂G, ĝ1, . . . , ĝN) = argminθw,θ1,...,θG
g1,...,gN∈G

1

NT

N∑
i=1

T∑
t=1

(yit − w′
itθ

w − x′
itθgi)

2

via the k-means algorithm. The choice of squared loss is justified under the orthogonality
condition (2). The estimators in Su, Shi, and Phillips (2016) and Wang, Phillips, and
Su (2018) augment a squared loss function by a penalization scheme that imposes the
grouped structure.

We assume that the number of groups G is either pre-specified or consistently estimated.
Consistent estimates of G can be obtained, for example, by using the information criteria
proposed by Bonhomme and Manresa (2015) or Su, Shi, and Phillips (2016) or by
employing the testing procedure in Lu and Su (2017). For simplicity of exposition, we
describe our procedure for known G. Our procedure remains valid if G is replaced by a
consistent estimator.

Remark 1. For ease of exposition, we describe our procedures for balanced panels. The
extension to unbalanced panels is straightforward.
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3 Confidence set for group membership
This section describes our confidence set for group membership. First, we define the
formal requirements for an asymptotically valid confidence set for group membership.
Second, we show that each group allocation corresponds to a set of moment inequalities
and that a confidence set can be obtained by inverting a test of these inequalities. Finally,
we introduce the test statistic and critical values.

3.1 Definition

A joint confidence set of group membership at confidence level 1− α is a random set Ĉα

of vectors in GN that satisfies

lim inf
N,T→∞

inf
P∈PN

P
({

g0i
}
1≤i≤N

∈ Ĉα

)
≥ 1− α, (3)

where PN is a class of data-generating processes. If we observe {gi}1≤i≤N ∈ Ĉα, then the
group structure that assigns unit i = 1, . . . , N to group gi is not ruled out by the data at
confidence level 1− α. Inequality (3) ensures that the confidence set is asymptotically
valid in the sense that it rules out the population partition at most with probability α.

We impose uniform validity over sequences PN on PN . Changing the data-generating
process along the asymptotic sequence allows for σi that diverge as N → ∞ for some units
i, rendering these units potentially misclassified in the limit. Data-generating processes
that are constant in N cannot model asymptotic clustering uncertainty (Dzemski and
Okui 2021).

We construct our joint confidence set by combining unit-wise marginal confidence sets.
This approach is computationally simple and can be tabulated and visualized easily. The
marginal confidence set for unit i is computed by inverting a test for group membership

Ĉα,N,i =
{
g ∈ G : T̂i(g) ≤ ĉα,N,i(g)

}
∪ {ĝi} ,

where ĝi denotes an estimator of the group membership of unit i, T̂i(g) is a test statistic
and ĉα,N,i is a unit-specific and data-dependent critical value. Test statistic and critical
value are defined in Sections 3.3 and 3.4, respectively.

By explicitly adding ĝi to the marginal confidence set, we guarantee that the joint
confidence set is never empty and can always be interpreted as containing the estimated
group structure padded by a margin of error. For the typical unit, inverting the test
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already includes the unit’s estimated group membership in its marginal confidence set.4

Our joint confidence set is given by the Cartesian product of the unit-wise confidence
sets:

Ĉα = ×
1≤i≤N

Ĉα,N,i.

We use Bonferroni correction to control dependence between units and compute each
unit-wise marginal confidence set at a nominal level of 1− α/N .

In principle, it is possible to construct a joint confidence set directly without first
computing unit-wise confidence sets. This can be accomplished by inverting a joint
test for group membership. Testing group memberships for all groups simultaneously
avoids the possible power loss from Bonferroni correction. However, inverting the test
to obtain the confidence set requires testing all GN possible groupings. This task is
computationally infeasible unless N is very small. In contrast, our approach carries out
only G×N tests and is feasible even if N is large.

An additional advantage of Bonferroni correction is that it produces confidence sets that
are easy to report and interpret. The joint confidence set can be fully described by report-
ing the marginal unit-wise confidence sets without enumerating all N -dimensional vectors
contained in Ĉα. Interpreting a potentially large collection of such high-dimensional
vectors would be challenging.

The Bonferroni correction renders our confidence set robust to any kind of cross-
sectional dependence. This correction is only minimally conservative if the unit-wise
confidence sets are approximately independent, i.e., if

P
(
{g0i }1≤i≤N ∈ Ĉα

)
=
∏

1≤i≤N

P
(
g0i ∈ Ĉα,N,i

)
+ p∆, (4)

where p∆ is a small number. Approximate independence holds if units are cross-sectionally
independent and N and T are large enough to estimate the group-specific coefficients
precisely.

Theorem 1. Let 0 < α < 1 and suppose that the unit-wise confidence sets satisfy

P
(
g0i ∈ Ĉα,N,i

)
= 1− α/N (5)

4In our simulations, we find that the probability of the test rejecting the estimated group membership
to be very close to, but not equal to, zero (see Supplemental Material C.2).

8



and that condition (4) holds. Then

α− α2

2
− p∆ ≤ P

(
{g0i }1≤i≤N /∈ Ĉα

)
≤ α− α2

2

(
1− α

3
+

1

N

(
1− α

N

)−2
)
+ p∆.

For example, suppose that N ≥ 8 and 1− α = 0.9 and that conditions (4) and (5) hold
with p∆ ≈ 0. Theorem 1 implies that the Bonferroni correction inflates the joint coverage
probability by only about 0.5-0.55%.

Remark 2. Our approach can be adapted to produce joint confidence sets for subsets of
units. For 1 ≤ K < N , suppose that the researcher is only interested in the K first units.
A joint confidence set for these units is given by

×
1≤i≤K

{
g ∈ G : T̂i(g) ≤ ĉα,K,i(g)

}
∪ {ĝi} .

For inference on the first K units, this confidence set is more powerful than the joint
confidence set for all units. This is because less Bonferroni correction is needed when
testing fewer units and therefore ĉα,K,i(g) < ĉα,N,i(g) (see the definition of the critical
values in Section 3.4 below).

Remark 3. For applications where we are interested in inference on a single pre-specified
unit i, a confidence set for the group membership of i is given by Ĉα,1,i.

3.2 Motivation of our test of group membership

Our approach to testing the group membership hypothesis H0 : g
0
i = g is based on

dit(g, h) =
1

2

(
(yit − w′

itθ
w − x′

itθg)
2 − (yit − w′

itθ
w − x′

itθh)
2
+ (x′

it (θg − θh))
2
)
.

The first two terms on the right-hand side are squared residuals representing the fit of
assigning unit i to group g and the fit of assigning unit i to group h, respectively. The
third term applies moment re-centering and ensures that dit(g, h) has mean zero under
the null hypothesis. This can be seen by re-writing dit(g, h) as

dit(g, h) = −σivitx
′
it (θg − θh) +

(
θg − θg0i

)′
xitx

′
it (θg − θh) .

The first term on the right-hand side has mean zero under the orthogonality assump-
tion (2). If the null hypothesis is true, i.e., if g0i = g, then the second term vanishes and∑T

t=1 E[dit(g, h)] = 0 for all h 6= g.
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If
∑T

t=1 E[xitx
′
it] has full rank and the null hypothesis is false, then

∑T
t=1 E [dit(g, h)] > 0

for some h 6= g. The strict inequality holds because for h = g0i ∈ G \ {g} the second term
in dit(g, h) is a quadratic form with strictly positive mean.

In summary, testing H0 : g
0
i = g is equivalent to testing

H ′
0 :

T∑
t=1

E[dit(g, h)] = 0 for all h ∈ G \ {g}

against

H ′
1 : there exists h ∈ G \ {g} such that

T∑
t=1

E[dit(g, h)] > 0.

This is a one-sided significance test for a vector of moments.

3.3 Test statistic

Our test statistic T̂i(g) for unit i = 1, . . . , N is the maximum of (G−1) statistics D̂i(g, h)

that test a hypothesized group membership g against alternative group assignments
h 6= g:

T̂i(g) = max
h∈G\{g}

D̂i(g, h).

D̂i(g, h) tests group g against group h based on the restriction
∑T

t=1 E[dit(g, h)] = 0 from
the previous section and is equal to the t-statistic

D̂i(g, h) =

∑T
t=1 d̂it(g, h)/

√
T√

Ξ̂i(g, h, h)
,

where d̂it(g, h) is a sample counterpart of dit(g, h) that replaces the true slope coefficients
θw and θg by their estimated values θ̂w and θ̂g,

d̂it(g, h) =
1

2

((
yit − w′

itθ̂
w − x′

itθ̂g

)2
−
(
yit − w′

itθ̂
w − x′

itθ̂h

)2
+
(
x′
it

(
θ̂g − θ̂h

))2)
,

and Ξ̂i(g, h, h) is an estimator of the long-run variance of dit(g, h).
The long-run variance estimator is kernel-based as in Andrews (1991) and Newey

and West (1987). In order to define the estimator, let Ĥij(g, h, h
′) denote the sample
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covariance of order j between d̂it(g, h) and d̂it(g, h
′),

Ĥij(g, h, h
′) =

1

T

T∑
t=|j|+1

(
d̂i,t+min(0,j)(g, h)−

¯̂
di(g, h)

)(
d̂i,t−max(0,j)(g, h

′)− ¯̂
di(g, h

′)
)
,

(6)

where ¯̂
di(g, h) =

1
T

∑T
t=1 d̂it(g, h). The long-run variance-covariance estimator is given by

Ξ̂i(g, h, h
′) =

T−1∑
j=−T+1

K

(
j

κN

)
Ĥij(g, h, h

′),

where K(·) is a kernel function and κN is a bandwidth parameter. In our simulation
studies and empirical application, we use the quadratic spectral (QS) kernel (see, for
example, Andrews 1991) given by

KQS(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
.

We select a data-driven bandwidth κ̂N by using the following algorithm adapted from
Chang, Chen, and Wu (2023):

Step A: For g ∈ G and h ∈ G \ {g}, take each unit i such that ĝi = g and fit an AR(1)-
model on (d̂it(g, h))

T
t=1. Let ρ̂igh denote the estimated autoregressive coefficients

and σ̂2
igh the estimated variance of the innovation.

Step B: Select the bandwidth

κ̂N = 1.3221

(
T ×

∑N
i=1

∑
g∈G
∑

h∈G\{g} ρ̂
2
ighσ̂

4
igh/(1− ρ̂2igh)

8∑N
i=1

∑
g∈G
∑

h∈G\{g} σ̂
4
igh/(1− ρ̂2igh)

4

)1/5

.

3.4 Critical values

The critical value ĉα,N,i(g) is computed from the multivariate t-distribution (MVT) in
(G − 1) dimensions.5 In the case of two groups (G = 2), this distribution is equal to

5Using the multivariate t-distribution instead of a Gaussian distribution improves the finite sample
performance of our confidence set if T is small.
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Student’s t-distribution and our critical value is given by

cα,N,i(g) =

√
T

T − 1
t−1
T−1

(
1− α

N

)
,

where t−1
T−1(p) denotes the p-quantile of Student’s t-distribution with (T − 1) degrees of

freedom. This critical value is straightforward to evaluate in most statistical software
packages.

For G ≥ 3, the computation of the critical value is more involved and requires the
estimation of unit-specific correlation matrixes. In Section 5, we discuss a conservative
approximation of the critical value that is easy to implement and independent of the
data.

The critical value is given by

ĉα,N,i(g) =cα,N

(
ρ(Ω̂i(g), εN)

)
=

√
T

T − 1

(
tmax,ρ(Ω̂i(g),εN ),T−1

)−1 (
1− α

N

)
,

where tmax,Ω,T−1 denotes the distribution function of the maximal entry of a centered
random vector with multivariate t-distribution with scale matrix Ω and (T − 1) degrees
of freedom, Ω̂i(g) is an estimator of the correlation matrix of the moment inequalities, ρ
is a regularization function and εN is a regularization parameter.6

To define the estimated correlation matrix Ω̂i(g) for given g and i, map j, j′ =

1, . . . , G− 1 to h, h′ ∈ G such that h and h′ give the jth and j′th element of the vector
G/{g}, respectively.7 Ω̂i(g) is given by the (G− 1)× (G− 1) matrix with entry (j, j′)

equal to

(
Ω̂i(g)

)
j,j′

=
Ξ̂i(g, h, h

′)√
Ξ̂i(g, h, h)Ξ̂i(g, h′, h′)

.

For a (G− 1)× (G− 1) correlation matrix Ω, the regularization function ρ is defined as

ρ(Ω, ε) = diag−1/2 (Ω + ε∗(Ω, ε)IG−1) (Ω + ε∗(Ω, ε)IG−1) diag
−1/2 (Ω + ε∗(Ω, ε)IG−1) ,

where IG−1 is the identity matrix in RG−1, diag(A), for a matrix A, returns a diagonal
matrix of the same dimension as A with the diagonal entries equal to the diagonal entries

6 The distribution function of the multivariate t-distribution can be efficiently approximated by modern
algorithms (Genz 1992). Implementations exist for Stata (Grayling and Mander 2016) and R (Azzalini
and Genz 2016).

7More formally, h = j − 1{j>g} and h′ = j′ − 1{j′>g}, where 1{·} is the indicator function.
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of A, and

ε∗(Ω, ε) = max{0, ε− (1−max
i<j

Ωij)}.

We set the regularization parameter equal to εN = 0.01. For robustness, we also conduct
simulations with other values of εN and find that the exact choice of εN is not crucial
to the validity of our method. Regularization is a technical tool needed to prove the
asymptotic validity of our confidence set.

Our regularization scheme bounds pairwise correlations away from one but may output
a singular matrix. A related regularization scheme in Andrews and Barwick (2012)
bounds the resulting matrix away from singularity.

4 Asymptotic validity of our confidence set
Our asymptotic framework is of the long-panel variety and takes both the number of units
N and the number of time periods T to infinity. In particular, we consider asymptotic
sequences in which T = T (N), where T (·) is increasing, but its exact form is unspecified
except for conditions given in the statement of the theorems. In many panel data sets,
the number of units far exceeds the number of time periods. We replicate this feature
along the asymptotic sequence by allowing N to diverge at a much faster rate than T .

We consider a sequence PN of classes of probability measures. All our theoretical
results hold uniformly over the sequence PN . For a probability measure P , let EP denote
the expectation operator that integrates with respect to measure P . The parameters
θw, {θg}g∈G and σi depend potentially on N . For notational convenience, we keep this
dependence implicit.

The number of latent groups G is fixed and does not depend on N .
To state our assumptions, we define the matrix Ωi(g

0
i ) which provides the population

counterpart to Ω̂i(g
0
i ). For unit i, define the population long-run covariance of the

averages of dit(g0i , h) and dit(g
0
i , h

′) as

Ξi(h, h
′) =

T−1∑
j=−T+1

Hij(h, h
′),
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where

Hit(h, h
′) =

1

T

T∑
t=|j|+1

EP [di,t+min(0,j)(g
0
i , h)di,t−max(0,j)(g

0
i , h

′)].

For i = 1, . . . , N , Ωi(g
0
i ) is the (G− 1)× (G− 1) correlation matrix with entries

(
Ωi(g

0
i )
)
j,j′

=
Ξi(h, h

′)√
Ξi(h, h)Ξi(h′, h′)

,

where the convention relating (j, j′) to (h, h′) is defined in footnote 7.
We now state our assumptions for the asymptotic validity of our joint confidence set.

Assumption 1. 1. (Regressors are uncorrelated with the error term) The linear panel
model satisfies the orthogonality assumption (2).

2. (Number of groups) The number of latent groups G is known and fixed along the
asymptotic sequence.

3. (Estimation of auxiliary parameters) There are vanishing sequences rθ,N and aθ,N

such that

sup
P∈PN

P

(
‖θ̂w − θw‖ ∨max

g∈G
‖θ̂g − θg‖ > rθ,N

)
≤ aθ,N .

4. (Full rank) Let λmin(·) denote the smallest eigenvalue of its argument. There is a
finite constant Cλ > 0 such that

inf
P∈PN

min
1≤i≤N

λmin

(
1

T

T∑
t=1

T∑
s=1

EP [vitvisxitx
′
is]

)
≥ C−1

λ .

5. (Group separation) ιN ≡ ming∈G minh∈G\{g} ‖θg − θh‖ > 0.

6. (Exponential tail bound) There exist constants a and d1 > 1 such that P (|Z| > z) <

exp(−(z/a)d1) for sufficiently large z, where Z is any component of the random
vector (x′

it, w
′
it, vit).

7. (Mixing sequence) For every i = 1, 2, . . . , the sequence (x′
it, w

′
it, vit)

T
t=1 is an α-

mixing sequence with mixing coefficient αi satisfying supi αi[k] ≤ exp(1− bkd2) for
some b > 0 and d2 > 0.
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8. (Stationarity) For every i = 1, 2, . . . , {x′
it, w

′
it, vit}Tt=1 is a strictly stationary time

series.

9. (Correlation of moment inequalities) min1≤i≤N min1≤j,j′≤G−1 (Ωi(g
0
i ))j,j′ > −1 +

4εN/3, where εN is the regularization parameter for ρ(·, ·).

Assumption 1.1 requires the regressors to be uncorrelated with the contemporaneous
error term. It is a much weaker exogeneity assumption than, for example, strict exogeneity
and allows for a rich set of regressors, including lagged dependent variables. Assumption
1.2 requires the number of groups to be consistently estimated. This condition is weak
and can be guaranteed by using an appropriate procedure for choosing the number of
groups (e.g. Lu and Su 2017; Vogt and Schmid 2021).

Assumption 1.3 requires the estimators θ̂w and θ̂g to be consistent for θw and θg,
respectively, at a rate that vanishes as fast as or faster than rθ,N . Theorem 2 below require
rθ,N to vanish faster than (T logN)−1/2. Therefore, θ̂w and θ̂g have to converge faster
than T−1/2. Since T−1/2 is the rate obtained by estimators based on time-series regression
within units, it is important to choose estimators that also exploit cross-sectional variation
such as the k-means estimator (Bonhomme and Manresa 2015) or the estimators in
Su, Shi, and Phillips (2016) and Wang, Phillips, and Su (2018). These estimators are
known to be

√
NT -consistent under assumptions that rule out misclassification in the

limit. Dzemski and Okui (2021) study consistency of the estimated coefficients under
weaker assumptions. They distinguish between units with σi ≺

√
T/ logN that can be

classified reliably and noisy units with σi �
√

T/ logN that are potentially misclassified
in the limit. They show that the k-means estimator is

√
NT -consistent if the proportion

of noisy units is sufficiently small. In Section 7, we complement this theoretical result
by simulating designs where k-means misclassifies units but still recovers group-specific
coefficients at a rate that is faster than

√
T .

The full-rank condition in Assumption 1.4 ensures that the denominator of D̂i(g, h) is
not too close to zero. The term in the minimum eigenvalue function is the population
long-run covariance matrix of vitxit. The assumption restricts vit (which has variance
one) but does not limit the magnitude of the error term σivit in our panel model (1). It
allows conditional heteroskedasticity of vit given xit.

Assumption 1.5 maintains that groups are unique in the sense that there are not
two groups that share the same coefficient values. The minimal distance between any
two groups is measured by ιN and is allowed to vanish asymptotically, provided that
it satisfies additional rate conditions stated below. Vanishing group separation is an
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asymptotic modeling device to study settings where groups are distinct but difficult to
distinguish. Most existing results that establish asymptotic properties of estimators of
the group-specific coefficient assume strict group separation, i.e., that ιN is bounded
away from zero. This makes it difficult to verify Assumption 1.3 if ιN → 0. This difficulty
can be overcome by using our result for k-means estimation in Supplemental Material D,
which gives a consistency rate under vanishing group separation.

Assumptions 1.6-1.8 restrict the distribution of the time series {x′
it, w

′
it, vit}Tt=1. As-

sumption 1.6 imposes exponential decay of the tails of the marginal distributions. As-
sumption 1.7 restricts the time-series dependence of the data by imposing exponential
decay of the mixing coefficients. This assumption rules out processes with long mem-
ory. Assumption 1.8 requires the time series to be stationary. We use the stationarity
assumption primarily to show that certain long-run variances are bounded. It can be
replaced by other conditions that bound the long-run variances.

Assumption 1.9 rules out that the correlation matrix Ωi(g
0
i ) contains entries that are too

close to negative one. This assumption does not rule out singularity of Ωi(g
0
i ). Singularity

occurs mechanically in our setting whenever G > p+ 1, where p is the dimension of xit.8

No restrictions are placed on positive correlations, which is important in settings with
vanishing group separation, where groups h and h′ have similar coefficients and hence
highly positively correlated moment inequalities.9 Our regularization approach controls
positive correlations that are close to one.

We now introduce the last assumption that restricts the choice of kernel function.
The validity of this assumption is under complete control of the researcher and does not
depend on the underlying data. It is satisfied by the QS kernel (see Andrews 1991).

Assumption 2. The kernel function K(·) : R → [−1, 1] is continuously differentiable
with bounded derivatives on R and satisfies (i) K(0) = 1, (ii) K(x) = K(−x) for any
x ∈ R, (iii)

∫∞
−∞ |K(x)|dx < ∞, and (iv) K(x) - |x|−ϑ as |x| → ∞ for some constant

ϑ > 1.

The following theorem establishes the validity of our joint confidence set. In the limit,
it covers the true group membership at least with pre-specified probability 1− α.

8Our testing approach is designed to be able to handle singular correlation matrices. In contrast,
e.g., the quasi-likelihood ratio statistic used in Kudo (1963) is not defined for singular correlation
matrices.

9In Supplemental Material D, we develop a theoretical framework based on local alternatives to study
settings with very similar groups.
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Theorem 2. Let PN be a class of probability measures that satisfy Assumption 1 with
identical choices of a, b, d1, and d2. Assume that there are finite constants 0 < δ1 < δ2

and 1 < k1 ≤ k2 such that T δ1 ≤ N ≤ o(1)T δ2 and (logN)−k2 ≤ εN ≤ (logN)−k1. Let
Assumption 2 hold with κN � T ρ, where 0 < ρ < (ϑ− 1)/(3ϑ− 2).10 In addition, assume

rθ,N
√

T logN = o

(
1 ∧ ιN min

1≤i≤N
σi

)
. (7)

Then,

lim inf
N,T→∞

inf
P∈PN

P
({

g0i
}
1≤i≤N

∈ Ĉα

)
≥ 1− α.

In addition to the aforementioned assumptions, this theorem introduces some rate
conditions. The first condition restricts the relative magnitudes of T and N . It accom-
modates both “short panels” where T is small relative to N and “long panels” where T

is large relative to N . The second condition requires the regularization parameter εN to
vanish at a sufficiently slow rate. The third rate condition controls the rate at which the
bandwidth sequence κN diverges. This rate condition is automatically satisfied for the
QS kernel if the bandwidth is chosen by the procedure described in Section 3.3. Finally,
condition (7) restricts the rate of convergence of the estimators θ̂w and θ̂g.

We now discuss the latter condition in the context of two examples. For both examples,
we assume that σi is bounded away from zero uniformly over units i. For the first example,
groups are well-separated, i.e., ιN is a positive constant and does not depend on N .
Existing results for clustering with well-separated groups suggest rθ,N = (NT )−1/2ζN with
ζN → ∞ (Bonhomme and Manresa 2015; Su, Shi, and Phillips 2016; Wang, Phillips, and
Su 2018).11 Under this convergence rate, condition (7) is equivalent to logN/N = o(1)

and hence trivially satisfied. For the second example, group separation is vanishing
with ιN = T−1/2+e for 0 < e < 1/2. In Theorem D.1 in Supplemental Material D.3, we
show rθ,N = (NT )−1/2ζN , under some technical conditions. Then, condition (7) becomes
T 1−2e logN/N = o(1). This condition restricts the relative magnitudes of N and T . In
particular, the weaker group separation is, i.e., the closer e is to zero, the larger N has
to be relative to T . It is sufficient that N ≥ T δ1 with δ1 > 1− 2e.

A caveat to the calculations in the previous paragraph is that the results for the rate of
consistency of the k-means estimator rely on assumptions that rule out misclassification
in the limit. In the discussion following Theorem D.1 in Supplemental Material D.3, we
10For sequences aN and bN we write aN � bN if and only if aN = O(bN ) and bN = O(aN ).
11The sequence ζN can go to infinity at any slow rate.
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indicate how this limitation can be overcome based on the approach in Dzemski and
Okui (2021). However, we leave the formal proof to future research.

Remark 4. Theorem 2 above and Theorem 3 –Theorem 5 stated below in Section 5
continue to hold if G is replaced by a consistent estimator ĜN .

Remark 5. Our method can be extended to panel models with unit fixed effects by
interpreting model (1) as representing the fixed-effect transformed model. This application
of our procedure can be theoretically justified but is not covered by the asymptotic results
in this section. Extending the results to the fixed-effect model requires some modifications
to our arguments, which may be lengthy.

To derive the asymptotic behavior of the test statistic under the transformed model, we
have to examine −σiv̇itẋ

′
it(θg−θh), where v̇it = vit−

∑T
s=1 vis/T and ẋit = xit−

∑T
s=1 xis/T .

When xit is strictly exogenous, i.e., E[vit | xi1, . . . , xiT ] = 0, the orthogonality condition (2)
holds also in the transformed model. However, the mixing condition in Assumption 1.7
may not be satisfied. For example, if vit is i.i.d. over time, the correlation between
v̇it and v̇is for t 6= s is 1/T regardless of the distance between s and t. The mixing
condition requires serial correlation between distant time periods to vanish and is therefore
not satisfied for v̇it under fixed T as required by Assumption 1.7. Mixing still holds
asymptotically as T → ∞, and our proof has to be modified to show that this is sufficient.
When xit is merely predetermined, i.e. E[vit | xi1, . . . , xit] = 0, the transformed model is
not guaranteed to satisfy (2) because

T∑
t=1

E [v̇itẋ
′
it] =E

[
T∑
t=1

vitxit − T

(
T∑

s=1

vis/T

)(
T∑

s=1

x′
is/T

)]

=T−1E

[(
T∑

s=1

vis

)(
T∑

s=1

x′
is

)]

may not be zero. In many cases, including the panel AR(1) model with xit = yi,t−1,
it holds that (

∑T
s=1 vis/T )(

∑T
s=1 x

′
is/T ) = OP (1/T ) for each i (see, e.g., Nickell 1981;

Hahn and Kuersteiner 2002). The expected uniform order of this term is OP (T
−1 logN).

Inspection of the proof of Theorem 2 reveals that a term of this order is asymptotically
negligible.
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5 Extensions
This section discusses several extensions of our procedure. We first demonstrate the
possibility of simplifying the procedure at the cost of power and/or losing robustness
against serial correlation. We also propose a two-step method to increase the power of
our confidence set.

5.1 A simpler procedure with conservative critical values

The implementation of our confidence set can be greatly simplified by using different
critical values that are slightly conservative but can be computed without estimating and
regularizing a covariance matrix. We call these the SNS critical values, borrowing a term
from Chernozhukov, Chetverikov, and Kato (2019) who propose similar critical values for
a high-dimensional testing problem and justify them using the theory of self-normalized
sums (SNS).

For G = 2, the SNS critical values are identical to our critical values. For G ≥ 3, the
SNS critical values are an upper bound to our critical values and will always yield a
weakly larger confidence set. The SNS critical values are given by

ĉSNS
α,N,i(g) = cSNS

α,N =

√
T

T − 1
t−1
T−1

(
1− α

(G− 1)N

)
with t−1

T−1(p) defined in Section 3.4. The factor (G−1) carries out a Bonferroni correction
to account for the (G− 1) moment inequalities that are simultaneously tested for unit i.
The critical values do not depend on i or g; identical values can be used for all i and
g. Let ĈSNS

α denote the confidence set computed by applying our procedure with SNS
critical values. The following result establishes the asymptotic validity of this confidence
set.

Theorem 3. Let PN be a class of probability measures that satisfy Assumptions 1.1–1.8
with identical choices of a, b, d1, and d2. Assume that there are finite constants
0 < δ1 < δ2 such that T δ1 ≤ N ≤ o(1)T δ2. Let Assumption 2 hold with κN � T ρ, where
0 < ρ < (ϑ− 1)/(3ϑ− 2), and assume that condition (7) holds. Then,

lim inf
N,T→∞

inf
P∈PN

P
({

g0i
}
1≤i≤N

∈ ĈSNS
α

)
≥ 1− α.
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5.2 A simpler procedure under no serial correlation

Another simplification of our procedure is possible in the absence of serial correlation.
Suppose that, for each unit i, the time series {xitvit}Tt=1 is serially uncorrelated.

Assumption 3. For every i = 1, 2, . . . and all s, t = 1, 2, . . . such that s 6= t,
E[visvitxisxit] = 0.

Under this assumption

Ξi(g, h, h
′) = cov (dit(g, h), dit(g, h

′))

can be consistently estimated by Ξ̂i(g, h, h
′) by setting

K

(
j

κN

)
=

0 if j 6= 0

1 if j = 0.
(8)

Then Ξ̂i(g, h, h
′) takes the simple form

Ξ̂i(g, h, h
′) =

1

T

T∑
t=1

(
d̂it(g, h)− ¯̂

di(g, h)
)(

d̂it(g, h
′)− ¯̂

di(g, h
′)
)

and the test statistic is given by

D̂i(g, h) =

∑T
t=1 d̂it(g, h)/

√
T√

1
T

∑T
t=1

(
d̂it(g, h)− ¯̂

di(g, h)
)2 . (9)

Critical values are computed by ĉα,N,i(g) with the simplified version of Ω̂i(g). The
following result states the conditions for the validity of the simplified procedure. In
contrast to Theorem 2, stationarity is not required.

Theorem 4. Let PN be a class of probability measures that satisfy Assumptions 1.1–1.7
and Assumption 1.9 with identical choices of a, b, d1, and d2. Assume that there are
finite constants 0 < δ1 < δ2 and 1 < k1 ≤ k2 such that T δ1 ≤ N ≤ o(1)T δ2 and
(logN)−k2 ≤ εN ≤ (logN)−k1. Let Assumption 3 and condition (8) hold. In addition,
suppose that

rθ,N
√

T logN = o

(
1 ∧ ιN ∧ min

1≤i≤N
σi

)
. (10)
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Then, Ĉα based on (8) satisfies

lim inf
N,T→∞

inf
P∈PN

P
({

g0i
}
1≤i≤N

∈ Ĉα

)
≥ 1− α.

Combining the test statistic (9) under no serial correlation with SNS critical values
yields a particularly simple procedure that can be implemented with minimal programming
effort.

5.3 Increasing power by using a two-step procedure

For units that are very easy to classify (i.e., have very small σi), we estimate the true
group memberships with probability strictly larger than 1 − α/N . This renders our
confidence set conservative. By using the information provided by the units that are easy
to classify, we may be able to shrink the marginal confidence sets for the units that are
difficult to classify (i.e., have large σi). This idea inspires our two-step procedure that
we call unit selection.

The key part of our two-step procedure is detecting units that are easy to classify. For
these units, we report singleton marginal confidence sets. We then compute our joint
confidence set on the sub-sample of remaining units. We slightly adjust the nominal level
of the confidence set to control for classification error in unit selection. Unit selection
can increase the power of the confidence set because it carries out fewer simultaneous
tests than our one-step procedure. For example, if unit selection eliminates N/3 units,
the resulting confidence set is based on Bonferroni correction to adjust for 2N/3 rather
than N simultaneous tests.

For our two-step procedure we assume that ĝi minimizes squared loss, i.e., we assume

T∑
t=1

d̂Uit(ĝi, h) ≤ 0 for all h ∈ G, (11)

where

d̂Uit(g, h) = (yit − w′
itθ̂

w − x′
itθ̂g)

2 − (yit − w′
itθ̂

w − x′
itθ̂h)

2.

This requirement is automatically satisfied if the grouped panel model is estimated by
k-means clustering (e.g. Bonhomme and Manresa 2015).

Our algorithm for unit selection identifies a unit as easy to classify if it satisfies two
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conditions that we call moment selection and hypothesis selection.12 A unit i satisfies
the moment selection criterion if we detect substantial slackness in inequality (11) for
all h 6= ĝi. A unit i satisfies the hypothesis selection criterion if all group memberships
h 6= ĝi are rejected.

The unit selection procedure is parameterized by β ∈ [0, α/3). The larger β, the more
unit selection is carried out. Let

D̂U
i (g, h) =

∑T
t=1 d̂

U
it(g, h)/

√
T√

Ξ̂U
i (g, h, h)

,

where Ξ̂U
i (g, h, h) is defined as Ξ̂i(g, h, h) with d̂Uit replacing d̂it. D̂U

i (g, h) is a counterpart
to D̂i(g, h) that does not adjust for the mean under the null hypothesis.

The first step of our two-step procedure carries out moment selection by computing
the set

M̂i(g) =
{
h ∈ G \ {g} | D̂U

i (g, h) > −2cSNS
β,N

}
for g ∈ G and i = 1, . . . , N . This set gives the selected moment inequalities for the
hypothesis H0 : g

0
i = g. For units i for which M̂i(g) is empty, we have strong evidence

that g0i = g. These units satisfy the moment selection criterion for elimination in the
first step. Condition (11) ensures that M̂i(g) is never empty for g 6= ĝi. This property
ensures that moment selection does not eliminate misclassified units.

The second step of our two-step procedure is given by the following algorithm that
carries out hypothesis selection:

Step 2.A: Set s = 0 and Hi(0) = G.

Step 2.B: Set N̂(s) =
∑N

i=1 maxg∈Hi(s) 1{M̂i(g) 6= ∅}.

Step 2.C: Set

Hi(s+ 1) =
{
g ∈ G | T̂i(g) ≤ ĉα−2β,N̂(s),i(g)

}
∪ {ĝi} .

12The term “moment selection” is borrowed from the literature on testing moment inequalities (see,
e.g., Chernozhukov, Chetverikov, and Kato 2019; Andrews and Soares 2010; Andrews and Barwick
2012; Romano, Shaikh, and Wolf 2014; Canay and Shaikh 2017). In this literature, moment selection
reduces the power loss from possibly slack moment inequalities by identifying inequalities that are
“obviously” satisfied. Our use is different. We use moment selection to reduce the power loss from
running many simultaneous tests by identifying units that are “obviously” correctly classified.
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Step 2.D: If Hi(s+1) = Hi(s) for all i, then exit the algorithm. Otherwise, set s = s+1

and go to Step 2.B.

Step 2.A initializes the algorithm by designating all possible group assignments as
hypotheses that have to be tested. Step 2.B counts the number N̂(s) of units that are not
easy to classify. Unit i is easy to classify if and only if M̂i(ĝi) is empty (moment selection)
and Hi(s) = {ĝi} (hypothesis selection). Step 2.C carries out hypothesis selection with
critical values adjusted for N̂(s) simultaneous tests of group membership. Hi(s+1) gives
a preliminary marginal confidence set for unit i after s iterations of hypothesis selection.
Step 2.D checks the convergence of the algorithm.13 If the algorithm has converged after
s = s∗ iterations, the final joint confidence set is given by

Ĉsel,α,β = ×
1≤i≤N

Hi(s
∗).

The second-step confidence set is calculated at nominal confidence level 1− α + 2β (see
the definition of Hi(s+1) in Step 2.C). The adjustment by 2β represents the cost of unit
selection and controls for two possible errors at the first step. The first error is estimating
an incorrect group membership for a unit that is easy to classify “in population”. The
second error is erroneously declaring a unit as easy to classify.

Unit selection increases the power of the confidence set if its benefits (decreasing the
number of units at the second step) outweigh the cost (adjustment of nominal level
at the second step). If sufficiently many units can be eliminated, then Ĉsel,α,β is more
powerful (“smaller”) than the corresponding one-step confidence set Ĉα. If too few units
are eliminated, then a two-step confidence set can be slightly more conservative (“larger”)
than the corresponding one-step confidence set.

We establish the validity of the two-step procedure under the assumption of no serial
correlation (Assumption 3 above) and the following additional assumption.

Assumption 4. 1. The vector (θw ′, {θ′g}′g∈G) is contained in a compact parameter
space Θ.

2. Let p denote the dimension of xit. For any k1, k2, k3 = 1, . . . , p,

E[σivitxit,k1xit,k2xit,k3 ] = 0.

The first part of this assumption is standard. The second part imposes an orthogonality
13The algorithm always converges since N̂(s) and the cardinality of Hi(s) are decreasing in s.
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condition on triples of time periods. It is stronger than the assumption of no serial
correlation between pairs of time periods but weaker than independence across time. We
now state the formal result for the asymptotic validity of the two-step procedure.

Theorem 5. Let PN be a set of probability measures that satisfy Assumptions 1, 3 and 4
with identical choices of a, b, d1, and d2. Assume that there are finite constants 0 < δ1 < δ2

and 1 < k1 ≤ k2 such that T δ1 ≤ N ≤ o(1)T δ2 and (logN)−k2 ≤ εN ≤ (logN)−k1. Let
Assumption 3 and condition (8) hold and 0 < 3β < α < 1. If condition (10) is satisfied,
then

lim inf
N,T→∞

inf
P∈PN

P
({

g0i
}
1≤i≤N

∈ Ĉsel,α,β

)
≥ 1− α.

6 Empirical application: Heterogeneous effects of a
minimum wage

In this section, we illustrate our procedure by revisiting the work of Wang, Phillips, and
Su (2019). They estimate a grouped panel model to study heterogeneous effects of a
minimum wage in the restaurant sector. Their analysis builds on Dube, Lester, and Reich
(2010) who employ a similar panel model but do not allow for effect heterogeneity. We
assess the clustering uncertainty of the group memberships estimated in Wang, Phillips,
and Su (2019) by computing confidence sets for group memberships.

We use the panel data described in Dube, Lester, and Reich (2010). It contains
quarterly data for 1380 US counties, ranging from the first quarter of 1990 to the second
quarter of 2006. The grouped panel model estimated in Wang, Phillips, and Su (2019) is
given by

log(empict) = θg0i ,1 log(mwict) + θg0i ,2 log(popict) + θg0i ,3 log(empTOT
ict ) + φc + τt + σivict

for state i = 1, . . . , 51, county c = 1, . . . , ni and time period t = 1, . . . , T = 66, where
ni is the number of counties in state i. The variable empict gives employment in the
restaurant sector, mwict gives the minimum wage and empTOT

ict gives total employment in
all sectors. Finally, φc is a county fixed effect, τt is a time fixed effect, and σivict is an
idiosyncratic error term.

Su, Shi, and Phillips (2016) propose an information criterion to select the number of
groups G in a grouped-panel regression and prove its consistency. Wang, Phillips, and
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g = 1 g = 2 g = 3 g = 4

coef se coef se coef se coef se

θg,1 0.55 0.05 -0.03 0.04 0.06 0.04 -0.25 0.04
θg,2 0.63 0.07 0.60 0.06 0.34 0.07 0.47 0.06
θg,3 0.51 0.04 0.61 0.03 0.41 0.03 0.53 0.03

Table 1: Estimates for the group-specific slope coefficients (coef) and corresponding
standard errors (se). Standard errors clustered at the county level.

Estimated group membership
Group 1 Group 2 Group 3 Group 4

Figure 1: Estimated clusters.

Su (2019) apply this criterion to the data and select G = 4. Table 1 gives their CLasso
(Su, Shi, and Phillips 2016) estimates for the slope coefficients for the four groups.

There are two groups with estimated positive effects of the minimum wage on employ-
ment and two groups with negative effects (see θg,1 in the table).

Based on these estimates for the slope coefficients, we estimate group memberships
by running one update step of the k-means algorithm. This updating step ensures
that the estimated group memberships satisfy inequality (11) and produces estimated
group memberships that are identical to the CLasso estimates in all but six states.
Estimated group memberships are displayed in Figure 1 and reported in Table B.1 in the
Supplemental Material. Note that Figure 1 is slightly different from Figure 2 in Wang,
Phillips, and Su (2019) due to the additional k-means step.

To translate the panel model to our framework, we identify states (subscript i) as the
cross-sectional dimension and counties and quarters (subscripts c and t) jointly as the
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second (“time”) dimension. We compute our confidence sets based on the fixed-effect
transformation

l̃empict = θg0s ,1l̃mwict + θg0s ,2l̃popict + θg0s ,3l̃emp
TOT
ict + τ̃t + σiṽict. (12)

Here, l̃empict = log(lempict)−
∑T

t′=1 log(lempict′)/T and l̃mwict, l̃popict, and l̃emp
TOT
ict are

defined similarly. Moreover, τ̃t = τt−
∑T

t′=1 τt′/T and ṽict = vict−
∑T

t′=1 vict′/T . Remark 5
above heuristically justifies applying our procedure to fixed-effect-transformed data.

Our second panel dimension comprises both cross-sectional variation between counties
and time-series variation between different quarters. To adapt our definition of the
estimated long-run variance to this setting, we redefine Ĥij in (6) as

Ĥij(g, h, h
′)

=
1

Tni

ni∑
c=1

T∑
t=|j|+1

(
d̂ic,t+min(0,j)(g, h)−

¯̂
dic(g, h)

)(
d̂ic,t+min(0,j)(g, h)−

¯̂
dic(g, h

′)
)
,

where ¯̂
dic =

∑T
t=1 d̂ict/T and d̂ict is defined as in Section 3.3 with the double index ct

replacing t. We use the following modified algorithm for bandwidth selection:

(A) For g ∈ G and h ∈ G\{g}, take each state i such that ĝi = g and compute d̂ict(g, h)

for all c = 1, . . . , ni and t = 1, . . . , T . Fit an AR(1)-model on (d̂ict(g, h))
T
t=1 and

let ρ̂icgh denote the estimated autoregressive coefficients and σ̂2
icgh the estimated

variance of the innovation.

(B) Estimate the bandwidth sequence by

κ̂N = 1.3221

(
T ×

∑N
i=1

∑ni

c=1

∑
g∈G
∑

h∈G\{g} ρ̂
2
icghσ̂

4
icgh/(1− ρ̂2icgh)

8∑N
i=1

∑ni

c=1

∑
g∈G
∑

h∈G\{g} σ̂
4
icgh/(1− ρ̂2icgh)

4

)1/5

This algorithm yields κ̂N = 21.37 .
We compute the joint-confidence set at level 1 − α = 0.95. For the regularization

parameter, we set εN = 0.01. Our results are robust to different choices of εN .14

The full joint confidence set is reported in Table B.1 in the Supplemental Material.
Marginal confidence sets for a subset of states are given in Table 2. The cardinality of

14For εN = 0, 0.05, we obtain a confidence set that differs only in the group assignments for Kentucky.
For εN = 0.01, 0.05, group g = 2 is contained in the marginal confidence set for Kentucky (p-values
0.0662 and 0.0610). For ε = 0, it is not (p-value 0.0372).
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baseline SNS

State ĝi p-val ĝi card CS p-val ĝi card CS

Arkansas 2 0.027 1 2 0.041 1 2
Colorado 4 0.893 2 3, 4 1.000 2 3, 4
Connecticut 3 0.631 2 2, 3 0.715 2 2, 3
Florida 4 0.049 1 4 0.074 2 3, 4
Idaho 3 0.664 2 3, 4 0.852 2 3, 4

Indiana 3 0.024 1 3 0.038 1 3
Kansas 4 0.010 1 4 0.015 1 4
Kentucky 3 0.093 2 3, 4 0.151 3 2, 3, 4
Maine 2 0.015 1 2 0.023 1 2
New Hampshire 3 0.080 2 3, 4 0.130 2 3, 4

New Mexico 3 0.094 3 2, 3, 4 0.121 3 2, 3, 4
Oklahoma 3 0.168 2 2, 3 0.207 2 2, 3
Pennsylvania 3 0.021 1 3 0.030 1 3
West Virginia 3 0.014 1 3 0.041 1 3
Wisconsin 3 0.392 2 2, 3 0.455 2 2, 3

Table 2: Marginal confidence set at level 1−α = 0.95 for the states with group membership
that are estimated with p-value between 1% and 90%. “p-val ĝi” is the p-value
for the significance of the estimated group membership. “CS cardinality” is the
cardinality of the marginal confidence set for the state. “CS” is the marginal
confidence set. “Baseline” refers to the procedure with critical values defined
in Section 3.4. “SNS” refers to the procedure with critical values defined in
Section 5.1.
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the state-wise marginal confidence sets is four for three states, three for seven states, two
for twelve states, and one for twenty-nine states.

Based on our joint confidence set, we compute p-values for the significance of the
estimated group memberships. We say that the estimated group membership ĝi for
state i is significant at level α if the marginal confidence set for state i with confidence
level 1− α contains only ĝi. Up to a joint failure probability of at most α, significantly
estimated group memberships reveal the true group membership and cannot be attributed
to estimation error. The p-value for significance of ĝi is the smallest value of α such that
ĝi is significant at level α. The p-values for a subset of states are reported in Table 2,
and results for all states are reported in Table B.1 in the Supplemental Material.

Table 2 demonstrates that, for our sample, the SNS critical values from Section 5.1 yield
slightly larger confidence sets than our baseline procedure. For example, the cardinality
of the marginal confidence set for Florida increases from 1 to 2 (p-value increases from
0.049 to 0.074) when we use the SNS critical values.

Displaying a visual representation of the estimated clusters as we do in Figure 1
is standard practice even in applications where the clustering structure is a nuisance
parameter and not of interest in its own right. Visual inspection of the clusters is meant
to confirm their economic plausibility and serves as an informal test of model specification.
A graphical representation of the clustering uncertainty detected by our confidence set,
as illustrated in Figure 2, can complement such an informal analysis. The upper panel in
Figure 2 represents clustering uncertainty by shading US states according to the p-values
of their estimated group memberships. The lower panel shades states by the cardinalities
of their marginal confidence sets (1 − α = 0.95). The figure suggests a low degree of
clustering uncertainty. It would suggest a large degree of clustering uncertainty if the
maps were shaded mostly in a dark hue. Large clustering uncertainty indicates that the
clustering algorithm may be overfitting on the sample, rather than picking up structural
heterogeneity.

Our two-step procedure with parameter β = α/5 = 0.01 eliminates only one unit in
the first step and does not improve the final confidence set or p-values. In Supplemental
Material B.2, we apply the two-step procedure under the implausible assumption of no
serial correlation which eliminates more units and lowers the final p-values.
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Significance of estimated group membership
p-val ≤ 0.01 0.01 < p-val ≤ 0.05 0.05 < p-val ≤ 0.1 p-val > 0.1

Cardinality of state-wise confidence sets at α = 0.05

1 2 3 4

Figure 2: Visual representation of clustering uncertainty. The upper panel shows p-values
for estimated group memberships. The lower panel shows the cardinality of
the marginal confidence sets with 1− α = 0.95.
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7 Simulations
Our simulation designs are based on our empirical application. The data-generating
process is given by

l̃empit = θg0i ,1l̃mwit + θg0i ,2l̃popit + θg0i ,3l̃emp
TOT
it + σivit

for i = 1, . . . , N and t = 1, . . . , T . For g = 1, . . . , 4, the coefficients θg,1, θg,2 and θg,3 are
set equal to the estimated coefficients in Table 1.

To generate xit = (l̃mwit, l̃popit, l̃emp
TOT
it ) that exhibit similar patterns of serial cor-

relation as the time series in our empirical application, we estimate a VAR(1) model
of xit for each county c in our data sample and save the estimated coefficient Γ̂c and
the empirical residuals êct. We then average over all county-wise coefficients to obtain
a single VAR(1) coefficient matrix Γ̄. To generate a time series (xit)

T
t=1, we sample the

initial value xi0 from the covariates observed in our data and then iteratively generate
xi,t+1 = Γ̄xit + et, where et is a randomly drawn empirical residual êct.

Each unit i is assigned to one of the four groups with equal probability and assigned a
heteroscedasticity parameter σi. For σ = 0.1, 0.2, we draw σi = σχ2(4)/4, where χ2(df)

is a random draw from a χ2-distribution with df degrees of freedom.
For ρ = 0, 0.25, 0.5, we set vit =

√
1− ρ2ṽit where ṽit follows an AR(1) process with

autoregressive parameter ρ and standard normal innovations and ṽi0 is drawn from the
stationary distribution of (ṽit)Tt=1. To introduce relevant serial correlation, we require
both vit and xit to be serially correlated (cf. Section 5.2). Therefore, setting ρ = 0 turns
off the serial correlation (but not all temporal dependence) in the moment inequalities
even though xit is still serially correlated.

We simulate panels of size N = 50, 100, 200 and T = 60, 120. The lower values of
these ranges are in the ballpark of the number of states (51 states) and time periods (66
quarters) observed in our application. We set the regularization parameter for covariance
estimation to εN = 0.01. In Supplemental Material C.1, we demonstrate that our results
are robust to alternative specifications of εN . We simulate both the oracle confidence
set, for which we take the true values of the group-specific coefficients as given, and the
confidence set with group-specific coefficients estimated by the k-means estimator. We
steer the k-means algorithm towards recovering the population labels of the groups by
using the true group memberships as initial values. The simulation results are based on
500 replications and reported in Table 3.15

15Our Monte Carlo simulations were carried out on computing resources of the Swedish National
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coverage cardinality bandwidth

kmeans oracle kmeans oracle kmeans oracle

ρ σ N T θ̂ − θ hac h naive hac hac h hac hac hac

60 0.18 0.99 0.99 0.21 0.99 1.60 1.27 1.57 2.12 2.0450
120 0.13 1.00 1.00 0.83 1.00 1.07 1.02 1.07 2.27 2.27
60 0.13 0.99 0.98 0.04 1.00 1.76 1.30 1.75 2.20 2.19100

120 0.09 1.00 1.00 0.80 1.00 1.12 1.02 1.11 2.32 2.36
60 0.09 0.99 0.98 0.00 0.98 1.95 1.34 1.95 2.30 2.30

0.1

200
120 0.07 1.00 0.99 0.60 1.00 1.17 1.03 1.18 2.39 2.38

60 0.40 0.92 0.92 0.01 0.98 1.97 1.62 1.95 2.11 2.0550
120 0.26 1.00 0.99 0.65 0.99 1.16 1.08 1.14 2.23 2.23
60 0.30 0.95 0.93 0.00 0.99 2.13 1.67 2.14 2.18 2.20100

120 0.18 1.00 0.99 0.36 0.98 1.21 1.08 1.20 2.35 2.34
60 0.22 0.96 0.96 0.00 0.97 2.30 1.74 2.31 2.27 2.31

0.00

0.2

200
120 0.13 0.98 1.00 0.14 1.00 1.28 1.09 1.27 2.36 2.39

60 0.22 0.94 0.85 0.10 0.97 2.40 1.26 2.38 3.73 3.7150
120 0.15 1.00 0.99 0.82 1.00 1.73 1.02 1.75 4.14 4.15
60 0.15 0.96 0.87 0.01 0.97 2.68 1.30 2.71 3.85 3.87100

120 0.11 1.00 0.97 0.65 1.00 2.23 1.02 2.29 4.21 4.29
60 0.11 0.94 0.84 0.00 0.96 3.03 1.33 3.05 3.99 4.02

0.1

200
120 0.08 1.00 0.96 0.44 1.00 2.89 1.03 2.88 4.37 4.37

60 0.51 0.84 0.64 0.00 0.94 2.63 1.60 2.69 3.59 3.6750
120 0.31 0.99 0.94 0.49 1.00 1.87 1.08 1.85 4.06 4.11
60 0.36 0.88 0.64 0.00 0.95 2.96 1.67 2.97 3.78 3.82100

120 0.22 0.99 0.92 0.21 0.99 2.25 1.08 2.38 4.13 4.29
60 0.27 0.89 0.64 0.00 0.91 3.24 1.71 3.24 4.00 3.98

0.25

0.2

200
120 0.15 0.99 0.93 0.04 0.99 2.95 1.09 3.02 4.33 4.42

60 0.26 0.87 0.47 0.03 0.95 3.35 1.25 3.39 6.46 6.5550
120 0.17 0.99 0.90 0.68 0.99 3.71 1.02 3.71 7.21 7.21
60 0.18 0.86 0.32 0.00 0.90 3.52 1.28 3.55 6.45 6.50100

120 0.13 0.99 0.85 0.50 1.00 3.80 1.02 3.81 7.42 7.46
60 0.13 0.82 0.19 0.00 0.84 3.67 1.31 3.67 6.93 6.90

0.1

200
120 0.09 1.00 0.77 0.26 1.00 3.84 1.03 3.84 7.68 7.70

60 0.64 0.69 0.21 0.00 0.88 3.42 1.55 3.49 6.14 6.3450
120 0.36 0.98 0.74 0.30 0.98 3.72 1.07 3.74 7.16 7.19
60 0.43 0.69 0.11 0.00 0.84 3.62 1.61 3.66 6.50 6.65100

120 0.26 0.98 0.62 0.09 0.99 3.84 1.08 3.84 7.35 7.48
60 0.32 0.70 0.02 0.00 0.76 3.74 1.67 3.75 6.80 6.88

0.50

0.2

200
120 0.18 0.97 0.48 0.00 0.98 3.87 1.09 3.87 7.62 7.66

Table 3: Simulation results. Nominal level 1− α = 0.95. “θ̂ − θ” is defined in the text.
“hac” uses the data-driven bandwidth, “h” sets the bandwidth equal to zero,
and “naïve” is the naïve confidence set defined in the text. “kmeans” uses the
k-means algorithm to compute group-specific coefficients, and “oracle” uses the
true coefficients. “coverage” is the empirical coverage probability of the joint
confidence set. “cardinality” is the Monte Carlo average of the average (over all
units) cardinality of the marginal unit-wise confidence sets. “bandwidth” is the
Monte Carlo average of chosen bandwidth.
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We first discuss the empirical coverage probability of our confidence set with k-means
estimates and a data-driven bandwidth (coverage→kmeans→hac in Table 3). The joint
confidence set has a coverage probability of at least 1 − α = 95% in most cases. This
is in line with our theoretical result on the asymptotic validity of the confidence set.
When T = 60, our confidence set under-covers for some designs. In these designs, we
compute a large confidence set. This result indicates that our confidence set can detect
that statistical uncertainty is large even when it is under-covering. In the designs with
moderate serial correlation (ρ = 0.25), under-coverage can be alleviated by increasing the
number of cross-sectional observations, keeping the number of time series observations
constant. In the designs with large serial correlation (ρ = 0.5), improving coverage
requires increasing the number of time-series observations. This result may be explained
by the fact that our algorithm for bandwidth selection mechanically chooses a small
bandwidth when the time series is short. With a small bandwidth, our procedure cannot
control for temporal dependence over many time periods.

In some of our designs, our confidence set is conservative, with an empirical coverage
probability of up to close to one. Since group membership is a discrete parameter, this
is not necessarily a sign that the confidence set is underpowered. To see this, consider
the naïve confidence set that contains only the vector of estimated group memberships.
This is the smallest possible confidence set. As T increases, true group memberships
are revealed with increasing probability, and even the naïve confidence set can become
conservative eventually (see Section 5.3). The coverage probability of the naïve confidence
set (coverage→kmeans→naïve in Table 3) gives the probability that data-driven clustering
recovers the true group structure. In our designs, this probability varies between 0% and
83%.

We now turn to the power of our confidence set with k-means estimates and a data-
driven bandwidth. The simulated average cardinality of a unit-wise marginal confidence
set is reported in Table 3 under cardinality→kmeans→hac. Increasing σ or ρ makes the
data more noisy as time-series shocks become larger or more persistent. As is expected,
the power of our test decreases, and the size of our confidence set increases as the data
become more noisy.

In the less noisy designs, the confidence set is highly informative. For example, if
ρ = 0 and σ = 0.1, the confidence set rules out 2-3 out of 4 possible group assignments
for most units. Our confidence set is only slightly larger than the naïve set (i.e., the set
containing only the vector of estimated group memberships) in the designs where the

Infrastructure for Computing (SNIC), funded by Swedish Research Council grant 2018-05973.
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naïve set performs well. The naïve set still under-covers, and some enlargement improves
the coverage.

In the noisiest designs, our confidence set becomes quite uninformative and assigns
the trivial marginal confidence set (all four possible groups) to most units.

Our asymptotic result is valid under a high-level assumption about the rate at which
the estimator θ̂ = {θ̂′g}′g∈G converges to the true group-specific coefficients θ = {θ′g}′g∈G.
This rate may be affected by misclassification. In this section, we study the effect of
model estimation in finite samples, focusing on misclassification driven by the noise
variance σ2. Additional results for settings where model estimation is potentially affected
by weak group separation are reported in Supplemental Material D.

The column “θ̂−θ” in Table 3 quantifies estimation error in θ̂ and reports the simulated
value of

‖θ̂ − θ‖
‖θ‖

=

√√√√ 4∑
g=1

E‖θ̂g − θg‖22

/√√√√ 4∑
g=1

‖θg‖22 ,

where ‖·‖2 is the L2-norm. The simulated estimation error is not negligible, varying
between 7% and 64% of the magnitude of the true coefficient vector. In all our designs,
increasing T keeping N fixed or increasing N keeping T fixed decreases estimation error.
This shows that, even though states are misclassified, the k-means estimator can exploit
both time-series and cross-sectional variation. This is necessary for fulfilling the rate
condition imposed in our asymptotic result.

As a more direct test of the effect of parameter estimation, we compare the confidence
set using the true coefficients (oracle→hac in Table 3) to the confidence set using k-means
estimates (kmeans→hac in Table 3). In many designs, both confidence sets are valid
with a coverage probability of at least 95%. In most designs where the oracle confidence
set has coverage of at least 95%, the confidence set with k-means estimates is valid or
undercovers only slightly (1-3%). For all designs, increasing either N or T decreases the
difference in coverage probability between the oracle confidence set and the confidence
set using the k-means estimates. This simulation evidence aligns with our theoretical
argument that the asymptotic effect of parameter estimation is not of first order.

Next, we compare our benchmark procedure based on the heteroskedasticity-and-
autocorrelation-robust (HAC) variance estimator (“hac” in results table) and the al-
ternative procedure discussed in Section 5.2 with variance estimation that is robust to
heteroscedasticity but not auto-correlation (“h” in results table).
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In the designs with no serial correlation (ρ = 0), the confidence set using the
heteroscedasticity-robust variance estimator is valid. It covers the true group struc-
ture at least with probability 1− α = 95% when the sample size is sufficiently large. In
these designs, choosing the heteroscedasticity-robust estimator over the HAC estimator
increases the power of the confidence set. If T = 120, the power gain is modest. If T = 60,
the power gain can be quite large. For example, in the design with ρ = 0, σ = 0.1,
N = 200, and T = 60, the average cardinality of a unit-wise confidence set is 1.95 for the
HAC estimator and 1.34 for the heteroscedasticity-robust estimator. This power gain
points to the inherent difficulty of estimating long-run variances for a high-dimensional
number of relatively short time series.

For the settings with serial correlation (ρ = 0.25, 0.5), the confidence set using the
variance estimator that is only robust to heteroscedasticity is not valid. In the designs
with a lot of serial correlation (ρ = 0.5), it under-covers severely. For example, for
ρ = 0.5, σ = 0.2, N = 200, T = 120, its coverage probability is only 48%, even though
the sample size is fairly large. Our benchmark confidence set based on the HAC estimator
set has correct coverage in this design.

An interpretation of our confidence set is that it distinguishes low-noise units for which
the clustering algorithm reveals the true group memberships from noisy units for which
group membership is uncertain. Our model and simulation designs parameterize the
unit-specific noise-level by the latent parameter σi. Our confidence set picks up the
latent heteroscedasticity and assigns, on average, a small marginal confidence set for a
unit i with small σi and a large marginal confidence set for a unit i with large σi. This
property is demonstrated in Table 4, where we report the average cardinality of the
marginal confidence set for units with different magnitudes of σi. For example, in the
first reported design (ρ = 0, σ = 0.1, N = 50, T = 60), the average cardinality for the
units in the lowest quintile of the distribution of σi is 1.31. The average cardinality for
the units in the highest quintile of the distribution of σi is 2.07.

8 Conclusion
We have constructed a confidence set for group membership for grouped panel models with
time-invariant group-specific regression curves. Our confidence set can be easily tabulated
and visualized as demonstrated in our empirical application. Empirical researchers can use
our confidence set to quantify the statistical uncertainty about the true group structure
in a grouped panel model.
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average cardinality

ρ σ N T all 0-20perc 20-40perc 40-60perc 60-80perc 80-100perc

60 1.60 1.31 1.40 1.52 1.70 2.0750
120 1.07 1.03 1.04 1.05 1.07 1.15
60 1.76 1.45 1.56 1.67 1.87 2.24100

120 1.12 1.08 1.08 1.10 1.13 1.21
60 1.95 1.63 1.75 1.88 2.08 2.43

0.1

200
120 1.17 1.12 1.12 1.16 1.18 1.28

60 1.97 1.41 1.62 1.91 2.21 2.6750
120 1.16 1.05 1.08 1.13 1.18 1.37
60 2.13 1.55 1.82 2.07 2.38 2.84100

120 1.21 1.07 1.11 1.17 1.25 1.45
60 2.30 1.70 2.00 2.25 2.53 3.00

0.00

0.2

200
120 1.28 1.14 1.18 1.23 1.32 1.55

60 2.40 2.08 2.26 2.34 2.50 2.8050
120 1.73 1.64 1.68 1.69 1.75 1.86
60 2.68 2.40 2.53 2.64 2.79 3.05100

120 2.23 2.15 2.18 2.19 2.26 2.35
60 3.03 2.81 2.90 3.00 3.13 3.32

0.1

200
120 2.89 2.84 2.85 2.87 2.90 2.97

60 2.63 2.11 2.36 2.59 2.85 3.2450
120 1.87 1.69 1.77 1.84 1.92 2.16
60 2.96 2.52 2.74 2.93 3.15 3.44100

120 2.25 2.09 2.14 2.21 2.28 2.52
60 3.24 2.89 3.08 3.23 3.40 3.61

0.25

0.2

200
120 2.95 2.82 2.87 2.93 2.99 3.12

60 3.35 3.18 3.30 3.34 3.40 3.5350
120 3.71 3.68 3.70 3.71 3.72 3.74
60 3.52 3.40 3.45 3.51 3.58 3.67100

120 3.80 3.76 3.79 3.80 3.81 3.86
60 3.67 3.57 3.62 3.65 3.71 3.78

0.1

200
120 3.84 3.81 3.82 3.82 3.85 3.88

60 3.42 3.16 3.30 3.42 3.54 3.6750
120 3.72 3.67 3.69 3.73 3.74 3.79
60 3.62 3.43 3.55 3.63 3.70 3.80100

120 3.84 3.79 3.81 3.84 3.86 3.90
60 3.74 3.60 3.68 3.75 3.80 3.87

0.50

0.2

200
120 3.87 3.81 3.84 3.86 3.89 3.93

Table 4: Simulated average cardinality of the marginal confidence sets by unit σi. Nom-
inal level 1 − α = 0.95. 0-20perc refers to the units with a σi-value that lies
between the 0 and 20 percentile of the distribution of σχ2(4)/4. 20-40perc,
40-60perc, 60-80perc and 80-100perc are defined similarly.
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Our method extends naturally to other models with a latent group structure. We
construct our confidence set based on a test for the best fit in a least-squares sense. This
idea can be adapted to a wide variety of settings with possibly different notions of what
constitutes a best fit. For example, it may be possible to compute a confidence set for
group membership in non-linear likelihood-based models (Liu et al. 2020; Wang and
Su 2021) by testing group membership based on the fit measured by the log-likelihood
function. This and other extensions of our method require new and non-trivial theoretical
work and are interesting avenues for future research.

Our approach can be generalized to models with time-varying coefficients θg = θg,t,
including models with time-varying intercepts as in Bonhomme and Manresa (2015).
We studied this extension in a previous version of this paper (Dzemski and Okui 2018).
Our present focus on time-invariant coefficients is motivated by the literature (see, e.g.,
Su, Shi, and Phillips 2016; Wang, Phillips, and Su 2018; Vogt and Linton 2017) and
theoretical considerations. The conditions for establishing the validity of our method
for models with time-varying coefficients are less transparent and substantially more
restrictive. Intuitively, time-varying coefficients are identified purely from cross-sectional
variation and are, therefore, estimated at a slower rate than time-invariant coefficients.
Therefore, stronger rate conditions requiring at least T logN/N → 0 are needed to
control estimation error in the time-varying coefficients.

Our confidence set is tailored to address research questions where unit identities are
relevant. For example, in our application, we can identify (at a pre-specified confidence
level) a set of US states that exhibit a positive effect of the minimum wage on employment.
Identifying such states is relevant for conducting further research or implementing targeted
policies. Our method cannot be directly applied to assess the effect of misclassification
on statistics that average over units without regard to unit labels. One example of such
a statistic is the estimator of the group-specific slope coefficients. Developing a theory
tailored to averages is an interesting research agenda that is complementary to our work.
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