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In many set-identified models, it is difficult to obtain a tractable characterization

of the identified set. Therefore, researchers often rely on nonsharp identification

conditions, and empirical results are often based on an outer set of the identi-

fied set. This practice is often viewed as conservative yet valid because an outer

set is always a superset of the identified set. However, this paper shows that when

the model is refuted by the data, two sets of nonsharp identification conditions

derived from the same model could lead to disjoint outer sets and conflicting em-

pirical results. We provide a sufficient condition for the existence of such discor-

dancy, which covers models characterized by conditional moment inequalities

and the Artstein (1983) inequalities. We also derive sufficient conditions for the

nonexistence of discordant submodels, therefore providing a class of models for

which constructing outer sets cannot lead to misleading interpretations. In the

case of discordancy, we follow Masten and Poirier (2021) by developing a method

to salvage misspecified models, but unlike them, we focus on discrete relaxations.

We consider all minimum relaxations of a refuted model that restores data consis-

tency. We find that the union of the identified sets of these minimum relaxations

is robust to detectable misspecifications and has an intuitive empirical interpre-

tation.
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1. Introduction

A central challenge in the structural estimation of economic models is that the hypoth-
esized structure often fails to identify a single generating process for the data, either due
to multiple equilibria or data observability constraints. In such a context, the economet-
rics of partially identified models have been trying to obtain a tractable characterization
of parameters compatible with the available data and maintained assumptions (here-
after identified set). A question of particular relevance in applied work is that it is often
very difficult to find a tractable characterization of the identified set and then to obtain
a valid confidence region for it. To avoid this difficulty, a large part of the literature has
been trying to provide a confidence region for an outer set, that is, a collection of values
for the parameter of interest that contains the identified set but may also contain addi-
tional values.1 Because of its tractability, constructing a confidence region for an outer
set has been entertained in various topics of studies where the parameters of interest
are only partially identified; see, for instance, Blundell, Gosling, Ichimura, and Meghir
(2007), Ciliberto and Tamer (2009), Aucejo, Bugni, and Hotz (2017), Sheng (2020), De
Paula, Richards-Shubik, and Tamer (2018), Dickstein and Morales (2018), Honoré and
Hu (2020), Chesher and Rosen (2020), Gualdani (2021), and Berry and Compiani (2023),
among many others.

In most empirical studies, obtaining a tight outer set is very often interpreted as ev-
idence for a small and informative identified set.2 This is because, under correct spec-
ification, any outer set contains the identified set. In this paper, we examine the im-
plications of using outer sets for models that could be misspecified. We say a model is
misspecified if the identified set of the model parameters is empty. We use refutation
and misspecification interchangeably in this paper.

The first main contribution of this paper is to characterize a class of models for which
outer sets based on nonsharp identification conditions may be discordant. For this class
of models, as long as the model is misspecified, there always exist two sets of nonsharp
identification conditions that fail to detect the violation of the model and at the same
time yield outer sets that are disjoint with each other. Our result covers a large class
of models studied in the partial identification literature, including models whose iden-
tified set is characterized by intersection bounds, conditional moment inequalities, or
the Artstein (1983) inequalities. The discordancy that we find is a negative property be-
cause the result provided by an outer set could entirely be driven by the set of nonsharp
identification conditions chosen by the researcher, and that we could always consider
an alternative choice that provides a result that conflicts with the initial one.

Discordant outer sets only exist when the model is misspecified. In theory, a re-
searcher could run a model specification test before using an outer set. However, in prac-
tice, although it is possible to construct a nonsharp specification test that only checks
the sufficient conditions for model misspecification, constructing a sharp specification
test, which checks the necessary and sufficient conditions for the emptiness of the iden-

1See Molinari (2020) for a detailed discussion.
2A tight outer set here refers to an outer set that is very small and informative.
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tified set, is as challenging as obtaining a sharp characterization of the identified set. The
nontractability of the latter is often the motivation to use outer sets in the first place.3

Therefore, our result shows that the usage of outer sets based on nonsharp identi-
fication conditions is an unreliable compromise. It suggests that looking for the sharp
characterization of the identified set must not only be viewed as a theoretical exercise
but also has important empirical relevance. The identified set not only exhausts all the
identification restrictions in the model structure and assumptions but is also immune
to the possible misleading conclusions of discordant submodels.

Our warning against the usage of outer sets based on nonsharp identification con-
ditions should not discourage researchers from relaxing stringent primitive model as-
sumptions and replacing them with weaker ones. Although the identified set of a weaker
set of primitive model assumptions is necessarily an outer set of the stringent original
model, it is different from an outer set based on nonsharp identification conditions of
the original model. The identified set, derived from weaker primitive assumptions, has a
clear and precise interpretation akin to the empirical content inherent in weaker primi-
tive assumptions due to its sharpness. In contrast, the choice of nonsharp identification
conditions is often driven by analytical or computational tractability. Researchers often
lack primitive interpretations for the outer set based on these nonsharp identification
conditions. These outer sets are only relevant to the empirical analysis when viewed as
conservative bounds for the sharp results. Yet, this view of conservative bounds could
be misleading because, as we show in this paper, the conclusion drawn from these outer
sets can be driven entirely by the choice of nonsharp identification conditions instead
of the empirical content of the model.

However, discordant outer sets do not exist in all refuted models, especially when
they are based on weaker primitive assumptions instead of nonsharp identification con-
ditions. We then derive sufficient conditions for the nonexistence of discordant sub-
models. This second result characterizes a class of models for which constructing outer
sets cannot lead to misleading interpretations. In this case, outer sets would be conser-
vative but always robust.

Prior to our work, various papers have been concerned about misspecification in
partially identified models. An important focus has been dedicated to analyzing the im-
pact of model misspecification on standard confidence regions used for set-identified
models. Bugni, Canay, and Guggenberger (2012) analyze the behavior of usual inferen-
tial methods for moment inequality models under local model misspecification. Pono-
mareva and Tamer (2011) and Kaido and White (2012) consider the impact of misspeci-
fication on semiparametric partially identified models, respectively, in the linear regres-
sion model with an interval-valued outcome and in a framework where some nonpara-
metric moment inequalities are correctly specified and misspecification is due to a para-
metric functional form. See also Allen and Rehbeck (2020) who propose a method for
statistical inference on the minimum approximation error needed to explain aggregate
data in quasilinear utility models. It is worth noting that if one tries to find a confidence

3See, for instance, Sheng (2020), Gualdani (2021), and the empirical application in Berry and Compiani
(2023, Section 6, footnote 42).
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region for an outer set, none of the inference methods, including those developed in the
previously cited papers, can resolve the specific issue we are raising here. This is because
two nonempty outer sets derived from the same underlying model structure can lead to
discordant results. Adopting one of these outer sets without checking the validity of the
underlying model could lead to misleading conclusions. Therefore, we need to suggest
a more primitive approach to deal with these discordant results in this paper.

This objective leads to our second main contribution, which consists of providing a
method to salvage models that are possibly misspecified because of the existence of dis-
cordant misspecified submodels or discordant nonempty outer sets. The main intuition
is to construct some minimum relaxation of the full model by removing discordant sub-
models until all remaining submodels are compatible. Because there could be multiple
ways to relax a model to restore data consistency, we take the union of the identified set
of all these relaxed models. By doing so, we construct what we call the misspecification
robust bound. We provide general sufficient conditions under which our misspecifica-
tion robust bound exists and also provide an intuitive empirical interpretation for it.
Intuitively, we will say that a hypothesis is robust to misspecification if the hypothesis
is compatible with all relaxed models that are data consistent and is implied by at least
one of those data-consistent relaxed models.

The misspecification robust bound concept is related to the minimally relaxed iden-
tified set introduced in Andrews and Kwon (2024), and to the falsification adaptive set
concept introduced in Masten and Poirier (2021). The primary departure from Masten
and Poirier (2021) lies in our emphasis on discrete relaxations, while Masten and Poirier
(2021) focused exclusively on relaxing assumptions in a continuous manner. In general,
the use of discrete or continuous relaxation depends on the empirical application under
scrutiny. We explore various features of discrete relaxations beyond its formal definition.

It is worth noting that discrete relaxations of misspecified models have been en-
tertained in various existing papers; see, for instance, Manski and Pepper (2000, 2009),
Blundell et al. (2007), Kreider, Pepper, Gundersen, and Jolliffe (2012), Chen, Flores, and
Flores-Lagunes (2018), Kédagni (2023), Mourifié, Henry, and Méango (2020), among
many others. In these papers, when the initial model is too stringent, they suggested
alternative weaker assumptions that are believed to be more compatible with the em-
pirical application under scrutiny and for which the identified/outer set is not empty.
However, some alternative reasonable relaxations may generate results that are discor-
dant with what they suggested. To mitigate this issue, our misspecification robust bound
approach suggests to collect information from all reasonable discordant minimum re-
laxations of the initial model.

We organize the rest of the paper as follows. Section 2 introduces two simple lead-
ing examples that will illustrate our main contributions. Section 3 presents our general
setting and main results on the characterization of discordant submodels. Section 4 dis-
cusses a class of models for which constructing outer sets do not lead to misleading
interpretations. Section 5 introduces the misspecification robust bound used to salvage
misspecified models. Section 6 provides a numerical illustration of the discordancy is-
sue by visiting the widely used entry game model studied in Ciliberto and Tamer (2009),
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and also illustrates our misspecification robust bounds in a return to education exam-
ple. The last section concludes, and additional results and proofs are relegated to the
Appendix.

2. Introductory examples

Although the main idea of this paper can be applied to general models, we begin with
these two straightforward examples to illustrate our main contributions.

2.1 First leading example: Intersection bounds

Let us consider a special case of the intersection bounds in Chernozhukov, Lee, and
Rosen (2013) in which a parameter θ is bounded by the conditional mean of an upper
and lower bounds,

E[Y |Z = z] ≤ θ≤E[Y |Z = z] almost surely, (1)

where Y and Y are two observable random bounds and Z is a vector of instrumental
variables. Let Z be the support of Z, and define4

γ ≡ sup
z∈Z

E[Y |Z = z] and γ ≡ inf
z∈Z

E[Y |Z = z]. (2)

The identified set of θ is the interval [γ, γ] when γ ≤ γ. We assume the following regular-
ity condition holds in this example.

Assumption 1. Assume E|Y | <∞ and E|Y | <∞. In addition, assume that the condi-
tional expectations E[Y |Z], and E[Y |Z] exist and E[Y |Z] ≤E[Y |Z] almost surely.

This simple framework encompasses some important treatment effect models, in-
cluding discrete and continuous treatment models; see, for instance, Manski (1990,
1994) and Kim, Kwon, Kwon, and Lee (2018) among many others.5 In practice, model
(1) is sometimes implemented by solving its unconditional version,

E
[
h(Z )(θ−Y )

] ≥ 0 and E
[
h(Z )(Y − θ)

] ≥ 0, (3)

where h is some nonnegative function mapping its input to Rm+ with m < ∞, and the
inequalities in (3) are vector inequalities. The inference for (3) is typically much simpler
than the inference for the original model (1), especially when Z is multidimensional.
Let �̃(h) be the identified set for θ in model (3). As made explicit in the notation, �̃(h)
depends on the choice of instrumental function h. However, since (1) implies (3), we
know that for every choice of h, �̃(h) is always an outer set of the interval [γ, γ], the

identified set for θ in model (1), that is, [γ, γ] ⊆ �̃(h). This inclusion relation is often

4The sup and inf operators in (2) should be understood as essential supremum and essential infimum
respectively.

5For the sake of conciseness, those examples are discussed in more detail in Appendix A.1.



336 Li, Kédagni, and Mourifié Quantitative Economics 15 (2024)

used as a justification for using model (3). Its identification result �̃(h) is often viewed
as a conservative bound for [γ, γ], the identified set for model (1).

Our first observation is that the result based on �̃(h) is not always reliable. Later in
Section 3.1, we show that when the identified set of (1) is empty, that is, γ > γ, there al-

ways exist two h and h′ such that both �̃(h) and �̃(h′ ) are nonempty but �̃(h) ∩ �̃(h′ ) is
empty. Thus, two researchers could apply the same model on the same data set and yet
draw completely different conclusions from the outer sets by choosing different h func-
tions. For example, if one observes �̃(h) ⊆ (0, +∞) for some h, one should not jump
directly to the conclusion that the sign of θ is positive without verifying the nonempti-
ness of the identified set, since in the case of emptiness, there are circumstances under
which another researcher may choose an alternative h′ such that �̃(h) ⊆ (−∞, 0).

This caveat of outer sets is somewhat overlooked in the literature. As we listed some
papers in the Introduction, it is common for researchers to construct a confidence in-
terval for an outer set and draw conclusions based solely on its result. If the model is
refutable and a researcher only studies an outer set in the empirical analysis without
knowing whether the identified set is empty or not, results based on an outer set could
be misleading in the intersection-bound model. In Section 3, we show that this caveat is
indeed a concern for some widely used partial identification models, and in Section 6,
we illustrate this discordancy issue using the entry game model studied in Ciliberto and
Tamer (2009).

On the other hand, there exist models for which constructing outer sets does not lead
to misleading interpretations. In the following, we will introduce a model that belongs
to this category as our second leading example. We study this class of models in more
detail later in Section 4.

2.2 Second leading example: Adaptive Monotone IV (AMIV)

Consider the following potential outcome model: Y = ∑
z∈Z 1(Z = z)[Y1zD + Y0z(1 −

D)], where the treatment D is binary and the support Z of instrument Z is discrete and
finite. Ydz is the potential outcome when the treatment and the instrument are exter-
nally set to d and z, respectively. AssumeZ is one-dimensional and assume, without loss
of generality that Z = {1, � � � , k}. We are interested in the average potential outcomes
θd = ∑

z P(Z = z)EYdz for d ∈ {0, 1}, and then average treatment effect (ATE), that is,
θ1 − θ0. In this framework, the seminal work of Manski (1990) derived sharp bounds on
the ATE under three main assumptions: E.1 the bounded support of the potential out-
comes, E.2 the exclusion restriction, that is, EYdz = EYdz′ for z 
= z′, and E.3 the mean
independence assumption, that is, E[Ydz|Z] = E[Ydz] for all z ∈ Z . However, there are
some empirical evidences—for instance, Ginther (2000), where the identified for the ATE
proposed by Manski is empty—suggesting a violation of the set of these assumptions. To
be able to say something meaningful on the ATE in such a context, we introduce the fol-
lowing assumptions, which is one way to relax Manski’s (1990) assumptions.

For any z ∈ {1, � � � , k}, define assumption az to be the collection of the following as-
sumptions:
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Figure 1. Illustration of restriction E.3 when z = 3 and k= 5.

E.1 for each d ∈ {0, 1} and any t ∈ {1, � � � , k}, P(Ydt ∈ [y
d

, yd]) = 1.

E.2 for each d ∈ {0, 1} and any t ∈ {1, � � � , k}, E[Ydt|Z] =E[Ydt ] almost surely.

E.3 for each d ∈ {0, 1}, Ydt ≤ Ydt ′ for all t ≤ t ′, and Ydt = Ydz for all t ≥ z.

Each assumption az has three parts. E.1 requires the potential outcomes to have a
bounded support. E.2 is a mean independence assumption associated to the potential
outcome Ydz . The novelty here is E.3, which is an adaptive relaxation of the exclusion
restriction. Indeed, in the extreme case when z = 1, E.3 is equivalent to the full exclu-
sion restriction, that is, Ydz = Ydz′ for all d, z and z′, then E.2 and E.3 are equivalent to
E[Yd|Z] =E[Yd], which is the restriction under which Manski (1990) derived bounds on
the ATE. On the other extreme, when z = k, E.2 and E.3 imply the MIV assumption in-
troduced in Manski and Pepper (2000), that is, z1 < z2 ⇒ E[Yd|Z = z1] ≤ E[Yd|Z = z2].
However, when 1 < z < k, we are in a middle-ground situation where the exclusion re-
striction is relaxed in such a way that Ydz′ is monotone in z′, but remains flat for z′ ≥ z.
See Figure 1 for an illustration of how Ydz depends on z under E.3.

Because the cut-off point z would be set based on the data through techniques elab-
orated in Section 5, we refer to this assumption as the Adaptive Monotone IV (AMIV)
assumption. The economic rationality of the AMIV is that, even if Z is not a valid IV
because it could positively affect the potential outcome, in some empirical contexts, it
could be reasonable to consider that the marginal effect of the IV on the potential out-
come becomes null after a certain cut-off point.

For example, let us consider the well-studied topic of measuring the returns to a col-
lege degree. In this empirical context, researchers have often used parental education
as an instrumental variable for college education. Nonetheless, some argue that this in-
strument may not be valid. They point out that parents with higher education tend to
have children with better unobserved skills that significantly impact potential earnings,
despite the possibility that the marginal benefit of one extra year of a parent’s educa-
tion may be diminishing. The AMIV assumption introduced in this subsection combines
these two features. In terms of our notation, Y is observed wage, D is an indicator for
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college attendance, Z is parental education, and Ydz is the potential wage when col-
lege attendance D and parental education Z are externally set to d and z, respectively.
In the context here, the AMIV assumption acknowledges that parental education may
positively influence children, while also accommodating the potential for its marginal
impact to vanish beyond a certain threshold. We elaborate on this application in Sec-
tion 6.2.

Notice that by construction, for all z = 1, � � � , k − 1, az implies az+1. Therefore, we
have �({az }) ⊆ �({az+1}) for all z ∈ {1, � � � , k − 1}. In Section 4, we will show that this
nested structure of the assumptions may lead to a situation where we cannot have dis-
cordant submodels. More generally, we will derive sufficient conditions for the nonexis-
tence of discordant submodels.

When comparing these two leading examples, it is important to recognize that the
motivation that leads to the construction of the outer sets or the relaxation of the initial
model is different. In the first example, the outer sets are generated from nonsharp re-
strictions and are only used as a device aiming to provide useful information about the
identified set. This situation usually occurs when one does not know how to conduct
inference directly for the identified set or when the inference for the identified set is
computationally intractable to implement. In Section 3 below, we will explore why such
an approach could lead to unreliable results. In the second example, the outer sets are
introduced in a more constructive manner aiming to relax a model refuted by the data.
They are based on more primitive assumptions on the latent variables. In such a case, it
is often possible to provide a series of outer sets that are not discordant with others. We
will discuss this case in Section 4.

3. Misleading submodels

We view a model as a collection of constraints on the latent, observable variables, and
the parameters. Throughout the paper, the parameter space � is assumed to be some
subset in a metric space, which can be of finite or infinite dimensions. Let A be some
nonempty collection of these constraints. We consider A as the full model (or simply
model when there is no confusion) and, A′ �A as a submodel. For any nonempty sub-
set A′ ⊆ A, we use �I(A′ ) to denote the set of parameter values that satisfy all the
constraints in A′. For each a ∈ A, we abbreviate �I({a}) as �I(a). Let ∅ denote the
empty set. For our purpose, �I(∅) can be an arbitrary nonempty subset of � such that
�I(a) ⊆ �I(∅) for any a ∈A. For the sake of simplicity, when there is no confusion, we
will just use � to refer to �I(∅).

By definition, �I(A′ ) ⊆ �I(A′′ ) if A′′ ⊆ A′. As a result, for any A′ ⊆ A, �I(A′ ) is
an outer set of �I(A). Moreover, we say a submodel A′ is data-consistent if �I(A′ ) is
nonempty, and call it refuted or misspecified if the reverse is true. Since �I(A) ⊆�I(A′ )
for anyA′ ⊆A, if the modelA is data-consistent, we know that eachA′ ⊆A is also data
consistent, and �I(A′ ) ∩�I(A′′ ) is nonempty for any two submodelsA′ andA′′.

In this section, we focus on A that consists of constraints that could be written in
terms of the observable variables and model parameters only. This includes models
where the identified sets are entirely characterized by a set of moment (in)equalities, in-
cluding generalized method of moments (GMM) models, or Artstein (1983) inequalities
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involving only observables and the parameter of interest. We refer to this type of con-
straints as identification conditions. These identification conditions are often derived
from primitive assumptions involving the latent variables. In this restricted framework,
we viewA as the sharp identification conditions, and we callA′ nonsharp identification
conditions if �I(A) � �I(A′ ). For instance, in the first leading example, the role of A
is played by the set of moment inequalities (3) indexed by all instrumental functions h,
with �I(A) = [γ, γ]. A submodel A′ ⊆A could refer to (3) for a specific function h, with

�I(A′ ) = �̃(h). If [γ, γ] � �̃(h), thenA′ is a nonsharp identification condition.
When identification conditions are written in terms of the observable variables and

model parameters only, they satisfy the following assumption.

Assumption 2. For anyA′ ⊆A, �I(A′ ) = ⋂
a∈A′ �I(a).

For example, all moment (in)equality models satisfy this assumption. This assump-
tion may not hold when some a ∈A involves primitive restrictions on latent variables,
as is the case in our second leading example.

In empirical works with partially identified models, researchers often use nonsharp
identification conditions instead of the sharp ones. This is often motivated by two rea-
sons: (i) sometimes the researchers may not even know the sharp characterization of
the identified set, and (ii) the sharp identification conditions might be computationally
intractable given the existing inferential methods.6 When empirical results are based
on an outer set obtained from nonsharp identification conditions, they are tradition-
ally viewed as conservative yet valid because these outer sets are always supersets of the
sharp identified set obtained using the sharp identification conditions. However, we are
going to present a theorem that shows that outer sets obtained from nonsharp identi-
fication conditions are not always reliable and could potentially be misleading in the
presence of model misspecification. We need the following assumption for this formal
result.

Assumption 3. There exists a collection C of subsets ofA such that:

(1) ∀A′ ∈ C ,A′ is data-consistent and consists of finite elements inA,

(2) �I(
⋃
A′∈C A

′ ) =�I(A),

(3) either C is finite or, for eachA′ ∈ C , �I(A′ ) is compact.

To clarify this assumption, we start with the simple case where all the conditions
can be verified for C = {{a} : a ∈A}. In such a scenario, Assumption 3 breaks down into
the following two parts: (i) every a ∈ A is data-consistent, and (ii) either A is finite or
�I(a) is compact for each a ∈ A. Part (i) ensures that A will not be refuted because
a specific a ∈A is refuted. When A is finite, this is enough to ensure that identification
condtions are not mutually compatible whenA is refuted. This reasoning can also apply
to cases when A has infinite elements, given the compactness condition in part (ii) is

6See, for example, Berry and Compiani (2023, Section 6, footnote 42).
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true. In Assumption 3, we permit C to be formulated in ways beyond C = {{a} : a ∈A}.
By doing so, �I(a) need not necessarily be compact for each a ∈A in infinite cases. We
only require the identified set for some finite combinations of a ∈ A is compact. This
flexibility is helpful, for example, when some identification conditions determine the
lower bound for parameters, while others define the upper bound.

We would verify Assumption 3 with C = {{a} : a ∈ A} for the first leading example
in the next subsection. For an example of C being constructed in other ways, see Ap-
pendix A.2 where Assumption 3 is verified for conditional moment inequalities models.
We are now ready to state the formal result.

Theorem 1. Under Assumptions 2 and 3, �I(A) = ∅ if and only if there exist two finite
subsetsA′,A′′ ⊆A such that bothA′ andA′′ are data-consistent and�I(A′ ) ∩�I(A′′ ) =
∅.

Moreover, when �I(A) = ∅, for any data-consistent B⊆A, there exists two finite sub-
set B′, B′′ ⊆A such that both B∪B′ and B′′ are data-consistent and�I(B∪B′ )∩�I(B′′ ) =
∅.

Theorem 1 tells us that when the model is refuted, an outer set derived from one
set of nonsharp identification conditions could be completely different from an outer
set obtained from a different set of nonsharp identification conditions. In such a case,
the information delivered by an outer set depends mainly on which nonsharp identifica-
tion conditions the researcher decides to use. Therefore, for this class of models, applied
researchers must be very careful in interpreting outer sets based on nonsharp identifica-
tion conditions. We will illustrate this point further with the first leading example in the
next subsection. Later, in Section 6.1, we provide a numerical illustration of Theorem 1
when applied to an entry game example.

Moreover, Theorem 1 shows that, for any data-consistent nonsharp identification
condition, there always exists another set of nonsharp identification conditions that are
discordant with some of its strengthened versions. This suggests that the issue of discor-
dancy is not confined to certain pairs of outer sets. When the model is refuted, we can
start with any data-consistent outer set and further tighten its bounds by applying more
restrictions. After incorporating just a finite number of additional restrictions, it will in-
evitably be in conflict with another data-consistent outer set, even if the cardinalities of
A and C are uncountably infinite.

Although Theorem 1 seems to focus essentially on partially identified models, it also
applies to point-identified models. Suppose that each outer set derived from each sin-
gle identification condition is a singleton, that is, �I(a) is a singleton for all a ∈A. Then
Theorem 1 says that the model is misspecified if and only if there exist two different
identification conditions a, a′ ∈ A such that �I(a) 
= �I(a′ ). This is related to a long-
existing observation in point-identified models: whenever a model is overidentified, one
can test the model specification by comparing the point-estimates obtained from dif-
ferent identification conditions. In point-identified models, the issue of overidentifica-
tion or misspecification is a direct concern for the researchers. In partially identified
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models, however, applied researchers tend to believe that their results are more credi-
ble, and thus less sensitive to misspecification. Therefore, they often interpret the tight-
ness of an outer set as a signal of an informative identified set, as discussed in Molinari
(2020) regarding the “usefulness” of outer sets. Theorem 1 provides a different perspec-
tive that, for a certain class of models, outer sets could be misleading. Therefore, applied
researchers should be very careful in interpreting outer sets based on nonsharp identi-
fication conditions, even if the model is only partially identified. In the following, we
analyze the implications of Theorem 1 on our first leading example.

3.1 Intersection bounds example continued

To begin, let us construct A in this example. Define H+
m to be the space of all non-

negative instrumental functions with dimension m. More formally, let H+
m ≡ {h : Z �→

Rm+ such that E‖h(Z )‖ < ∞, E‖Yh(Z )‖ < ∞, E‖Yh(Z )‖ < ∞, and E[hi(Z )] > 0, ∀i =
1, � � � ,m}. Let A be the set of all identification conditions (3) indexed by h ∈ H+

1 . The
set A constructed here represents sharp identification conditions, because (1) holds if
and only if (3) holds for all h ∈ H+

1 .
Next, we verify Assumptions 2 and 3 hold. Note that, for each a ∈ A, �I(a) is

nonempty and compact. This is because each a ∈ A corresponds to an h ∈ H+
1 , and

because for all h ∈ H+
1 , the identified set �̃(h) for model (3) is equal to the following

interval: [
E

[
h(Z )Y

]
E

[
h(Z )

] ,
E

[
h(Z )Y

]
E

[
h(Z )

] ]
,

which is nonempty and compact under Assumption 1. We can let C = {{a} : a ∈A}. Then
�I(A′ ) is nonempty and compact for allA′ ∈ C . Moreover,�I(A) =�I(

⋃
A′∈C A

′ ) by the
construction of C . Thus, Assumption 3 is satisfied. Since (3) are moment inequalities,
which only depend on observables and the parameter, Assumption 2 is also satisfied.

Note that, in this example, if B⊆A and B consists ofm assumptions, thenB refers to
the submodel that (3) holds for some h ∈ H+

m. As a result, Theorem 1 implies that when
(1) is refuted, there must exist some h1 ∈ H+

m1
and h2 ∈ H+

m2
, such that �̃(h1 ) 
= ∅ and

�̃(h2 ) 
= ∅ but �̃(h1 ) ∩ �̃(h2 ) is empty. In fact, because of the specific structures of this
example, we can even obtain the following stronger result.

Proposition 1. Suppose Assumption 1 holds. If the restriction in (1) is refuted, that is,
γ > γ, then for any θ in (γ, γ), there exists some h ∈ H+

2 such that �̃(h) = {θ}. Conversely,

if there exists some integerm and some h ∈H+
m such that �̃(h) = {θ}, then θ ∈ [γ, γ].

When (1) is refuted, Proposition 1 shows that the unconditional moment restrictions
can point identify any element in the crossed bound (γ, γ) with a properly chosen in-
strumental function. The width of (γ, γ) depends on the extent of the model violation:
the worse the violation is, the wider this interval would be. In the extreme case where
the mean independence condition is significantly violated such that [EY , EY ] ⊆ (γ, γ),
it implies that any point in the Manski worst-case bounds can be selected as the point-
identification result by a suitable choice of h.
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Proposition 1 also sheds some light on the implementation of the inference proce-
dure in Andrews and Shi (2013), which is one of the most popular inference procedures
used for conditional moment inequalities. Andrews and Shi (2013) converts the condi-
tional moment inequalities into unconditional moment inequalities in the same way as
we transformed, in the first leading example, (1) into (3). A notable distinction in An-
drews and Shi’s (2013) approach is that the number of instruments, that is, the dimen-
sion of h in our notation, increases to infinity as the sample size grows. Our results show
that the usage of infinite number of instruments in the limit is crucial to achieve reliable
inference results. In contrast, if researchers implement their inference but choose an in-
strumental function with a finite and fixed dimension, their results could be spuriously
informative and misleading, as underscored in Proposition 1. See also the formal results
in Appendix A.2.

It is worth noting that Theorem 1 applies to much more general frameworks. More
precisely, in Appendices A.2 and A.3, we provide sufficient conditions under which The-
orem 1 applies to two widely used classes of partially identified models. The first is a
class of models where the identified set is characterized by the following type of condi-
tional moment inequalities:

E
[
m(X , Z; θ)|Z

] ≤ 0 almost surely. (4)

Here, X ∈ Rk1 and Z ∈ Rk2 are observable random variables, and m(·, ·; θ) ∈ R is some
known integrable function for each θ. If researchers construct outer sets by transform-
ing (4) into finite-dimensional unconditional moment inequalities, then a similar dis-
cordancy issue may happen, as the one we have seen in the first leading example. See
Appendix A.2 for more details.

The second class of models that Theorem 1 could be applied to is the class for which
the identified set can be characterized by Artstein’s (1983) inequalities. In her recent
survey, Molinari (2020) shows that this class of models includes simultaneous-move fi-
nite games with multiple equilibria, auction models with independent private values,
network formation models, treatment effect models, etc. In many of those cases, the
number of Artstein’s (1983) inequalities that characterize the (sharp) identified set is ex-
tremely high (very often much higher than the sample size of the data under use). In
practice, for the sake of computational feasibility, empirical researchers often pre-select
a finite collection of Artstein’s inequalities to obtain an outer set. As examples, we could
cite Ciliberto and Tamer (2009), Haile and Tamer (2003), Sheng (2020), Chesher and
Rosen (2020), and Berry and Compiani (2023), among many others. In Appendix A.3,
we show that those pre-selected nonsharp moment inequalities suffer the same issue
pointed out in Theorem 1.

In Section 6, we provide a numerical illustration of the discordancy issue by visiting
the widely used entry game model studied in Ciliberto and Tamer (2009). We will ex-
plore in more detail the consequences of this pre-selection procedure when the original
model might be refuted and illustrate the implication of our Theorem 1 in this widely
used framework.
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4. Compatible submodels and minimum data-consistent relaxation

As discussed in the previous section, there could be discordant submodels when the full
model is refuted. However, the falsification of the full model does not necessarily lead to
discordance of the submodels. Unlike in the previous section, we now consider A that
consists of primitive assumptions on latent variables in addition to those on observable
variables and the parameter of interest. In this wider class of models, we will present
a sufficient condition that ensures that all data-consistent submodels are always com-
patible with each other. In this section, for the sake of simplicity, we focus on the case
whereA is finite. For the case whereA is infinite, similar results could be derived under
additional conditions. We elaborate on those conditions and results in Appendix A.4.

To state our result, we need to introduce a new concept. When the full model is re-
futed, we can obtain a data-consistent submodel by dropping or relaxing some of the
assumptions. We say that a data-consistent submodel is a minimum relaxation if we re-
lax the minimum number of assumptions needed to restore data consistency.

Definition 1. Let Ã be a subset of A. We say Ã is a minimum data-consistent relax-
ation ofA if �I(Ã) is nonempty and for any a ∈A\Ã, �I(Ã∪ a) is empty.

It is worth noting that the concept of a minimum data-consistent relaxation de-
pends on how the researcher defines each of the simple assumptions a that constitute
A. Therefore, all the subsequent results relying on the minimum data-consistent relax-
ation depend on the way the researcher constructsA. We will return to this point in Sec-
tion 5.3. Furthermore, a minimum data-consistent relaxation always exists whenA is fi-
nite; its existence requires additional conditions whenA is infinite. See Appendix A.4. To
illustrate this concept, let us consider a simple example whereA= {a1, a2, a3}. The iden-
tified sets of each ai are all closed intervals in R as shown in Figure 2 with�I(a1 ) = [b, c],
�I(a2 ) = [d, e], �I(a3 ) = [f , g], and f ≤ b ≤ c < d ≤ e ≤ g. Assume also for the purpose
of illustration that�I({a, a′}) =�I(a) ∩�I(a′ ) for a, a′ ∈ {a1, a2, a3}.

In this example, both {a1, a3} and {a2, a3} are minimum data-consistent relax-
ations. And, {a3} is not a minimum data-consistent relaxation, since it will remain data-
consistent after including a1 or a2. In general, minimum data-consistent relaxations
may or may not be unique. We will defer the discussion of multiple minimum data-
consistent relaxations to the next section. In this section, we focus on the situation where
there exists a unique minimum data-consistent relaxation. In fact, the uniqueness of
the minimum data-consistent relaxation ensures the absence of discordancy issues dis-
cussed in the previous section. More precisely, in Appendix A.5, we show that the exis-
tence of two discordant submodels is equivalent to the existence of two minimum data-

Figure 2. The three-interval example.
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consistent relaxations that are also discordant each other under some regularity condi-
tions. Therefore, the uniqueness of the minimum data-consistent relaxation ensures the
absence of discordant submodels.

The following result describes the conditions under which there exists a unique min-
imum data-consistent relaxation.

Theorem 2. SupposeA is finite. Then the following statements are equivalent:

(T2.C1) for any A′ ⊆ A, A′ is data-consistent if and only if all a ∈ A′ are data-
consistent.

(T2.C2) There exists a unique minimum data-consistent relaxationA∗.

Theorem 2 through its condition (T2.C1) provides a way to check whether there ex-
ists a unique minimum data-consistent relaxationA∗. Note that Condition (T2.C1) does
not hold in every model: in a general model, each a ∈A′ being data-consistent is neces-
sary but not sufficient for A′ to be data-consistent, because individual data-consistent
assumptions might not be mutually compatible when combined. Condition (T2.C1) can
be verified by investigating when each A′ ⊆A is data-consistent, which could be done
even without seeing the data. In terms of interpretation, condition (T2.C1) implies that
all data-consistent submodels are compatible with each other. It also implies that the set
of data-consistent submodels, that is, {A′ ⊆A : �I(A′ ) 
= ∅}, is closed under the union
operation: the union of data-consistent submodels remains data-consistent.

When the full model A is data-consistent, the unique minimum data-consistent re-
laxationA∗ is just equal toA. WhenA is refuted,A∗ can be viewed as the model learned
from the data by removing all refuted assumptions in A while keeping all the data-
consistent ones. Indeed, condition (T2.C1) suggests that A∗ = {a ∈A : �I(a) 
= ∅}. The
interpretation ofA∗ and its role as the unique minimum data-consistent relaxation will
be studied further in Appendix A.6. One way to illustrate condition (T2.C1) is to consider
our second leading example.

4.1 AMIV example continued

Recall that by construction, for all z = 1, � � � , k− 1, az implies az+1. In addition, define
a† as the collection of E.1 and E.2. Let A = {a1, � � � , ak, a†} be the collection of all as-
sumptions. Then the full modelA is the classic mean independence assumption consid-
ered in Manski (1990). Within this second leading example, all assumptions are nested.
That is, for any two a, a′ ∈ A, either a implies a′ or a′ implies a. Therefore, the data-
consistency of a set of assumptions is equal to the data-consistency of the strongest
assumption in that set, which implies the validity of (T2.C1).7 Therefore, (T2.C1) holds
in this example. Theorem 2 then implies that all data-consistent submodels will be com-
patible with each other and there exists a unique minimum data-consistent relaxation
A∗. The following result characterizes the identified set ofA∗. To state the result, we use
the following notation: Yd = Y1(D = d) + y

d
1(D 
= d), Yd = Y1(D = d) + yd1(D 
= d),

q
dz

=E[Yd|Z = z], and qdz =E[Yd|Z = z].

7However, it is worth noting this nested structure is not necessary for condition (T2.C1) to hold.
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Proposition 2. Assume that P(Y ∈ [y
d

, yd]|D = d) = 1 for any d ∈ {0, 1}. Let θ =
(θ1, θ0 ) be the parameter of interest. Then modelA always has a unique minimum data-
consistent relaxation A∗, and A∗ always contains a†. In addition, for any z = 1, � � � , k,
az ∈A∗ if and only if the following two conditions hold for each d ∈ {0, 1}:

∀z′ < z, max
(
q
dt

: t ≤ z′) ≤ min
(
qdt : t ≥ z′) (5)

and

max(q
dt

: t = 1, � � � , k) ≤ min(qdt : t ≥ z). (6)

Hence, az ∈A∗ implies that az′ ∈A∗ for all z′ > z. Moreover, if {z : az ∈A∗} is nonempty,
define z∗ = min{z : az ∈A∗} and

�d,z∗ =
[∑
z<z∗

P(Z = z) max(q
dt

, t ≤ z) +
∑
z≥z∗

P(Z = z) max(q
dt

: t = 1, � � � , k),

∑
z<z∗

P(Z = z) min(qdt : t ≥ z) +
∑
z≥z∗

P(Z = z) min
(
qdt : t ≥ z∗)]. (7)

Then �I(A∗ ) = �1,z∗ × �0,z∗ . If {z : az ∈ A∗} is empty, then �I(A∗ ) = [E[Y 1], E[Y 1]] ×
[E[Y 0], E[Y 0]].

Remark 1. It is worth noting that, for simplicity, we impose the cut-off z∗ to be the same
for all potential outcomes in E.3; however, we do not need to do so. We can let the data
determine the cut-offs for each potential outcome separately.

5. Misspecification robust bounds

In this section, we consider cases where there are multiple data-consistent relaxations.
According to Theorem 2, the multiplicity of minimum data-consistent relaxations is a
necessary condition for the existence of discordant submodels. Indeed, whenever there
are two mutually incompatible data-consistent submodels, there are at least two mini-
mum data-consistent relaxations. If there is no reason to favor one submodel over an-
other ex ante, it is reasonable to consider all of these relaxations.

Definition 2. Let AR be the set of all minimum data-consistent relaxations. The mis-
specification robust bound �∗

I is defined as �∗
I ≡ ⋃

Ã∈AR
�I(Ã).

The misspecification robust bound concept is similar to the falsification adaptive set
concept introduced in Masten and Poirier (2021). However, a distinctive feature of this
section is that we focus on discrete relaxations, where an assumption is either dropped
or kept, while Masten and Poirier (2021) focuses exclusively on relaxing assumptions in
a continuous way. In general, the type of relaxation depends on the empirical question
under study. In the following, we derive the misspecification robust bound for our two
leading examples.
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5.1 Intersection bounds example continued

For the model (1), the misspecification robust bound is given in the following result.

Proposition 3. Suppose Assumption 1 holds, then

�∗
I =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[γ, γ] if γ ≤ γ,

[γ, γ] if γ < γ, P
(
E[Y |Z] ≤ γ]

)
> 0 and P

(
E[Y |Z] ≥ γ]

)
> 0,(

γ, γ] if γ < γ, P
(
E[Y |Z] ≤ γ]

) = 0 and P
(
E[Y |Z] ≥ γ]

)
> 0,[

γ, γ
)

if γ < γ, P
(
E[Y |Z] ≤ γ])

> 0 and P
(
E[Y |Z] ≥ γ]

) = 0,

(γ, γ) if γ < γ, P
(
E[Y |Z] ≤ γ]

) = 0 and P
(
E[Y |Z] ≥ γ]

) = 0.

(8)

A direct implication of Proposition 3 is that if P(E[Y |Z] ≤ γ) > 0 and P(E[Y |Z] ≥
γ)> 0 hold, which are mild technical requirements, the misspecification robust bound
simplifies to �∗

I = [min(γ, γ), max(γ, γ)] whether or not the full model is refuted.

5.2 AMIV example continued

A direct implication of Proposition 2 is that the AMIV model has a unique minimum
data-consistent relaxation A∗, which can be summarized as follows: A∗ = {a†} ∪ {az :
equations (5) and (6) hold}. Therefore, the misspecification robust bound for the AMIV

model is

�∗
I =

{
�1,z∗ × �0,z∗ ifA∗ 
= {

a†},[
E[Y 1], E[Y 1]

] × [
E[Y 0], E[Y 0]

]
ifA∗ = {

a†},
(9)

where z∗ = min{z : az ∈A∗}.

5.3 Empirical interpretation of the misspecification robust bound

As we pointed out earlier, �∗
I will depend on how the researcher decides to define the

assumptions a that constitute A. Different constructions of A correspond to different
ways to relax a refuted model. It is inevitable that there almost always exist multiple
ways to relax a stringent and refuted model, and different ways of relaxations would
lead to different results. Instead of drawing a general conclusion about which relaxation
approach is superior, we believe it is important to offer an empirical interpretation of�∗

I

for a given A. In this way, even if different researchers may construct A based on their
own economic interpretations of the model, they would have a clear interpretation of
their results.

In Theorem 5 in Appendix A.6, we show that the misspecification robust bound �∗
I

is both rationalizable and nonconflicting in the following sense:

• (Rationalizable) The statement that �∗
I contains the true parameter is implied by

some data-consistent submodel. That is, there exists some data-consistent sub-
modelA′ ⊆A such that �I(A′ ) ⊆�∗

I .
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• (Nonconflicting) The statement that �∗
I contains the true parameter is not rejected

by any data-consistent submodel. That is, there does not exist a data-consistent
submodelA′ ⊆A such that �I(A′ ) ∩�∗

I = ∅.

When the full model is refuted, different data-consistent submodels can imply differ-
ent and potentially discordant statements on θ. Among all possible statements on θ,
we think that being rationalizable and nonconflicting is a minimum requirement for a
statement to be robust to model misspecification. If a statement fails to be rationaliz-
able, then it is not implied by any of the data-consistent submodels. If a statement is not
nonconflicting, then it is rejected by some data-consistent submodels.

The fact that�∗
I is both rationalizable and nonconflicting gives it an interesting em-

pirical interpretation. Consider the simple case where θ is a scalar. Suppose we are in-
terested in the sign of θ. And, suppose �∗

I turns out to be within the positive real line,
that is, �∗

I ⊆ R++. Then it means that some submodels identify the sign of θ to be posi-
tive, and whenever the sign of θ can be identified by a submodel, the sign of θ is always
positive.

In some cases, �∗
I is the smallest set that is both rationalizable and nonconflicting.

That is, for any �̃⊆�, �̃ is both rationalizable and nonconflicting if and only if �∗
I ⊆ �̃.

In this case, �∗
I could have richer interpretations. Consider the previous simple exam-

ple again. Suppose it turns out that �∗
I ∩R++ 
= ∅ and �∗

I ∩R−− 
= ∅ so that θ ∈�∗
I does

not imply the sign of θ. If we know �∗
I is the smallest rationalizable and nonconflicting

set, then we have the following conclusion: neither θ is positive nor θ is negative are ra-
tionalizable and nonconflicting statements. In other words, the value of �∗

I in this case
implies that the data and the model cannot provide a clear statement on the sign of θ.
Finally, in Theorem 7 in Appendix A.6, we show that�∗

I would be the smallest rationaliz-
able and nonconflicting set if there exists a unique minimum data-consistent relaxation
or the identified set for each minimum data-consistent relaxation is a singleton.

5.4 Discrete relaxation versus continuous relaxation

As can be seen, the misspecification robust bound relaxes a refuted model in a discrete
way: an assumption is either fully kept or dropped during the relaxation. There are many
other ways to relax and salvage a refuted model. One can also relax assumptions contin-
uously as in Masten and Poirier (2021). In general, different relaxations will lead to differ-
ent results, and it is hard to compare all the possible approaches. However, there does
exist a special case where discrete relaxation always leads to more informative results
than any other ways of relaxations.

In order to make an adequate comparison, we need to introduce the terminology
used in Masten and Poirier (2021). For any ε ∈ [0, 1] and any a ∈ A, let aε denote the
assumption after relaxing assumption a. The degree of relaxation is measured by ε:
when ε = 0, aε = a; when ε ∈ (0, 1), the assumption a is partially relaxed but the ex-
act form of aε would depend on the specific way of relaxation chosen by the researcher;
when ε= 1, the assumption a is completely relaxed and aε is a null assumption, which
does not impose any restriction. Assume the relaxation is monotone: if ε1 ≤ ε2, aε1

is stronger than aε2 , in the sense that aε1 implies aε2 . For any δ : A → [0, 1], define
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A(δ) ≡ {aδ(a) : a ∈ A} as the perturbed full model. For any two δ1 : A → [0, 1] and
δ2 :A→ [0, 1], we write δ1 < δ2 if δ1(a) ≤ δ2(a) for all a ∈A and δ1(a)< δ2(a) for some
a ∈ A. Then the falsification frontier (FF) in Masten and Poirier (2021) can be defined
as FF = {δ : A→ [0, 1] : �I(A(δ)) 
= ∅ and there does not exist δ′ such that�I(A(δ′ )) 
=
∅,�I(A(δ′ )) � �I(A(δ)) and δ′ < δ}. We slightly modified the definition of the falsifi-
cation frontier of Masten and Poirier (2021) to ensure the nonemptiness of FF in some
special cases.8 Then the falsification adaptive set �†

I is defined as �†
I = ⋃

δ∈FF�I(A(δ)).

Note that�†
I depends on the specific way that one chooses to relax the assumptions.

If one chooses to relax them discretely, that is, if aε = a1(ε>0) for any ε and a, then �†
I

is equal to the minimum data-consistent relaxation �∗
I . If one chooses a different way

of relaxation, the �†
I is generally different. In some special cases, however, �∗

I is always

included in �†
I no matter which way of relaxation is chosen. More precisely, whenever

for any minimum data-consistent relaxation Ã, �I(Ã) is a singleton, it can be shown
that �∗

I ⊆�†
I for any type of relaxation chosen by the researcher. We formally state and

prove this result, respectively, in Theorem 8 in Appendix A.7.

6. Numerical and empirical illustrations

In this section, through numerical exercises, we illustrate two of our main theoretical
results. In Section 6.1, we consider the entry game model studied in Ciliberto and Tamer
(2009, CT). We simulate a misspecified entry game model such that the sharp identifi-
cation conditions deliver an empty identified set. In such a context, we show that it is
possible to generate multiple nonempty conflicting outer sets by just selecting different
sets of nonsharp identification conditions. This illustrates the discordancy issue raised
in Theorem 1. In Section 6.2, we revisit a return to college application and report the
estimated identified set of the minimum data-consistent relaxation derived under the
assumption that parental education satisfies the AMIV assumption.

6.1 Numerical illustration of discordant outer sets in an entry game model

Consider an entry game model with m players. Each player i chooses Yi ∈ {0, 1} to max-
imize its payoff:

πi = Yi
(
αi +Xiβ−

∑
j 
=i
δijYj + εi

)
, (10)

where δij is player j’s competition impact on player i, ε= (ε1, � � � , εm ) ∼N(0, Im ), and Im
is the identity matrix. Denote α= (αi : i= 1, � � � ,m), δ= (δij : i 
= j), and, let θ= (α, β, δ)
collect all the parameters. We model the players’ behavior as pure-strategy Nash equi-
librium. Therefore, we restrict the parameter space � to be the set of parameters where
pure-strategy equilibria exist with probability 1. This is the same empirical model used

8The original definition in Masten and Poirier (2021), written in our notation, is FF = {δ : A → [0, 1] :
�I (A(δ)) 
= ∅ and there does not exist δ′ such that�I (A(δ′ )) 
= ∅ and δ′ < δ}. With our modified definition,
we do not need to worry about the possibility that there is a sequence of {δi : i ≥ 1} such that δn → δ∗,
�I (A(δ∗ )) = ∅, �I (A(δn )) =�I (A(δ1 )) 
= ∅, and δn+1 < δn for all n≥ 1.
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in Ciliberto and Tamer (2009), except for two simplifications: (i) we assume that β is the
same for all players; (ii) we assume that the distribution of ε is known.

LetK be the collection of all subsets of Y ≡ {0, 1}m. LetF denote the joint distribution
of (Y ,X ) in the data. Define �(x, ε; θ) as the set of all pure-strategy Nash equilibria given
(x, ε), the parameter θ and the payoff function in (10). As shown in Galichon and Henry
(2011) and equivalently in Beresteanu, Molchanov, and Molinari (2011), θ belongs to the
identified set �I(F ) if and only if

∀K ∈ K, PF (Y ∈K|X ) ≤ P
(
�(X , ε; θ) ∩K 
= ∅|X

)
, X-a.s. (11)

Equation (11) characterized the Artstein (1983) inequalities associated to the en-
try game model under study. For each fix covariate x, we have 22m inequalities to be
checked. In this case, our full model A is defined by the whole set of Artstein’s inequal-
ities, and then its cardinality is 22m × Card(X ). This becomes easily nontractable even
for a relatively small number of firms, that is, for instance, for a fixed x, and 5 firms we
have 225 = 4,294,967,296 inequalities to be checked. Therefore, in practice, outer sets
are almost always used. LetA′ be a subset of K. Then the outer set associated withA′ is

�I
(
F ,A′) ≡ {

θ ∈� : ∀K ∈A′, PF (Y ∈K|X ) ≤ P
(
�(X , ε; θ) ∩K 
= ∅|X

)
,X-a.s.

}
A′ is a nonsharp identification condition whenever �I(F ,A′ ) 
= �I(F , K) ≡ �I(F ). In
CT, for each fixed x, they considered the outer set associated with Act defined as Act =
{{y} : y ∈ Y } ∪ {{y}c : y ∈ Y } where {y}c stands for the complement set of {y} in Y . It is
worth noting that wheneverm> 2,Act is a nonsharp identification condition.

6.1.1 Data generating process (DGP) In order to illustrate the issue of nonreliability of
the outer sets in presence of misspecification, we generate a joint distribution F from a
game that might be different from the model (10). Assume that, in the data generating
process, each player i chooses Yi ∈ {0, 1} to maximize the following payoff instead of
(10):

πi = Yi
(
αi +Xiβ−

∑
j 
=i
δijYj −

∑
j1,j2 
=i

γij1,j2Yj1Yj2 + εi
)

. (12)

The extra vector of parameter γ ≡ {γij1,j2
: where (i, j1, j2 ) are mutually different}

captures the second-order competition effect. When γ = 0, the model in (10) is correctly
specified. If γ 
= 0, the model in (10) is misspecified. To complete the model, we assume
that, whenever there are multiple pure-strategy Nash equilibria, players will choose each
equilibrium with the same probability. We assume that the support of X is a bounded
interval X in Rdim(X ). Without loss of generality, we assume X is distributed uniformly
in its support.

In the simulation, we focus on the simple case where γ1
j1,j2

= γ∗ for all (j1, j2 ), and

γij1,j2
= 0 for all (i 
= 1, j1, j2 ). Then the joint distribution of (Y ,X ) generated from this

data generating process is indexed by (θ, γ∗ ), which we write as Fθ,γ∗ . Note that γ∗ mea-
sures the degree of misspecification: the larger the value of γ∗ is, the larger the degree
of misspecification of model in (10) is. In the simulation design, we impose that m= 3,
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Figure 3. �(Fθ,γ∗ ,Act ) at various values of γ∗.

dimX = 1, X ∼ U[−1, 1], β = 0.1, α = [1, 1, 1], and δij = 1 for all (i, j). In the following,
we construct outer sets both for the parameter δ and also for a counterfactual outcome
in a counterfactual experiment. In both cases, we will show that we will be able to gener-
ate three outer sets (including the CT outer set) that are discordant with each other and
none of them contains the true value.

6.1.2 Discordant nonsharp identification conditions for δ Our first objective is to il-
lustrate the existence of discordant nonsharp identification conditions. Here, we focus
on the (projected) identified set for δ1

2. Given the DGP with (θ, γ∗ ), the outer set for
δ1

2 associated with the nonsharp identification conditions in A′ is characterized as fol-
lows:�(Fθ,γ∗ ,A′ ) = {t : ∃(α, β, δ) ∈�I(Fθ,γ∗ ,A′ ) s.t. δ1

2 = t}. Now, let us denote by γ∗
ct the

maximum degree of misspecification that could not be detected by the submodel Act.
More precisely, we define γ∗

ct := sup{γ∗ : �(Fθ,γ∗ ,Act ) 
= ∅}, therefore, �(Fθ,γ∗ ,Act ) is a
nonempty outer set when γ∗ ≤ γ∗

ct, and it becomes empty whenever γ∗ > γ∗
ct. In Fig-

ure 3, we plot in blue the CT outer set, that is, �(Fθ,γ∗ ,Act ), at various degree of model
misspecification, for γ∗ ∈ [0, γ∗

ct], where 0 corresponds to no misspecification and γ∗
ct

corresponds to the maximum degree of misspecification that is not detectable withAct.
A first remark is that the CT outer set shrinks when the degree of misspecification

increases and at some point it no longer contains the true value. This illustrates that
the tightness of the outer set should not systematically be interpreted as a signal of an
informative identified set but it could just signal a presence of misspecification.

In Appendix A.3, we explain why the findings of Theorem 1 apply to the entry game
example. So, according to Theorem 1, there must exist some other A′ nonsharp iden-
tification condition, which is discordant with Act. Indeed, we are able to find two sets
of nonsharp identification conditions, denoted as A1 and A2, which result in discor-
dant identification results with Act. In Figure 4, we plot �(Fθ,γ∗ ,A1 ) in orange and
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Figure 4. �(Fθ,γ∗ ,A1 ) and �(Fθ,γ∗ ,A2 ) at various values of γ∗.

�(Fθ,γ∗ ,A2 ) in green. �(Fθ,γ∗ ,A1 ) suggests values for δ1
2 that are higher than those sug-

gested by �(Fθ,γ∗ ,Act ) while �(Fθ,γ∗ ,A2 ) suggests values that are lower. When the de-
gree of misspecification is higher than 0.4, these three outer sets have no overlap.

6.1.3 Discordant counterfactual predictions In many of the empirical games appli-
cations, applied researchers are very often interested in implementing counterfactual
analyses. Interestingly, we observe not only discordant results for the parameters, but we
also observe this phenomenon for counterfactuals. Below, we illustrate a scenario where
different outer sets lead to discordant counterfactual outcomes when the full model is
misspecified. Therefore, we illustrate the fact that the discordancy issue also applies to
counterfactual outcomes. Let us consider a counterfactual where firm 3 is no longer a
potential entrant of the market. This type of counterfactuals would arise, for example,
when firm 3 is a foreign firm and is banned from the home market due to a trade policy,
or when firm 3 is merged with other firms.

Figure 5 plots the different counterfactual predictions of submodelsAct,A1, andA2

for the probability that only one firm enters the market, that is, the probability of the
presence of a monopoly in a market with characteristics x0 = (0, 0, 0). As we can see
clearly, three submodels give counterfactual predictions that are discordant with each
other.

6.2 An empirical illustration for compatible submodels

6.2.1 Context and data Estimating the causal impact of college education on later
earnings has always been troublesome for economists because of the endogeneity of
the level of education. To evaluate the returns to schooling, different approaches have
been proposed, and most of them rely on the validity of instruments such as parental
education, tuition fees, quarter of birth, distance to college, etc. The validity of all these
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Figure 5. P(Y1 +Y2 = 1|X = x0 ) at various γ∗.

IVs has been widely criticized because of their potential correlation with the children’s
unobserved skills.

In order to accommodate potentially invalid instruments, Manski and Pepper (2000,
2009) introduced the monotone IV (MIV) that does not require the IV to be valid but only
imposes a positive dependence relationship between the IV and potential earnings. For
instance, parental education may not be independent of potential wages, but plausi-
bly does not negatively affect future earnings. In such a context, bounds on the average
return to education can be derived.

In this application, we will consider the AMIV assumption introduced in Section 4.1.
We consider that parental education can have a positive effect on children’s future earn-
ings, but this marginal positive effect could plausibly become null after some cut-off.
The particularity of our method is to let this cut-off be determined by the data using our
misspecification robust bounds.

We consider the data used in Heckman, Tobias, and Vytlacil (2001, HTV). The data
consist of a sample of 1230 white males taken from the National Longitudinal Survey of
Youth of 1979 (NSLY79).9 The data contain information on the log weekly wage, college
education, father’s education, mother’s education, among many other variables. Follow-
ing HTV, we consider the college enrollment indicator as the treatment: it is equal to 1
if the individual has completed at least 13 years of education and 0 otherwise. In this
empirical exercise, we use the maximum of parental education as the candidate instru-
mental variable. Some summary statistics are reported in Table 1.

9The NLSY79 survey is sponsored and directed by the U.S. Bureau of Labor Statistics, and managed by
the Center for Human Resource Research (CHRR) at The Ohio State University. Interviews are conducted by
the National Opinion Research Center (NORC) at the University of Chicago. See Bureau of Labor Statistics,
U.S. Department of Labor (2019) for more details.
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Table 1. Summary statistics.

Total

Observations 1230
log wage 2.4138 (0.5937)
college 0.4325 (0.4956)
father’s education 12.44715 (3.2638)
mother’s education 12.1781 (2.2781)
max(father’s education, mother’s education) 13.1699 (2.7123)

Note: Average and standard deviation (in the parentheses)

6.2.2 Methodology and results We start by constructing the 95% confidence region for
the identified sets of the average structural functions E[Yd], d ∈ {0, 1} and the average
treatment effect E[Y1 − Y0] under the Manski (1990) mean independence assumption,
denoted as �I(MI), and under the MIV assumption, denoted as �I(MIV). In addition,
we construct an estimate of our misspecification robust bounds under the AMIV as-
sumption, denoted as �∗

I (AMIV), using the following steps:

1. The support of our instrument is Z = {0, 1, � � � , 20}. For each z ∈ {0, 1, � � � , 20}, we
test the implications (5) and (6) using the intersection bounds method of Cher-
nozhukov, Lee, and Rosen (2013), implemented in Chernozhukov, Kim, Lee, and
Rosen (2015). For each d ∈ {0, 1}, we set z∗

d as the smallest z for which we do not
reject (5) and (6). The use of Chernozhukov et al.’s (2015) Stata package yields
a 95% confidence set for [max(q

dt
: t ≤ z), min(qdt : t ≥ z)] for each z < z∗

d , and
[max(q

dt
: t = 1, � � � , k), min(qdt : t ≥ z∗

d )].

2. We then plug the 95% confidence bounds obtained from step (1) into the bounds
in Equation (7), where we replace P(Z = z) by its sample analog. This procedure
leads to an estimate of the identified set �d,z∗ for each d ∈ {0, 1}, which yields an
estimate for the identified set �∗

I (AMIV).10

The same procedure is applied to get an estimate for �I(MIV) except that z∗
d is set to 20

for each d ∈ {0, 1}. Finally, since the identified set for the ATE under the mean indepen-
dence assumption denoted as �I(MI) takes the form of standard intersection bounds,
we use the Chernozhukov et al. (2015) package to obtain its 95% confidence bounds.

The results are summarized in Table 2. Column (1) shows that the 95% confidence
region for�I(MI) is empty. In other words, the data shows clear evidence against the use
of parental education as a valid IV. On the other hand, column (4) shows the result for
�I(MIV).11 As can be seen, we move from an empty identification region to a wide and
noninformative identification region. In contrast, our misspecification robust bounds
provide a nonempty yet relatively smaller set estimate for the ATE. Column (2) shows

10Because our primarily focus in this paper is about identification, we do not attempt to study the statis-
tical issues related to the derivation of a valid confidence region for the misspecification robust bound. We
leave this open question for future research.

11We even test the validity of the MIV using the test proposed by Hsu, Liu, and Shi (2019), and we do not
reject the MIV assumption even at 10 % level.
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Table 2. Results.

Set Estimates/
95% Conf. Bounds

(1)
�I (MI)

(2)
�∗
I (AMIV)

(z∗
1, z∗

0 ) = (0, 11)

(3)
�∗
I (AMIV)

(z∗
1, z∗

0 ) = (11, 11)
(4)

�I (MIV)

θ1 ≡ E[Y1] [2.535, 2.815] [2.535, 2.815] [2.412, 2.816] [0.933, 2.815]
θ0 ≡ E[Y0] Empty [2.547, 2.591] [2.547, 2.591] [2.548, 2.814]
ATE ≡ E[Y1 −Y0] Empty [−0.056, 0.268] [−0.179, 0.269] [−1.881, 0.267]

1All values in column (1) are the 95% confidence intervals.
2All values in columns (2)–(4) are set estimates based on the 95% confidence interval of �I (az ).

estimates of our misspecification robust bounds �∗
I (AMIV) when we allow the cut-offs

to differ across potential outcomes as discussed in Remark 1, while column (3) shows
estimates where the cut-offs are restricted to be the same for both potential outcomes as
in Proposition 2. In the former case, we see that our proposed approach almost identifies
the sign of the ATE.

7. Discussion

In this paper, we demonstrate the existence of discordant submodels in a wide range
of models in the presence of model misspecification. This provides another reason why
one should use the sharp characterization of the identified set whenever possible. The
identified set not only exhausts all the identification restrictions in the model structure
and assumptions but also is immune to the possible misleading conclusions of discor-
dant submodels. Unlike an outer set, the identified set will be empty when the model is
refuted by the data.

In empirical applications where a sharp characterization of the identified set is not
tractable, our results suggest that empirical researchers should exercise caution when
working with nonsharp identification conditions, especially when the bounds they ob-
tain are very tight. For example, as a robustness check, one could construct the outer
sets in different ways and check for any discordance between them.

Salvaging a refuted model is usually a challenging task, as it often involves some
arbitrariness in how the model gets relaxed, and it could sometimes be computation-
ally intractable. However, things get much easier when the minimum data-consistent
relaxation is unique. In this case, it is apparent which assumptions are consistent with
the data and which assumptions are not because all the data-consistent assumptions
are compatible with each other (Theorems 2 and 4). Moreover, the identified set of any
data-consistent submodel can be viewed as a conservative bound for the misspecifica-
tion robust bound in this case, making the computation a lot easier.

When the uniqueness of the minimum data-consistent relaxation is beyond reach,
one can still choose to find the misspecification robust bound we proposed in this pa-
per. It always leads to rationalizable and nonconflicting statements (Theorem 5), and it
is sometimes the most informative rationalizable and nonconflicting statement (The-
orem 7). We work out the misspecification robust bound in some simple examples, but
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its exact solution could be too complicated to solve when the underlying model involves
many structures. In those challenging cases, it might be possible to construct an outer
set that always covers the misspecification robust bound proposed in this paper. This
type of outer sets will be immune to the issue raised in this paper. It remains unclear
how to construct such outer sets, but this could be one reasonable step beyond the find-
ings in this paper.

Appendix A: Additional results

This Appendix collects some additional theoretical results. We put all the proofs in Ap-
pendix C except for very short ones.

A.1 Example of intersection bounds

Example 1 (Discrete Treatment Model). Consider a setting where X ≡ {x1, � � � , xK } is
the set of all possible treatments. Let Yk be the potential outcome when the treatment
is externally set to xk. The observed outcome Y is defined as follows: Y = ∑

k 1(X =
xk )Yk. Let us define θk ≡E[Yk] and assume that Yk has a bounded support [y

k
, yk]. The

random bound for Yk can be constructed as follows: Yk ≡ Y1(X = xk ) + y
k
1(X 
= xk )

andYk ≡ Y1(X = xk )+yk1(X 
= xk ). If we assume the mean independence assumption
E[Yk|Z] =E[Yk], we obtain a special case of (1).

Discrete treatment models with bounded potential outcomes are usually considered
in Manski’s work. See, for instance, Manski (1990, 1994) among many others.

Example 2 (Smooth Treatment Model). Consider a smooth treatment model as in Kim
et al. (2018). When the treatment is x, the potential outcome is Y (x) = g(x, ε) where g
is an unknown function, and ε is individual heterogeneous characterization. Assume
g(x, ε) is Lipschitz continuous in x with Lipschitz constant equal to τ. Suppose we
are interested in θx = E[Y (x)]. The lower and upper bounds can be constructed as
Y (x) = Y−‖X−x‖τ andY (x) = Y+‖X−x‖τ. As in the discrete treatment case, if we as-
sumeE[Y (x)|Z] =E[Y (x)], we obtain model (1). As a special case, one can also consider
a linear model with heterogeneous coefficient, Y =X ′β+ εwhere β is a vector of an un-
observed random coefficient. Suppose the coefficient space for β is [β, β]. Then Y (x) =
Y + ∑

imin{(xi −Xi )βi, (xi −Xi )βi} where the subscript i stands for the ith dimension

of the corresponding variables. Similarly, Y (x) = Y + ∑
imax{(xi −Xi )βi, (xi −Xi )βi}.

A.2 Conditional moment inequalities

Let us now consider a more general setting than the introductory example. Assume the
full model is a conditional moment inequality,

E
[
m(X; θ)|Z

] ≤ 0 almost surely, (13)

where X ∈ Rk1 and Z ∈ Rk2 are observable random variables and m(·, ·; θ) is some
known integrable function with E‖m(X; θ)‖<∞ for each θ. We focus on the case where
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Z are continuous random variables. Random variables X and Z could have overlaps.
In practice, empirical researchers sometimes use the following unconditional model in-
stead:

E
[
w(Z )m(X; θ)

] ≤ 0, (14)

wherew(·) is some nonnegative weighting function. We want to understand what would
happen when one conduct empirical analysis based on (14) when (13) happens to be
refuted.

To answer this question, define W+
m to be the set of all m-dimenstional nonnegative

function w, which satisfies 0 < E‖w(Z )‖2 <∞ and E‖w(Z )m(X; θ)‖ <∞ for all θ ∈ �.
DefineA as the collection of condition (14) for all w ∈ W+

1 , that is,

A := {
(14) with w :w ∈ W+

1

}
.

With this definition, any subset B of A with m elements corresponds to the condition,
which (14) holds for some w ∈ W+

m . By the construction ofA, Assumption 2 is satisfied.
To verify Assumption 3, we need to construct a C . Let Z be the support of Z. For

any z ∈ Z and any ε > 0, define function hz,ε as hz,ε(Z ) = 1(‖Z − z‖< ε). Suppose that,
for any z ∈ Z , there exists some θ ∈� and some δ(z)> 0 such that E[m(X; θ)|Z] ≤ 0 for
almost every Z with ‖Z − z‖ ≤ δ(z). Then, for each z ∈ Z and each ε ∈ (0, δ(z)), there
exists some θ ∈ � such that E[hz,ε(Z )m(X , θ)] ≤ 0. Define the collection of functions
W∗ as W∗ := {hz,ε : ε ∈ (0, δ(z)), z ∈ Z }. Then we can construct C as

C := {
{a} : a ∈A∗}, whereA∗ := {

(14) with w :w ∈ W∗}. (15)

The following proposition shows that this C satisfies Assumption 3 under some regular-
ity conditions.

Proposition 4. Assume that

(a) there exists a function g(z; θ) such that (i) for every θ ∈ �, E[m(X , Z; θ)|Z] =
g(Z; θ) almost surely; (ii) g(z; θ) is continuous in z for any given θ; (iii) g(z; θ) is
continuous in θ for any given z.

(b) for any z in the support of Z, there exists some δ(z) > 0 and some θ ∈ � such that
E[m(X; θ)|Z] ≤ 0 for almost every Z satisfying ‖Z − z‖ ≤ δ(z).

(c) there exists some function γ(·) such that supθ∈� ‖E[m(X; θ)|Z]‖ ≤ γ(Z ) almost
surely and E|γ(Z )|2 <∞.

(d) � is compact.

Then Assumption 3 is satisfied for C constructed in (15).

As a result, Theorem 1 can be applied here. In the context of moment inequalities,
the result in Theorem 1 means that (13) is refuted if and only if there exists w1 ∈ W+

m1

and w2 ∈ W+
m2

such that both (14) with w =w1 and (14) with w =w2 are not refuted but
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the identified sets of these two sets of identification conditions have empty intersection.
Moreover, whenever (13) is refuted, for any w̃ ∈ W+

m̃ with which (14) is data-consistent,
there exists some w1 ∈ W+

m1
and w2 ∈ W+

m2
such that both the (14) with w = (w̃, w1 ) and

(14) with w=w2 are data-consistent but their identified sets have empty intersection.
This result complements the findings in Andrews and Shi (2013). In Andrews and

Shi (2013), they propose an inference procedure for models like (13). Their inference
transform (13) into (14) by selecting w in a subfamily of W+

m and letting m→ ∞ as the
sample size increases. Our result shows that increasing m to infinity is crucial to ensure
the robustness of the result if (13) could be misspecified. If the dimension of w is fixed,
then the empirical result for (14) could be misleading even if the inference controls the
size uniformly.

A.3 Random sets and Choquet capacity

In this section, we consider models whose identified set can be described with random
sets and Choquet capacity functions. Let Y be a vector of endogenous random vari-
ables, and letX be a vector of exogenous observable covariates. Let Y and X denote the
support of Y and X , respectively. Here, the parameter θ of interest could be of infinite
dimensions, and its parameter space � need not be compact.

Let �(θ) be some random closed set in Y , which could depend on θ, X , and some
latent random variables. Assume P(Y ∈ �(θ)) = 1. Artstein (1983) shows that the condi-
tional distribution of Y givenX equals FY |X almost surely if and only if for any compact
subsetK of Y , the following inequality holds:

PF (Y ∈K|X ) ≤L(K,X; θ) almost surely, where

L(K,X; θ) := P(
�(θ) ∩K 
= ∅|X

)
, (16)

where PF refers to the probability measure corresponding to FY |X . TheL(·,X; θ) is often
known as the Choquet capacity function. This type of models plays an important role in
the partial identification literature. We refer to Molinari (2020) for more background in-
troductions. Often in practice, either PF (Y ∈K|X ) or L(K,X; θ) can be identified from
the data, and the other one can typically be derived or simulated from some additional
assumptions. For the purpose of illustration, we consider the case where Y and X are
observable so that PF (Y ∈K|X ) can be identified from the data, and assume L(K,X; θ)
is a known function ofK andX given θ.

In general, one needs to check (16) for all compact sets of Y in order to ensure this
collection of moment inequalities is a sharp identification condition. In some circum-
stances, checking the inequalities for all compact sets is equivalent to checking the in-
equalities only for a subcollection of compact sets, in which case, this subcollection is
called the core determining class in the language of Galichon and Henry (2011). How-
ever, in practice, researchers often pre-select some finite collection K of compact sets
that are not core-determining, and they only check (16) for compact sets in this K. For
instance, in the treatment effect literature, the well-known Manski (1994) bounds on the
potential outcome distributions implemented in various applications such as in Blun-
dell et al. (2007), or Peterson (1976) bounds on competing risk, use only a finite and not
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sufficient collection of Artstein inequalities. See, respectively, Molinari (2020) and Mou-
rifié, Henry, and Méango (2020) for a detailed discussion. In empirical games, auction,
and network applications we can also cite Ciliberto and Tamer (2009), Haile and Tamer
(2003), Sheng (2020), Chesher and Rosen (2020), among many others who also focused
on a finite and not sufficient collection of Artstein inequalities.12

We want to explore the consequences of this pre-selection procedure when the orig-
inal model might be refuted by the data. For simplicity, we focus on the case where Y
only takes a finite number of possible values. In this case, the support Y of Y is a finite
set and the collection of all compact sets in Y is simply the power set of Y , that is, the
collection of all subsets of Y .

To fit this model into the general framework in Section 3, define A as the collection
of all Artsein’s inequality, that is,

A := {
(16) withK :K ⊆ Y

}
.

With this definition, any subset A′ of A corresponds to testing (16) only for a pre-
selected collection of compact sets. In order to apply Theorem 1, we need to verify As-
sumptions 2 and 3. By the construction of A, Assumption 2 is satisfied. To verify As-
sumption 3, let us construct C as

C := {
{a} : a ∈A}

. (17)

The following proposition provides a sufficient condition under which Assumption 3 is
satisfied with this choice of C .

Proposition 5. Let X and Y be the supports of X and Y , respectively. Suppose Y is a
finite set. The parameter space�may or may not be compact. Suppose that, for each y ∈ Y ,
the following assumptions hold:

(L5.C1) infx∈X P(Y = y|X = x)> 0,

(L5.C2) there exists a sequence θ1, θ2, � � � in� such that infx∈X L({y}, x; θk ) → 1 as k→
∞,

where the inf in the above two conditions refers to the essential infimum. Then Assump-
tion 3 holds for C defined in (17).

As a result, Theorem 1 could be applied here. For any pre-selected collection K of
compact subsets, define �I(K) as the set of parameters, which satisfy (16) for all K ∈ K.
In this context, the result in Theorem 1 means that the model is refuted if and only if
there exists two K1 and K2 such that �I(K1 ) 
= ∅, �I(K2 ) 
= ∅ and �I(K1 ) ∩ �I(K2 ) =
∅. Moreover, for any pre-selected collection K of compact sets with �I(K) 
= ∅, there
always exist two finite collections K1 and K2 such that �I(K ∪K1 ) 
= ∅, �I(K2 ) 
= ∅, and
�I(K ∪K1 ) ∩�I(K2 ) = ∅.

We conclude this subsection with the entry game model as an example. We are going
to verify all the conditions in Proposition 5 for this example.

12See Molinari (2020) for a detailed discussion.
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Example 3 (Entry Game). Consider anm-player complete information entry game as in

Ciliberto and Tamer (2009). Assume there arem players, where player i’s payoff function

is specified as

πi = Yi
(
γi +X ′

iβi −
∑
j 
=i
δijYj + εi

)
,

where the Xis are some covariates, which might be player i specific, Yi ∈ {0, 1} stands

for player i’s entry decision, and Yj stands for the decision of player j. Here, γi and βi
are player-specific parameter coefficient, and δij > 0 is the parameter that describes the

strategic interaction between player i and j. We assume that Y = (Yi : i = 1, � � � ,m) is

always a pure-strategy Nash equilibirum.

Assume ε = (ε1, � � � , εm ) is independent of X and ε follows the normal distribution

N(0, �). Let γ = (γ1, � � � , γm ), β = (β1, � � � , βm ), and δ = (δij : i 
= j). Let θ = (γ, β, δ, �)
be the vector of all parameters. Let Y = {y = (y1, � � � , ym ) : yi ∈ {0, 1}, i= 1, � � � ,m} be the

set of all possible entry decisions. For anyK ⊆ Y , define L(K,X , θ) to be the probability

that at least one y ∈ K is a pure-strategy Nash equilibrium given X and θ. In practice,

L(K,X , θ) can often be solved from numerical simulations.

In Galichon and Henry (2011), the identified set of this model is shown to be the set

of all θ, which satisfies (16) for every subset K of Y . The number of these inequalities

increases with m very quickly in the order of 22m . Galichon and Henry (2011) provide

some methods to reduce the number of inequalities by removing redundant inequali-

ties in (16), but in general, sharp characterization of the identified set involves a large

number of inequalities. In practice for the sake of computational feasibility, empirical

researchers often pre-select a finite collection K of subsets and only check (16) for each

K ∈ K. See, for example, Ciliberto and Tamer (2009) and Ciliberto, Murry, and Tamer

(2021).

Let us now check conditions in Proposition 5. Let �= Rdim(θ). Condition (L5.C1) in

Proposition 5 is a low-level condition that can be directly verified by the data. In theory,

this condition would hold, for example, if the true data generating process has the fol-

lowing properties: (i) the support of ε is Rm conditional on almost every X , and (ii) for

each i, player i’s payoff function is

πi = Yi
(
g(Xi, Y−i ) + εi

)
,

whereY−i = {Yj : j 
= i) and g can be an arbitrary function of (Xi, Y−i ) that is bounded in

their support. This class of data generating processes nests the model that we imposed

above, but the true data generating process need not be the same as our model. That

is, Condition (L5.C1) in Proposition 5 holds even if the model is misspecified. Condition

(L5.C2) in Proposition 5 also holds, because for each y ∈ Y , one can have L({y}, x; θk ) →
1 by simply fixing β = 0, δ = 0 and let γ → γ∗ where γ∗

i = ∞ if yi = 1 and γ∗
i = −∞ if

yi = 0.
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A.4 Existence and uniqueness of minimum data-consistent relaxation

Theorem 3. Suppose one of the following two conditions is satisfied:

(T3.C1) A is a finite set.

(T3.C2) For any a ∈ A, �I(a) is compact. Moreover, for any B ⊆ A, �I(B) =⋂
a∈B �I(a).

Then there exists some minimum data-consistent relaxation ofA. Moreover, for any data-
consistent A′ ⊆ A, there exists some minimum data-consistent relaxation Ã such that
A′ ⊆ Ã.

Theorem 3 not only establishes the existence of a minimum data-consistent relax-
ation, but also shows that any data-consistent subset A′ ⊆ A can be further strength-
ened into a minimum data-consistent relaxation by including additional assumptions.
It is worth noting that, when A is a finite set, the result of Theorem 3 does not require
any additional conditions. When A is an infinite set, we need �I(a) to be compact for
each a ∈A. In addition, we need that, for any B⊆A, �I(B) = ⋂

a∈B �I(a), which would
hold, for example, if θ fully describes the distribution of both observed and latent ran-
dom variables as in a maximum likelihood setting.

The following theorem studies the uniqueness of the minimum data-consistent re-
laxation, and is a generalized version of Theorem 2 in the main text.

Theorem 4. Statement (T2.C1) implies (T2.C2). If either (T3.C1) or (T3.C2) holds, then
(T2.C2) implies (T2.C1).

A.5 Discordancy and multiplicity of minimum data-consistent relaxations

Proposition 6. Whenever Condition (T3.C1) or (T3.C2) hold, we have the following
result: There exists two data-consistentA1,A2 ⊆Awith�I(A1 ) ∩�I(A2 ) = ∅ if and only
if there exists two minimum data-consistent relaxations Ã1 and Ã2 such that �I(Ã1 ) ∩
�I(Ã2 ) = ∅.

Proof for Proposition 6. We first prove the if part. Suppose there exists two min-
imum data-consistent relaxations Ã1 and Ã2 such that �I(Ã1 ) ∩ �I(Ã2 ) = ∅. By the
definition of minimum data-consistent relaxation, both Ã1 and Ã2 are data-consistent
subsets of A. Thus, this proves the existence of two data-consistent A1,A2 ⊆ A with
�I(A1 ) ∩�I(A2 ) = ∅.

Next, we want to prove the only if part. Suppose that there exists two data-consistent
A1,A2 ⊆A with �I(A1 ) ∩�I(A2 ) = ∅. By Theorem 3, there exists two minimum data-
consistent relaxations Ã1 and Ã2 such that A1 ⊆ Ã1 and A2 ⊆ Ã2. Because Ã1 ⊆ A1,
we have �I(Ã1 ) ⊆ �I(A1 ). Similarly, we have �I(Ã2 ) ⊆ �I(A2 ). Because �I(A1 ) ∩
�I(A2 ) = ∅, we must have �I(Ã1 ) ∩�I(Ã2 ) = ∅.
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A.6 Empirical interpretation of misspecification robust bound

As discussed in Section 5.3, a rationalizable and nonconflicting set has rich interpreta-
tions. The following theorem shows that the misspecification robust bound �∗

I is both
rationalizable and nonconflicting.

Theorem 5. Suppose either (T3.C1) or (T3.C2) holds. Then�∗
I is both rationalizable and

nonconflicting. That is,

• (rationalizable) there exists some submodel A′ ⊆ A such that �I(A′ ) ⊆ �∗
I and

�I(A′ ) 
= ∅.

• (nonconflicting) there does not exist a submodel A′ ⊆A with �I(A′ ) 
= ∅ such that
�I(A′ ) ∩�∗

I = ∅.

As discussed in Section 5.3, �∗
I have even richer explanations when it is the smallest

rationalizable and nonconflicting set. Recall that a set S∗ is the smallest rationalizable
and nonconflicting set, if S∗ is rationalizable and nonconflicting, and S∗ ⊆ S for every
rationalizable and nonconflicting set S. The smallest rationalizable and nonconflicting
set does not always exists. However, the following theorem shows that, under mild con-
ditions, whenever the smallest rationalizable and nonconflicting set exists, it is equal to
�∗
I .

Theorem 6. Suppose either (T3.C1) or (T3.C2) holds. Assume

(T6.C1) there does not exist two different minimum data-consistent relaxation Ã1 and
Ã2 such that �I(Ã1 ) ��I(Ã2 ).

Then, whenever the smallest rationalizable and nonconflicting set exists, it is equal to�∗
I .

Condition (T6.C1) could be verified from the data. Note that, for any two different
minimum data-consistent relaxations Ã1 and Ã2, we always have�I(Ã1 ∪ Ã2 ) = ∅, that
is, Ã1 and Ã2 are not compatible with each other. As it is unlikely that for two sets Ã1 and
Ã2 to satisfy �I(Ã1 ) � �I(Ã2 ) while being incompatible with each other, we consider
(T6.C1) as a mild condition. Finally, Condition (T6.C1) would hold, if there is a unique
minimum data-consistent relaxation, or if the identified set of every minimum data-
consistent relaxation is a singleton set. In fact, these two conditions are also sufficient
conditions for �∗

I being the smallest rationalizable and nonconflicting set, as shown in
the following theorem.

Theorem 7. Suppose either (T3.C1) or (T3.C2) holds. Assume one of the following con-
ditions is satisfied:

(T7.C1) there exists a unique minimum data-consistent relaxation,

(T7.C2) for any minimum data-consistent relaxation Ã, �I(Ã) is a singleton.

Then�∗
I is the smallest set that are both rationalizable and nonconflicting.
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A.7 Discrete relaxation versus continuous relaxation

Theorem 8. Suppose (T7.C2) holds. Then �∗
I ⊆ �†

I for any type of relaxation chosen by
the researcher.

Appendix B: Proof of the main results

B.1 Proof of Theorem 1

First of all, note that Assumption 2 implies that for any A′,A′′ ⊆ A, �I(A′ ∪ A′′ ) =
�I(A′ ) ∩�I(A′′ ).

If there exists A′,A′′ ⊆A such that �I(A′ ) 
= ∅, �I(A′′ ) 
= ∅, and �I(A′ ) ∩�I(A′′ ) =
∅, then �I(A) ⊆ �I(A′ ∪A′′ ) = �I(A′ ) ∩ �I(A′′ ) = ∅. Hence, �I(A) = ∅ if there exists
A′,A′′ ⊆A such that�I(A′ ) 
= ∅,�I(A′′ ) 
= ∅, and �I(A′ ) ∩�I(A′′ ) = ∅.

Reversely, if�I(A) = ∅, we want to show that there exists two finite subsetsA′,A′′ ⊆
A such that �I(A′ ) 
= ∅, �I(A′′ ) 
= ∅, and �I(A′ ) ∩�I(A′′ ) = ∅. More specifically, we are
going to show the following statement:

When�I(A) = ∅, there existsA′ ∈ C and {A1, � � � ,An} ⊆ C for some finite n

such that bothA′ andA′′ =
n⋃
i=1

Ai are data-consistent, but�I
(
A′) ∩�I

(
A′′) = ∅. (18)

To show (18), we consider two cases.
Case 1: The C in Assumption 3 has infinite elements. In this case, �I(A′ ) is com-

pact for all A′ ∈ C . Define D := {B : �I(B) 
= ∅, and ∃C ′ ⊆ C , B = ⋃
A′∈C ′ A′}. Because

�I(A′ ) 
= ∅ for all A′ ∈ C , C ⊆ D . Hence, D is nonempty. Moreover, because the inter-
section of compact sets is compact, we know �I(A′ ) is compact for anyA′ ∈ D .

Note that ⊆ can be viewed as a partial order for elements within D . We are going to
show D has a maximal element in terms of ⊆, that is, there exists someA′ ∈ C such that
you cannot find anA′′ ∈ D satisfyingA′ ⊆A′′ andA′ 
=A′′.

To show that D has a maximal element in terms of ⊆, we are going to invoke the
Zorn’s lemma. Let Z be an arbitrary nonempty chain in D . That is, Z 
= ∅, Z ⊆ D and,
for any A′,A′′ ∈ Z , either A′ ⊆A′′ or A′′ ⊆A′. Define A† := ⋃

A′∈Z A′. Then �I(A† ) =⋂
A′∈Z �I(A′ ). Because Z is a chain, {�I(A′ ) :A′ ∈ Z } is also a chain in terms of ⊆. Be-

cause Z ⊆ D ,�I(A′ ) is nonempty and compact for anyA′ ∈ Z . Hence, Lemma 1 (stated
and proved below) implies that �I(A† ) is nonempty. As a result, A† ∈ D . Moreover, for
any A′ ∈ Z , A′ ⊆A†. Thus, D , as a partially ordered set in terms of ⊆, has the following
property: every nonempty chain Z in D has an upper boundA† in D . By Zorn’s lemma,
this implies that D has a maximal element in terms of ⊆.

Let A∗ be a maximal element of D in terms of ⊆. Because A∗ ∈ D , �I(A∗ ) 
= ∅. Be-
cause we have

⋂
Ã∈C �I(Ã) =�I(

⋂
Ã∈C Ã) = ∅ when �I(A) = ∅, A∗ 
= ⋃

Ã∈C Ã. There-
fore, there must exist some A′ ∈ C such that A′ is not a subset of A∗. Moreover, be-
cause C ⊆ D , and because A∗ is a maximal element of D in terms of ⊆, A∗ ∪A′ /∈ D .
This implies that �I(A∗ ∪A′ ) = ∅. Because �I(A∗ ∪A′ ) = �I(A∗ ) ∩ �I(A′ ), �I(A∗ ) ∩
�I(A′ ) = ∅. Because A∗ ∈ D , there exists C ′ ⊆ C such that A∗ = ⋃

Ã∈C ′ Ã, and hence,



Quantitative Economics 15 (2024) Discordant relaxations of misspecified models 363

�I(A∗ ) = ⋂
Ã∈C ′ �I(Ã). Because �I(Ã) is compact for each Ã ∈ C ′, Lemma 2 (shown

and proved below) implies that there exists {A1, � � � ,An} ⊆ C ′ ⊆ C for some finite n such
that�I(

⋃n
i=1Ai ) ∩�I(A′ ) = ∅ and �I(

⋃n
i=1Ai ) 
= ∅. This proves (18).

Case 2: the C in Assumption 3 has finite elements. Enumerate C as C = {A1, � � � ,
AK }. For any k ∈ {1, � � � ,K}, define Bk = ⋃k

i=1Ai. For any k, �I(Bk ) = ⋂k
i=1�I(Ai ).

Define N = {k ∈ {1, � � � ,K} : �I(Bk ) 
= ∅}. Because �I(A1 ) 
= ∅, N is nonempty and
1 ∈ N . Let n be the largest element in N . By construction, �I(Bn ) 
= ∅. By Assump-
tion 3,�I(BK ) =�I(

⋃K
i=1Ai ) = ∅. Therefore, we know n <K and�I(Bn+1 ) = ∅. Because

Bn+1 = Bn ∪An+1, we know that �I(Bn ∪An+1 ) = �I(Bn ) ∩ �I(An+1 ) = ∅. This proves
(18) withA′ =An+1.

We have proven (18) in both above cases, which completes the proof for the first
result of the theorem.

For the second part of the results, when �I(A) = ∅, for any B ⊆A with �I(B) 
= ∅,
we want to show there exists two finite subsets B′, B′′ ⊆ A such that �I(B ∪ B′ ) 
= ∅,
�I(B′′ ) 
= ∅ and �I(B ∪ B′ ) ∩ �I(B′′ ) = ∅. Let A′ and A′′ be the two finite subsets of A
stated in (18). Consider the following two cases:

1. Suppose�I(A′ ) ∩�I(B) = ∅. Then let B′ = ∅, B′′ =A′. We have that�I(B∪B′ ) 
= ∅,
�I(B′′ ) 
= ∅, and �I(B ∪B′ ) ∩�I(B′′ ) = ∅.

2. Suppose �I(A′ ) ∩ �I(B) 
= ∅. Then �I(A′ ∪ B) = �I(A′ ) ∩ �I(B) 
= ∅. Moreover,
�I(A′ ∪ B) ∩ �I(A′′ ) = �I(B) ∩ (�I(A′ ) ∩ �I(A′′ )) = ∅. Let B′ = A′ and B′′ = A′′.
Then we have that �I(B ∪B′ ) 
= ∅, �I(B′′ ) 
= ∅, and �I(B ∪B′ ) ∩�I(B′′ ) = ∅.

This completes the proof of Theorem 1.

Lemma 1. Let B be a collection of nonempty compact sets within metric space T . More-
over, suppose B is a nonempty chain in terms of ⊆, that is, for any B, B′ ∈ B, either B⊆ B′
or B′ ⊆ B. Then

⋂
B∈B B is nonempty.

Proof. For the purpose of contradiction, suppose
⋂
B∈B B is empty. For any B ∈ B,

let BC denote the complement of B. Because the complement of
⋂
B∈B B is

⋃
B∈B B

C ,
empty

⋂
B∈B B implies that

⋃
B∈B B

C = T . Pick an arbitrary B′ ∈ B. The fact that⋃
B∈B B

C = T implies that {BC : B ∈ B} is an open cover of B′. Because B′ is compact,
there exists a finite {B1, � � � , Bn} ⊆ B with n <∞ such that B′ ⊆ ⋃n

i=1B
C
i . This is equiv-

alent to B′ ∩ (
⋂n
i=1Bi ) = ∅. In other words, we can find n+ 1 elements in B whose in-

tersection is empty. This contradicts the assumption that B is a chain in terms of ⊆ and
that every set in B is nonempty.

Lemma 2. Let B be a collection of nonempty compact sets within metric space T and⋂
B∈B B 
= ∅. Let B′ be a nonempty compact set in T such that B′ ∩ (

⋂
B∈B B) = ∅. Then

there exists {B1, � � � , Bn} ⊆ B for some finite n such that
⋂n
i=1Bi 
= ∅ andB′ ∩(

⋂n
i=1Bi ) = ∅.

Proof. Because B′ ∩ (
⋂
B∈B B) = ∅, we know {BC : B ∈ B} is an open cover of B′. Be-

cause B′ is compact, there must exist a finite subcover {BC1 , � � � , BCn } ⊆ {BC : B ∈ B} for
B′. This implies that B′ ∩ (

⋂n
i=1Bi ) = ∅. Finally, because

⋂n
i=1Bi ⊇ (

⋂
B∈B B),

⋂n
i=1Bi 
=

∅.
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B.2 Proof of Proposition 1

Proposition 1 is an immediate result of the following two lemmas.

Lemma 3. Suppose Assumption 1 holds and γ < γ. Define the interval W as the following:

W ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[γ, γ] if P

(
E[Y |Z] = γ)

> 0 and P
(
E[Y |Z] = γ)

> 0,

[γ, γ) if P
(
E[Y |Z] = γ)

> 0 and P
(
E[Y |Z] = γ) = 0,

(γ, γ] if P
(
E[Y |Z] = γ) = 0 and P

(
E[Y |Z] = γ)

> 0,

(γ, γ) if P
(
E[Y |Z] = γ) = 0 and P

(
E[Y |Z] = γ) = 0.

(19)

For any integerm and any h ∈ H+
m, if �̃(h) is nonempty, then �̃(h) ∩W is nonempty.

Proof of Lemma 3. Since h has m dimensions, we can write h = (h1, � � � , hm ). Then
�̃(h) can be characterized as �̃(h) = [θ, θ], where

θ= max
i

E
[
hi(Z )Y

]
E

[
hi(Z )

] and θ= min
i

E
[
hi(Z )Y

]
E

[
hi(Z )

] .

Let us first prove θ≤ γ. Suppose, for the purpose of contradiction, δ≡ θ− γ > 0. Let
i′ ∈ arg maxi E[hi(Z )Y ]/E[hi(Z )]. Then we have

E
[
hi′(Z )

(
E[Y |Z] − θ]) = 0. (20)

Because δ ≡ θ − γ > 0, E[Y |Z] − θ ≤ −δ. In addition, because hi′ is nonnegative, we
have E[hi′ ]δ≤ 0, which contradicts to the fact that δ > 0 and E[hi′(Z )]> 0. Moreover, if
P(E[Y |Z] = γ) = 0, then E[hi(Z )Y ]< γ ·E[hi(Z )] for all i so that θ < γ.

Similarly, we can show θ ≥ γ, and that θ > γ if P(E[Y |Z] = γ) = 0. This result then
implies that �̃(h) ∩W 
= ∅ whenever �̃(h) 
= ∅.

Lemma 4. Suppose Assumption 1 holds and γ < γ. Let W be the interval defined as in

(19). Then, for any θ ∈W , there exists some h ∈ H+
2 such that �̃(h) = {θ}.

Proof of Lemma 4. Fix any θ ∈ W . Define S+ = {z : E[Y |Z = z] ≥ θ}, S− = {z : E[Y |Z =
z] ≤ θ}, S

+ = {z : E[Y |Z = z] ≥ θ}, and S
− = {z : E[Y |Z = z] ≤ θ}. Note that, for anyϑ> γ,

the definition of γ implies that P(ϑ ≥ E[Y |Z]) > 0. When P(E[Y |Z] = γ) > 0, we also
have P(ϑ ≥ E[Y |Z]) > 0 for any ϑ ≥ γ. Since θ ∈ W , we conclude that P(Z ∈ S−

) > 0.
Similarly, θ ∈ W also implies that P(Z ∈ S+ ) > 0. Moreover, since E[Y |Z] ≤ E[Y |Z] al-
most surely, we know S+ ⊆ S+

and S
− ⊆ S− almost surely. Therefore, P(Z ∈ S− )> 0 and

P(Z ∈ S+
)> 0.

Next, we show there exists some nonnegative function h1, which satisfies
E[Yh1(Z )] = θ and E[h1(Z )] = 1. Define h+

1 (z) = 1(z ∈ S+ )/P(Z ∈ S+ ) and h−
1 (z) =

1(z ∈ S− )/P(Z ∈ S− ). By construction, h+
1 and h−

1 are nonnegative, and E[h+
1 (Z )] = 1

and E[h−
1 (Z )] = 1. Moreover, E[Yh+

1 (Z )] ≥ θ ≥ E[Yh−
1 (Z )]. Hence, there must exists

some q ∈ [0, 1] such that E[Y (qh−
1 (Z ) + (1 − q)h+

1 (Z ))] = θ. Let h1 = qh−
1 (Z ) + (1 −
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q)h+
1 (Z ). Then such h1 satisfies E[Yh1(Z )] = θ and E[h1(Z )] = 1. Similarly, there exists

some nonnegative function h2, which satisfies E[Yh2(Z )] = θ and E[h2(Z )] = 1.
Then E[h1(Z )(θ̃−Y )] ≥ 0 is equivalent to θ̃≥ θ. To see this, note that

E
[
h1(Z )(θ̃−Y )

] ≥ 0

⇔ E
[
h1(Z )

]
θ̃ ≥ E[

h1(Z )Y
]

⇔ θ̃ ≥ θ,

where the second equivalence follows from E[Yh1(Z )] = θ and E[h1(Z )] = 1. Similarly,
we can show E[h2(Z )(Y − θ̃)] ≥ 0 is equivalent to θ̃≤ θ. Let h= (h1, h2 ). These equiva-
lence relation implies that if θ̃ ∈ �̃(h), then θ̃= θ.

Moreover, we have

E
[
h2(Z )θ

] = θ

= E
[
h2(Z )Y

]
≥ E

[
h2(Z )Y

]
,

where the first equality follows from E[h2(Z )] = 1, and the second equality follows from
θ=E[h2(Z )Y ], and the last inequality comes fromE[Y |Z] ≤E[Y |Z] almost surely. Sim-
ilarly, we can show E[h1(Z )θ] ≤ E[h1(Z )Y ]. Therefore, θ ∈ �̃(h). As a result, �̃(h) =
{θ}.

B.3 Proof of Theorem 2

Theorem 2 is a corollary of Theorem 4, which is proved below in Section C.4.

B.4 Proof of Proposition 2

Recall the notation used in this example: Yd ≡ Y1(D = d) + y
d
1(D 
= d), Yd ≡ Y1(D =

d) + yd1(D 
= d), q
dt

≡ E[Yd|Z = t], and qdt ≡ E[Yd|Z = t]. Proposition 2 is an immedi-
ate corollary of the following two lemmas.

Lemma 5. In model Y = ∑
z∈Z 1(Z = z)[Y1zD+ Y0z(1 −D)] where Z = {1, 2, � � � , k}, fix

an arbitrary z∗ = 1, � � � , k. Let �I,z∗ be the identified set of az∗ , that is, the identified set of
E.1, E.2, and E.3 for z = z∗. Then:

1. �I,z∗ 
= ∅ if and only if the following two conditions hold for each d ∈ {0, 1}:

∀z < z∗, max(q
dt

: t ≤ z) ≤ min(qdt : t ≥ z) (21)

and

max(q
dt

: t = 1, � � � , k) ≤ min
(
qdt : t ≥ z∗). (22)

2. if �I,z∗ 
= ∅, then�I,z∗ = �1,z∗ × �0,z∗ .
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Lemma 6. In model Y = ∑
z∈Z 1(Z = z)[Y1zD+ Y0z(1 −D)] where Z = {1, 2, � � � , k}, let

�I be the identified set of a†, that is, the identified set of E.1 and E.2. Then:

1. �I 
= ∅ if and only if P(Y ∈ [y
d

, yd]|D= d) = 1 for any d ∈ {0, 1}.

2. when �I 
= ∅, �I = [E[Y 1], E[Y 1]] × [E[Y 0], E[Y 0]].

Proof of Lemma 5. The results of this lemma can be divided into the following two
parts:

1. For any z∗ = 1, � � � , k, �I,z∗ 
= ∅ only if that (21) and (22) hold for each d = 0, 1.
Moreover,�I,z∗ ⊆ �1,z∗ × �0,z∗ .

2. If (21) and (22) hold, then �I,z∗ 
= ∅ and �I,z∗ ⊇ �1,z∗ × �0,z∗ .

Let us now prove these two parts one by one.

B.4.0.1 Part 1 Fix any d ∈ {0, 1}. Suppose assumption az∗ holds, that is Assumptions
E.1, E.2, and E.3 hold for z = z∗. Assumption E.3 implies that for any z′ < z∗ and t ≤ z′ we
have Ydt ≤ Ydz′ so that E[Ydt|Z = z′] ≤ E[Ydz′|Z = z′]. Due to E.2, we know E[Ydt|Z =
z′] = E[Ydt|Z = t], so that E[Ydt|Z = t] ≤ E[Ydz′|Z = z′]. Since q

dt
≤ E[Ydt|Z = t], we

conclude that maxt≤z′ q
dt

≤ E[Ydz′|Z = z′]. Similarly, E.3 implies that for any z′ < z∗ and
t ≥ z′, we have Ydz′ ≤ Ydt so that E[Ydz|Z = z′] ≤ E[Ydt|Z = z′]. Because of E.2, and
because qdt ≥ E[Ydt|Z = t], we know that E[Ydz′|Z = z′] ≤ mint≥z qdt . Hence, for any
d ∈ {0, 1},

∀z′ < z∗, max
(
q
dt

: t ≤ z′) ≤E[
Ydz′ |Z = z′] ≤ min

(
qdt : t ≥ z′). (23)

Now, for any z′ ≥ z∗, E.3 implies that Ydt ≤ Ydz′ for any t ∈ {1, � � � , k}. Hence,
E[Ydt|Z = z′] ≤E[Ydz′|Z = z′] for all t. Because E.2 implies thatE[Ydt|Z = t] =E[Ydt|Z =
z′], we have E[Ydt|Z = t] ≤ E[Ydz′|Z = z′] for all t, so that max(q

dt
: t = 1, � � � , k) ≤

E[Ydz′|Z = z′]. For any z′ ≥ z∗, Assumption E.3 implies that Ydt ≥ Ydz′ for all t ≥ z∗.
Hence, E[Ydt|Z = z] ≥ E[Ydz|Z = z] for all t ≥ z∗. Assumption E.2 then implies that
E[Ydt|Z = t] ≥ E[Ydz′|Z = z′] for all t ≥ z∗, so that min(qdt : t ≥ z∗ ) ≥ E[Ydz|Z = z].
Hence, we conclude that for any d ∈ {0, 1}:

∀z′ ≥ z∗, max(q
dt

: t = 1, � � � , k) ≤E[
Ydz′ |Z = z′] ≤ min

(
qdt : t ≥ z∗). (24)

Combine (23) and (24), we conclude that for any d, θd ∈ �d,z∗ , so that �I,z∗ ⊆
�1,z∗ × �0,z∗ . Moreover, because Assumptions E.1, E.2, and E.3 imply (23) and (24), the
violation of (21) and (22) implies that �I,z∗ = ∅. Equivalently, �I,z∗ 
= ∅ only if (21) and
(22) hold for any d ∈ {0, 1}.

B.4.0.2 Part 2 We want to prove that (21) and (22) implies that �I,z∗ 
= ∅ and �I,z∗ ⊇
�1,z∗ × �0,z∗ . Fix an arbitrary d ∈ {0, 1}. First of all, we are going to prove that one can
construct Ydz , which achieves the lower bound in �d,z∗ , satisfies Assumptions E.1–E.3,
and is compatible with the data at the same time.
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Define γz for each z = 1, � � � , k as follows:

• for z < z∗, let γz be the value which solves

max(q
dt

: t ≤ z) =E[
1(D= d)Y |Z = z] +E[

1(D 
= d)Y |Z = z]γz .

Then γz ∈ [y
d

, yd] if qdz ≥ max(q
dt

: t ≤ z), which is implied by (21).

• for z ≥ z∗, let γz be the value, which solves

max(q
dt

: t = 1, � � � , k) =E[
1(D= d)Y |Z = z] +E[

1(D 
= d)Y |Z = z]γz .

Then γz ∈ [y
d

, yd] if max(q
dt

: ∀t ) ≤ qdz , which is implied by (22).

DefineWdz ≡ 1(D= d, Z = z)Y + 1(D 
= d, Z = z)γz . Then, by construction,

E[Wdz|Z = z] =
{

max(q
dt

: t ≤ z) if z < z∗,

max(q
dt

: t = 1, � � � , k) if z ≥ z∗,
(25)

which implies that

∀z ≤ t, E[Wdz|Z = z] ≤ E[Wdt|Z = t], (26)

∀z ≥ z∗, E[Wdz|Z = z] = max(q
dt

: t = 1, � � � , k). (27)

Moreover, because γz ∈ [y
d

, yd] for any z ∈ {1, � � � , k}, we know P(Wdz ∈ [y
z
, yz]) = 1 for

all z ∈ {1, � � � , k}. And, P(Wdz = Y |D= d, Z = z) = 1 for any d and z.
Now, for any t ∈ {1, � � � , k}, define,φdt(α) ≡ (1−α)Wdt+αyd andψdt(α) ≡ (1−α)y

d
+

αWdt . We claim that, for any t 
= z, there exists αtz ∈ [0, 1], which solves the following
equations:

∀t < z, E[Wdz|Z = z] =E[
φdt(αtz )|Z = t],

∀t > z, E[Wdz|Z = z] =E[
ψdt(αtz )|Z = t].

(28)

To see why it is so, note that

∀t < z, E[Wdt|Z = t] =E[
φdt(0)|Z = t] and E

[
φdt(1)|Z = t] = yd ,

∀t > z, y
d

=E[
φdt(0)|Z = t] and E

[
φdt(1)|Z = t] =E[Wdt|Z = t].

(29)

These results, combined with (26), imply that

∀t < z, E
[
φdt(0)|Z = t] ≤ E[Wdz|Z = z] ≤E[

φdt(1)|Z = t],

∀t > z, E
[
ψdt(0)|Z = t] ≤ E[Wdz|Z = z] ≤E[

φdt(1)|Z = t],

which implies the existence of αtz ∈ [0, 1] satisfying (28) for all t 
= z.
In addition, (αtz : t 
= z) has some extra properties. Because (26) holds and E[φdt(α)|

Z = t] is an increasing function of α,

∀t < z < z′, αtz ≤ αtz′ . (30)
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Because (26) holds and E[ψt(α)|Z = t] is an increasing function of α,

∀z < z′ < t, αtz ≤ αtz′ . (31)

Construct Ydz ≡ ∑
t<z φdt(αtz ) +Wdz +∑

t>z ψdt(αtz ). Because P(Wdz ∈ [y
d

, yd]) = 1,
Assumption E.1 holds for this Ydz . Because of (28), Assumption E.2 holds for this Ydz ,
that is, E[Ydz|Z = t] =E[Ydz|Z = z] for any t, z with t 
= z.

To show Assumption E.3 also holds for this Ydz , note that, for any z1, z2 with 1 ≤ z1 <

z2 ≤ k:

• IfZ < z1, Ydz1 =φdZ(αZz1 ) ≤φdZ(αZz2 ) = Ydz2 because of (30) and becauseφdZ(α)
is increasing in α.

• If Z = z1, Ydz1 =Wdz1 ≤φdZ(αZz2 ) = Ydz2 because of the definition of φdZ(α).

• If z1 < Z < z2, Ydz1 = ψdZ(αZz1 ) ≤ WdZ ≤ φdZ(αZz2 ) = Ydz2 because of the defini-
tion of φdZ(α) and ψdZ(α).

• If Z = z2, Ydz1 =ψdZ(αZz1 ) ≤WdZ = Ydz2 because of the definition of ψdZ(α).

• If z2 <Z, Ydz1 =ψdZ(αZz1 ) ≤ψdZ(αZz2 ) = Ydz2 because of (31) and becauseψdZ(α)
is increasing in α.

As a result, Ydz1 ≤ Ydz2 almost surely for any z1 ≤ z2. Moreover, because of (27), αtz = αtz′
for any t, z, and z′ with t <min(z, z′ ) and z∗ ≤ min(z, z′ ). Because of (27) and (29), αtz = 0
for any z∗ ≤ t < z, and αtz = 1 for any t > z ≥ z∗. Given these results, one can show that
for any z′ ≥ z∗,Ydz′ = ∑

t<z∗ φdt(αtz∗ )+∑k
t=z∗ Wdt . This implies that Assumption E.3 also

holds. So far, we have shown that Ydz constructed above satisfies assumption az∗ .
Finally, becauseE[Ydz] =E[Ydz|Z = z] =E[Wdz|Z = z] and because of (25), we know∑

z P(Z = z)E[Ydz] achieves the lower bound in �d,z . Moreover, because P[Ydz = Y |D=
d, Z = z] = 1, this construction of Ydz is consistent with the data. Combine all the above
results for an arbitrary d ∈ {0, 1}, we have constructed Ydz , which satisfies assumption
az∗ and, at the same time,

∑
z P(Z = z)E[Ydz] achieves the lower bound of �d,z .

Similarly, one can construct Ydz , which satisfies assumption az∗ and
∑
z P(Z =

z)E[Ydz] achieves the upper bound of �d,z , by defining γ′
z as follows:

• for z < z∗, let γ′
z be the value, which solves

min(qdt : t ≥ z) =E[
1(D= d)Y |Z = z] +E[

1(D 
= d)Y |Z = z]γz .

• for z ≥ z∗, let γ′
z be the value, which solves

min
(
qdt : t ≥ z∗) =E[

1(D= d)Y |Z = z] +E[
1(D 
= d)Y |Z = z]γz .

Following the same steps as before except replacing γz with γ′
z , one can show that the

constructed Ydz satisfies E.1–E.3 and
∑
z P(Z = z)E[Ydz] achieves the upper bound of

�d,z .
Taking convex combinations of the constructions, which achieve the upper and

lower bound, every point in �d,z can be achieved under Assumptions E.1–E.3. This com-
pletes the proof.
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Proof of Lemma 6. Suppose E.1 and E.2 hold. For any z ∈ {1, 2, � � � , k} and any d ∈
{0, 1}, we have

1(Z = z,D= d)Y + 1(Z 
= z orD 
= d)y
d

≤ Ydz ≤ 1(Z = z,D= d)Y + 1(Z 
= z orD 
= d)yd .

Therefore, q
dz

≤E[Ydz|Z = z] ≤ qdz . Because of E.2, this implies that q
dz

≤E[Ydz] ≤ qdz .

As a result,E[Yd] ≤ ∑
z P(Z = z)EYdz ≤E[Yd], which proves that�I ⊆ [E[Y 1], E[Y 1]]×

[E[Y 0], E[Y 0]]. Moreover, when P(Y ∈ [y
d

, yd]|D= d) = 1 for any d ∈ {0, 1} fails to hold,
E.1 will fail to hold. Hence,�I 
= ∅ only if P(Y ∈ [y

d
, yd]|D= d) = 1 for any d ∈ {0, 1}.

Suppose that P(Y ∈ [y
d

, yd]|D= d) = 1 for any d ∈ {0, 1} hold. Then we know that for
each z = 1, � � � , k and each d, y

d
≤ q

dz
≤ qdz ≤ yd . ConstructYdz as the following for each

z and d:

Ydz = 1(Z = z,D= d)Y + 1(Z = z,D 
= d)y
d

+ 1(Z 
= z)q
dz

.

By construction, θd = ∑
z P(Z = z)EYdz = ∑

z P(Z = z)q
dz

= E[Yd]. Moreover, one can
check that this construction also satisfies Assumptions E.1 and E.2. Similarly, for each d,
we can construct Y ′

dz as

Y ′
dz = 1(Z = z,D= d)Y + 1(Z = z,D 
= d)yd + 1(Z 
= z)qdz .

Again,Y ′
dz satisfies Assumptions E.1 and E.2 by construction. In addition, θd = ∑

z P(Z =
z)EY ′

dz =E[Yd]. By considering (Y1z , Y ′
0z ), (Y ′

1z , Y0z ), (Y1z , Y0z ), and (Y ′
1z , Y ′

0z ), we con-
clude that �I is nonempty and �I = [E[Y 1], E[Y 1]] × [E[Y 0], E[Y 0]].

B.5 Proof of Proposition 3

Recall the A in the introductory example is the set of all conditions (3) indexed by h ∈
H+

1 .
Let us first show �∗

I is equal the interval specified in (8). By Lemma 4, we know that
for each θ ∈ (γ, γ), there exists someA′ ⊆A such that�I(A′ ) = {θ}. By Theorem 3, there
exists some minimum data-consistent relaxation A∗ such that A′ ⊆A∗. Since �I(A′ ) is
singleton, we know �I(A∗ ) =�I(A′ ) = {θ}. Therefore, (γ, γ) ⊆�∗

I .
We claim that if P(E[Y |Z] ≤ γ) > 0, then γ ∈ �∗

I and there exists some A′ ⊆A with
�I(A′ ) = {γ}. To see why it is so, suppose P(E[Y |Z] ≤ γ) > 0. Then define S1 = {z :
E[Y |Z = z] ≤ γ} and S2 = {z : E[Y |Z = z] ≥ γ}. Since P(E[Y |Z] ≤ γ)> 0, we know P(Z ∈
S1 ) > 0. Since γ > γ, we know P(Z ∈ S2 ) > 0. Now, define h1(z) = 1(z ∈ S1 )/P(Z ∈ S1 )
and h2(z) = 1(z ∈ S2 )/P(Z ∈ S2 ). Then Eh1(Z ) = 1, Eh2(Z ) = 1, E[h1(Z )Y ] ≤ γ, and
E[h2(Z )Y ] ≥ γ. Therefore, there must exist h as a convex combination of h1 and h2 such
that Eh(Z ) = 1 and E[h(Z )Y ] = γ. Hence, γ ∈ �̃(h) and �̃(h) ∩ (−∞, γ) = ∅. Moreover,
for each i = 1, 2, � � �, construct hi(z) as hi(z) = 1(E[Y |Z = z] ∈ [γ, γ + 1/i]). By the def-
inition of γ, we know Ehi(Z ) > 0 for each i ≥ 1. Note that the identified set of (3) of hi,
�̃(hi ) is [

E
[
hi(Z )Y

]
Ehi(Z )

,
E

[
hi(Z )Y

]
Ehi(Z )

]
.
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Because E[Y |Z] ≤E[Y |Z] almost surely, the law of iterated expectation implies that γ ∈
�̃(hi ). Moreover, by construction, for any θ > γ, θ /∈ ⋂

i �̃(hi ). Therefore, if we define
H′ = {hi : i≥ 1} ∪ {h}, we have

⋂
h∈H′ �̃(h) = {γ}. This implies that γ ∈�∗

I and there exists
someA′ ⊆A with �I(A′ ) = {γ}.

Next, we claim that if P(E[Y |Z] ≤ γ)> 0, then�∗
I ∩(−∞, γ) = ∅. To see this, note that

Lemma 3 implies that for any a ∈A, �I(a) ∩ [γ, γ] 
= ∅. Let A′ be an arbitrary minimum
data-consistent relaxation A′ of A. Because Assumption 2 holds in this example, the
preceding result implies that for any minimum data-consistent relaxation A′ of A, we
know�I(A′ )∩[γ, γ] 
= ∅. Our claim will be verified if we can prove�I(A′ )∩ (−∞, γ) = ∅.
Suppose not, that is, suppose�I(A′ ) ∩ (−∞, γ) 
= ∅. Because�I(A′ ) is a closed interval,
the fact that �I(A′ ) ∩ [γ, γ] 
= ∅ implies that γ ∈ �I(A′ ). Because we have proven that⋂
h∈H′ �̃(h) = {γ}, and because A′ is a minimum data-consistent relaxation, we know

�I(A′ ) = {γ}, which leads to contradiction.
Next, we claim that if P(E[Y |Z] ≤ γ) = 0, then�∗

I ∩ (−∞, γ] = ∅. To see this, note that
P(E[Y |Z] ≤ γ) = 0 implies P(E[Y |Z] > γ) = 1. Therefore, for any h ∈ H+

1 , E[h(Z )(θ −
Y )] ≥ 0 implies that

E
[
h(Z )(θ−Y )

] ≥ 0

⇒ E
[
h(Z )Y

] ≤ E
[
h(Z )

]
θ

⇔ E
[
h(Z )E[Y |Z]

] ≤ E
[
h(Z )

]
θ

⇒ E
[
h(Z )

]
γ < E

[
h(Z )

]
θ,

where the last inequality follows from the fact that P(E[Y |Z] > γ) = 1. Therefore, we
know for any h ∈ H+

1 , �̃(h) ∩ (−∞, γ] = ∅. This implies �∗
I ∩ (−∞, γ] = ∅.

Following similar steps as above, we can also prove the following results:

• If P(E[Y |Z] ≥ γ)> 0, then γ ∈�∗
I and there exists someA′ ⊆A with �I(A′ ) = {γ}.

• If P(E[Y |Z] ≥ γ)> 0, then�∗
I ∩ (γ, +∞) = ∅.

• If P(E[Y |Z] ≥ γ) = 0, then�∗
I ∩ [γ, +∞) = ∅.

Combining these results and that (γ, γ) ⊆ �∗
I , we conclude that �∗

I is equal to the
interval specified in (8).

Appendix C: Proofs for additional results

C.1 Proof for Proposition 4

We need to verify that the C constructed in (15) satisfies all three requirements in As-
sumption 3.

First, we are going to show that ∀A′ ∈ C , A′ is data-consistent and consists of finite
elements in A. Fix an arbitrary A′ ∈ C . By the construction of C , A′ only contains one
element inA: (14) holds for somew= hz,ε ∈ W∗. By assumption, there exists some θ ∈�
such that E[m(X; θ)|Z] ≤ 0 for all most every Z satisfying ‖Z − z‖ ≤ δ(z). This implies
that this θmust also satisfy (14) withw= hz,ε for all 0< ε< δ(z). This proves�I(A′ ) 
= ∅.
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Second, we need to prove that �I(
⋃
A′∈C A

′ ) = �I(A). Because W∗ ⊆ W+
1 , we

know
⋃
A′∈C A

′ ⊆ A so that �I(
⋃
A′∈C A

′ ) ⊇ �I(A). Hence, we only need to show
�I(

⋃
A′∈C A

′ ) ⊆ �I(A). By assumption, there exists a function g(z; θ) such that (i) for
every θ ∈ �, E[m(X , Z; θ)|Z] = g(Z; θ) almost surely; (ii) g(z; θ) is continuous in z for
any given θ; (iii) g(z; θ) is continuous in θ for any given z. Because θ ∈�I(A) if and only
if θ satisfy (13), we know that

θ /∈�I(A) if and only if P(Z ∈ Zθ )> 0 where Zθ := {
z ∈ Z : g(z; θ)> 0

}
.

Fix an arbitrary θ /∈ �I(A). Because g(·, θ) is a continuous function of z given θ, Zθ is
an open set of z. Therefore, there must exist some z ∈ Z and ε ∈ (0, δ(z)) such that {z′ :
‖z′ − z‖< ε} ⊆ Zθ. As a result, the law of iterated expectation implies that

E
[
hz,ε(Z )g(Z; θ)

] =E[
hz,ε(Z )m(X; θ)

]
> 0.

This means that θ /∈ �I(
⋃
A′∈C A

′ ). Thus, we have proven that θ /∈ �I(
⋃
A′∈C A

′ ) if θ /∈
�I(A), which is equivalent to �I(

⋃
A′∈C A

′ ) ⊆�I(A).
Finally, we need to show that �I(A′ ) is compact for any A′ ∈ C . Fix an arbitrary

A′ ∈ C . By the construction of C ,A′ only contains one element inA: (14) holds for some
w ∈ W∗. Define κ(θ) :=E[w(Z )g(Z; θ)]. Because g(z; θ) is continuous in θ for any given
z, and because, by assumption, supθ∈� ‖g(z; θ)‖ = supθ∈� ‖E[m(X; θ)|Z = z]‖ ≤ γ(z)
and E|γ(Z )| <∞, and because w(·) is a bounded function, the dominated convergence
theorem implies that κ(θ) is a continuous at any θ ∈ �. The law of iterated expecta-
tions implies that E[w(Z )m(X; θ)] = E[w(Z )g(Z; θ)] := κ(θ). Therefore, �I(A′ ) = {θ ∈
� : κ(θ) ≤ 0}. Because κ is continuous in θ, we know �I(A′ ) is a closed set. Because � is
compact by assumption, �I(A′ ) is compact.

C.2 Proof of Proposition 5

We need to verify that C constructed in (17) satisfies all three requirements in Assump-
tion 3.

First, we are going to show that ∀A′ ∈ C , A′ is data-consistent and consists of finite
elements inA. Fix an arbitraryA′ ∈ C . By the construct of C in (17),A′ is a singleton set,
which only contains one element in A: (16) holds for some K ⊆ Y . If K = Y , (16) holds
for any θ ∈ � because L(K,X; θ) = 1 almost surely in this case. If K = ∅, (16) holds for
any θ ∈� because PF (Y ∈K|X ) = 0 almost surely in this case.

If K � Y and K 
= ∅, pick an arbitrary y ′ ∈ Y\K. By (L5.C1), we know infx∈X P(Y =
y ′|X = x)> 0. Therefore, we know

sup
x∈X

PF (Y ∈K|X = x) = 1 − inf
x∈X

PF (Y /∈K|X = x) ≤ 1 − inf
x∈X

PF
(
Y = y ′|X = x)< 1.

On the other hand, pick an arbitrary y ′′ ∈ K, (L5.C2) implies that there exists some se-
quence θk ∈� such that

inf
x∈X

L
({
y ′′}, x; θk

) → 1 as k→ ∞.
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Therefore, there must exist some θ∗ ∈� such that infx∈X L({y ′′}, x; θ∗ ) ≥ supx∈X PF (Y ∈
K|X = x). This implies that

sup
x∈X

PF (Y ∈K|X = x) ≤ inf
x∈X

L
({
y ′′}, x; θ∗) ≤ inf

x∈X
L

(
K, x; θ∗)

the last equality holds because y ′′ ∈K implies that L({y ′′}, x; θ∗ ) ≤L(K, x; θ∗ ) for any x.
The above inequality implies that θ∗ ∈�I(A′ ), because

PF (Y ∈K|X ) ≤ sup
x∈X

PF (Y ∈K|X = x) ≤ inf
x∈X

L
(
K, x; θ∗) ≤L(

K,X; θ∗) almost surely.

Hence,�I(A′ ) is nonempty. That is, we have shown that everyA′ ∈ C is data-consistent.
Second, we need to prove�I(

⋃
A′∈C A

′ ) =�I(A). This is trivial, because
⋃
A′∈C A

′ =
A by the construction of C in (17).

Finally, because Y is a finite set, A is a finite set. By the construction of C in (17), C

is also a finite set. This completes the proof.

C.3 Proof for Theorem 3

Let us start with two trivial cases: (i) suppose �I(A′ ) = ∅ for any A′ ⊆A. Then ∅ is the
minimum data-consistent relaxation in this case; (ii) suppose �I(A) 
= ∅. Then A is the
minimum data-consistent relaxation. Next, let us consider the following nontrivial case.

Suppose�I(A) = ∅ and there exits someA0 ⊆A such that�I(A0 ) 
= ∅. We are going
to show that there exists some minimum data-consistent relaxation Ã such thatA0 ⊆ Ã.
Let us consider two cases:

C.3.0.1 Case 1: (T 3.C1) holds Because�I(A) = ∅ while�I(A′ ) 
= ∅,A0 cannot beA so
thatA\A0 is nonempty. Because of (T3.C1),A\A0 is a finite set. Enumerate it asA\A0 =
{a1, � � � , ak}. ConstructA1, � � � ,Ak iteratively as follows: For any i= 1, � � � , k, defineAi =
Ai−1 ∪ {ai} if �I(Ai−1 ∪ {ai}) 
= ∅, and define Ai = Ai−1 if otherwise. By construction,
for each i = 1, � � � , k, �I(Ai ) 
= ∅. Moreover, if ai /∈Ak, we must have �I(Ak ∪ {ai}) = ∅
because �I(Ai ∪ {ai}) = ∅ and �I(Ak ∪ {ai}) ⊆ �I(Ai ∪ {ai}). Therefore, Ak must be a
minimum data-consistent relaxation, andA0 ⊆Ak by construction.

C.3.0.2 Case 2: (T 3.C2) holds Define A = {A′ :A′ ⊆A,A0 ⊆A′ and�I(A′ ) 
= ∅}. A is
not empty becauseA0 ∈ A . We are going to prove that there exists some minimum data-
consistent relaxation Ã such that A0 ⊆ Ã, which is equivalent to show the following
statement:

A has a maximum element Ã ∈ A in terms of partial order ⊆,

that is, there is noA′ ∈ A such that Ã�A′. (32)

To prove (32), we are going to invoke Zorn’s lemma. Let Z be an arbitrary nonempty
chain in A in terms of ⊆. Because Z is a chain, for any A′ and A′′ in Z , there is either
A′ ⊆A′′ or A′′ ⊆A′, so that there is either �I(A′ ) ⊆�I(A′′ ) or �I(A′′ ) ⊆�I(A′ ). Define
A† = ⋃

A′∈Z A′. Because of (T3.C2), �I(A† ) = ⋂
A′∈Z �I(A′ ). By Lemma 1, �I(A† ) is
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nonempty. This implies thatA† ∈ A . Moreover, by construction,A′ ⊆A† for anyA′ ∈ Z .
Therefore, we have shown that there exists an upper bound A† in A in terms of partial
order ⊆ for any nonempty chain Z in A . Zorn’s lemma then implies (32).

C.4 Proof of Theorem 4

We first prove the first part of the theorem.

C.4.0.1 (T 2.C1) ⇒ (T 2.C2) Construct A∗ = {a ∈A : �I(a) 
= ∅}. We are going to show
thatA∗ is the only minimum data-consistent relaxation. For any a /∈A∗, we have�I(a) =
∅ by the construction of A∗. Hence, for any a /∈A∗, �I(A∗ ∪ {a}) = ∅ because �I(A∗ ∪
{a}) ⊆ �I(a). Moreover, (T2.C1) implies that �I(A∗ ) 
= ∅ because every a ∈A∗ is data-
consistent. Therefore,A∗ is a minimum data-consistent relaxation.

Suppose, for the purpose of contradiction, there exists another minimum data-
consistent relaxation A′ different from A∗. Because A′ is a minimum data-consistent
relaxation, there is no A′ ⊆A∗. Therefore, A′\A∗ must be nonempty. Pick an arbitrary
a′ ∈A′\A∗. Because a′ /∈A∗, we know �I(a′ ) = ∅ by the construction of A∗. Therefore,
�I(A′ ) = ∅ because �I(A′ ) ⊆ �I(a′ ). This contradicts to the fact that A′ is a minimum
data-consistent relaxation.

C.4.0.2 If either (T 3.C1) or (T 3.C2) holds, (T 2.C2) ⇒ (T 2.C1) Suppose either (T3.C1)
or (T3.C2) hold. LetA∗ denote the unique minimum data-consistent relaxation. First of
all, we are going to prove the following statement:

A∗ = {
a ∈A :�I(a) 
= ∅}

. (33)

Because A∗ is a minimum data-consistent relaxation, �I(A∗ ) 
= ∅. Because �I(A∗ ) ⊆
�I(a) for every a ∈A∗, we know �I(a) is nonempty for every a ∈A∗. This implies that
A∗ ⊆ {a ∈A :�I(a) 
= ∅}. To show,A∗ ⊇ {a ∈A :�I(a) 
= ∅}, note that

• whenA∗ =A, we haveA∗ ⊇ {a ∈A :�I(a) 
= ∅} trivially.

• when A∗ � A. Pick an arbitrary a′ /∈ A∗. Suppose, for the purpose of contradic-
tion, �I(a′ ) 
= ∅. Then Theorem 3 implies that there exists some minimum data-
consistent relaxation Ã with a′ ∈ Ã. Because a′ ∈ Ã and a′ /∈A∗, we must have Ã 
=
A∗, which contradicts toA∗ being the unique minimum data-consistent relaxation.
Hence, �I(a′ ) = ∅ for any a′ /∈A∗, which is equivalent toA∗ ⊇ {a ∈A :�I(a) 
= ∅}.

This proves (33).
Because of (33), a ∈ A is data-consistent if and only if a ∈ A∗. Therefore, for any

A′ ⊆ A, all a ∈ A′ are data-consistent if and only if A′ ⊆ A∗. As a result, we can show
(T2.C1) if the following statement is true:

A′ ⊆A∗ if and only if �I
(
A′) 
= ∅. (34)

To see why (34) is indeed true, note that:
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• Because �I(A∗ ) 
= ∅, and because �I(A∗ ) ⊆ �I(A′ ) for any A′ ⊆ A∗, we know
�I(A′ ) 
= ∅ ifA′ ⊆A∗.

• Fix an arbitrary setA′ with�I(A′ ) 
= ∅. Because�I(A′ ) ⊆�I(a) for every a ∈A′, we
know �I(a) 
= ∅ for every a ∈A′. Because of (33), this implies that a ∈A∗ for every
a ∈A′, that is,A′ ⊆A∗. Thus, we have shown thatA′ ⊆A∗ if �I(A′ ) 
= ∅.

This completes the proof.

C.5 Proof of Theorem 5

Recall that AR denote the collection of all minimum data-consistent relaxations. Be-
cause either (T3.C1) or (T3.C2) holds, AR is nonempty.

First of all, we are going to prove �∗
I is rationalizable. Because �∗

I = ⋃
A′∈AR

�I(A′ ),
for any minimum data-consistent relaxation Ã, we must have �I(Ã) ⊆�∗

I . Because AR

is nonempty, we know �∗
I is rationalizable.

Second, we are going to prove �∗
I is nonconflicting. Fix an arbitrary data-consistent

subsetA′ ofA. By Theorem 3, there exists a minimum data-consistent relaxation Ã such
that A′ ⊆ Ã. Because A′ ⊆ Ã, we know �I(Ã) ⊆ �I(A′ ), so that �I(A′ ) ∩ �I(Ã) 
= ∅.
Because Ã ∈ AR and �∗

I = ⋃
Ã′∈AR

�I(Ã′ ), we know �I(A′ ) ∩�∗
I 
= ∅.

C.6 Proof for Theorem 6

Suppose the smallest rationalizable and nonconflicting set exists. Denote it as S∗. We are
going to show that S∗ =�∗

I when (T6.C1) is true. By Theorem 5,�∗
I is both rationalizable

and nonconflicting. Therefore, S∗ ⊆�∗
I . What is left to show is �∗

I ⊆ S∗.
Define AR to be the collection of all minimum data-consistent relaxations. Define

A1 = {A′ ∈ AR :�I(A′ ) ⊆ S∗} and A2 = AR\A1. Because S∗ is rationalizable, there exists
some data-consistent A′ ⊆ A such that �I(A′ ) ⊆ S∗. By Theorem 3, there exists some
Ã ∈ AR such thatA′ ⊆ Ã. Therefore, �I(Ã) ⊆�I(A′ ) ⊆ S∗. Hence, A1 is not empty.

Because AR = A1 ∪ A2, we know

�∗
I =

( ⋃
A′∈A1

�I
(
A′)) ∪

( ⋃
A′∈A2

�I
(
A′)).

Therefore, to show �∗
I ⊆ S∗, we only need to show A2 is an empty set. We discuss two

cases:

• Suppose there exists someA∗ ∈ A1 such that �I(A∗ ) contains at least two different
elements. We are going to show that A2 = ∅ in this case. Suppose, for the purpose of
contradiction, A2 is nonempty. Pick an arbitraryA† within A2. Fix also an arbitrary
element a∗ in �I(A∗ ). Define S′ as follows:

S′ =
{

∅ if�I
(
A∗) ∩�I

(
A†) 
= ∅,{

a∗} if�I
(
A∗) ∩�I

(
A†) = ∅.
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Define S† as

S† :=�I
(
A†) ∪

( ⋃
A′∈AR

�I
(
A′)\�I(A∗)) ∪ S′.

Because �I(A† ) ⊆ S†, S† is rationalizable. Because of (T6.C1), �I(A′ )\�I(A∗ ) 
= ∅
for eachA′ ∈ AR with�I(A′ ) 
=�I(A∗ ); otherwise, we would have�I(A′ ) ��I(A∗ )
for some A′ ∈ AR, which violates (T6.C1). As a result, S† ∩�I(A′ ) 
= ∅ for any A′ ∈
AR with �I(A′ ) 
= �I(A∗ ). Next, because �I(A† ) ∪ S′ and �I(A∗ ) has a nonempty
intersection by the construction of S′, we know that S† ∩�I(A′ ) 
= ∅ for anyA′ ∈ AR

with �I(A′ ) =�I(A∗ ). In total, we know S† ∩�I(A′ ) 
= ∅ for any A′ ∈ AR. Because
of this result, and because by Theorem 3 for any A⊆A, there exists some A′ ∈ AR

such that �I(A′ ) ⊆ �I(A′′ ); we know S† is nonconflicting. So far, we have shown
that S† is both rationalizable and nonconflicting.

Then we claim that there is no �I(A∗ ) ⊆ S†. By the construction of S†, S† ∩
�I(A∗ ) = (�I(A† ) ∪ S′ ) ∩ �I(A∗ ). So, this claim is also equivalent to that there is
no �I(A∗ ) ⊆�I(A† ) ∪ S′. To see why this claim is true, we discuss two cases:
– when �I(A∗ ) ∩ �I(A† ) 
= ∅, S′ = ∅. Because of (T6.C1), there is no �I(A∗ ) �
�I(A† ). Because A∗ ∈ A1 and A† ∈ A2, there is no �I(A∗ ) = �I(A† ). In total,
there is no �I(A∗ ) ⊆ �I(A† ). Because S′ = ∅, we know there is no �I(A∗ ) ⊆
�I(A† ) ∪ S′ is this case.

– when�I(A∗ ) ∩�I(A† ) = ∅, (�I(A† ) ∪S′ ) ∩�I(A∗ ) = S′ ∩�I(A∗ ) = {a∗}. Because
�I(A∗ ) contains at least two different elements, there is no �I(A∗ ) ⊆ S′, which
implies there is no �I(A∗ ) ⊆�I(A† ) ∪ S′ is this case.

In total, we have to verify the claim that there is no �I(A∗ ) ⊆ S†. However, be-
cause S∗ is the smallest rationalizable and nonconflicting set, and because S† is
both rationalizable and nonconflicting, there must be S∗ ⊆ S†, which further im-
plies �I(A∗ ) ⊆ S† because A∗ ∈ A1. This leads to the contradiction. As a result, A2

must be empty in this case.

• Suppose that, for any A′ ∈ A1, �I(A′ ) only contains one element. We are going to
show that A2 = ∅ in this case. Suppose, for the purpose of contradiction, that A2

is nonempty. By the construction of A1 and A2, there is no �I(A1 ) = �I(A2 ) for
any A1 ∈ A1 and A2 ∈ A2. Because of (T6.C1), there is no �I(A1 ) ��I(A2 ) for any
A1 ∈ A1 and A2 ∈ A2. In total, there is no �I(A1 ) ⊆ �I(A2 ) for any A1 ∈ A1 and
A2 ∈ A2. Because �I(A′ ) only contains one element for any A′ ∈ A1, for any S ⊆�,
�I(A′ )∩S 
= ∅ would mean�I(A′ ) ⊆ S. Therefore, we must have�I(A′ )∩�I(A′′ ) =
∅ for anyA′ ∈ A1 andA′′ ∈ A2. Define S1 as

S1 =
⋃

A′∈A1

�I
(
A′).

And, define S2 as

S2 =
( ⋃
A′∈A2

�I
(
A′)) ∩ S∗.



376 Li, Kédagni, and Mourifié Quantitative Economics 15 (2024)

Because �I(A′ ) ∩ �I(A′′ ) = ∅ for any A′ ∈ A1 and A′′ ∈ A2, S1 ∩ S2 = ∅. More-
over, because S∗ is nonconflicting, S∗ ∩ �I(A′ ) 
= ∅ for each A′ ∈ A2. Therefore,
S2 ∩�I(A′ ) 
= ∅ for anyA′ ∈ A2. This implies that S1 ∪S2 is nonconflicting. Moreover,
because A1 is nonempty, S1 is rationalizable so that S1 ∪ S2 is also rationalizable. As
a result, S1 ∪ S2 is both nonconflicting and rationalizable. Next, define

S3 =
( ⋃
A′∈A2

�I
(
A′))\S∗.

By the definition of A1, S1 ⊆ S∗. Therefore, S1 ∩ S3 = ∅. Also, we have S2 ∩ S3 = ∅
by the construction of S2 and S3. In addition, by the construction of A2, for each
A′ ∈ A2, �I(A′ )\S∗ 
= ∅. Therefore, S3 ∩ �I(A′ ) 
= ∅ for each A′ ∈ A2. This implies
that S1 ∪S3 is nonconflicting. Moreover, because A1 is nonempty, S1 is rationalizable
so that S1 ∪ S3 is also rationalizable. As a result, S1 ∪ S3 is both nonconflicting and
rationalizable.

So far, we have shown that S1 ∪ S2 is both rationalizable and nonconflicting. And,
we have shown that S1 ∪ S3 is both rationalizable and nonconflicting. Because S∗ is
the smallest rationalizable and nonconflicting set, we must have S∗ ⊆ S1 ∪ S2 and
S∗ ⊆ S1 ∪ S3. In other words,

S∗ ⊆ (S1 ∪ S2 ) ∩ (S1 ∪ S3 ).

However, because S1 ∩ S2 = ∅, S1 ∩ S3 = ∅, and S2 ∩ S3 = ∅, we know (S1 ∪ S2 ) ∩ (S1 ∪
S3 ) = S1. As a result, we have

S∗ ⊆ S1. (35)

We have already shown that we must have �I(A′ ) ∩ �I(A′′ ) = ∅ for any A′ ∈ A1

and A′′ ∈ A2. Therefore, S1 ∩�I(A′′ ) = ∅ for any A′′ ∈ A2. Because A2 is nonempty,
this means that S1 is not nonconflicting. Because of (35), this implies that S∗ is not
nonconflicting, which contradicts to the fact that S∗ is both rationalizable and non-
conflicting.

We have shown that A2 must be empty in both of the above cases. This completes the
proof.

C.7 Proof for Theorem 7

By Theorem 5,�∗
I is both rationalizable and nonconflicting. If we could show�∗

I ⊆ S for
an arbitrary set S that is both rationalizable and nonconflicting, then �∗

I would be the
smallest rationalizable and nonconflicting set. Fix an arbitrary set S that is both ratio-
nalizable and nonconflicting.

We first prove that (T7.C1) implies �∗
I ⊆ S. Because S is rationalizable, there ex-

ists some data-consistent A′ ⊆ A such that �I(A′ ) ⊆ S. By Theorem 3, there exists a
minimum data-consistent relaxation Ã such that A′ ⊆ Ã. Because A′ ⊆ Ã, we know
�I(Ã) ⊆�I(A′ ). Because of (T7.C1), �∗

I =�I(Ã). Therefore, �∗
I =�I(Ã) ⊆�I(A′ ) ⊆ S.
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Next, we prove that (T7.C2) implies �∗
I ⊆ S. Let AR denote the collection of all min-

imum data-consistent relaxations. Because S is nonconflicting, we must have �I(A′ ) ∩
S 
= ∅ for each A′ ∈ AR. For each A′ ∈ AR, because �I(A′ ) only contains one element
under (T7.C2), �I(A′ ) ∩ S 
= ∅ is equivalent to �I(A′ ) ⊆ S. As a result, we know �∗

I ⊆ S

because �∗
I = ⋃

A′∈AR
�I(A′ ).

C.8 Proof for Theorem 8

Let AR be the set of all minimum data-consistent relaxations. Suppose for each Ã ∈ AR,
�I(Ã) is singleton. Then we want to show that �∗

I = ⋃
Ã∈AR

�I(Ã) is a subset of �†
I no

matter which type of relaxation is chosen by the researcher.
To show this result, pick an arbitrary Ã ∈ AR. Define δ∗ : A → [0, 1] as follows:

δ∗(a) = 0 if a ∈ Ã, and δ∗(a) = 1 if a /∈ Ã. By construction, �I(A(δ∗ )) =�I(Ã) only con-
tains one element. Therefore, we must have δ∗ ∈ FF, because there cannot exist some
δ < δ∗ with�I(A(δ)) 
= ∅ and�I(A(δ)) ��I(A(δ∗ )). Because this holds for any Ã ∈ AR,
we know �∗

I ⊆�†
I .
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