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Moment inequalities for multinomial choice with fixed effects
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This paper proposes a new approach to identification of the semiparametric
multinomial choice model with fixed effects. The framework employed is the
semiparametric version of the traditional multinomial logit with the fixed-effects
model (Chamberlain (1980)). This semiparametric multinomial choice model
places no restrictions on either the joint distribution of the random utility distur-
bances across choices or their within group (or across time) correlations. We show
that a novel within-group comparison leads to a set of conditional moment in-
equalities. Our main finding shows that the derived conditional moment inequal-
ities yield the sharp identified set for the random utility covariate index, while
avoiding the incidental parameter problem. Specializing this result to the binary
choice case shows that Manski (1987)’s conditional moment inequalities still lead
to sharp bounds without restrictions on covariates.
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1. Introduction

This paper characterizes identification of the semiparametric multinomial choice
model with fixed effects and a group (or panel) structure. A standard multinomial frame-
work (McFadden (1974)) is employed with random utility that is additively separable be-
tween unobservables, which include a disturbance and choice-specific fixed effects, and
a covariate index function. The key semiparametric assumption, replacing the multino-
mial logit specification (Chamberlain (1980)), is a familiar group stationary condition
on the disturbances. This assumption places no restrictions on either the joint distribu-
tion of the disturbances across choices or the correlation of disturbances across time (or
within group). Under this specification, a novel within-group comparison leads to a set
of conditional moment inequalities, which are the basis for our result on sharp partial
identification.

Our main finding establishes sharp nonparametric identification of the covariate in-
dex function in the semiparametric multinomial choice model with fixed effects. Under
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the group stationarity assumption alone, we find that our full set of derived conditional
moment inequalities contains all of the model’s potential identifying information in the
sense that the bounds provided by these inequalities are sharp. Sharpness is shown by
a constructive proof. In particular, given a distribution of observables and a parameter
value in the identified set, we demonstrate that there exists a distribution of unobserv-
ables that can be combined with the parameter value to generate the given distribution
of observables.1

The semiparametric model considered here does not place parametric restrictions
on the disturbance distribution. The only restriction on the disturbances is a group or
time stationary assumption. Since the joint distribution of disturbances across choices
is left unrestricted, the model contains no vestiges of independence of irrelevant alter-
natives or limits on cross price elasticities. Within group or across time disturbance cor-
relation is also left completely unrestricted in this specification. The panel aspect of the
model allows for an additive choice-specific fixed effect in the random utility specifi-
cation. The fixed effects are allowed to be arbitrarily correlated with the observed co-
variates. We focus on the case with only two time periods (or group observations). The
derived conditional moment inequalities are based on only within variation and in this
sense is the discrete choice analog to the familiar within transformation in linear mod-
els. As a result, the incidental parameter problem is fully circumvented in our identifi-
cation results.

The most closely related work is Shi, Shum, and Song (2018), which obtains point
identification with a linear covariate index using cyclic monotonicity in the semipara-
metric multinomial setup. Since our conditional moment inequalities provide sharp
bounds, it is not surprising that we are able to show that the Shi, Shum, and Song (2018)
conditional moment inequalities are implied by our conditional moment inequalities. It
follows that, under the additional conditions on covariates given in Shi, Shum, and Song
(2018), our conditional moment inequalities also yield point identification in the linear
covariate index case.

When we specialize our setup to the binary choice case with a linear covariate in-
dex, we find that our conditional moment inequalities match the weak version of Man-
ski (1987)’s conditional moment inequalities. It follows that these conditional moment
inequalities yield sharp bounds even when point identification fails due to either in-
sufficient variation in the covariates or nonlinearities in the covariate index functions.
Further, we establish that Manski (1987)’s maximum score criterion can be derived as an
aggregation of the conditional moments that make up our inequalities and extended to
allow for nonlinear covariate indices. We prove that the identified set determined by our
conditional moment inequalities is exactly the set of parameters that maximize the max-
imum score criterion function. This new result shows that the maximum score criterion
can be used for (sharp) identification (and hence its sample counterpart can be used for
estimation) even when point identification fails in the binary choice panel model.

1The distribution of unobservables can be expressed as a nonnegative solution to a system of linear
equations, so existence is constructive in the sense that a solution can then be determined in a finite num-
ber of matrix manipulation steps.
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Multinomial discrete choice models are extensively used in almost all fields that em-
pirically analyze the determinants of agents’ choices. Applications have typically em-
ployed parametric forms of the multinomial model. With panel data problems in mind,
Chamberlain (1980) uses an assumption of logistic disturbances to provide a novel con-
ditional likelihood method of identification and estimation. An alternative application
is in the demand literature where markets are the grouping device, the within group ob-
servations are consumers, and the choice-specific fixed effects represent product level
unobservables (e.g., Berry, Levinsohn, and Pakes (1995)). Markets are also used as a
grouping device when analyzing firm decision making (e.g., entry decisions) with the
market-specific fixed effect representing unobserved determinants of the market’s prof-
itability (e.g., Pakes (2014)).

We apply the findings of this paper to consider whether the price sensitivity of de-
mand for health insurance depends on income in a subsidized health insurance market
for low-income consumers. The data come from the Commonwealth Care program in
Massachusetts, which allowed consumers to choose among competing private plans.
We compare the price sensitivity of consumers with incomes one to two times the Fed-
eral Poverty Level with those whose income is two to three times the Federal Poverty
Level. Implementing the conditional moment inequalities derived here via Andrews and
Soares (2010) and Andrews and Shi (2013), we obtain a confidence set for the ratio of the
price coefficients in the two income groups and reject the hypothesis of no income de-
pendence at the 5% level.

Manski (1975) introduced a semiparametric, maximum score approach to point
identification and estimation for multinomial choice without choice-specific fixed ef-
fects. Assuming independent and identical distributions of the unobservable compo-
nents of the different choices, Manski uses differences in the observable, parametric
component of random utility across choices for identification. Using Manski’s identi-
fication approach, Fox (2007) shows that exchangeability of the unobservable compo-
nent across choices is sufficient for identification, and Yan (2013) obtains the limiting
distribution for a smoothed version of the multinomial maximum score estimator. Lee
(1995) provides an alternative semiparametric approach to multinomial choice for mod-
els without choice-specific fixed effects using an assumption of an i.i.d. distribution of
disturbances across agents.

Rather than imposing conditions on the joint distribution of the disturbances across
choices, our approach requires that the joint distribution of the choice-specific unob-
servables does not differ across observations in a group, but leaves the distribution of
disturbances across choices unrestricted. The different assumptions are likely to be use-
ful in different applications. Kahn, Ouyang, and Tamer (2019) develop an approach to
identification that can be used in both static and dynamic semiparametric multinomial
choice models. Chesher, Rosen, and Smolinski (2013) and Chesher and Rosen (2017)
obtain sharp identification for nonseparable instrumental variable models that include
discrete choice. Using a nonparametric multinomial choice model with endogeneity for
the California Health Insurance Exchange, Tebaldi, Torgovitsky, and Yang (2018) iden-
tify and estimate bounds on counterfactuals. Gao and Li (2018) develops estimation and
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identification in a nonseparable version of the panel multinomial choice model without
restricting the joint distribution of disturbances.

This work also continues a substantial literature that has focused on extending non-
linear econometric models to allow for fixed effects while relaxing parametric distri-
butional assumptions on disturbances. Manski (1987) applied his maximum score ap-
proach to the binary choice model with fixed effects. Honore (1992) further developed
Powell (1986)’s trimmed least squares approach to estimate the censored regression
model with fixed effects. Abrevaya (1999) developed a new approach to estimation to
allow for fixed effects in the transformation model, and further extended Han (1987)’s
generalized regression model to include fixed effects in Abrevaya (2000). Ahn, Ichimura,
Powell, and Ruud (2017) develop an approach to identification and estimation of semi-
parametric index models that can also be used in various fixed effects cases. The multi-
nomial choice setup considered in the current work presents an additional complexity
relative to the models in this previous literature. In particular, the multinomial choice
model depends on multiple index functions of the covariates, where each index function
corresponds to a choice-specific random utility. The main insight of our identification
strategy is that a comparison of the multiple index functions for any two within-group
observations has observable implications on the relative likelihood of certain choice
outcomes.

The paper is structured as follows. Section 2 sets up a semiparametric version of the
standard random utility model for multinomial choice with fixed effects. We then intro-
duce our main stochastic disturbance assumption and derive a set of conditional mo-
ment inequalities. In Section 3, we show that the conditional moment inequalities pro-
vide sharp bounds on the parameters (or functions) of interest. In Section 4, we address
point identification and binary choice. Section 5 implements the conditional moment
inequalities in an empirical exercise using data on health insurance choices through the
Commonwealth Program exchange in Massachusetts. Section 6 concludes. Proofs are in
the Online Supplemental Material (Pakes and Porter (2024)).

2. Conditional moment inequalities for multinomial choice

2.1 Setup

The data will be assumed to have a group/panel structure, where i = 1, � � � , n indexes
the groups and t = 1, � � � , T indexes observations within a group. There are a number of
familiar multinomial choice applications with this group structure. In panel data appli-
cations in Labor and Public Finance, i typically indexes individuals, and t indexes time
periods, though alternative groupings can also be relevant (an example from the study of
hospital choice has i indexing the Cartesian product of illness category and hospital and
t indexing patients, see Ho and Pakes (2014)). In Industrial Organization and Marketing
applications, i would typically index markets and t would index either the different con-
sumers in those markets (in demand analysis) or the firms that compete in them (in the
analysis of a firm’s choice of controls).

Observation (i, t ) faces a number of choices. Each choice d has an associated ran-
dom utility, Ud,i,t , and the observed choice, yi,t , maximizes the random utility over
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choices. Suppose that d ∈ {0, � � � , D}, so that the number of choices is D + 1. We con-
sider the case of unordered response, where the numbering associated with each choice
is arbitrary,2 and 2 ≤ D + 1 <∞.

Given covariates xd,i,t for each choice d associated with observation (i, t ), the ran-
dom utility for choices d = 0, � � � , D takes the form

Ud,i,t = gd(xd,i,t , θ0 ) + λd,i + εd,i,t , (1)

where the term λd,i denotes choice-specific fixed effects, which account for unobserved
characteristics of choice d that do not vary across t. No restrictions are placed on the
correlation between covariates xd,i,t and choice-specific fixed effects λd,i, so these fixed
effect terms generate a potential incidental parameter problem. The term εd,i,t repre-
sents any remaining unobserved, idiosyncratic determinants of the random utility. The
covariates enter random utility through the covariate index function gd(·, θ0 ), where θ0

is used to index the functions gd and is unknown to the researcher. The most commonly
assumed form for the index function is linear, for example, x′

d,i,tθ0. However, the pa-
rameter space � for θ0 is unrestricted and need not even be finite-dimensional. That is,
θ0 could index functions in an arbitrary function space, and the index functions are al-
lowed to vary by choice.3 The additive separability between the covariate index and the
unobserved terms λd,i + εd,i,t is critical to the results that follow. However, the additive
separability between the fixed effect λd,i and disturbance εd,i,t could be relaxed. That
is, λd,i + εd,i,t could be replaced by a term of the form fd(λd,i, εd,i,t ), where fd is an un-
known nonlinear function for choice d. In fact, under the assumptions below, the fixed
effect could be absorbed into the disturbance without loss of generality.4 Normaliza-
tions to the model, such as pinning down the scale of coefficients in the linear covariate
index case, can be incorporated as restrictions on the space of parameters, covariates,
and the dimension of the conditional distribution of unobservables.

The observed choice, yi,t , for agent (i, t ) maximizes the random utility Ud,i,t over
choices d. When a single choice uniquely maximizes random utility, then that choice
is the observed choice for (i, t ). We also allow for situations where there is a nonzero
probability that two or more choices maximize utility. This situation could occur if the
distribution of εi,t has mass points, as could be allowed under the flexible nonparamet-
ric assumptions on disturbances here, and is useful to extend our results to applica-
tions that involve set-valued regressors.5 To fully specify the choice decision, we adopt
a simple rule for resolving ties among maximizing random utility choices. If choices d1

2Inequalities for models with ordered responses are considered in Pakes, Porter, Ho, and Ishii (2015).
3The index functions could also be allowed to depend on time without any change in the results that

follow.
4This point will appear again below when we see that the constructed distribution in the proof of sharp-

ness has fixed effects set to zero.
5In the set-valued regressors case, the researcher does not know the specific value of some regressors, but

does observe a set that contains their values. Pakes and Porter (2014) use the tools developed here to analyze
this case. Two familiar examples are when the regressor is: (i) income (or wealth) and all the econometrician
knows is that the income of each observation lies in a particular interval; and (ii) the distance from home
to a service (or retail) outlet when the home location is only observed as a zip code (with known geographic
boundaries).
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and d2 both maximize random utility (Ud1,i,t = Ud2,i,t = maxd Ud,i,t ) and d1 < d2, then
assume that the choice with the largest choice index, in this case d2, is the observed
choice for (i, t ). And, in general, if there are multiple utility maximizing choices, then
the observed outcome is assumed to be the largest choice number among the utility
maximizing choices. More generally, any rule for resolving utility maximizing ties that
is a nonstochastic function of argmaxd Ud,i,t will lead to the same form of conditional
moment inequalities derived below6 and so knowledge of such a rule is not needed for
their implementation.

The setup thus far is a random utility formulation of multinomial choice except
that a choice-specific group fixed effect is included and general covariate indices are al-
lowed. It will be useful to establish notation for the mapping defined by this setup from
the covariates, parameter θ0, fixed effects, and disturbances to the observed outcome
yi,t . Let xi,t = (x′

0,i,t , � � � , x′
D,i,t )′, λi = (λ0,i, � � � , λD,i ), εi,t = (ε0,i,t , � � � , εD,i,t ), and Ui,t =

(U0,i,t , � � � , UD,i,t ). When it is helpful to be explicit about the dependence of random
utility on its components, we will use the notation Ud(xi,t , θ0, λi, εi,t ) to denote Ud,i,t =
gd(xd,i,t , θ0 ) + λd,i + εd,i,t . The observed outcome yi,t can also be written as a function
of these same components: yi,t = y(xi,t , λi, εi,t , θ0 ) = max argmaxd Ud(xi,t , θ0, λi, εi,t ),
where y is the mapping that represents the random utility formulation for multinomial
choice given above.

Our identification results will correspond to the case where T is fixed at T = 2. We
will denote the two time periods or observations within each group by s and t, rather
than 1 and 2 to avoid confusion, especially in the variable subscripts, with the choices
d, which are numbered 0, � � � , D.

The key stochastic assumption for this framework is within-group/time homogene-
ity of the disturbances. This assumption is a form of strict exogeneity and is a com-
mon condition imposed in panel data models (Chernozhukov, Fernández-Val, Hahn,
and Newey (2013)).7

Assumption 1.

(a) (xi,s , xi,t , λi, εi,s , εi,t ) is independently and identically distributed for i = 1, � � � , n;

(b) Given the conditioning set (xi,s , xi,t , λi ), the conditional distributions of εi,s and
εi,t are the same:

εi,s|xi,s, xi,t , λi ∼ εi,t|xi,s, xi,t , λi.

The second part of the assumption mirrors the stochastic assumption made for
panel data binary choice models in Manski (1987) and for discrete choice in Shi, Shum,
and Song (2018). No parametric distributional restrictions are placed on the distribution
of εi,t . Note that εi,t is, in general, a vector of individual choice disturbances, in contrast
to the binary choice case. Importantly, for a given time t, the marginal distribution of

6See also footnote 8 for allowable tie-breaking rules.
7Mean independence and zero covariance forms of strict exogeneity also appear commonly in the liter-

ature, especially in linear panel data model cases.
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these choice disturbances is allowed to vary arbitrarily across choices (d), and there are
no restrictions on the joint behavior of these disturbances across choices. As a result,
neither independence of irrelevant alternatives, nor any other limitation on the substi-
tutability of different choices induced by the covariance structure of disturbances (such
as the limited substitutability property discussed in Berry and Pakes (2007)) is a source
of concern. This assumption also allows the disturbances for the different choices to be
freely correlated across time. Assumption 1 nests both the familiar panel data model with
individual choice-specific fixed effects and i.i.d. disturbances, a special case of which is
Chamberlain’s (1980) conditional logit model, and many differentiated product demand
models for micro data (e.g., Berry, Levinsohn, and Pakes (2004)).

Assumption 1 does restrict the relationship between the disturbances and the co-
variates. For instance, heteroskedasticity would need to take a specific form where the
heteroskedasticity in εi,t is the same as εi,s even when xi,t �= xi,s . For example, if the het-
eroskedasticity in both εi,t and εi,s depended on xi,t + xi,s, then Assumption 1 would
not be violated. Of course, the typical assumption of independence of disturbances and
covariates across different s and t would suffice to satisfy Assumption 1.

Assumption 1(b) means that “within” variation could be useful for identification.
By restricting the conditional joint distribution of the disturbances across the random
utility choices to be the same for observations in group i, Assumption 1 enables us to
learn about relative response probabilities by comparing the observable components of
random utilities across t for that group i. This within-group comparison will not depend
on the joint distribution of disturbances across choices in any way.

To simplify notation, below we eliminate the group i index with the understanding
that all variables below are associated with the same group unless otherwise indicated.

2.2 Illustrative moment inequality

Given the random utility framework above along with Assumption 1, we can derive a
set of moment inequality conditions that can be taken to data for inference on the pa-
rameter θ0. We begin with a single conditional moment inequality that makes both the
assumptions and logic underlying our conditional moment inequality analysis trans-
parent. Following this derivation, we show how an extension of this logic leads to a col-
lection of conditional moment inequalities.

Our moment inequalities are based on a within comparison of choice probabilities
for individual/group i at times s and t. We can express the conditional probability of
observing choice d at time t through the corresponding region of the disturbance space,

Ed,t = {
εt : y(xt , λ, εt , θ0 ) = d

}
. (2)

Given this definition, Pr(yt = d|xs, xt , λ) = Pr(εt ∈ Ed,t|xs , xt , λ). To consider how vari-
ation in the covariates across time affects choice probabilities, it is useful to note the
explicit dependence of the region Ed,t on the covariates:

Ed,t =
{
εt : εd,t ≥ max

c<d

[(
gc(xc,t , θ0 ) − gd(xd,t , θ0 )

) + (λc − λd ) + εc,t
]}

∩
{
εt : εd,t > max

c>d

[(
gc(xc,t , θ0 ) − gd(xd,t , θ0 )

) + (λc − λd ) + εc,t
]}

, (3)
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where the sets with weak and strict inequalities follow from our rule for resolving utility
maximizing ties. We compare the time t regions E0,t , � � � , ED,t to the analogous regions
at time s, E0,s , � � � , ED,s. From this comparison, we will be able to show that for one of the
D + 1 choices, the region at time s contains the corresponding region at time t. More-
over, the choice with this property is determined completely by the covariate indices.
Assumption 1 then implies that the corresponding choice probability at time s will be at
least as large as the choice probability at time t.

To find a choice with this special property, we order the covariate index differences
across time by choice. In particular, find the choice with the largest change in covariate
index:

d∗ = argmaxc
(
gc(xc,s, θ0 ) − gc(xc,t , θ0 )

)
. (4)

If there is more than one choice in the argmax set, then set d∗ to any element of this set.
Note that

gd∗(xd∗,s , θ0 ) − gd∗(xd∗,t , θ0 ) ≥ gc(xc,s , θ0 ) − gc(xc,t , θ0 ), ∀c
=⇒ gc(xc,t , θ0 ) − gd∗(xd∗,t , θ0 ) + (λc − λd∗ )

≥ gc(xc,s, θ0 ) − gd∗(xd∗,s , θ0 ) + (λc − λd∗ ), ∀c.

(5)

The latter covariate index differences on either side of the inequality are the same differ-
ences that define Ed∗,t and Ed∗,s in (3). And the inequality (5) ensures that

Ed∗,t ⊂ Ed∗,s .

Hence,

Pr
(
ys = d∗|xs , xt , λ

) = Pr(εs ∈ Ed∗,s|xs , xt , λ)

= Pr(εt ∈ Ed∗,s|xs , xt , λ)

≥ Pr(εt ∈ Ed∗,t|xs , xt , λ)

= Pr
(
yt = d∗|xs, xt , λ

)
. (6)

The first and last equalities follow from the definition of the disturbance regions in (2).
The second equality follows from Assumption 1, and the inequality follows from the set
inclusion derived above. Since the inequality holds regardless of the values of the fixed
effects (λ), the fixed effects can be integrated out of the inequality in (6) yielding a cor-
responding conditional moment inequality below. We also extend the argument behind
this inequality to generate additional conditional choice probability comparisons and
their related conditional moment inequalities, which can then be used for identifica-
tion of the parameter θ0.

To illustrate the key intuition behind this inequality, consider the case with three
choices, a linear covariate index, and d∗ = 2 implying that E2,t ⊂ E2,s. To show the re-
gions Ed,s and Ed,t on two-dimensional graphs, these regions can be reexpressed in
terms of (ε1,s − ε0,s , ε2,s − ε0,s ) and (ε1,t − ε0,t , ε2,t − ε0,t ). In Figure 1(a), the time s
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Figure 1. Disturbance regions for 3 choices: �x′
2θ0 ≥ �x′

1θ0 ≥ �x′
0θ0 =⇒ E2,t ⊂ E2,s .

differenced disturbance space is partitioned into regions E0,s, E1,s , and E2,s correspond-
ing to ys = 0, 1, 2, respectively, and the vertical grey lines highlight region E2,s . A similar
partitioning of the differenced disturbance space at time t is shown in Figure 1(b), and
horizontal grey lines highlight region E2,t . Since εs and εt share the same (conditional)
distribution, and hence the same support set, these regions can be usefully superim-
posed in Figure 1(c). From equation (3), the regions E0,t , E1,t , and E2,t are a translation
shift of the regions E0,s, E1,s , and E2,s by ([x′

1,sθ0 − x′
1,tθ0] − [x′

0,sθ0 − x′
0,tθ0], [x′

2,sθ0 −
x′

2,tθ0] − [x′
0,sθ0 − x′

0,tθ0]). The size of these shifts is apparent in Figure 1(c); in the case
illustrated, x′

2,sθ0 − x′
2,tθ0 ≥ x′

1,sθ0 − x′
1,tθ0 ≥ x′

0,sθ0 − x′
0,tθ0, and it follows from (4) that

d∗ = 2. Starting from the nexus of the regions in Figure 1(a), the direction of the transla-
tion shift is interior to E2,s , which ensures that E2,t ⊂ E2,s.

2.3 Implied moment inequalities

The probability inequality in (6) is based on the choice that maximizes the difference
of covariate index functions. We can push this logic further to obtain similarly moti-
vated inequalities based on a complete rank ordering of the covariate index function
differences over the choices. For time periods s and t, start by ordering the difference of
index functions by choice. This ordering can be used to partition the choices into a set
of choices with larger index function differences and a set with smaller index function
differences. For each such partition generated by differences of the true index functions
gd(·, θ0 ), we will be able to generate corresponding choice probability inequalities.

Given a value of θ and vectors of covariates xs and xt , we can partition the set of
choices into two subsets corresponding to choices with larger and smaller index func-
tion differences. For instance, suppose D is a subset of choices, that is, D ⊂ {0, � � � , D},
and let Dc denote the remaining choices, Dc = {0, � � � , D}\D. If

min
d∈D

gd(xd,s , θ) − gd(xd,t , θ) ≥ max
c∈Dc

gc(xc,s , θ) − gc(xc,t , θ),

then D contains choices with larger index function differences and Dc contains choices
with smaller index function differences. There are many possible partitions that could be
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formed in this way, and we collect the subsets corresponding to the larger index function
differences as follows:

D(xs , xt , θ) =
{
D⊂ {0, � � � , D}

∣∣D, Dc �= ∅,

min
d∈D

gd(xd,s , θ) − gd(xd,t , θ) ≥ max
c∈Dc

gc(xc,s , θ) − gc(xc,t , θ)
}

. (7)

As the notation indicates, this collection of choice sets can be constructed from just the
covariates and a parameter value.

Consider the case where no pair of choices share the same the index function differ-
ence, so that each choice has a distinct index function difference value. Then D(xs , xt , θ)
will contain a set consisting of the choice corresponding to the largest index function dif-
ference ({d∗} in the notation of the previous section). It will also contain a set consisting
of the choices associated with the two largest index function differences, etc. So, in this
case, D(xs , xt , θ) would contain exactly D sets with cardinalities 1, 2, � � �, D. Moreover,
for any two sets C, D ∈D(xs , xt , θ) where C has fewer elements than D, then C ⊂D.

It is also possible that index function differences for some choices will be equal.
When this happens, D(xs , xt , θ) will contain more than D sets, and the sets in D(xs , xt , θ)
will not be nested. As a simple example, suppose there are four choices, {0, 1, 2, 3}.
And suppose the index function differences can be ordered as follows: [g3(x3,s , θ) −
g3(x3,t , θ)] > [g2(x2,s , θ) − g2(x2,t , θ)] = [g1(x1,s , θ) − g1(x1,t , θ)] > [g0(x0,s , θ) − g0(x0,t ,
θ)]. Then d∗ = 3 and D(xs , xt , θ) = {{3}, {3, 2}, {3, 1}, {3, 2, 1}}.

The next result shows that the argument used to obtain a probability choice in-
equality for d∗ in the previous section can be extended to the choice sets contained in
D(xs , xt , θ0 ).

Proposition 1. Suppose Assumption 1 holds. Then, for all D ∈ D(xs , xt , θ0 ),

Pr(ys ∈ D|xs , xt , λ) ≥ Pr(yt ∈D|xs , xt , λ).

Proof. For any set of choices C ⊂ {1, � � � , D} and a choice d, define

Ed,C,t =
{
εt : εd,t ≥ max

c∈C:c<d

[(
gc(xc,t , θ0 ) − gd(xd,t , θ0 )

) + (λc − λd ) + εc,t
]}

∩
{
εt : εd,t > max

c∈C:c>d

[(
gc(xc,t , θ0 ) − gd(xd,t , θ0 )

) + (λc − λd ) + εc,t
]}

.

The set Ed,C,t is the region of the time t disturbance space where choice d is preferred (in
random utility terms) to all choices in C. Corresponding time s regions Ed,C,s are defined
analogously.

Now take any D ∈ D(xs , xt , θ0 ). For any d ∈ D, gd(xd,s , θ0 ) − gd(xd,t , θ0 ) ≥ gc(xc,s,
θ0 ) − gc(xc,t , θ0 ) for all c ∈ Dc . Rearranging, gc(xc,t , θ0 ) − gd(xd,t , θ0 ) ≥ gc(xc,s , θ0 ) −
gd(xd,s , θ0 ) for all c ∈Dc . It follows that Ed,Dc ,t ⊂ Ed,Dc ,s and this set inclusion is the main
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step to showing the desired probability inequality:8

Pr(ys ∈D|xs , xt , λ) = Pr
(
εs ∈

⋃
d∈D

Ed,Dc ,s
∣∣xs , xt , λ

)

= Pr
(
εt ∈

⋃
d∈D

Ed,Dc ,s
∣∣xs , xt , λ

)

≥ Pr
(
εt ∈

⋃
d∈D

Ed,Dc ,t
∣∣xs , xt , λ

)

= Pr(yt ∈D|xs , xt , λ). (8)

Holding (xs , xt , λ) fixed, {εs : ys ∈ D} = ∪d∈DEd,Dc ,s , which is the argument behind the
first equality. The last equality holds similarly. The second equality holds by Assump-
tion 1. Finally, the inequality in (8) holds since the set inclusion Ed,Dc ,t ⊂ Ed,Dc ,s for all
d ∈D implies ⋃

d∈D
Ed,Dc ,t ⊂

⋃
d∈D

Ed,Dc ,s . (9)

The probability inequalities obtained in Proposition 1 can be straightforwardly
translated into corresponding moment inequalities, as follows. Let D = {D|D, Dc �=
∅, D ⊂ {0, � � � , D}}. For any D ∈D, define

mD(ys , yt , xs , xt , θ) =
{

1{ys ∈D} − 1{yt ∈D} if D ∈ D(xs , xt , θ)

0, otherwise
.

Then it follows from Proposition 1 that E[mD(ys , yt , xs , xt , θ0 )|xs , xt , λ] ≥ 0, ∀D ∈ D(xs ,
xt , θ0 ). Taking the expectation with respect to λ conditional on xs , xt yields conditional
moment inequalities expressed in terms of the observables (ys , yt , xs , xt ):

E
[
mD(ys , yt , xs , xt , θ0 )|xs , xt

] ≥ 0 ∀D ∈ D, (10)

where the inequalities with D /∈ D(xs , xt , θ0 ) follow immediately from the definition of
mD above. This set of conditional moment inequalities will be the key to the identifica-
tion arguments that follow.

3. Sharp identification

The conditional moment inequalities in (10) generated by Proposition 1 depend only
on the observable variables, (ys , yt , xs , xt ) with distribution Fys ,yt ,xs ,xt . Let Xs,t denote
the support of the joint distribution (xs , xt ). Define the corresponding identified set as
follows:

�0 =�0(Fys ,yt ,xs ,xt ) = {
θ ∈�|E

[
mD(ys , yt , xs , xt , θ)|xs , xt

] ≥ 0 ∀D ∈D, (xs , xt ) ∈ Xs,t
}

.

8Any rule for resolving random utility ties that preserves this set inclusion, in general, will lead to the
same set of conditional moment inequalities.
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Under Assumption 1 alone, �0 will not generally be a singleton. However, the below
result shows that the conditional moment inequalities defining �0 do, in fact, contain
all available information about the parameter in the sense that the identified set, �0,
provides sharp bounds on the parameter.

Given random variables (xs , xt , λ, εs, εt ) satisfying Assumption 1 and a value of the
parameter θ ∈ �, the multinomial choice framework defines outcomes ys = y(xs , λ, εs,
θ) and yt = y(xt , λ, εt , θ). Then the observable random variables from the multino-
mial choice model satisfying Assumption 1 are simply (ys , yt , xs , xt ) with distribution
Fys ,yt ,xs ,xt . We can collect all such values of the parameter and observable distributions:

M = {
(θ, Fys ,yt ,xs ,xt )

∣∣(xs , xt , λ, εs , εt ) satisfies Assumption 1, θ ∈�,

ys = y(xs , λ, εs , θ), yt = y(xt , λ, εt , θ), (ys , yt , xs , xt ) ∼ Fys ,yt ,xs ,xt
}

.

Let Fys ,yt ,xs ,xt be any observable distribution from the multinomial choice framework
under Assumption 1, that is, for some θ ∈ �, (θ, Fys ,yt ,xs ,xt ) ∈ M. Then the sharp identi-
fied set is simply the projection of M onto � for the given observable distribution,

�S = �S(Fys ,yt ,xs ,xt ) = {
θ ∈�|(θ, Fys ,yt ,xs ,xt ) ∈ M

}
.

Sharpness of the identified set �0 is simply that �0 =�S . More formally, let

Fob = {
Fys ,yt ,xs ,xt |(θ, Fys ,yt ,xs ,xt ) ∈ M for some θ ∈�

}
.

So, Fob is the set of all possible multinomial choice observable distributions generated
by some distribution of unobservables satisfying Assumption 1 and some parameter
value θ ∈�. Then we have the following result.

Theorem 2. Under Assumption 1, �0 is sharp. That is,

�0(Fys ,yt ,xs ,xt ) = �S(Fys ,yt ,xs ,xt )

for all Fys ,yt ,xs ,xt ∈ Fob.

Theorem 2 is shown by a constructive proof, see the Supplemental Appendix for
details. Fix a distribution of observables, Fys ,yt ,xs ,xt ∈ Fob. Let �0 and �S denote the
identified sets associated with this observable distribution, �0 = �0(Fys ,yt ,xs ,xt ) and
�S = �S(Fys ,yt ,xs ,xt ). It is straightforward to establish that �S ⊂�0 (using Proposition 1).
So, the main argument for Theorem 2 is to show the set inclusion in the other direction,
�0 ⊂�S .

Take any θ ∈ �0. We exhibit a conditional distribution (λ∗, ε∗
s , ε∗

t )|xs , xt such that
(xs , xt , λ∗, ε∗

s , ε∗
t ) satisfies Assumption 1 and (y∗

s , y∗
t , xs , xt ) ∼ Fys ,yt ,xs ,xt where y∗

s =
y(xs , λ∗, ε∗

s , θ) and y∗
t = y(xt , λ∗, ε∗

t , θ). Then (θ, Fys ,yt ,xs ,xt ) = (θ, Fy∗
s ,y∗

t ,xs ,xt ) ∈ M and
so θ ∈�S .

Let (xs , xt ) be any pair of covariate values in the support Xs,t . We need to choose
(λ∗, ε∗

s , ε∗
t )|xs , xt such that Pr(y∗

s = d, y∗
t = d′|xs , xt ) = Pr(ys = d, yt = d′|xs , xt ). Setting
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λ∗ = 0, Pr(y∗
s = d, y∗

t = d′|xs , xt ) is determined by the behavior of (ε∗
s , ε∗

t )|xs , xt on cer-
tain “choice-determining” regions of R2(D+1). We further subdivide these regions so that
symmetry can be imposed on the corresponding discrete marginal distributions to sat-
isfy Assumption 1.

Let Rd,d′ = {ε|y(xs , λ∗ = 0, ε, θ) = d} ∩ {ε|y(xt , λ∗ = 0, ε, θ) = d′}. These sets can be
used to subdivide the choice-determining sets on ε∗

s |xs , xt and to similarly subdivide the
choice-determining sets on ε∗

t |xs, xt . That is,

{
ε∗
s

∣∣y(
xs , λ∗ = 0, ε∗

s , θ
) = d

} =
D⋃

d′=0

Rd,d′ and
{
ε∗
t

∣∣y(
xt , λ∗ = 0, ε∗

t , θ
) = d′} =

D⋃
d=0

Rd,d′ .

So, Pr(y∗
s = d|xs, xt ) = ∑D

d′=0 Pr(ε∗
s ∈ Rd,d′ |xs, xt ) and similarly Pr(y∗

t = d′|xs , xt ) =∑D
d=0 Pr(ε∗

t ∈ Rd,d′ |xs , xt ). From these expressions, we see that the sets Rd,d′ can be used
to describe the marginal behavior of y∗

s (and y∗
t ), and in fact provide a device for impos-

ing the homogeneity in ε∗
t across time t as required by Assumption 1(b).

Additionally, the Cartesian products of sets of the form Rd,d′ can be used to describe
the joint behavior of y∗

s and y∗
t . So,

Pr
(
y∗
s = d, y∗

t = d′|xs , xt
) =

D∑
d′′=0

D∑
d′′′=0

Pr
((
ε∗
s , ε∗

t

) ∈Rd,d′′ ×Rd′′′,d′|xs , xt
)
.

Now, let q∗
d,d′×d′′,d′′′ = Pr((ε∗

s , ε∗
t ) ∈Rd,d′ ×Rd′′,d′′′ |xs, xt ). Then we can translate our prob-

lem of exhibiting a conditional distribution (λ∗, ε∗
s , ε∗

t )|xs , xt that both satisfies Assump-
tion 1 and generates an observable distribution matching Fys ,yt ,xs ,xt into a problem of
finding a solution to the system of linear equations below. Here, we treat Pr(ys = d, yt =
d′|xs, xt ) as known and seek a nonnegative solution for q∗

d,d′×d′′,d′′′ :

Pr
(
ys = d, yt = d′|xs , xt

) =
D∑

d′′=0

D∑
d′′′=0

q∗
d,d′′×d′′′,d′ (11)

D∑
d′′=0

D∑
d′′′=0

q∗
d,d′×d′′,d′′′ =

D∑
d′′=0

D∑
d′′′=0

q∗
d′′,d′′′×d,d′ . (12)

If q∗
d,d′×d′′,d′′′ satisfies (11), then (y∗

s , y∗
t , xs , xt ) ∼ Fys ,yt ,xs ,xt , as desired. If q∗

d,d′×d′′,d′′′ sat-
isfies (12), then the conditional disturbance distribution can be constructed to satisfy
Assumption 1. A simple way to achieve this construction is to choose a point in each
region, rd,d′ ∈ Rd,d′ . Then choose the distribution of (ε∗

s , ε∗
t )|xs , xt to be discrete with

Pr((ε∗
s , ε∗

t ) = (rd,d′ , rd′′,d′′′ )|xs , xt ) = q∗
d,d′×d′′,d′′′ .

The last step is to show existence of a nonnegative solution for q∗
d,d′×d′′,d′′′ satisfy-

ing (11) and (12). Existence is established for an equivalent dual problem, using Farkas’
lemma; see the Supplemental Appendix.

There are several interesting features of the constructed distribution that proves
Theorem 2. First, there are additional constraints not apparent in equations (11) and
(12). In particular, from the proof of Proposition 1, we know that some of the regions
Rd,d′ will be empty, and so any corresponding q∗

d,d′×d′′,d′′′ or q∗
d′′,d′′′×d,d′ will be zero. For
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example, suppose d∗ is the covariate index difference maximizing choice based on θ, as
defined in Section 2.2. Then {ε∗

t |y(xt , λ∗ = 0, ε∗
t , θ) = d∗} ⊂ {ε∗

s |y(xs , λ∗ = 0, ε∗
s , θ) = d∗}.

The choice-determining set for d∗ at time t is contained in the choice-determining set
for d∗ at time s, which is the basic idea behind the first conditional probability inequal-
ity derived in (6). Fixing d∗ to be defined as in Section 2.2, it follows that for d �= d∗,
Rd,d∗ = ∅. Additional constraints of this type have to be accounted for in the solutions to
(11) and (12).

Second, the fixed effects are set to zero in the constructed distribution and essen-
tially play no role. Given the nonparametric flexibility in the disturbance distribution
allowed by Assumption 1, fixed-effect variation is not needed to match the simulated
distribution to the given distribution of observables. This feature also reflects the fact
that only within variation is used in the identification through the conditional moment
inequalities.

Third, note that some across time correlation in the distribution of (ε∗
s , ε∗

t )|xs , xt is,
in general, needed to solve equations (11) and (12). Notice that satisfaction of Assump-
tion 1 is achieved by matching the distributions of ε∗

s |xs, xt and ε∗
t |xs , xt . However, the

full flexibility from the conditional joint distribution (ε∗
s , ε∗

t )|xs , xt is needed to match
the simulated distribution to the given observable distribution, which can include cor-
relation between choices across time. In particular, if we impose conditional indepen-
dence between ε∗

s and ε∗
t in the simulated distribution, then a solution to (11) and (12)

will not always exist.
Fourth, if Assumption 1 additionally included the restriction that conditional distri-

butions (εi,s , εi,s )|xi,s , xi,t , λi are absolutely continuous, Theorem 2 would still hold. The
constructed distributions in the proof could be straightforwardly modified, as noted in
the Supplemental Appendix, to show this result. Since random utility ties would be prob-
ability zero events under this additional assumption, the model could resolve such ties
arbitrarily.

Fifth, the proof outlined above constructs a distribution of unobservables condi-
tional on (xs , xt ), which shows conditional sharpness. For each value of the covariates,
our conditional moment inequalities contain all the information available in the condi-
tional distribution of the data. Conditional on any value of the covariates, the parame-
ter region “ruled out” by our conditional moment inequalities must contain the region
“ruled out” by any other set of conditional moment inequalities. Since this holds for ev-
ery covariate value, it follows that the union over all covariate values of ruled out param-
eter regions for our conditional moment inequalities must contain the union of ruled
out parameter regions for any other set of conditional moment inequalities (which is
the standard “unconditional” implication of sharpness).

Sixth, the same constructed distribution could be used to exhibit the equivalence of
�0 and �S for other “designs,” that is, covariate distributions. For example, given ob-
served combinations of (xs , xt ) in a particular data set, let Fe

ys ,yt ,xs ,xt denote the corre-
sponding distribution of choices and covariates for this empirical distribution of covari-
ates. Then Fe

ys ,yt ,xs ,xt can be used to define an identified set �e
0 and a sharp identified

set �e
S . Fe

ys ,yt ,xs ,xt is generated by changing only the marginal distribution of covariates
and maintaining the same conditional distribution of unobservables, so Assumption 1
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is still satisfied. The conclusion of Theorem 2 follows. Practically, this enables the re-
searcher to use the conditional moment inequalities in (10) to consider the identifying
power of a particular empirical covariate design and investigate the potential identifying
power of alternatives.

4. Additional remarks

Next, we discuss two topics related to our sharp identification result: point identification
and the special case of binary choice.

4.1 Point identification

In Section 3, we showed that the proposed conditional moment inequalities produce a
sharp identified set. With a linear covariate index function, point identification is estab-
lished by imposing further conditions that ensure the identified set reduces to a single-
ton. Assumption 1 places no restrictions on the covariates. The key additional condi-
tions for point identification ensure sufficient variation in the covariates, in particular
an assumption of unboundedness (see Chamberlain (2010)).

Shi, Shum, and Song (2018) derived conditional moment inequalities implied by
cyclic monotonicity for the multinomial choice model with a linear covariate index func-
tion under conditions including Assumption 1 and absolute continuity of the error dis-
tribution with respect to Lebesgue measure. Under assumptions on the covariates, they
show that their conditional moment inequalities are sufficient for point identification.

It is straightforward to compare the conditional moment inequalities in (10) with a
linear covariate index function to the corresponding Shi, Shum, and Song (2018) cyclic
monotonicity conditional moment inequalities. We adopt the normalization for choice
zero in Shi, Shum, and Song (2018), x0,i,t = 0, λ0,i = ε0,i,t = 0 so U0,i,t = 0 and similarly
at time s. From Shi, Shum, and Song (2018) Lemma 3.1, the length 2-cycle conditional
moment inequality can be expressed as

0 ≤
D∑

d=1

[
Pr(yi,s = d|xi,s , xi,t ) − Pr(yi,t = d|xi,s, xi,t )

]
�x′

dθ0. (13)

Now denote a (weak) ordering of covariate index differences as follows:

�x′
(D)∗θ0 ≥ �x′

(D−1)∗θ0 ≥ · · · ≥ �x′
(0)∗θ0. (14)

And suppose that choice zero has the j + 1th smallest covariate index difference, that is,
(j)∗ = 0, so that �x′

(j)∗θ0 = 0. Then rewriting the sum in (13),

D∑
d=1

[
Pr(yi,s = d|xi,s , xi,t ) − Pr(yi,t = d|xi,s, xi,t )

]
�x′

dθ0

=
D∑

d=j+1

[
Pr

(
yi,s = (d)∗|xi,s , xi,t

) − Pr
(
yi,t = (d)∗|xi,s , xi,t

)]
�x′

(d)∗θ0
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+
j−1∑
d=0

[
Pr

(
yi,s = (d)∗|xi,s, xi,t

) − Pr
(
yi,t = (d)∗|xi,s , xi,t

)]
�x′

(d)∗θ0

=
D∑

d=j+1

[ D∑
d′=d

(
Pr

(
yi,s = (

d′)∗
|xi,s, xi,t

) − Pr
(
yi,t = (

d′)∗
|xi,s , xi,t

))]

· (�x′
(d)∗θ0 −�x′

(d−1)∗θ0
)

+
j−1∑
d=0

[ D∑
d′=d

(
Pr

(
yi,s = (

d′)∗
|xi,s, xi,t

) − Pr
(
yi,t = (

d′)∗
|xi,s, xi,t

))]

· (�x′
(d)∗θ0 −�x′

(d+1)∗θ0
)

=
D∑

d=j+1

[
Pr

(
yi,s ∈ {

(d)∗, � � � , (D)∗
}

|xi,s , xi,t
) − Pr

(
yi,t ∈ {

(d)∗, � � � , (D)∗
}

|xi,s , xi,t
)]

· (�x′
(d)∗θ0 −�x′

(d−1)∗θ0
)

+
j−1∑
d=0

[
Pr

(
yi,s ∈ {

(0)∗, � � � , (d)∗
}

|xi,s , xi,t
) − Pr

(
yi,t ∈ {

(0)∗, � � � , (d)∗
}

|xi,s , xi,t
)]

· (�x′
(d)∗θ0 −�x′

(d+1)∗θ0
)

=
D∑

d=j+1

[
Pr

(
yi,s ∈ {

(d)∗, � � � , (D)∗
}

|xi,s , xi,t
) − Pr

(
yi,t ∈ {

(d)∗, � � � , (D)∗
}

|xi,s , xi,t
)]

· (�x′
(d)∗θ0 −�x′

(d−1)∗θ0
)

+
j−1∑
d=0

[
Pr

(
yi,s ∈ {

(d + 1)∗, � � � , (D)∗
}

|xi,s , xi,t
)

− Pr
(
yi,t ∈ {

(d + 1)∗, � � � , (D)∗
}

|xi,s , xi,t
)]

· (�x′
(d+1)∗θ0 −�x′

(d)∗θ0
)
. (15)

The terms (�x′
(d)∗θ0 − �x′

(d−1)∗θ0 ) and (�x′
(d+1)∗θ0 − �x′

(d)∗θ0 ) in (15) are nonnega-
tive by the ordering defined in (14). The relationship between the conditional moment
inequalities in (10) and the cyclic monotonicity conditional moment inequalities in (13)
follows immediately. The inequalities in (10) imply that the probability difference terms
in square brackets in (15) are nonnegative, which further implies that (13) holds. We
can then conclude that under Assumption 1 and the additional conditions given in Shi,
Shum, and Song (2018), the conditional moment inequalities in (10) yield point identi-
fication.9

9Actually, we find that point identification can be achieved using a subset of the inequalities in (10) that
correspond to partitions of the choice set of a fixed size. Fix δ ∈ {1, � � � , D}. Then, for point identification,
it suffices to consider the subset of conditional moment inequalities in (10) with |D| = δ or (D + 1) − δ.
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The implication illustrated also highlights a point made in the remarks following
Theorem 2. The conditional moment inequalities of this paper are actually conditionally
sharp. Any given covariate value yields one Shi, Shum, and Song (2018) length 2-cycle
conditional moment inequality. Since this inequality is a linear inequality, it rules out a
half-space in the parameter space. The same covariate value yields 2D+1 − 2 conditional
moment inequalites from (10) and each of these conditional moment inequalities rules
out a cone in the parameter space. Equation (15) shows formally that the union of ruled-
out cones must contain the ruled out half-space.

We also find that, in general, the inequalities (13) do not imply (10). Inequality (13)
generates the half-space whose boundary is given in (15) (which is a weighted combi-
nation of covariate values where the weights are given by the choice probability differ-
ences), while the inequalities (10) generate 2D+1 − 2 (cone) regions (each of which is
determined by the covariate values and does not depend on the choice probabilities).
So, in general the boundaries from (15) and (10) will not coincide, that is, the ruled out
half-space given by (15) will be strictly contained in the ruled out region given by (10) for
each conditioning value of the covariate.

4.2 Binary choice

The sharpness result in Section 3 can, of course, be specialized to the case of binary
choice. In this case, Theorem 2 provides a (to our knowledge) new supplement to the
point identification finding in Manski (1987). In particular, even when point identifica-
tion fails, the weak version of Manski (1987)’s conditional moment inequalities provide
sharp bounds on the binary choice random utility covariate coefficient, θ, under As-
sumption 1.10 Moreover, we show here that Manski’s maximum score criterion used for
point identification can also be used to obtain sharp partial identification when point
identification does not hold. Additionally, while Manski (1987) considers the linear in-
dex case, the result shown here allows for parametric or nonparametric covariate index
functions as in (1).

In the point identified binary choice case, Manski (1987) proposes an alternative
method of estimation, commonly referred to as maximum score estimation. We see be-
low the close connection between the maximum score criterion and the conditional mo-
ment inequalities defining the identified set.

The conditional moment inequalities are:

E
[
mD(ys , yt , xs , xt , θ)|xs, xt

] ≥ 0, ∀D ∈D, (16)

and in the binary choice case,

D(xs , xt , θ) =

⎧⎪⎪⎨
⎪⎪⎩

{
{1}

}
, for �g(xs , xt , θ) > 0{

{0}
}

, for �g(xs , xt , θ) < 0{
{0}, {1}

}
, for �g(xs , xt , θ) = 0,

(17)

This collection of conditional moment inequalities is nonnested with the cyclic monotonicity inequalities
in (13).

10In the binary choice case, Assumption 1(a) is exactly Manski’s Assumption 3, and Assumption 1(b) is
exactly Manski’s Assumption 1(a). So, the sharpness result relaxes Manski’s Assumptions 1(b) and 2.
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where

�g(xs , xt , θ) = [
g1(x1,s , θ) − g1(x1,t , θ)

] − [
g0(x0,s , θ) − g0(x0,t , θ)

]
.

The maximum score criterion function is

H(θ) =E
[
sgn

(
�g(xs , xt , θ)

)
(ys − yt )

]
.

To connect these expressions, define a function which “aggregates” the conditional mo-
ments across the sets D ∈D(xs , xt , θ):

H(xs , xt , θ) =
∑
D∈D

E
[
mD(ys , yt , xs , xt , θ)|xs , xt

]

=
∑

D∈D(xs ,xt ,θ)

E
[
1{ys ∈D} − 1{yt ∈D}|xs , xt

]
. (18)

Then

H(θ) =E
[
H(xs , xt , θ)

]
. (19)

That is, the maximum score criterion is an aggregation of the unconditional version of
the moments from the conditional moment inequalities.

Clearly, H(θ0 ) ≥ 0 and �0 ⊂ {θ ∈�|H(θ) ≥ 0}, but in general this set inclusion would
be strict and {θ ∈ �|H(θ) ≥ 0} would not be sharp. Instead of checking nonnegativity
of this criterion, maximum score seeks to maximize it. According to Manski (1987) in
the binary choice case with a linear covariate index function, under conditions implying
point identification, the maximum score criterion H(θ) is uniquely maximized at θ0.

The following proposition shows that, in the binary choice case, the maximum score
criterion is useful even when point identification is not achieved. In particular, under
Assumption 1 alone, �0 could be either a set or a point, and the maximum score criterion
H(θ) exactly identifies this set (or point) �0.

Proposition 3. Suppose D + 1 = 2 (binary choice) and Assumption 1 holds. Then

�0 = arg max
θ∈�

H(θ) = {
θ ∈ � : H(θ) =H(θ0 )

}
.

Under the conditions of Theorem 2, �0 is itself sharp, showing that the maximum
score criterion will identify the sharp bounds for the covariate index function in the bi-
nary choice model.

5. Empirical example

We implement our conditional moment inequalities in an empirical example that ana-
lyzes health insurance choices in the Commonwealth Care (or “CommCare”) program
in Massachusetts, enacted as part of the state health reforms in 2006. The program pro-
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vided subsidized health insurance to low-income citizens via an insurance exchange
that let consumers choose among competing private plans. We focus on a classic ques-
tion in demand analysis; does the response of demand to price changes depend on the
income of consumers?

CommCare was for citizens whose earnings were less than 300% of the Federal
Poverty Level (or the FPL; this was $10,830 in 2010, and increased by the CPI-U an-
nually thereafter). We examine whether the response to price movements differed be-
tween two groups of individuals: those with incomes between one and two times the
FPL and those whose income was between two and three times the FPL (those with in-
comes less than the FPL were fully subsidized, and hence not included in the analysis).
Differences in the price coefficient between these two groups has distributional impli-
cations for the welfare generated by this and other programs directed at low income
households.

Our model has consumer i at time t choosing among plans d to maximize

Ud,i,t = −pd,i,tβ0 −pd,i,t1
{
Ii,t ∈ [2FPL, 3FPL]

}
γ0 + λd,i + εd,i,t , (20)

where individual i’s price coefficient is β0 if that individual’s income Ii,t is contained
in [FPL, 2FPL] and β0 + γ0 if Ii,t ∈ [2FPL, 3FPL]. The λd,i capture individual (additive)
product preferences, and εd,i,t captures the remaining unobserved variation in random
utility. Our focus is on γ0, the difference between the price sensitivity of individuals
when they are in the higher versus the lower income group. Since the parameters are
only identified up to scale, we can only learn about γ0/β0. Assuming downward slop-
ing demand (β0 > 0), we can normalize β0 = 1 so that γ0 represents the desired ra-
tio.11

We consider regions where four insurers participate in the market during our data
period, with each insurer (by rule) offering a single plan. Program rules required each
enrollee to make a separate choice; there was no family coverage, and kids were covered
in the separate Medicaid program. We analyze plan choices in an annual open enroll-
ment month each year. Individuals are also allowed to choose plans when they change
their income group and we treat changes occurring at these times as separate choices
for estimation purposes.12 For more detail on the data and the CommCare program, see

11To provide an example connecting the hypotheses on γ0 with a demand effect, consider a case where
prices of all choices in period s are the same and in period t the price of choice d decreases while all
other prices stay the same or increase. Let �1 = Pr(yt = d|pd,s , pd,t , p−d,s , p−d,t , Is , It ∈ [FPL, 2FPL], λ)
−Pr(ys = d|pd,s , pd,t , p−d,s , p−d,t , Is , It ∈ [FPL, 2FPL], λ). Assuming downward sloping demand, �1 ≥
0. We compare �1 to the change in demand for the same choice under the same price dynamics
for a higher income individual, �2 = Pr(yt = d|pd,s , pd,t , p−d,s , p−d,t , Is , It ∈ [2FPL, 3FPL], λ) −Pr(ys =
d|pd,s , pd,t , p−d,s , p−d,t , Is , It ∈ [2FPL, 3FPL], λ). Assume that the disturbance distribution is conditionally
independent of incomes. Then, under the null γ0 = 0, �1 = �2. Under the alternative that γ0 < 0, �1 > �2.
That is, the demand is less sensitive to this price change for higher income individuals. And, both of these
conclusions would still hold after integrating the fixed effects out over a given distribution to yield “average”
demand effects.

12Coverage is heavily regulated, with all cost sharing and covered medical services completely standard-
ized across insurers. The only flexible plan attributes are provider networks. These were largely stable dur-
ing our sample period with one major exception. Network Health (one of our plans) drops Partners Health-
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Shepard (2020), Finkelstein, Hendren, and Shepard (2019), McIntyre, Shepard, and Wag-
ner (2021).

We want to capture choices that are not induced by changes in the individual’s
choice environment, just by prices, and we require the choice set (plan availability) to be
the same four plans in the two periods we compare. We therefore remove comparisons
for individuals who changed regions (there are five in the data), or who faced different
plan offerings in the comparison periods. We divide the remaining data into cells that
reflect the discrete values of consumers’ observed characteristics. The characteristics of
a cell are defined by the Cartesian product of; (a) pair of years, (b) region, and (c) the
income groups in each of the two periods being compared. So, the λd,i represent differ-
ences in tastes among consumers with the same characteristics. Our data contains all
cells as defined above that have more than 20 members.

There were large changes in relative prices between 2010 and 2012. During this pe-
riod, the provider BMC, which had the largest share in 2010 with over a third of the mar-
ket, increased its average price from below $50 per member per month to over $90. By
the end of 2012, it was clear that the price increases cost them almost half of their sub-
scribers, and in 2013 they reduced their prices to an average price of just over $40.13

We focus on the differential responses to these price changes and use the (s, t ) combi-
nations of (2010, 2012) and (2012, 2013). This generates 13,169 pairs of choices and 14
moments corresponding to the four choices.14

To use the conditional moment inequalities for inference, there are many recently
developed methods (Andrews and Shi (2013), Armstrong (2015), Armstrong and Chan
(2016), Chernozhukov, Lee, and Rosen (2013), Chetverikov (2018), and Lee, Song, and
Whang (2013)). Given the discreteness of the CommCare data, there are limited choices
for instruments to translate the conditional moments into unconditional moments. The
price variation across year-pairs motivates our use of indicators for year pairs as instru-
ments, which yields 28 unconditional moments. The confidence set is then estimated
using the generalized moment selection procedure in Andrews and Soares (2010) fol-
lowing the recommended tuning parameters choices in Andrews and Shi (2013). Imple-
menting a squared negative part criterion function and bootstrap critical values yields a
95% confidence interval for γ0, [−0.79, −0.31], indicating that when individuals transit
to a higher income group their price sensitivity falls significantly.

Care (the state’s largest medical system) from its hospital network at the start of 2012. To account for this,
we treat Network as two different plans, one before and one after 2012, and apply the rules above with that
understanding.

13There were no major changes in BMC’s network or other quality attributes at this time. There was,
however, a change in the rules governing the exchange in 2012, which set up an auction-like environment
to determine the plans that were available to the fully subsidized individuals and likely induced price ex-
perimentation.

14The data combines the unbalanced panel of observations from both year pairs, 2010–2012 and 2012–
2013. Alternatively, we could have used only individuals observed across both year pairs and then generated
fourteen separate moment conditions for each year pair. Unfortunately, this approach reduced our data set
to less than 10% of the data set we use. As a result, we combine all the data from both year pairs and used
year pair as an instrument. The variance estimator does not account for possible correlation of observations
across year pairs.
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Figure 2. Criterion function and critical values. The solid line is the negative part criterion
function, and the dashed line is the corresponding 95% bootstrap critical value function.

More detail is provided in Figure 2. The blue line graphs the sample test statistic.
The red line graphs the 95% bootstrap critical values. Using the max criterion function
(Armstrong (2014)) and using various instruments that aggregate less (yielding more un-
conditional moments) leads to similarly shaped test statistic graphs (though exact mag-
nitudes depend on the number of unconditional moments). We also considered the Shi,
Shum, and Song (2018) length 2-cycle conditional moment inequalities. Using the year
pair instruments, as above, yields two linear inequalities. The lower bound information
in these moment inequalities is the same as obtained previously. The two linear inequal-
ities are necessarily one-sided inequalities and neither provides upper bound informa-
tion.15

6. Conclusion

We have provided a new approach to identification for multinomial choice models. Our
focus has been on the multinomial choice model, which allows for choice-specific fixed
effects with a group (or panel) structure and a nonparametric distribution of distur-
bances only restricted to satisfy a stationarity assumption. We show that this specifi-
cation generates conditional moment inequalities, which can be used for identification
of the covariate index function and avoids the incidental parameter problem using only
two time periods. These conditional moment inequalities provide sharp bounds with-
out restrictions on the covariates. When T > 2, each pair of time periods generates a set
of conditional moment inequalities as described above. A sharpness result for this case
is left as an open problem for future research.

15We note that using different instruments we are able to find some upper bound information in the
cyclic monotonicity conditional moment inequalities.
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Our empirical example illustrates how these techniques can be applied to examine
differential responses by individuals with different characteristics to a given determi-
nant of choices. This should lead to a better understanding of distributional implica-
tions of different policies. Often the focus of empirical studies is not on θ0 per se but
rather on different functionals that could depend on θ0 (e.g., Tebaldi, Torgovitsky, and
Yang (2018)). In the discrete choice panel data setting, Chernozhukov et al. (2013) sug-
gest particular functionals of interest such as the conditional quantile or average struc-
tural effects. In such cases, our conditional moment inequalities provide a new source of
identifying information. Without restricting the disturbance distribution across choices,
our conditional moment inequalities are relatively easy to compute and provide sharp
(and sometimes point) identifying information on θ0. This additional “within” informa-
tion can be used to improve upon the estimation of the various effects by narrowing
the range of parameter values to be considered together with the possible disturbance
distributions (including fixed effects) that are consistent with the “between” variation
specified in the Chernozhukov et al. (2013) paper.

The issue of what is consistent with the “between” variation opens up the question,
which we have left for future research, of what information is available on the fixed ef-
fects per se. In addition to helping us analyze responses to changes in characteristics,
there are cases where knowledge of the fixed effects are of inherent interest and should
be analyzable. For example, in Ho and Pakes (2014)’s investigation of the impact of cap-
itation on allocation of patients to hospitals, the fixed effects represent the perceived
qualities of (the 194) different hospitals for each of (the 106) alternative illness cate-
gories. They examine whether the perceptions of the providers from different insurance
networks coincide, and are able to rank hospital by their perceived quality for the major
illness categories.
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