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We present a geometric approach to the finite Rational Inattention (RI) model,
recasting it as a convex optimization problem with reduced dimensionality that
is well suited to numerical methods. We provide an algorithm that outperforms
existing RI computation techniques in terms of both speed and accuracy in both
static and dynamic RI problems. We further introduce methods to quantify the
impact of numerical inaccuracy on the model’s outcomes and to produce robust
predictions regarding the most frequently implemented actions.

Keywords. Rational inattention, Shannon entropy, information acquisition,
learning, consideration sets.

JEL classification. C63, D81, D83.

1. Introduction

Introduced by Sims (2003), Rational Inattention (RI) has been gaining increased accep-
tance as a model of information acquisition and processing, particularly in macroeco-
nomics and finance. However, by and large we still do not know how effective RI models
are at explaining real-world phenomena. Maćkowiak, Matějka, and Wiederholt (2023,
p. 27) state that “the model of RI is well suited for a boom in empirical work, which has
not yet occurred,” and Gabaix (2014) notes that the limited scope of existing applied
work is partly due to the conceptual and computational complexity of RI optimization
problems. Outside of a handful of special cases, RI models do not admit a closed-form
solution. Existing numerical methods are often computationally intensive and may suf-
fer from accuracy problems.
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We introduce a geometric approach to finite RI models with the most common in-
formation cost specification, the average reduction in Shannon entropy (Sims (2003),
Caplin, Dean, and Leahy (2018), Matějka and McKay (2015)). Our approach is very well
suited for numerical computation, simplifying the original problem and providing novel
methods to quantify the accuracy of its behavioral predictions.

To obtain the geometric approach, we introduce a simple mapping from state-
dependent payoffs into what we term “attention vectors”—the mapping accentuates
payoff differences when information is cheap and attenuates them when it is expen-
sive. When applied to the action payoffs of an RI problem, the resulting attention vectors
span a convex polytope, the “attention possibilities set.” The original RI problem is then
equivalent to finding the optimal attention vector from this set, resulting in a strictly
convex optimization problem. This geometric approach is markedly simpler, reducing
the dimensionality of the original problem, providing two sets of convenient optimality
conditions, and separating the roles of prior beliefs and payoffs. Yet, it is straightforward
to recover the joint probability distribution of states and actions from the optimal atten-
tion vector.

There are several algorithms for convex optimization problems that can be readily
used for our geometric approach. We provide one such algorithm, adapted from stan-
dard sequential quadratic programming with active set methods.1 Our algorithm per-
forms favorably compared with other approaches, delivering substantial gains in both
speed and accuracy. The geometry of the attention vectors informs three noteworthy
design features: our choice of active sets, the stopping criterion, and a scaling routine to
avoid floating point errors.

We also provide novel methods designed to improve the accuracy and robustness of
the behavioral predictions of the model’s numerical solutions. We first propose a preci-
sion metric that relies on the similarity of the implied attention vectors and ensures that
the joint distribution of states and actions converges to the true solution. It does so by
balancing tolerance errors on two margins: the extensive margin that identifies which
actions are chosen with positive probability, and the intensive margin that specifies the
relative frequency of each chosen action. The set of actions chosen with positive proba-
bility, also known as the “consideration set,” is often an object of interest by itself but is
notoriously difficult to identify numerically.

We show how to obtain robust predictions regarding the most and least frequently
implemented actions despite numerical inaccuracy. Manipulating the two optimality
conditions from the geometric approach, we derive “cover” sets of actions that, alto-
gether, are played with an overall probability of our choice. These covers can be used
either to approximate the consideration set or, conversely, to identify actions that are
rarely, if ever, chosen. The latter is helpful for hypothesis testing: Identifying groups of
actions that jointly have a low choice probability ensures that a rejection of the underly-
ing RI specification is not clouded by noise from the computation.

We provide a pair of applications intended to illustrate some of the advantages of
our approach. The first application is based on the price-setting problem of Matějka

1Source codes are available on GitHub at https://github.com/mmulleri/GAP-SQP.

https://github.com/mmulleri/GAP-SQP
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(2016). We document that our algorithm is orders of magnitude faster than the well-
known Blahut-Arimoto algorithm (see Cover and Thomas (2012)) and scales well with
the size of the action and state spaces. The superior convergence speed is maintained
when the algorithm is integrated in dynamic algorithms such as the one suggested by
Miao and Xing (2023). Precision, rather than speed, is the focus of our second appli-
cation, based on the two-dimensional portfolio design problem of Jung, Kim, Matějka,
and Sims (2019). Our algorithm unveils some behavioral differences regarding the fre-
quency and structure of portfolio rebalancing. In both applications, we obtain robust
predictions by deploying our geometric methods, which provide very tight estimates of
the consideration set.

Related literature Rational inattention models have rapidly found their way into a va-
riety of fields, from finance to monetary economics. We do not aim to properly review
what is by now a large literature; see Maćkowiak, Matějka, and Wiederholt (2023) for an
excellent survey of both theoretical and applied work with RI models. Instead, we briefly
discuss previous key developments in solution methods for RI models.

Early work on RI models restricted analysis to Linear-Quadratic Gaussian (LQG)
frameworks, or assumed that the solution was Gaussian as an approximation, to obtain
analytic results that can, in turn, be embedded in an equilibrium model and have led to
many insights for aggregate phenomena.2

Sims (2006) exhorted researchers to go beyond the LQG case, and more recent re-
search has addressed some of the shortcomings of the LQG framework: Luo, Nie, Wang,
and Young (2017) apply Gaussian techniques with constant absolute risk aversion pref-
erences, allowing them to study the dynamics of consumption and wealth in general
equilibrium. Mondria (2010) allows signals to be linear combinations of the underlying
state of the economy, an approach that is also followed in Kacperczyk, Van Nieuwer-
burgh, and Veldkamp (2016), among others. Miao, Wu, and Young (2022) make further
progress in multivariate LQG environments. In settings where choices are discrete, some
researchers use the Cardell distribution to obtain closed forms that are amenable to em-
pirical analysis (Dasgupta and Mondria (2018), Brown and Jeon (2023), Bertoli, Moraga,
and Guichard (2020)).

Our methods offer an alternative to these distributional form assumptions for prob-
lems with finitely many states and actions. While many of the RI problems in finance and
macroeconomics feature a continuum of actions and states, the computational gains of
our approach make it feasible to use very fine grids. Our applications in Sections 5.1
and 5.2 draw on two leading examples that apply such discretization to continuous
problems, Matějka (2016) and Jung et al. (2019).

Paper structure We formally describe the classic RI approach in Section 2 and intro-
duce our geometric approach in Section 3. In Section 4, we develop a toolkit for finite
RI problems that improve the accuracy and robustness of numerical methods. Section 5

2A necessarily incomplete list of examples is Peng (2005), Peng and Xiong (2006), and Huang and Liu
(2007) for asset pricing; Maćkowiak and Wiederholt (2009) for monetary shocks; Gaglianone, Giacomini,
Issler, and Skreta (2020) for forecasting; Van Nieuwerburgh and Veldkamp (2009) and Van Nieuwerburgh
and Veldkamp (2010) for home bias and underdiversification in asset portfolios.
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illustrates the relevance of these new tools in three specific applications, and Section 6
concludes.

Notation We use vector notation throughout the paper and rely on the following con-
ventions: Boldface letters such as x denote I-dimensional vectors. To describe its com-
ponentwise construction, we also refer to x as [xi]. For example, [xi/yi] describes the
vector z with ith component zi = xi/yi. When comparing vectors, we write x ≥ y if and
only if xi ≥ yi for all i, x> y if and only if x≥ y and x �= y, and x� y if and only if xi > yi
for all i.

2. Rational inattention problem

We consider the standard RI problem where an agent faces a finite menu of options with
state-dependent payoffs and can condition her choice on arbitrary but costly signals.
More accurate signals are more costly, and we follow the literature (Sims (2003, 2006),
Caplin, Dean, and Leahy (2018), Matějka and McKay (2015)) in focusing on information-
processing costs that are proportional to Shannon entropy.

Formally, an agent faces an unknown state of the world i ∈ I = {1, � � � , I}, each occur-
ring with positive prior probability πi > 0. The agent has to implement a single action
a from the finite menu A. Each action is written as a payoff vector a= (a1, � � � , aI ) ∈ RI ,
with ai describing the agent’s resulting utility if she ends up implementing action a in
state i. We denote the set of probability mass functions over the menu as �A. Before im-
plementing an action, the agent can acquire information about the state of the world,
but more accurate information is more costly. By the obedience principle (Bergemann
and Morris (2016)), it is without loss of generality to assume that the decision-maker
relies on a signal that directly recommends a specific action. We denote the resulting
conditional implementation probabilities by P ∈ (�A)I , where Pi(a) denotes the proba-
bility of implementing action a conditional on state i.

The optimal conditionals P maximize expected consumption utility net of infor-
mation processing costs. Expected consumption utility can be stated succinctly as∑

i∈I πi
∑
a∈A Pi(a)ai since actions are denoted as payoff vectors. Information process-

ing costs are measured as the average reduction in Shannon entropy between prior and
posterior. These costs are also known as the mutual information and are equal to the
expected Kullback–Leibler divergence between conditional and marginal choice proba-
bilities (Cover and Thomas (2012)),

MI(P , p|π ) =
∑
i∈I

∑
a∈A

πiPi(a) ln
(
Pi(a)
p(a)

)
,

where p(a) =π ·P (a) refers to the marginal implementation probability of a.3 A propor-
tionality constant λ > 0 translates the informational burden from nats into utils. Mathe-
matically, the choice problem is parametrized by a triplet (A, π, λ), and welfare is given

3In line with conventional notation, we assume that 0 ln 0 = 0.
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by

W (A, π, λ) =

⎧⎪⎨⎪⎩
max

P∈(�A)I ,p∈�A

∑
i∈I

πi

∑
a∈A

Pi(a)ai − λMI(P , p|π )

s.t. p(a) =π · P (a) ∀a ∈ A.
(RI)

RI agents frequently rely only on a subset of all available actions, and we follow Caplin,
Dean, and Leahy (2018) in referring to support(P ) as the agent’s “consideration set.”

3. Geometric approach

Key to our results is the equivalence between (RI) and a simpler optimization problem,
which we call the Geometric Approach (G). To get there, we show that it is without loss
of generality to relax the constraint in (RI), as the optimal marginals are always consis-
tent with the conditionals (see Lemma 3 in the Appendix. Using standard optimization
techniques, we find that optimal conditionals are equal to

Pi(a) = p(a)eai/λ∑
a′∈A

p
(
a′)ea′

i/λ
, (1)

based on the same first-order conditions as previously reported Matějka and McKay
(2015). As observed by Caplin, Dean, and Leahy (2018), most terms in (RI) cancel out
when we substitute in these conditionals,

W (A, π, λ) = λmax
p∈D

∑
i∈I

πi ln
(∑
a∈A

p(a)eai/λ
)

, (2)

but only a finite set of marginals p ∈ D ⊆ �A is consistent with equation (1). In our re-
laxed version of (RI), this restriction falls away and any marginal in �A is feasible. The
resulting maximization problem is at the heart of our approach, but for convenience we
divide by the constant λ and apply a change of variables.

Specifically, we assign to each action a an attention vector β(a) := [eai/λ] ∈ (0, ∞)I .
The mapping β : RI → RI

>0 from payoff to attention vectors accentuates differences in
payoffs when the information is cheap and attenuates them when it is costly. In partic-
ular, if action ã has a lower payoff in state i than action a, the relative size of its attention
vector,

βi(ã)
βi(a)

= e(ãi−ai )/λ,

converges to 0 as λ → 0+ and 1 as λ → ∞, so that action ã attracts almost no attention
relative to a in state i when attention costs are small, and largely equal attention when
they are large.

The convex hull over all attention vectors spanned by A,

B :=
{∑
a∈A

p(a)β(a)
∣∣p ∈ �A

}
⊂RI+,
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Figure 1. Visual representation of the geometric approach.

forms the set of feasible attention vectors or, colloquially, the “attention possibilities set.”
We assign utility w(b) := π · ln(b) to each attention vector b and then solve for the most
attractive, feasible attention vector by restating the relaxation of Equation (2) as

max
b∈B

w(b). (G)

This strictly convex optimization problem is what we call the Geometric Approach, or (G)
for short. Figure 1 attests to why we call the approach “geometric.” The mapping β
transforms each available action a into an attention vector β(a) (drawn as black dots).
Their convex hull describes the set of feasible attention vectors B (shaded in gray), and
the indifference curves from the strictly convex utility function w (dashed lines) indi-
cate the unique optimal attention vector b∗, which always lies on the upper boundary
∂+B = {b ∈ B | �b′ ∈ B : b′ > b} of the feasible set (drawn in blue) due to monotonicity
of w.

The geometric representation yields an immediate bound on the number of actions
that the RI agent implements with positive probability.4 The new formulation also sep-
arates the role of prior beliefs from that of payoffs: Prior π enters the objective function
through utility w—akin to preferences—but the attention possibilities set B is entirely
determined by the action payoffs a as well as the attention cost parameter λ. This stark
split proves useful to understand how the optimal attention vector responds to changes
in external parameters.

The weights that describe b∗ as a convex combination
∑
a∈Ap(a)β(a) over attention

vectors indicate the optimal marginals for the original (RI) problem. Conditionals can
then be derived by Equation (1). These weights may not be unique, which happens when
there are multiple optimal learning strategies in the (RI) problem.

The optimal attention vector can also be of interest by itself. The payoffs from the
preimage β−1(b∗ ) describe a fictitious action that, whether added to the original menu

4Carathéodory’s theorem states that at most I points are required to span any point in a I − 1-
dimensional convex hull (e.g., Eggleston (1958, Theorem 18)). Since b∗ is part of the I − 1-dimensional
upper boundary ∂+B, this implies that there always exists an optimal solution to (RI) that uses no more
than I actions, no matter the cardinality of the menu. For a more general treatment regarding the cardinal-
ity of the consideration set in infinite state spaces, see Jung et al. (2019).
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or offered in replacement of it, leaves the decision-maker no better or worse off. It is pre-
cisely the ignorance equivalent of the RI problem, as defined in Müller-Itten, Armenter,
and Stangebye (2023), and can play a strategic role in contract games with RI agents.

The spread in the attention vectors that span b∗ captures the amount of learning
that the decision-maker undertakes. This is a consequence of Equation (1), which iden-
tifies the optimal conditionals as Pi(a) = p(a)βi(a)/b∗

i . In the extreme case where the
optimum is spanned by a single action, b∗ ∈ β(A), the decision-maker forgoes learning
altogether and blindly implements a single action. In all other cases, the optimal choice
involves some learning. Learning is largest when b∗ is spanned by wildly different atten-
tion vectors, in which case conditionals vary strongly across states, indicating that the
agent closely tailors her action to the realized state of the world. The following example
with a classic transport theme illustrates the link between the geometric representation
and the agent’s learning and choice behavior.

Example 1. Bill is choosing a transport option for an upcoming trip. He is familiar with
the train route, so this choice yields a certain payoff of zero. Upon consulting the bus
map, he sees that there are two bus routes that go to his desired destination: one is di-
rect and yields payoff 0.1, the other includes a long detour and yields payoff −0.9. Un-
fortunately, Bill is colorblind and cannot tell whether the red or green bus will take the
detour. Regardless of trip length, the green bus is a double-decker bus, to which Bill as-
signs a payoff bonus of 1/3.

We can formalize this as a two-state RI problem, where the red bus takes the detour
in state 1 and the green bus in state 2:

atrain =
[

0
0

]
, ared bus =

[
−0.9
0.1

]
, agreen bus =

[
0.1 + 1/3

−0.9 + 1/3

]
, and π =

[
1/2
1/2

]
.

In the no-information benchmark where learning the bus colors is impossible (λ→ ∞),
Bill maximizes expected utility and decides to take the train, since π · atrain is larger than
π · ax for either of the two buses x ∈ {redbus, greenbus}. Conversely, if learning is free
(λ → 0), Bill acquires full information and takes the bus with the direct route. Costly
learning forms an intermediate scenario where Bill bases his choice on some, but not all,
information about the state. Figure 2 illustrates how the attention vectors β(ax ) accen-
tuate payoff differences for small information costs λ and attenuate them for large costs.

When information costs are low (λ = 0.25), the optimal attention vector is spanned
by those of the busses, and Bill never takes the train. But contrary to the full-information
solution, he still errs occasionally by taking the detour. We can determine his procliv-
ity for detours by comparing the coordinates along each axis, since Equation (1) pins
down the conditional implementation probabilities for each chosen transport option x

as p(ax )β(ax )/b∗. As both busses are close to an axis, Bill’s error rates are small but not
zero: He avoids almost all detours on the red bus, P1(ared bus ) ≈ 0.04%, but accepts some
on the green double-decker bus, P2(agreen bus ) ≈ 7.4%.

Under moderate information costs (λ = 0.7), the optimal attention vector is spanned
by those of the train and green bus. This indicates that Bill still acquires some in-
formation but also hedges by taking the riskless transport option with probability
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Figure 2. Visual representation of Example 1. As learning becomes more costly (λ ↑), the atten-
tion vectorsβ(ax ) of the busses move along the dashed lines, toward that of the train (β(atrain ) ≡ 1
for all λ). Dots indicate their position for cost parameters λ = 0.25 (top and right) and λ = 0.7
(closer to origin). In each case, the feasible set B is drawn in gray and the optimal attention vec-
tor is indicated as a blue asterisk. Solid lines represent indifference curves.

p(atrain ) ≈ 68%. As the spread of the attention vectors is smaller, Bill acquires less in-
formation. He misses out on many direct green bus trips, P1(agreen bus ) ≈ 46%, and takes
quite a few detours, P2(agreen bus ) ≈ 17%.

If information costs increase even further, the attention vectors for the buses move
closer to that of the train along the dashed lines. As a result, the spread decreases, infor-
mation acquisition goes down and the error rate goes up, until for some (finite) attention
costs he abandons learning altogether and sticks to train rides.

Figure 2 also illustrates how Bill’s transport choice changes if he discerns the colors
on the map with partial accuracy. If the direct route appears to be painted more green
than red, π1 > π2, all the indifference curves become steeper but the feasible set B is
left unchanged. For small changes, Bill still uses the same modes of transport, albeit in
different contingencies.

3.1 Optimality conditions

The simple structure of (G) allows us to draw upon a vast literature in convex geometry
when it comes to locating the optimal attention vector. For instance, the optimal atten-
tion vector can be succinctly characterized via linear inequality conditions.

Theorem 1 (Optimality Conditions). The solution b∗ ∈ B to (G) is unique and fully iden-
tified by either of the following two optimality conditions:

(a) ∇w(b∗ ) ·β(a) ≤ 1 for all a ∈ A.

(b) ∇w(b) · b∗ ≥ 1 for all b ∈ B.
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Proof. See Appendix A.1.

Figure 1 captures the geometric intuition for this result: Condition (a) says that B lies
weakly below the hyperplane that is tangent to the indifference curve at b∗. Condition (b)
says that b∗ lies above all hyperplanes that are tangent to the indifference curves at any
suboptimal b ∈ B. Both hold thanks to the convexity of (G).

Both sets of optimality conditions are central to our paper. Constraints (a) are linear
over the points in the convex hull B. These constraints have been stated before in terms
of action payoffs and form the backbone for Caplin, Dean, and Leahy (2018).5 One key
observation is that the conditions jointly imply that the inequality ∇w(b∗ ) ·b≤ 1 binds at
the optimal attention vector b= b∗. The same must then be true for all attention vectors
that span b∗, including β(a) for all actions a that are part of an optimal consideration
set.

To our knowledge, the second set of optimality conditions is new to the RI literature.
Conditions (b) are constructive in the sense that any feasible point b ∈ B restricts the
potential location of b∗ to a linear half-space dictated by the vector ∇w(b). A successive
choice of feasible points bn ∈ B then allows us to “close in” on the optimum and make
precise statements about the true optimum based on numerical estimates. We lay out
how to do so, and the role our novel optimality conditions play in Section 4.

3.2 Axis scaling

The functional form of (G) has another separability feature that is particularly helpful
for numerical evaluation: Scaling the feasible set B with a positive constant along any
dimension maintains optimality, even if the objective function is left intact. Mathemati-
cally, componentwise scaling b �→ [kibi] merely offsets the objective value by a constant
factor,

w
(
[kibi]

) =
∑
i∈I

πi · ln(kibi ) =π · ln(b) +π · ln(k) = w(b) +w(k).

As a consequence, the optimum scales by the same vector as the feasible set.

Lemma 1 (Axis Scaling). Consider any scaling vector k ∈RI+. Attention vector b solves (G)
if and only if [kibi] solves maxb′∈{[kibi]|b∈B} w(b′ ).

Proof. Since w([kibi]) =w(k) +w(b) for all b ∈ B, w(b∗ ) ≥w(b) for all b ∈ B if and only
if w([kib

∗
i ]) ≥w(b′ ) for all b′ ∈ {[kibi]|b ∈ B}.

Scalability greatly helps reduce floating point imprecision in our numerical algo-
rithm. It also captures the fact that shifting all action payoffs by a constant vector u ∈ RI

does not affect the agent’s optimal learning strategy—after all, the payoff boost is inde-
pendent from the action choice.

5Necessity was highlighted previously by Matějka and McKay (2015).
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4. Practical implications

While there exist powerful algorithms to approximate convex optimization problems
like (G),6 some numerical noise is inevitable. One strength of the geometric approach
is that it allows us to narrow down the true optimum based on noisy estimates.

4.1 Consideration set approximations

While agent behavior is ultimately described by the conditional probabilities P , there
are instances where the primary focus is on identifying which actions are chosen with
positive probability. This consideration set reveals which products are on a consumer’s
radar, predicts possible price jumps in markets with sticky prices, and uncovers corre-
lations in portfolio investments. By classifying some actions as “never chosen,” it also
yields a testable hypothesis for choice data that is too sparse to yield reliable estimates
of conditional (or even marginal) implementation probabilities.

We use the optimality conditions from Theorem 1 to approximate the optimal con-
sideration set despite numerical imprecision. To do so, we find it useful to assign scores
to each action a ∈ A based on any feasible attention vector b ∈ B. The “b-score” of action
a, written s(a|b) ∈ R, captures the location of β(a) relative to the hyperplane tangent to
the indifference curve at b,

s(a|b) := ∇w(b) ·β(a) − 1.

Actions with positive scores lie above the tangent hyperplane, those with negative scores
lie below. Rewriting Theorem 1 in this way, condition (a) states that all actions have non-
positive b∗-scores, and condition (b) states that the optimal choice has a nonnegative
expected b-score for any b ∈ B since

∑
a∈A

p(a)s(a|b) = ∇w(b) ·
[∑
a∈A

p(a)β(a)

]
− 1 = ∇w(b) · b∗ − 1 ≥ 0. (3)

This expression is useful because it allows us to identify the most frequently chosen ac-
tions and disregard the rest.

Partial cover To account for numeric noise, we generalize the notion of a consideration
set to describe any subset of the menu that contains the most frequently chosen actions.

Definition 1. A set A ⊆ A is a “q-cover” of the (RI) problem (A, π, λ) if and only if
p(A) = ∑

a∈Ap(a) ≥ q for all optimal marginals p.

The consideration set is always a 1-cover, as are any of its supersets. Our goal is to
identify q-covers with high probability q ∈ [0, 1] and small cardinality |A|, in order to
isolate the most frequently chosen actions.

6We outline one such method in Section 4.3 and compare its effectiveness against other approaches in
Section 5.
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Starting with any feasible attention vector b, Equation (3) implies that the agent can
choose actions with negative b-scores only if she compensates by often enough choos-
ing actions with sufficiently positive b-scores—and when the maximal score s̄(b) :=
maxa∈A s(a|b) is close to zero, actions with very low scores just cannot be chosen often.
This yields a threshold rule that can be used to generate a q-cover for the (unknown)
optimal choice based on a numerical approximation.

Corollary 1. For any b ∈ B and any q ∈ (0, 1), the set

A=
{
a ∈ A

∣∣s(a|b) ≥ −qs̄(b)
1 − q

}
⊆ A

is a q-cover.

Proof. If s̄(b) = 0, all b-scores are nonpositive and the attention vector b is optimal. The
set A then contains only actions with a b-score of zero, and is equal to the agent’s con-
sideration set (or union of consideration sets, if there are multiple optimal solutions).
Otherwise, s̄(b) > 0 and we proceed by bounding b-scores above,

0
(3)≤

∑
a∈A

p(a)s(a|b) ≤
∑

a∈A\A
p(a)

(
−qs̄(b)

1 − q

)
+

∑
a∈A

p(a)s̄(b)

= s̄(b)

[
− q

1 − q

(
1 −p(A)

) +p(A)

]
= s̄(b)

1 − q

[
p(A) − q

]
.

Dividing by s̄(b)/(1 − q) yields p(A) ≥ q.

Corollary 1 can be readily deployed to assess computation accuracy. Let b be the
researcher’s numerical estimate of the optimum and let A be a partial cover with high q,
say 95%. The researcher may find that A is pretty large, perhaps close to the full menu A.
This may indicate that computational error is substantial if the numerical solution had
a small support or, simply, the researcher had reason to expect a sparse consideration
set. Alternatively, the researcher may find that A has very few actions or that, from the
perspective of the specific application, actions in A are clustered around only a handful
of relevant values. In this case, the researcher has effectively identified the key features
of the consideration set under the true optimum.

Partial covers are also useful while searching for the right parameters to replicate
a salient fact, say, a particular action a being observed with a frequency higher than
10%. The researcher does not need a very precise estimate b of the optimum for each
parameter value: As soon as the 90%-cover excludes the aforementioned action a, the
parameter value can be rejected.

In practice (see Section 5), we find that accurate algorithms yield estimates b that
are very close to the (G) solution. The resulting q-covers typically have small cardinality
even when q is close to one, making this approach very attractive for empirical research.
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Dominated actions In many situations, it is even possible to rule out some dominated
actions altogether—effectively finding a 1-cover that is significantly smaller than the
menu. Sometimes this is trivial: If an action delivers less payoff in each state than a blind
lottery over other actions, the action is suboptimal at any posterior, and thus would
never be chosen. Tighter bounds are possible, since the optimality conditions (a) and (b)
imply that any action in the consideration set has a b∗-score of zero. Using numerical ap-
proximations, it is often possible to limit the location of the possible optimal attention
vector b∗, which in turn restricts the possible gradient ∇w(b∗ ) = [bi/πi] to some subset
� ⊂ RI+. If we can bound the feasible b∗-scores for some action a below zero,

s
(
a|b∗) ≤ sup

ψ∈�
ψ ·β(a) − 1 < 0, (4)

we can rule it out for good. The RI agent never implements this action in an optimal
solution.

Computationally, finding dominated actions is significantly slower than finding a
partial cover. A valid q-cover can be obtained from any feasible attention vector based
solely on explicit score computations, while testing for dominance requires determining
first a feasible set of gradients �, and then solving maximization problem (4) for each
individual action. Still, the dominated actions approach is useful in situations where
accuracy is paramount.

4.2 Precision metric

Even though (G) is computationally simpler, the primary object of interest is ultimately
the conditional choice P that predicts behavior, not the optimal attention vector. Be it to
compare model predictions to empirical data, or to write a stopping criterion for numer-
ical methods, the researcher eventually needs to decide when two conditional choices
are “similar.” We now show that the distance between implied attention vectors offers a
parsimonious metric to gauge similarity of the implied conditional choice.

Definition 2. The attention distance between choices P , P ′ ∈ (�A)I is defined as

d(G)
(
P , P ′) :=

√∑
i∈I

πi

(
β−1
i

(
E
[
βi(a)|a∼ Pi

]) −β−1
i

(
E
[
βi(a)

∣∣a∼ P ′
i

]))2
.

The attention distance is obtained in three steps: First, we compute the expected
attention vector [E[βi(a)|a ∼ Pi]] under each conditional P . Then we transform the at-
tention vector back into the original payoff space using the inverse mapping β−1. This
transformation gets rid of any distortions introduced by axis scaling. Finally, we apply
the standard Euclidean metric to the resulting payoff vectors, weighted by the prior
probability for each state. The weights ensure that the distance is unaffected by a payoff-
irrelevant splitting of states. Nonnegativity, symmetry, and the triangle inequality are
directly inherited from the standard Euclidean distance.
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A potential shortcoming of the attention distance is its failure to distinguish be-
tween choices that imply the same attention vector: From a computational perspec-
tive, this may be a satisfactory compromise in the interest of parsimony. Indeed, we
now show that distance d(G) provides a suitable convergence criterion whenever (RI)
admits a unique solution: From any sequence of conditionals Pn that converge to the
solution P under d(G), we can construct conditionals that converge in terms of both
marginal and conditional probabilities. So, although the attention distance only con-
siders I-dimensional vectors, it is sufficient to generate convergence for all I × |A| con-
ditional probabilities thanks to continuity of the first-order conditions in Equation (1).

Lemma 2. Suppose (RI) admits a unique solution P . For any sequence of conditionals
{Pn} ⊂ (�A)I that converges to P according to d(G), the conditionals⎡⎢⎢⎣

(
π · Pn(a)

)
βi(a)∑

a′∈A

(
π · Pn

(
a′))βi

(
a′)

⎤⎥⎥⎦ (5)

converge to P under the standard Euclidean metric over (�A)I .

Proof. See Appendix A.1.

The attention distance d(G) is ideally suited to serve as a stopping criterion for nu-
merical solution methods since it penalizes numerical noise when it leads to substantial
payoff differences and ensures that conditional choices converge to the actual optimum.
In this sense, the attention distance strikes a balance between other common stopping
criteria: Methods that rely on objective values alone can lead to noisy estimates of the
model’s behavioral implications, since several conditional choices may—and often do
(Jung et al. (2019))—share very similar objective values. At the other end, a straightfor-
ward comparison based on the Euclidean distance between the conditional matrices
P and P ′ (or the vectors of marginals p and p′) treats all actions as equally distinct.
However, numerical (RI) estimates over large menus err along both the extensive and
intensive margin: They typically misidentify both the support of the optimal choice (the
consideration set) as well as the relative frequency of chosen actions. The matrix dis-
tance disproportionately penalizes errors on the extensive margin, while d(G) recognizes
when a candidate consideration set contains near-optimal actions.

4.3 Algorithm design

The simple geometry of (G) offers fertile ground for numerical methods that solve finite
RI problems. Standard algorithmic techniques for convex problems perform well, and
the reduced dimensionality of (G) brings obvious gains in performance.

We provide an algorithm based on Sequential Quadratic Programming (SQP) and
active set methods (see, e.g. Judd (1998)), using d(G) as a stopping criterion. We refer to
this algorithm as GAP-SQP, where “GAP” stands for Geometric Attention Problem. The



128 Armenter, Müller-Itten, and Stangebye Quantitative Economics 15 (2024)

codes are available at https://github.com/mmulleri/GAP-SQP and a detailed explana-
tion of the code is provided in Appendix A.2. Although the optimization methods we use
are relatively unsophisticated, we find that our algorithm performs favorably when com-
pared to other state-of-the-art techniques that are typically used to estimate RI models,
in terms of both speed and accuracy. The methods and ideas can also be combined with
other solution methods to yield further gains in performance.7

A few practical challenges arise when dealing with large state and action spaces, for
example, when approximating continuous RI problems. This can routinely lead to mem-
ory issues when storing and accessing the payoff matrix,8 and we briefly elaborate on
them here.

Dealing with large menus Large menus can often be partitioned into clusters of actions
with similar payoff vectors. Sometimes, this clustering is explicit since the menu repre-
sents a discrete approximation to a continuous choice variable, and so the granularity
of the discretization grid determines which actions are “lumped together.” Even if the
goal is to characterize the optimal choice over a very fine grid, active set methods can
significantly speed up the algorithm and reduce memory usage.

Practically, we start with a coarse grid over actions and increase the grid precision
stepwise. At each step, we compute the optimal attention vector bk and then include
K actions from the finer grid with the highest bk-score s(a|bk ). We increase grid preci-
sion once the 99% cover stabilizes. When K is large relative to the optimal consideration
set, this approach can approximate large action spaces without running into memory
management issues. And while the numerical estimates of the algorithm depend on the
path of subgrids, any partial covers computed in the last round accurately describe the
optimal choice over the entire menu A.

Large state spaces Although this stepwise optimization effectively avoids the load of
large menus, each step still relies on the entire payoff vectors for the currently consid-
ered actions. As such, large state spaces inherently pose a bigger challenge for our al-
gorithm than large menus. When memory constraints are binding, a lower threshold K

may offer some relief: By reducing the number of actions that are added to the candidate
consideration set at each step, fewer payoff vectors are considered simultaneously, but
more iterations may be necessary to achieve convergence.

Approximating continuous problems Learning generates payoff complementarities
across actions (Müller-Itten, Armenter, and Stangebye (2023)). When using discrete ap-
proximations to continuous problems, it is thus possible that even a fine grid A× I over
actions and states fails to capture the full learning opportunities, and that any approx-
imation thus dismisses some actions in error. That said, it appears in practice that the
geometric approach also provides sensible numerical estimates when applied to a fine
discretization of a continuous (RI) problem, as we show in the applications below.

7Such as replacing the SQP approach with more advanced convex optimization algorithms.
8In the portfolio optimization (Section 5.2), the associated 3002 × 3002 payoff matrix would require

64.8 Gb of memory.

https://github.com/mmulleri/GAP-SQP
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Solving dynamic problems When the agent faces repeated decisions and the under-
lying state is autocorrelated across time, learning yields actionable information about
both the present and the future. The continuation value of learning is endogenous, but
typically increases the agent’s incentives to learn.

Although our approach is static in nature, it can easily be incorporated into iterative
algorithms that account for these dynamic incentives, such as the one proposed by Miao
and Xing (2023) for situations with unobservable payoffs. They express the agent’s prob-
lem at any history as a static problem with payoffs given by appropriately constructed
value vectors, then approximate the agent’s optimal learning strategy using an itera-
tion of the Blahut–Arimoto algorithm, and in turn use these strategies to update the
associated (Markovian) beliefs and continuation values. We simply replace the Blahut–
Arimoto step with our GAP-SQP algorithm, and find notable speed gains—driven by the
fact that beliefs and actions converge in far fewer iterations.9

5. Applications

In this section, we illustrate by way of example that both the conceptual framework and
the computationally tractable algorithm have the potential to expand the purview of
further research. We consider two applications: The first is a monopolist problem with
uncertain demand as proposed by Matějka (2016). We use this well-known application
to benchmark the GAP-SQP algorithm described in Section 4.3 against existing meth-
ods, focusing primarily on speed. We then extend this model to multiple interconnected
periods to highlight how our algorithm can be combined with the iterative approach of
Miao and Xing (2023) to tackle dynamic RI problems. The second is a portfolio choice
problem with a massive state and action space proposed by Jung et al. (2019). We pri-
marily use it to highlight the precision of GAP-SQP and showcase the robust behavioral
predictions that we develop in Section 4.1.

5.1 Sticky prices (Matějka (2016))

Our first application is based on the “rationally inattentive seller” model of Matějka
(2016). A monopolistic seller has a per unit input cost of 1 and sets the price p facing an
isoelastic demand function with elasticity d+1

d . The elasticity parameter d is uniformly
distributed over the interval [ 1

9 , 1
2 ], and the seller can learn its value through costly learn-

ing. Profits are given by 	(d, p) = p− d+1
d (p− 1), with d describing the state of the world

and p the seller’s action.10 As in Matějka (2016), actions and states are discretized.
For comparison with our base routine described in Section 4.3, we also solve the

model using the Blahut–Arimoto (BA) algorithm, a solution method that originated in
rate distortion theory and has recently gained some usage in RI problems. The BA al-

9A detailed description of our dynamic algorithm can be found in Appendix A.2.2.
10Matějka (2016) assumes a channel capacity constraint rather than information being acquired at a cost.

To match the channel capacity constraint of half a bit, we find that we need to set λ= 5.31 × 10−3.
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Figure 3. Running times across information costs.

gorithm iterates between candidate marginal and conditional distributions,11 and like
GAP-SQP, is guaranteed to converge to the optimum.12

Figure 3 documents the running times in seconds across a range of information costs
λ for our benchmark case with a grid of 200×200 points. As shown in panel (a), the GAP-
SQP algorithm terminates in less than 0.05 seconds in all runs, with minimal differences
across information costs. The BA algorithm, reported in panel (b), runs in about one
second when information costs are very low—and thus the solution is very close to the
full information benchmark—but is substantially slower for higher information costs,
up to 20 seconds. Both algorithms achieve very similar objective values, with the GAP-
SQP algorithm outperforming by about 10−8.13

The reason why GAP-SQP outperforms the BA algorithm is twofold. First, wide
swaths of potential actions (prices) are dominated in this example. The GAP-SQP quickly
drops them from consideration, which drastically reduces the size of the problem in
later iterations. BA never drops actions, and must continue to construct conditional and
marginal probabilities over each and every one until the algorithm converges. This turns
out to be a computationally slow process, despite its simplicity.

The second reason is that the BA algorithm is an iterative procedure whose conver-
gence speed is determined by the information cost: the lower the information cost, the
faster the convergence rate. As a result, higher information costs converge more slowly
and require more iterations, which translates to longer solution times.

While our GAP-SQP algorithm is also sequential, its convergence speed is not di-
rectly affected by the information cost. The information cost serves only to construct

11Given any candidate marginals p, the BA algorithm obtains candidate conditionals P using Equa-
tion (1), and then uses the law of total probabilities, p(a) =π · P (a), to update its guess for p.

12We implement both algorithms in MATLAB, using an iMac desktop computer with 24 GB of RAM
and an 3.4 GHz Quad-Core Intel Core i5 processor. For further discussion of the BA algorithm, see Caplin,
Dean, and Leahy (2018) and Cover and Thomas (2012). Matějka (2016) instead used proprietary software
AMPL/LOQO to solve for the joint probability distribution. Due to licensing restrictions, we were not able
to use AMPL/LOQO to document running times. A comparable, freely available solver (IPOPT) was sub-
stantially slower and less precise than both the GAP-SQP and BA algorithms.

13Numerical solutions for λ = 5.31 × 10−3 are also very similar to those reported in Matějka (2016); see
Supplemental Appendix B.1 (Armenter, Müller-Itten, and Stangebye (2024)). We thank Filip Matĕjka for
sharing his numerical output.
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Figure 4. Running times across grid precision.

the convex constraint set over which the GAP-SQP optimizes in each iteration. It is not
surprising, therefore, that Figure 3(a) reveals very little correlation between information
cost and solution time for the GAP-SQP. For this reason, our algorithm is particularly
appealing at higher information costs.

Next, we ratchet up the computation burden by increasing each grid precision up
to 600 points, adding up to 6002 = 360,000 total grid points. As shown in Figure 4(a),
running times scale roughly linearly for the GAP-SQP algorithm. Even at a 600 × 600 grid
running times stay well below half a second. Figure 4(b) shows that the BA algorithm also
scales well; though this means that computing times approach a minute for the largest
grids.

We also compute the set of undominated actions as well as the 99% cover using the
output from our GAP-SQP algorithm. Figure 5 displays the GAP-SQP numerical solution
as solid bars over the full price grid—with insets at two points of the full support of prices
for visibility. The 99% cover is indicated with a dark blue background. It is identical to
the consideration set of the numerical solution. Thus, even if we had low confidence
in the accuracy of the numerical estimate, we would be able to conclude that the total
probability of observing any price outside of this set is at most 1%. Indeed, the main
point in (Matějka (2016)) is that optimal pricing behavior is discrete, clustering mass on

Figure 5. Partial cover and undominated actions, with 300 states and 1000 actions.
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Figure 6. Comparison of the numerical solution at different running times.

a comparatively small number of points. This observation can also be made by looking at
the set of undominated actions (light blue background): It shows that the vast majority of
prices are not used in any contingency. The validity of the claim does not rely on having
found the true optimum of the (RI) problem, which makes it significantly more robust.

Dynamic extension To assess the promise of our approach for dynamic applications,
we extend the model in (Matějka (2016)) to multiple periods with the elasticity parame-
ter following a discretized AR(1) process. Formally, we let dt = (1−ρ)d̄+ρdt−1 +εt where
d̄ = 11

36 is the average elasticity, εt follows a mean-zero normal distribution and ρ = 0.7
governs the autocorrelation. The variance of εt is chosen so that the state range [ 1

9 , 1
2 ]

extends three standard deviations to either side of the mean under the unconditional
distribution (as in Tauchen (1986)). As before, the agent sets the price pt ∈ [ 10

9 , 3
2 ] and

enjoys flow payoff 	(dt , pt ).14 For simplicity, we assume that there is no discounting
and maintain the same information cost parameter as before.

We discretize the action and state spaces with 100 and 300 grid points, respectively,
and consider a time horizon of T = 10 periods, resulting in 901 interconnected RI prob-
lems.15 We implement the iterative algorithm suggested by Miao and Xing (2023) using
either the Blahut–Arimoto or the GAP-SQP subroutine to update strategies. Figure 6(a)
plots the welfare that is achieved by the algorithmic solutions after different running
times.16 Although each iteration takes more time with GAP-SQP than with BA (6 rather
than 0.5 seconds on average), the algorithm converges in significantly fewer iterations.
When compared over the same running time, GAP-SQP achieves higher expected wel-
fare than the BA variant. The faster convergence can also be seen when we compute
sufficiency scores in panel (b), as in Section 4.1. We plot the maximal score s̄ across all
actions in any subgame, knowing that it should be zero under the optimal choice. It takes

14As in Miao and Xing (2023), we assume that the agent cannot learn “for free” simply by observing past
payoff realizations.

15The full solution specifies the agent’s initial choice, as well as her continuation strategy after each of
100 Markov histories pt−1 during each of the subsequent time periods. Choices in future periods affect the
continuation values that guide the agent’s earlier choices, and choices in earlier periods inform the agent’s
subsequent beliefs.

16All benchmark operations are carried out on a 2021 iMac with 16 GB of RAM and a Apple M1 Processor.
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four iterations (26 seconds) for the GAP scores to drop below those of the BA variant, af-
ter which they quickly approach zero while the BA scores taper out at a higher level.17

At the end of our evaluation period, s̄ settles below 10−5 under GAP-SQP, while the score
converges to about 0.05 under BA after 300 seconds. Since the threshold score for inclu-
sion in the partial covers is proportional to s̄ (Corollary 1), this 5000-fold improvement
suggests that not only does the solution from the geometric approach yield a strategy
that outperforms BA, it also much more tightly identifies the optimal behavior.

5.2 Portfolio choice (Jung et al. (2019))

Our second application considers the portfolio choice problem of Jung et al. (2019), who
illustrate that RI can explain low rates of household portfolio rebalancing. In this prob-
lem, an investor with unit wealth designs a portfolio composed of three uncorrelated
assets, without restrictions on short sales or overall leverage. The investor has constant
absolute risk aversion (CARA) utility u(x) = −e−αx with risk aversion parameter α. Asset
zero is a safe asset with constant return 1.03. The returns from risky assets j = 1 and j = 2
are each modeled as the sum of two independent random variables around a slightly

higher mean return, 1.04 +Zj +Yj . The random variable Zj
iid∼ N (0, σ2

z ) reflects factors
that are inherently unforeseeable. The random variable Yj reflects factors that are not
known at the outset but can be learned at a cost. Each portfolio (θ1, θ2 ) ∈ R2 describes
an available action, where θj is the position in risky asset j and θ0 := 1 − θ1 − θ2 is the
position in the safe asset. The expected utility from the portfolio conditional on state
Y = (Y1, Y2 ) is

U(θ, Y ) = E

[
u

(
1.03θ0 +

2∑
j=1

(1.04 +Zj +Yj )θj

)∣∣∣Y]
. (6)

We follow Jung et al. (2019) and assume that Y follows a discrete distribution over a
300 × 300 grid that is obtained from a normal distribution N (0, 0.022I ) truncated at
three standard deviations. We report results for parameter values α = 1, λ = 0.1, and
σz = 0.0173.18

We approximate the continuous menu (θ1, θ2 ) ∈ R2 by first (without loss of gen-
erality) imposing the upper and lower bounds given by the full-information solution,
and then iteratively doubling the grid resolution using 99.99% covers until we reach
513 × 513 = (29 + 1)2 points.19

 Jung et al. (2019) instead use a variant of the Blahut–
Arimoto algorithm that optimizes the points of support at each step of the algorithm.

17While the BA algorithm is known to be welfare monotonic, not every component of the solution im-
proves over time. Figure 6(b) shows such a nonmonotonicity in the maximal sufficiency score s̄.

18These parameters correspond to scenario B in Jung et al. (2019). Although we show results only for this
scenario, the GAP-SQP solution has larger support and achieves a higher objective value than the JKMS
solution in all four parameter scenarios.

19The iterative approach (see Section 4.3 and Appendix A.2) allows us to handle a large action grid. How-
ever, it does not reduce the memory demands imposed by the large state space. In order to compute the
solution at the same state grid resolution as Jung et al. (2019), we opted to run the algorithm on a compu-
tational cluster.
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Figure 7. Portfolio distributions under GAP-SQP (blue), JMKS (orange), and optimal Gaussian
(gray), as well as the information benchmark (red). In panel (a), the circle size of each portfolio
θ is proportional to the probability weight p(θ), and the probability that the Gaussian solution
falls between any two contour lines is equal to 0.2. In panel (b), the circle size is fixed and each
portfolio in the 95% cover (dark blue) is also in the 99.99% cover (light blue).

We refer to this algorithm as JKMS. The algorithms reach a comparable objective value,
with GAP-SQP mildly outperforming JKMS. Both algorithms perform significantly better
than the optimal multivariate Gaussian solution,20 an approach that is common in the
applied literature.21

Turning to the behavioral implications, Figure 7(a) shows the estimated portfolio
choice probabilities across all three algorithms. The Gaussian solution stands out as
the only continuous solution, but even the two discrete solutions are measurably dif-
ferent. Jung et al. (2019) caution that their solution method may miss solutions with a
larger support, and this is exactly what we find with GAP-SQP. The main point in Jung
et al. (2019), that portfolio rebalancing is relatively rare, remains valid—and indeed the
consideration set shrinks for higher information costs. Quantitatively, though, GAP-SQP
finds that portfolio rebalancing is substantially more common, and occasionally, the in-
vestor makes small adjustments.

The partial covers displayed in Figure 7(b) allow more robust statements regarding
the true optimum given the state and action grid that we use. Contrary to the JKMS esti-

20The solution published in Jung et al. (2019) closes 0.225 of the payoff gap between no and free informa-
tion (corresponding to λ → ∞ and λ → 0, resp.), while GAP-SQP closes 0.238 of the gap. The best Gaussian
solution closes roughly 0.112 of the payoff gap. For details on the best Gaussian solution and a comparison
of statewise payoff distributions across algorithms, see Supplemental Appendix B.2.

21Many papers assume a Gaussian signal structure as a primitive for tractability (Luo et al. (2017), Van
Nieuwerburgh and Veldkamp (2009, 2010), Mondria (2010), Kacperczyk, Van Nieuwerburgh, and Veldkamp
(2016)). Others (Maćkowiak and Wiederholt (2009, 2012)) use a quadratic approximation to the objective
function, which implies a Gaussian signal at the optimum given a Gaussian state. In our case, the quadratic
approximation reaches lower welfare than the no-information solution, so we compare against the optimal
Gaussian CARA solution.
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Figure 8. Payoff distribution across choices, smoothed with a kernel density estimate with
bandwidth 0.01.

mates, it appears that the investor almost never takes short positions simultaneously on
both risky assets, θ� 0. This may suggest that the investor looks for good news rather
than bad. Another pattern that arises from Figure 7(b) is that the RI investor selects only
portfolios from a circle, hinting that some further analytic results are possible, which
may help elucidate the relative role of risk aversion and information processing costs,
for instance.22 Overall, the example illustrates the need for more robust estimation tech-
niques that not only deliver a “better” estimate but allow a valid characterization of the
true optimal choice.

Figure 8 plots the statewise payoff distribution U(θ, Y ) −λMI, assuming (θ, Y ) is dis-
tributed according to the numeric solution of GAP-SQP (blue) and the information cost
MI is borne unconditionally. For comparison, we also show the payoff distribution under
no information (λ→ ∞, grey dotted) and free information (λ → 0, grey dashed).

We can compute the ignorance equivalent of this RI investment problem, obtained
as the preimage β−1(b∗ ) of the optimal attention vector. This fictitious asset is uniquely
designed to ensure that the investor would abandon learning and select it uncondition-
ally, but without gaining a payoff boost in doing so (Müller-Itten, Armenter, and Stange-
bye (2023)). The ignorance equivalent yields the same expected utility as the optimal
portfolio choice with learning, but—as can be seen from the payoff distribution in Fig-
ure 8—it avoids the lowest payoffs to dissuade learning. In that way, it mimics the full-
information distribution.

6. Conclusion

We have introduced a novel geometric approach to finite RI models and developed a
computational toolkit with a focus on robust methods for behavioral predictions. Our
hope is that our contribution enables further substantial progress in more complex,
quantitatively-relevant RI models—the kind necessary for applied work.

22A more thorough investigation of this conjecture is outside the scope of this research.
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We conclude with some observations regarding RI models with a continuum of ac-
tions or states. These are commonplace in macroeconomics and finance, where re-
searchers typically either focus on specific functional forms that can be solved analyt-
ically or approximate the solution with a tractable distribution. Our methods provide
both an alternative and a complement to these distributional assumptions through dis-
cretization of the action and state spaces. Given our computational gains, it is possible
to use very fine grids to minimize precision loss. Researchers can thus now assess how
general the analytic functional forms are or whether distributional approximations are
satisfactory. If the behavioral implications prove to be robust, then the elegance and
tractability of the analytic or approximate solutions justify their use. If they do not, then
discretization may be preferable—with the advantage that it grants the researcher more
flexibility in tailoring the payoffs and beliefs to data.

Appendix A

A.1 Additional proofs

We start by showing that it is without loss of generality possible to relax the (RI) opti-
mization such that the decision-maker can separately choose the marginals p ∈ �A and
conditionals P ∈ (�A)I ,

max
p∈�A,P∈(�A)I

∑
i∈I

πi

[∑
a∈A

Pi(a)ai − λDKL(Pi‖p)

]
, (7)

where DKL(Pi‖p) = ∑
a∈APi(a) ln( Pi(a)

p(a) ) denotes the Kullback–Leibler divergence be-
tween Pi and p.

Lemma 3. The optimal conditionals P in (RI) and the relaxed problem Equation (7) are
equal, and the optimal marginals in Equation (7) satisfy p(a) =π · P (a) for all a ∈ A.

Proof. It is an exercise in pure algebra to show that∑
i∈I

πi

[
DKL(Pi‖p) −DKL(Pi‖π · P )

]
=

∑
i∈I

πi

∑
a∈A

Pi(a)
[
ln

(
Pi(a)

) − ln
(
p(a)

) − ln
(
Pi(a)

) + ln
(
π · P (a)

)]
=

∑
a∈A

π · P (a)
(
ln

(
π · P (a)

) − lnp(a)
) = DKL(π · P‖p) ≥ 0,

with strict inequality whenever p(a) differs from P ’s marginals π · P (a). Consequently,
any other choice of p would increase costs without any consumption benefits. By opti-
mality, the agent avoids all unnecessary costs by setting p =π · P .

Next, we formally establish the validity of the optimality conditions that are central
to our results.
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Proof of Theorem 1. Since w is strictly concave over a compact domain B, it admits a
unique maximum. We first show that the optimum b∗ necessarily satisfies both con-
ditions. Indeed, consider any b ∈ B \ {b∗} and let η : [0, 1] → B be defined as η(t ) =
tb∗ + (1 − t )b. The function w ◦ η represents the gain in utility as the attention vector
moves from b toward b∗. The function is strictly increasing: If t < t ′, then

(w ◦ η)
(
t ′
)
>

t ′ − t

1 − t
w

(
η(1)

) + 1 − t ′

1 − t
w

(
η(t )

) ≥ (w ◦ η)(t ),

where the first inequality follows from strict concavity of w and the second from opti-
mality of b∗, as w(η(1)) = w(b∗ ) ≥ w(η(t )). Since the derivative of (w ◦ η) is equal to
∇w(η(t )) · (b∗ − b), and ∇w(b) · b = ∑

i∈I λ
πi
bi
bi ≡ 1 by construction, the nonnegativity

of (w ◦ η)′(1) yields condition (a) and the nonnegativity of (w ◦ η)′(0) yields (b).
We show sufficiency through the contrapositive: If b∗ is not optimal, then it satisfies

neither condition. Let b equal the true optimum and define η(t ) as above. The function
(w ◦ η) is now strictly decreasing since w(η(0)) > w(η(t ′ )) by uniqueness of the opti-
mum, and hence for any t < t ′,

(w ◦ η)(t ) ≥ t ′ − t

t ′
w

(
η(0)

) + t

t ′
w

(
η
(
t ′
))

> (w ◦ η)
(
t ′
)
.

At t = 1, the condition (w ◦ η)′(t ) < 0 violates (a) and at t = 0 it violates (b).

Proof of Lemma 2. Consider any subsequence {Pnk } that converges to some condi-
tionals P̄ under the standard Euclidean metric over (�A)I . Since Pn converges to P un-
der d(G) and continuity of the bijective mappingβ, we know thatβ(αP̄ ) = β(αP ). As long
as the solution to (RI) is unique, this point can be written in a unique way as a convex
combination over β(A). This implies that the marginals pnk = ∑

i∈I πiP
k
i converge to

p = ∑
i∈I πiPi.

As such, all convergent subsequences of the bounded sequence pn converge to the
same limit p∗. The Bolzano–Weierstrass theorem thus implies that pn itself converges
to p∗. By continuity of the first-order conditions (1), the convergence translates to the
conditional choice defined in Equation (5).

A.2 Algorithm description

A.2.1 Benchmark routine Our base routine for small to moderate menus works as
follows: We make use of the scaling property (Lemma 1) to avoid floating point im-
precision and store the normalized attention vectors in a I-by-|A| matrix with entries
Bia = βi(a)/maxã∈Aβi(ã). Starting with an initial guess for the marginals,23 p0, we itera-
tively solve a second-order Taylor approximation to (G),24 which after dropping constant
terms yields

qk := arg max
p∈�|A|−1

1
2
pTBTHBp− 2∇w

(
Bpk

)T
B,

23Practically, we use the full-information marginals by placing weight πi on arg maxa∈Aai.
24We implement this code using MATLAB’s built-in quadprog solver (Version 2019b). Since the solver

does not accept an initial guess, we use an equivalent centered problem by solving for dp= p− pk instead.
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where H refers to the diagonal matrix with entries Hii = πi/(Bpk )2
i . When the objec-

tive function w is particularly flat, it can happen that this process “overshoots” and re-
sults in attention vectors bk = Bpk and b′ = Bqk that are on opposite sides of the op-
timum, which can lead to long cycles. We can partially avoid this by making sure that
∇w(b′ ) · bk ≤ 1, which ensures that the bounding hyperplane imposed by the candidate
b′ points away from bk. If the inequality holds, we set pk+1 := qk and move to the next
iteration. Otherwise, we know that by strict convexity of w, there exists a point along the
segment between [bk, b′] that does better than both. In that case, we determine the can-
didate marginals pk+1 = tpk+ (1− t )qk by identifying the root of the monotone function
∇w(tpk + (1 − t )qk ) · (qk −pk ) where the indifference curve lies tangent to the segment.

We repeat this quadratic approximation until the implied IE converges, that is, until
d(G)(Pk, Pk+1 ) < ε, where Pk is defined from pk according to (1). As a default, and in all
our applications, we use tolerance parameter ε = 10−12. By construction, our approach
ensures that the objective value w(Bpk ) increases with each iteration.

When the action space is rich, the attention matrix B can require a lot of memory.
To avoid this limitation, we first apply the base routine to a coarse subgrid of the menu,
Ā0 ⊂ A. Upon convergence, we denote the estimated marginals by q0, its associated
attention vector as b0 = B0q0, and the tentative consideration set as A0 = support(q0 ).
We then compute the b0-scores over a finer subgrid Ā1 ⊇ Ā0. We add the actions with
the highest score to A0 until the menu reaches some maximum cardinality K or contains
all actions in some p-cover of grid Ā1. We repeatedly apply the base routine to obtain
updated estimates q1,m, b1,m, and A1,m, and after each step we augment A1,m with the
actions in Ā1 that have the highest b1,m-scores. As long as K is large enough, the p-cover
eventually stabilizes, and we move to the next finer subgrid Ā2. We continue this process
until the grid encompasses all of A and the p-cover stabilizes.

The provided code returns the estimated choice probabilities and computes partial
covers at any desired probability level p, as described in Section 4.1. To identify dom-
inated actions, we restrict the set of feasible optimal gradients � as follows: First, we
take the final numerical estimate b0, perturb it slightly along each dimension, and con-
sider the largest feasible attention vector along the perturbed ray.25 Together, this yields
a finite set of near-optimal solutions B̂ = {b0, � � � , bI } ⊂ B. The optimality conditions in
Theorem 1(b) imply that ∇w(bk ) · b ≥ 1 for all k, and thus restricts b∗ to a small subre-
gion B̂ ⊂ B that is obtained by imposing these additional inequality constraints. Since
∇iw(b) = πi/bi is strictly decreasing in bi, we obtain the linear bounds

∇iw(b) ∈
[

πi

max
B̂

bi
,

πi

min
B̂

bi

]
. (8)

Moreover, the optimality conditions in Theorem 1(a) require that the gradient ∇w(b∗ )
satisfies the additional linear inequality constraints,

v ·β(a) ≤ 1 ∀a ∈ A. (9)

25Formally, we solve maxk∈R,b∈B k subject to b ≥ k(b0 + εei ), where ε > 0 is a small perturbation scalar
and ei denotes the unit vector in dimension i.
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Together Equations (8) and (9) form a feasible polytope � for the optimal gradient
∇w(b∗ ). Dominated actions can thus be identified as those with a negative maximal
b∗-score, that is, those with maxψ∈�ψ ·β(a) − 1 < 0.

A.2.2 Dynamic variant Miao and Xing (2023) tractably characterize the solution to
their dynamic RI problem by constructing recursively defined value functions in two
stages.26 First, the state-dependent value of a particular action a ∈ A is defined as the
sum of the flow utility plus the discounted ignorance equivalent of the continuation
problem

vti
(
at

) = ati +β
∑
j∈I

	(j|i)αt+1
j

(
at

)
, (10)

where 	(j|i) denotes the exogenously given probability that the state transitions from i

to j, β is the discount factor, and αt+1
j (at ) denotes the ignorance equivalent of the con-

tinuation problem that ensues under the posteriors associated with action at . The igno-
rance equivalent in turn is determined from the choice probabilities in the subsequent
periods, dating back to Caplin, Dean, and Leahy (2018) and generalized in Müller-Itten,
Armenter, and Stangebye (2023),

αt
i

(
at−1) = λ ln

( ∑
at∈A

pt
(
at|at−1)exp

(
vti

(
at

)
/λ

))
, (11)

where pt(at|at−1 ) denotes the agent’s marginal likelihood of selecting action at condi-
tional on the belief induced by at−1 in the previous period.27 It can also be obtained from
the optimal attention vector as αt

i(a
t−1 ) = λ ln(bti(a

t−1 )).
Miao and Xing (2023) propose a clever “forward–backward” algorithm that works as

follows. Starting from an initial (suboptimal) guess regarding optimal information ac-
quisition behavior, Pt

i (at ), one can iterate forward to determine the resulting probabil-
ity distributions and beliefs for any history. In each period, this associates to each action
an endogenous posterior belief that is used as the prior in the subsequent period. With
these beliefs in hand, one can then iterate backwards to determine the optimal behavior
after each history, and compute the continuation values using Equations (10) and (11).
With new guesses for the optimal behavior in hand, one can again iterate forward to
determine beliefs and backwards to infer behavior, until convergence.

During the backwards iteration, Miao and Xing (2023) employ the Blahut–Arimoto
conditions and argue that this is guaranteed to converge to the optimum because of
the convexity of the underlying problem. Since the GAP-SQP algorithm converges more
quickly than BA in static settings, it is thus tempting to replace this BA step with a single
iteration of the quadratic approximation.

26Steiner, Stewart, and Matějka (2017) take a similar approach.
27We here focus on Markov strategies, but the expression could be generalized to allow for arbitrary de-

pendence of of p (and 	) on the past history, as outlined in Miao and Xing (2023).
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Algorithm specification At each iteration k, the algorithm computes a guess for the op-
timal choice, described by the conditionalsPk,t

i (at|at−1 ) and the marginalspk,t(at|at−1 ).
In terms of outcome distributions, the algorithm also maintains a guess for the joint dis-
tribution μk,t

i (at−1 ) of the period-t state i and the previous action at−1 and the prior be-
liefs associated with each history, πk,t(at−1 ) ∈ �I . Finally, the algorithm keeps track of a
guess for the continuation values vk,t

i (at ) and the optimal attention vectors bk,t
i (at−1 ).

We initialize the algorithm with the full-information guess for the state-contingent
choice rule, P0,t

i (at|at−1 ) = 1 for the first action that maximizes maxa∈A ai, and P0,t
i (at|

at−1 ) = 0 otherwise. We also initialize all beliefs to the initial time-zero beliefs of the
agent, π0,t(at−1 ) ≡π0. We then proceed starting with iteration k= 1 as follows.

Forward step Starting with period t = 1, we update our guesses for joint distributions
and beliefs in each subsequent period:

(a) For period t = 1, the joint distribution is obtained simply by assuming that all
conceivable (and counterfactual) time-zero histories are equally likely, μk,1

i (a0 ) ≡
1

|A|πi for all a0, where π denotes the agent’s initial prior. This distribution remains
unchanged across all iterations k of the algorithm.

(b) For each subsequent period t + 1, the joint distribution can be inferred from the
law of total probabilities across all combinations of the period-t state i and the
preceding action at−1,

μk,t+1
j

(
at

) =
∑
i∈I

∑
at−1∈A

	(j|i)Pk,t
i

(
at

∣∣at−1)μk,t
i (at−1 ). (12)

(c) From these joint distributions, one can back out the prior beliefs at each period
by the law of conditional probabilities,

πk,t
i

(
at−1) = μk,t

i

(
at−1)∑

j∈I
μk,t
j

(
at−1) (13)

provided that the denominator is nonzero. If the denominator is zero, we simply
maintain the beliefs from the previous iteration, πk,t

i (at−1 ) = πk−1,t
i (at−1 ).

Backward step Starting with period T , we update our guesses for continuation values
and determine optimal choices in each previous period:

(d) We initialize the period T + 1 attention vectors to bk,T+1
i (aT ) = 0, corresponding

to an ignorance equivalent of λ ln(bk,T+1
i ) ≡ 0.

(e) Beginning with period t = T , we determine the continuation value according to
Equation (10),

vk,t
i

(
at

) = ati +β
∑
j∈I

	(j|i)λ ln
(
bk,t+1
j

(
at

))
. (14)
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(f) Using the payoffs {vk,t
i (a)}a∈A and the belief πk,t

i (at−1 ), we determine the optimal
marginals, attention vector, and conditional choice probabilities.

BA In the BA variant, we perform a single iteration of the Blahut–Arimoto algorithm,

pk,t(at|at−1) =
∑
i∈I

πk,t
i

(
at−1)Pk,t

i

(
at|at−1), (15)

bk,t
i

(
at−1) =

∑
a∈A

pk,t(at|at−1)exp
(
vk,t
i

(
at

)
/λ

)
, (16)

Pk,t
i

(
at|at−1) = pk,t(at|at−1)exp

(
vk,t
i

(
at

)
/λ

)
bk,t
i

(
at−1) . (17)

GAP-SQP In the GAP-SQP variant, we instead obtain pk,t(at|at−1 ) by calling GAP-SQP
for a single iteration, using pk−1,t(at|at−1 ) as the initial guess.28 We then infer the opti-
mal attention vector and conditional choice probabilities using the formulas described
in Section 3, slightly perturbing the conditionals with a small ε > 0 to ensure that beliefs
are updated everywhere,

bk,t
i

(
at−1) =

∑
a∈A

pk,t(at|at−1)exp
(
vk,t
i

(
at

)
/λ

)
, (18)

Pk,t
i

(
at|at−1) =

(
(1 − ε)pk,t(at|at−1) + ε

|A|
)

exp
(
vk,t
i

(
at

)
/λ

)
∑
a′∈A

(
(1 − ε)pk,t(a′|at−1) + ε

|A|
)

exp
(
vk,t
i

(
a′)/λ) . (19)

Repeat We increase the iteration to k+ 1 and repeat until convergence.
Since our current goal is to compare the performance of the two subroutines, we

terminate the both approaches after a set amount of time. In applications where the
primary goal is to estimate the behavior in a dynamic RI problem, we suggest a stopping
criteria based on the following factors:

• Attention-vector distance, dβ, across iterations for all histories. This is akin to value-
vector convergence proposed by Miao and Xing (2023), but has the added benefit
that it guarantees convergence to the optimal conditional choice probabilities (see
Lemma 2).

• Distance in implied beliefs at each history across iterations. This is the implicit con-
dition on which the forward–backward approach of both algorithms rely.

• The maximal sufficiency score maxt,at ,at−1 sk,t(at|at−1 ) across all histories, where

sk,t(at|at−1) =
∑
i∈I

πk,t
i

(
at−1)exp

(
vk,t
i

(
at

)
/λ

)
bk,t
i

(
at−1)

in line with Section 4.1.

28In iteration 1, we obtain the initial guess for p1,t (at |at−1 ).
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When all three of these measures are close to zero, the researcher can be confident that
the guess not only achieves near-optimal welfare overall, it also approximates the opti-
mal behavior at all Markov histories.
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