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This document provides the Online Appendix to the paper “The importance of
supply and demand for oil prices: Evidence from non-Gaussianity.” It contains de-
tails on how to conduct Bayesian inference in the SVAR–DPMM via Markov Chain
Monte Carlo methods (Appendix A), on convergence properties of the resulting
MCMC (Appendix B), an illustration how to use the marginal likelihood estima-
tor (Appendix C), supplementary figures to the oil market model (Appendix D), a
discussion of the relationship between elasticities and variance decompositions
in the oil market (Appendix E), and robustness analysis of the empirical findings
with respect to alternative error specifications (Appendix F).

Appendix A: Bayesian inference

A.1 General Markov chain Monte Carlo algorithm

This part of the Appendix covers a generic MCMC algorithm to conduct inference for an
A type of SVAR model where shocks follow Dirichlet Process mixture models (DPMM).
Let α+ = vec(A+ ) and Ai• the ith row of A. Further, let A′

i• = wi +Wiai where ai is a vector
of ri free elements, Wi a K × ri selection matrix of zeros and ones, and wi an K × 1 vec-
tor containing either zero or the constrained values. Then, following Section 2, the full
hierarchical model (including prior distributions) reads for i = 1, � � � , K and t = 1, � � � , T :

A(yt − A+xt ) = εt , (S.1)

εit|θit ∼ N
(
μit , σ

2
it

)
, (S.2)

ai ∼ p(ai ), (S.3)

α+ ∼ N (mα+ , Vα+ ), (S.4)

θit ∼Gi, (S.5)

Gi ∼ DP(Gi0, αi ), (S.6)

Gi0 ∼ N iG(si/2, Si/2, mi, τi ), (S.7)

where xt = [y ′
t−1, � � � , y ′

t−p, 1]′ and A+ = [A1, A2, � � � , Ap, c]. Although optional, I outline
the algorithm under the assumption that further hyperpriors are specified:

αi ∼ G(aαi , bαi ), (S.8)
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τi ∼ iG(aτi , bτi ), (S.9)

mi ∼ N (mmi , Vmi ). (S.10)

In case that they are treated as fixed values, the corresponding steps in the MCMC algo-
rithm can simply be skipped.

Define the set of parameters by ϕ = {α+, ai, αi, τi, mi, i = 1, � � � , K} and the collec-
tion of auxiliary mixing parameters by 	 = {θit , i = 1, � � � , K, t = 1, � � � , T }. Also, define
the augmented set of parameters by ξ = {ϕ, 	}, and denote by ξ−x all parameters in ξ

but x. Based on arbitrary initial values, the following MCMC algorithm eventually gener-
ates draws ξ(l), l = 1, 2, � � � from the posterior distribution of p(ξ|Y ), by cycling through
blocks of conditional distributions of subsets in ξ. The algorithm involves the following
steps:

1. For i = 1, � � � , K, draw from the mixture parameters θit , t = 1, � � � , T . To achieve bet-
ter mixing properties of the Markov chain, this step is performed using Algorithm
3 of Neal (2000). Neal further splits the mixing parameters into two components:
θit = θ�i,cit , where cit are latent discrete assignment variables and θ�ij are unique
cluster parameters. Given the conjugate base distribution, it is possible to inte-
grate over the cluster parameters to increase efficiency. This yields the following
two steps:

(a) Draw from the conditional of the assignment variables p(cit|Y , ξ−{cit ,θ�} ) for t =
1, � � � , T . These are discrete probability distributions given by

P(cit = cij , j = 1, � � � , ki|ci,−t , εt )

= b
n−t,cij

T − 1 + αi

∫
F(εit|θ)dH−t,cij (θ), (S.11)

P(cit �= cij for all j �= t|ci,−t , εt )

= b
α

T − 1 + αi

∫
F(εit|θ)dG0(θ), (S.12)

where ci,−t = {cij , j �= t}, cij , j = 1, � � � , ki are the unique values in ci,−t each of
count n−t,cij . Furthermore, b is a normalizing constant and H−t,cij is the pos-
terior distribution of θ based on prior G0 and all shocks of εi,−t = {εij , j �= t}
assigned to cluster cij . Given the conjugate Base distribution G0, both integrals
are tractable and given in closed form. Hence, drawing from the distribution is
straightforward.

(b) Conditional on the assignment variables, the second step is to draw the (active)
cluster parameters p(θ�ij|Y , ξ−θ�ij

), j = 1, � � � , ki, which are given by

σ�
ij

2 ∼ iG(aij , bij ),

μ�
ij ∼ N

(
mij , σ

�
ij

2V ik

)
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with moments defined as follows:

aij = si + Tij

2
, with Tij =

T∑
t=1

1{cit = j},

bik = 0.5
(
Si + m2

i

τi
+

∑
t:cit=j

εit
2 − m2

ij

V ij

)
,

V ij =
(

1
τi

+ Tij

)−1

,

mij = V ij

(
mi

τi
+

∑
t:cit=j

εit

)
.

2. The next step is to sample the hyperparameters {αi, mi, τi} (i = 1, � � � , K) from their
conditionals, which exactly follows Escobar and West (1995).

(a) With respect to αi, the procedure is given as follows. First, draw an auxil-
iary variable di and conditional on di, the concentration parameters αi for
i = 1, � � � , K:

p(di|αi ) ∼ Beta(αi + 1, T ),

p(αi|Y , ξ−α, di ) ∼ πdiG
(
aαi + ki, bαi − log(di )

)
+ (1 −πdi )G

(
aαi + ki − 1, bαi − log(di )

)
,

where πdi is defined as

πdi

1 −πdi

= aαi + ki − 1

T
(
bαi − log(di )

) .

(b) Draw p(mi|Y , ξ−mi ) ∼ N (mm,i, V m,i ) where V m,i = τixσ�
i
Vσ�

i
, mm,i = (1 −

xσ�
i

)mmi + xσ�
i
Vσ�

i
(
∑ki

j=1 σ
�
ij

−2μ�
ij ) for V −1

σ�
i

= ∑ki
j=1 σ

�
ij

−2, and xσ�
i

= Vmi/(mmi +
τiVσ�

i
).

(c) Draw p(τi|Y , ξ−τi ) ∼ G(aτ,i, bτ,i ) where aτ,i = aτi + ki
2 and bτ,i =

bτi +
∑ki

j=1(μ�
ij−mi )/σ�

ij
2

2 .

3. The third step involves drawing from each row in A via an independent Metropolis–
Hastings step, which is exact under a uniform prior. Recall that each row is given
by A′

i• = wi + Wiai, where ai is a vector of ri free elements, Wi a K × ri selection
matrix, and wi an K × 1 vector containing constrained values. To develop a pro-
posal distribution, I assume a uniform prior that is p�(ai ) ∝ c. Let U = [u1 : � � � : uT ]′
for ut = yt − A+xt , μi = [μi1, � � � , μiT ]′ and i = diag([σ2

i1, � � � , σ2
iT ]). Then the condi-

tional posterior is proportional to

p�(ai|Y , ξ−ai ) ∝ |A|T exp
(

−T

2
(ai −μai )

′�−1
ai (ai −μai )

)
,
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where �−1
ai

= T−1W ′
i U−1

i UWi, μai = (W ′
i U

′−1
i UWi )−1W ′

i Y
′(μi − Uwi ). Chan,

Koop, and Yu (2023) derive an efficient way to sample fromp�(ai|Y , ξ−ai ) forwi = 0,
which builds on previous work of Waggoner and Zha (2003) and Villani (2009). In
the following, I generalize the sampling scheme for wi containing nonzero ele-
ments. Hereby, I closely follow the exposition and notation of Villani (2009).

Definition 1. A random variable X follows the generalized absolute normal dis-
tribution GAN(a, b, μ, ρ) if it has density function:

pGAN(x; a, b, μ, ρ) = c|a+ bx| 1
ρ exp

(
− 1

2ρ
(x−μ)2

)
, x ∈R,

where c is a normalizing constant, ρ ∈ R+, a ∈R, b ∈R, and μ ∈ R.

Note that for a = 0, the absolute normal distribution is obtained as defined in
Villani (2009).

In the following, denote B−i the matrix B with the ith column deleted, B⊥ the
orthogonal complement of B, and chol(B) the Choleski decomposition of B such

that chol(B) chol(B)′ = B. Also, denote by ‖ · ‖ the Euclidean norm and
d= equality

in distribution.

Proposition 1. Under prior p�(ai ), the conditional posterior p�(ai|Y , ξai ) is given
by

ai
d=Ri

ri∑
j=1

γjvj , (S.13)

where Ri = chol(�ai ), γ1 ∼ GAN(â, b̂, γ̂1, T−1 ), γj ∼ N (γ̂j , T−1 ) for j = 2, � � � , ri, γ̂j =
μ′
ai
R′−1
i vj , v1 = RiW

′
i (A)−i⊥/‖RiW

′
i (A)−i⊥‖, (v2, � � � , vri ) = v1⊥, â = det([A′

1•, � � � ,

wi, � � � , A′
K•]), and b̂= det([A′

1•, � � � , WiRiv1, � � � , A′
K•]).

Proof. For the decomposition ai =Ri
∑ri

j=1 γjvj , Waggoner and Zha (2003) shows
that

p�(ai|Y , ξai ) ∝ |A|T exp

(
−T

2

[
ri∑

j=1

(γj − γ̂j )2

])
,

where γ̂j = μ′
ai
R′−1
i vj . Next, note that the determinant A is given by

|A| = det

[
A′

1•| · · · |wi +WiRi

ri∑
j=1

γjvj| · · · |A′
K•

]

= det
[
A′

1•| · · · |wi| · · · |A′
n•

] +
ri∑

j=1

γj det

[
A′

1•| · · · |WiRi

ri∑
j=1

vj| · · · |A′
K•

]
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= det
[
A′

1•| · · · |wi| · · · |A′
K•

]︸ ︷︷ ︸
â

+det

[
A′

1•| · · · |WiRi

ri∑
j=1

v1| · · · |A′
K•

]
︸ ︷︷ ︸

b̂

γ1,

where the last line follows by construction of (v2, � � � , vri ) spanning the same space
than (A′ )−i. The result follows that

p�(ai|Y , ξ−ai ) ∝ |â+ b̂γ1|T exp
(

−T

2
(γ1 − γ̂1 )2

) ri∏
j=2

exp
(

−T

2
(γj − γ̂j )2

)

In order to sample efficiently from p�(ai|Y , ξ−ai ), I follow Villani (2009) and use
a mixture of two Gaussians to approximate γ1 ∼ GAN(â, b̂, γ̂1, T−1 ). The motiva-
tion for the approximation follows from the fact that GAN(a, b, μ, ρ) is bimodal.
Specifically, two roots are given at

bμ− a±
√(

(a− bμ)2 + 4b(aμ+ b)
)

2b
,

Corresponding curvature is given by

−
[
d2

dx2 lnpGAN(x; a, b, μ, ρ)

]−1∣∣∣∣
x=x0

= ρ
(a+ bx0 )2

a2 + 2abx0 + b2x2
0 + b2 .

Hence, the following normal approximation:

pGAN(x; a, b, μ, ρ) ≈ wN
(
x, μ1, σ2

1

) + (1 −w)N
(
x, μ2, σ2

2

)
,

where μ1 = bμ−a+
√

((a−bμ)2+4b(aμ+b))
2b , μ2 = bμ−a−

√
((a−bμ)2+4b(aμ+b))

2b , σ2
i =

ρ (a+bμi )2

a2+2abμi+b2μ2
i +b2 , i = 1, 2, and w = pGAN(μ1;a,b,μ,ρ)∑2

j=1 pGAN(μj ;a,b,μ,ρ)
is set to take into account

different heights of the density at the modes. Similar to Villani (2009), I find that
this approximation work extremely well in practice and can be taken as exact. If
desired, however, one might obtain an exact sampler by correcting for the approx-
imation error in the Metropolis– Hastings step.

Such a step is necessary when working with a more general prior for p(ai )
than the uniform used to derive p�(ai|Y , ξai ). In most cases, it will suffice to use
a Metropolis– Hastings step that corrects for the fact that p�(ai|Y , ξai ) is miss-
ing the information from a nonuniform prior p(ai ). Denote by a(l−1)

i the current
state of the Markov chain and by a′

i ∼ p�(ai|Y , ξai ) the proposed value under a

uniform prior. Then the MH algorithm proceeds setting a(l)
i = a′

i with probability

αMH = min{1,
p(a′

i )

p(a(l−1)
i )

}. If the proposed draw is not accepted, a(l)
i = a(l−1)

i .1

1The average acceptance probability varies with the strength of the prior. For priors of the type consid-
ered in the empirical application, the probability is between 0.88–0.98, depending on the row.
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Finally, a researcher might prefer formulating a prior distribution for parameters
that are nonlinear functions of ai, say zi = H(ai ). In the empirical application of
this paper, for example, the last row of A is parameterized by A5• = [0, 0, 0, a54, a55]
where a54 = ( ρ�

1−ρ� χ
−2ω̂3 )−1/2 and a55 = −χ( ρ�

1−ρ� χ
−2ω̂3 )−1/2 and prior distribu-

tions are spelled out for ρ� and χ instead of a54 and a55. In this case, the uniform
prior underlying the proposal distribution p�(ai|Y , ξai ) implies a nonuniform prior
for zi. Hence, the MH step also needs to correct for the change of variables implicit
in the proposal distribution. More formally, let zi = H(ai ). Let the Jacobian matrix

evaluated at zi be J(zi ) = dH−1(x)
dx |x=zi . Then the density for zi implied by the pro-

posal distribution (equation (S.13)) is given by p�(H−1(zi )|Y , ξ−zi ) × | det(J(zi ))|.
Noting that the target posterior distribution is given by p�(H−1(zi )|Y , ξ−zi )p(zi )
the MH acceptance probability is then given by

αMH = min
{

1,
p

(
z′
i

)
| det(J

(
z(l−1)
i

)
|

p
(
z(l−1)
i

)∣∣det
(
J
(
z′
i

))∣∣
}

4. The fourth block draws from the conditional distribution of the VAR autoregressive
parameters. Let μt = [μ1t , � � � , μKt ]′ and t = diag([σ2

1t , � � � , σ2
Kt ]) The conditional

posterior of α+ is given by

p(α+|Y , ξ−α+ ) ∼ N (μA, V A ), (S.14)

where

V α+ =
(
V −1
α+ +

T∑
t=1

(xt ⊗ IK )
(
A′−1

t A
)(
x′
t ⊗ IK

))−1

, (S.15)

μα+ = V α+

(
V −1
α+ mα+ +

T∑
t=1

(xt ⊗ IK )
(
A′−1

t A
)
ỹt

)
, (S.16)

for ỹt = yt −A−1μt .

A.2 Adjustment for the oil market model

The algorithm outlined in Appendix A.1 is not directly applicable to the oil market model
outlined in Section 3. The reason is that ui

�

t , the forecast error of the scaled up oil in-
ventories, is an unobserved latent variable. To get around this problem, I include ui

�

t

into the set of latent variables and infer it from the data within the MCMC algorithm.
Specifically, the fourth block is altered as to draw from p(α+, ui

�
|Y , ξ{−α+,−ui

� } ), where

ui
� = [ui

�

1 , � � � , ui
�

T ]′. Specifically, I make use of the possibility to marginalize over ui
�

when
sampling α+. The adjusted fourth block of the MCMC algorithm draws from

p
(
α+, ui

�
|Y , ξ{−α+,−ui

� }

) = p(α+|Y , ξ{−α+,−ui
� } )︸ ︷︷ ︸

normal

p
(
ui

�
t |α+, Y , ξ{−α+,−ui

� }

)
︸ ︷︷ ︸

normal

.
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In words, first a draw of α+ is generated from the conditional posterior marginal of ui
�
.

The second step draws ui
�

conditional on α+. To derive both steps, note that one may
readily marginalize out ui

�

t to obtain the likelihood function of the observed forecast
errors. Conditional on auxiliary mixture parameters in 	, the model is given as

A

(
yt − A+xt

ui
�

t

)
= εt , εt ∼ N (μ̃t , ̃t ).

Since the measurement error ε5t ∼ N (0, σ2
5 ) is Gaussian, we have that μ̃t = [μ′

t , 0]′ and

̃t = diag([v′
t , σ

2
5 ]′ ). Manipulating the equation, the reduced form can be obtained:(

yt
ui

�

t

)
=

(
A+xt

0

)
+ A−1μ̃t + η̃t , εt ∼ N

(
0, A−1̃tA−1′)

, (S.17)

which defines the joint likelihood of Y and ui
�

t . Define J s.t. ut = Jũt . Then, using stan-
dard results of multivariate Gaussian densities, the marginal likelihood is simply given:

p(Y |α+, ξ{−α+,−ui
� } )

∝ |�t |−T/2 exp

(
T∑
t=1

(ỹt −A+xt )′�−1
t (ỹt −A+xt )

)
(S.18)

for ỹt = yt − JA−1μ̃t and �t = JA−1̃tA−1′
J′. Given the likelihood, its straightforward to

obtain the conditional posterior p(α+|Y , ξ{−α+,−ui
� } ) ∼ N (μA, V A ),

V A =
(
V −1
A +

T∑
t=1

(xt ⊗ IK )�−1
t

(
x′
t ⊗ IK

))−1

, (S.19)

μA = V A

(
V −1
A mα+ +

T∑
t=1

(xt ⊗ IK )�−1
t ỹt

)
, (S.20)

The second step involves drawing from p(ui
�
t |α+, Y , ξ{−α+,−ui

� } ), which can be ob-
tained using standard results for multivariate normal distributions. Define

A−1̃tA−1′ = �̃t =
(
�̃t,11 �̃t,12

�̃t,21 �̃t,22

)
,

and J2 a 1 × (K + 1) vector s.t. J2ũt = ui
�

t . Then, for t = 1, � � � , T , this conditional is given
as

p
(
ui

�
t |α+, Y , ξ{−α+,−ui

� }

) ∼ N
(
ui

�

t , V ui
�
t

)
,

ui
�

t = J2A
−1μ̃t + �̃t,21�̃

−1
t,11

(
ỹt − A+xt − JA−1μ̃t

)
,

V ui
�
t

= �̃t,22 − �̃t,21�̃
−1
t,11�̃t,12
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A.3 Adjustment for the oil market model—Gaussian model

To keep results simple and comparable, the same MCMC algorithm for the Gaussian
model is used, with one alteration. Specifically, instead of drawing from the DPMM aux-
iliary parameters, a simple Gibbs update is used for each shock variance. Given inverse
Gamma priors σ2

i ∼ iG(aσi , bσi ), the Gibbs sample steps are p(σ2
i |Y , ξ−σ2

i
) ∼ iG(aσi , bσi )

where aσi = aσi + T
2 and bσi = bσi +

∑T
j=1 ε

2
ij

2 . The result of the algorithm can proceed as in
Sections A.1 and A.2, simply setting μit = 0 and σ2

it = σ2
i for i = 1, � � � , K and t = 1, � � � , T .

Appendix B: Convergence properties MCMC

To study the convergence properties of the MCMC, I simulate artificial data of size T =
500 from the following stylized bivariate model of supply and demand:

qt =αqppt + σ1ε1t ,

qt =βqppt + σ2ε2t ,

where εt ∼ (0, I2 ). Regarding the error term, I set εit =
√

ν
ν−2 ε̃

i
t , i = 1, 2 for ε̃it ∼ tη where

tη is the student-t distribution with η degrees-of-freedom. The values of the parameters
are set to αqp = 0.05, βqp = −0.35, σ1 = 1, and σ2 = 0.5. When estimating the model, the
following prior is used for A: p(αqp ) ∼ t0,∞(0.1, 0.2, 3) and p(βqp ) ∼ t0,∞(−0.1, 0.2, 3),
that is, truncated t-distributions with modes at 0.1 and −0.1, scale of 0.2 and 3 degrees-
of-freedom. In this scenario, generating 1000 random draws from the MCMC algorithm
takes about 3 seconds using a standard i5 laptop processor.2 To contrast the results
to those of a Gaussian model, the model is also estimated using the methodology of
Baumeister and Hamilton (2015).

B.1 Strong identification via non-Gaussianity

I start with simulating data using η = 3 degrees-of-freedom, which corresponds to
strong identification from non-Gaussianity. First, Figure S.1 shows the simulated struc-
tural shocks (top panel) along with estimated 90% posterior credibility sets for the cor-
responding predictive density obtained in the non-Gaussian model. The latter, high-
lighted by red dashed lines, demonstrate that the DPMM–SVAR can well capture the
strong non-Gaussian shape in the data. Particularly, the second shock has strong out-
liers leading to very heavy tails.

Second, Figure S.2 shows a Markov chain of length 100000 for αqp and βqp obtained
by saving every 10th draw. For both models, Gaussian and Non-Gaussian, visual inspec-
tion indicates that the MCMC seems to have converged reasonably well. As a summary
statistic of the underlying autocorrelation, Gewekes Relative Numerical Efficiency (RNE)
statistics are printed into each subplots title. As described in Geweke (1992), the RNE
carries the interpretation of the ratio of number of replications required to achieve the

2For the computations in this paper, a Intel(R) Core(TM) i5-6300U CPU with 2.40 GHz was used.
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Figure S.1. Simulated structural shocks (top panel) and estimated posterior predictive densi-
ties under the non-Gaussian model. Red dashed lines indicate 90% posterior credibility sets, the
black line that of a unit variance standardized t3 distribution, and the blue line gives the standard
normal density.

same efficiency than drawing i.i.d. from the posterior. The RNE values documented for
the algorithm suggest a fairly high autocorrelation in the draws even after the thinning of
the Markov chain by factor of 10. This suggests that similar to the algorithm of Baumeis-
ter and Hamilton (2015), one should consider a relatively large Markov chain of 100000
to obtain comparably precise results of at least 1000 i.i.d. draws.

Finally, Figure S.3 compares the priors used to the posterior distribution obtained
in the Gaussian (top panel) and non-Gaussian model (bottom panel). In the Gaussian
model, the data seems to be totally uninformative about the value of αqp, while the value
of βqp is estimated fairly precisely. As expected, once non-Gaussianity is taken into ac-
count, posterior mass shifts toward the true value of αqp, and further narrows down the
value of βqp.

B.2 Weak identification via non-Gaussianity

In the second case, I use η = 10 degrees-of-freedom, which should yield considerably
less identifying information from non-Gaussianity. As evident in Figure S.4, the simu-
lated shocks are closer to normality and estimated 90% posterior credibility sets of the
posterior predictive distribution includes the Gaussian bell curve. Regarding MCMC ef-
ficiency, visual inspection of the Markov chains printed in Figure S.5 suggests no appar-
ent problem with the MCMC. However, the RNE values deteriorates somewhat, which
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Figure S.2. Markov Chain Monte Carlo output of length 100’000. Top panel: Gaussian model
with MCMC as in Baumeister and Hamilton (2015). Bottom panel: MCMC of non-Gaussian
model as described in Appendix A.1.

Figure S.3. Prior (orange line) and posterior density of the two structural parameters αqp and
βqp. Top panel: Gaussian model. Bottom panel: non-Gaussian model.
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Figure S.4. Simulated structural shocks (top panel) and estimated posterior predictive den-
sities under the non-Gaussian model. Red dashed lines indicate 90% posterior credibility sets,
the black line that of a unit variance standardized t10 distribution, and the blue line gives the
standard normal density.

is to be expected for Gibbs sampler type MCMC algorithms under weak identification.
Finally, Figure S.6 shows that under weaker identification by non-Gaussianity, the poste-
rior is naturally less informative about the structural parameters. However, given a more
concentrated posterior of αqp near zero, some additional information is contained in the
likelihood if compared to the Gaussian model.

B.3 Empirical application

As a last exercise, Figure S.7 provides a plot of the Markov chains corresponding to each
element of A in the empirical application (Section 3). It is fair to say that one might ex-
pect a slightly slower convergence given the additional complexity that comes with in-
ferring the latent inventory series. Visual inspection suggest good convergence of the
algorithm, however. Still, large RNE suggests a fairly high autocorrelation in the draws
justifying the use of very long Markov chain.

Appendix C: Illustration marginal likelihood

To illustrate the use and reliability of the marginal likelihood estimator, I use simulated
data of size T = 500 from the bivariate static model outlined in the previous section of
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Figure S.5. Markov Chain Monte Carlo output of length 100’000. Top panel: Gaussian model
with MCMC as in Baumeister and Hamilton (2015). Bottom panel: MCMC of non-Gaussian
model as described in Appendix A.1.

Figure S.6. Prior (orange line) and posterior density of the two structural parameters αqp and
βqp. Top panel: Gaussian model. Bottom panel: non-Gaussian model.
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Figure S.7. Markov Chain Monte Carlo output of each element of A obtained under the non–
Gaussian model of Section 3.

the Appendix:

qt =αqppt + σ1ε1t ,

qt =βqppt + σ2ε2t ,

where εt ∼ (0, I2 ), αqp = 0.25, βqp = −0.35, σ1 = 1, and σ2 = 0.5. Regarding the error

term, say that εit =
√

ν
ν−2 ε̃

i
t , i = 1, 2 for ε̃it ∼ tη where tη is the student-t distribution with

ν = 3 degrees-of-freedom.
Assume the goal is to test the wrong hypothesis that the supply is price inelastic,

that is, αqp = 0. Given that the shocks are clearly non-Gaussian, it is possible to test the
hypothesis using Bayes factors outlined in Section 2.5. To this end, let model M1 be un
unrestricted DPMM–SVAR with weakly informative priors p(αqp ) ∼ t0,∞(0.1, 0.2, 3) and
p(βqp ) ∼ t0,∞(−0.1, 0.2, 3). On the other hand, for the restricted model M0 it holds that
αqp = 0.3

For the cross-entropy method outlined in Section 2.5, I set G = 50 and M = 5000,
which corresponds to the number of replications used to evaluate the likelihood (G) and
the marginal likelihood (M), respectively. Estimated log Marginal Likelihoods are then

given by ̂lnp(Y |M1 ) = −1406.09 for the restricted model and ̂lnp(Y |M0 ) = −1412.55 for
the unrestricted model. Standard errors for these estimates can be readily obtained by
the batch means method. Splitting the importance sampling simulation output into 10

3Furthermore, for both shocks i = 1, 2, set αi be such that E(k|T , αi ) = 3. With respect to the Base distri-
bution, set uninformative values mi = 0, τi = 5, si = 1/2, and Si = 4. Furthermore, although the true model
is static, the number of lags is set to p= 1 with weakly informative prior p(α+ ) ∼ N (0, 100 × I4 ).
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Table S.1. Categories of interpretation according to Kass and Raftery (1995).

2 ln(BF10 ) B10 Evidence against M0

0 to 2 1 to 3 Not worth more than a bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
> 10 > 150 Very strong

equally-sized buckets yields a standard error of 0.22 and 0.44, respectively, suggesting
fairly accurate estimates.

The (log) marginal likelihood of the unrestricted model M1 is clearly higher than that
of the restricted model M0. This should be no surprise given that the true supply curve is
not inelastic. In order to interpret the magnitudes, it is common to look at twice the nat-
ural logarithm of the Bayes factor B10 = p(Y |M1 )/p(Y |M0 ), which operates on the same
scale than the more familiar likelihood ratio test statistic. For the simulated data above,
this yields a value of 2 ln(BF10 ) = 12.93. One then can make use of the popular reference
point categories provided in Kass and Raftery (1995) to interpret the exact magnitude.
As suggested by Table S.1, the evidence against the null hypothesis is very strong.

Appendix D: Oil market model: Supplementary figures

Figure S.8. Oil market data set.
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Figure S.9. Prior (orange line) and posterior density of the remaining structural parameters.
Top panel: Gaussian model. Bottom panel: non-Gaussian model.

Appendix E: Oil market model: On the relationship between elasticities

and variance decomposition

In this part of the Appendix, I demonstrate the link between restrictions on αqp and re-
sulting estimates of the demand elasticity βqp, and the variance decomposition of the
real oil price. Using the (Gaussian) baseline model, I fix αqp at values between 0 and
0.15, and estimate the remaining parameters by maximizing the posterior. Note that
the resulting maximum-a-posteriori (MAP) estimates will reflect a combination of prior
and covariance structure in the data, but do not further rely on independence and non-
Gaussianity. For a similar exercise, see also Caldara, Cavallo, and Iacoviello (2019).

Figure S.10 displays MAP estimates of the demand elasticity (left) and the forecast
error variance decomposition of the real oil price (right), both obtained after fixing αqp

(x-axis). First, note that the smaller the short-run elasticity of supply, the larger are es-
timates of the demand elasticity βqp (in absolute terms). This is well in line with the
empirical results of Section 3. Here, the posterior of the non-Gaussian model (red) con-
centrates at very small values of αqp, and relatively high values for |βqp|. On the other
hand, the model identified as in Baumeister and Hamilton (2019) (BH19) suggests rela-
tively high estimates of αqp and a less steep demand curve.

The right panel shows the implication of varying αqp for the variance decomposi-
tion of the real oil price, calculated at the h = 16 months forecast horizon. Low values
for the supply elasticity come with a very small contribution of supply shocks εst to the
variance, while demand shocks εcdt are very important. On the other hand, larger values
for the supply elasticity imply a substantial role for supply shocks in driving oil price,
and hence, less importance of demand shocks.

Figure S.11 repeats the exercise excluding the earlier years of the sample, covering
only data from 1985M1–2019M12 (robustness exercise R2). The results suggest that the
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Figure S.10. Maximum a posteriori (MAP) estimates obtained under the Gaussian model when
the short-run supply elasticity αqp is fixed at the values shown on the x-axis. Left panel: MAP
estimates obtained for βqp. Right panel: MAP estimates for the contributions of supply and con-
sumption demand shocks to the variance of the real oil price (at h= 16 months forecast horizon).

trade-off between a low supply and high demand elasticity is less pronounced. As re-
ported in Table 4, the non-Gaussian model arrives at posterior median estimates of
around −0.3 for βqp while αqp is still very low (0.03). On the other hand, the implica-
tions of varying αqp for the variance decomposition of the real oil price remains the
same. Models that estimate a inelastic supply curve, such as the non-Gaussian SVAR,
estimate a minor role of supply shocks for fluctuations in the oil price.

Appendix F: Oil market model: Robustness to error specification

In the following, two more robustness exercises are conducted to assess the sensitivity
of the results to the error specifications used to exploit the combined (non-Gaussian)
identification strategy. The first, labeled as R3, uses parametric student-t distributions
for the shock marginals instead of nonparametric DPMMs.4 Here, the goal is to to un-
derstand if there are any practical gains from using the more involved DPMM machin-

4Specifically, I assume εit = σiε̃it , ε̃it ∼ tνi for i = 1, � � � , 4. The scales are given the same priors than in
the Gaussian model (see Table 1). The degrees-of-freedom parameters are given a uniform prior between 2
and 100. Posterior sampling of η is implemented via an independence-chain MH algorithm; see, for exam-
ple, Chan (2020).
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Figure S.11. Maximum a posteriori (MAP) estimates obtained under the Gaussian model when
the short-run supply elasticity αqp is fixed at the values shown on the x-axis. Here, the estimation
sample is shorter and covers 1985M1–2019M12 (robustness exercise R2). Left panel: correspond-
ing estimates obtained for βqp. Right panel: estimated contributions of supply and consumption
demand shocks to the variance of the real oil price (at h = 16 months forecast horizon).

ery in the empirical analysis. The second robustness check assesses the sensitivity to αi,
setting it to more conservative values, which favor one mixture component, and hence,
Gaussian shocks. I set αi such that E[ki|T , αi] = 1 for i = 1, � � � , 4, which also implies a
very low a priori standard deviation for the number of mixture components, given by
Var[ki|T , α]1/2 = 0.02. In this model, a shock must display strong non-Gaussianity to
overrule the prior and become informative about the underlying structural parameters.
Corresponding results will be labeled as R4.

First, I provide details on the estimated predictive distributions obtained under R3
and R4. Table S.2 displays posterior quantiles for ηi, the underlying degrees-of-freedom
parameter of the student-t marginals (R3). Similar to the baseline results, strong non-
Gaussianity is documented for the supply and economic activity shocks. For the con-
sumption demand shock, the predictive seems slightly less heavy tailed, while there is
little evidence for non-Gaussanity in the inventory demand shock.

Figure S.12 shows the posterior predictive distributions alongside 90% confidence
sets for each shock obtained when the DPPM is set up such that it strongly favors Gaus-
sian marginals a priori (R4). The results suggest that the data still favors non-Gaussian
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Table S.2. Posterior distribution ηi (R3).

5% 50% 95%

η1 2.1 2.6 3.3
η2 3.9 5.7 9.4
η3 3.6 6.0 13.8
η4 11.5 54.0 95.0

marginals for the first two shocks (εst and εeat ). The posterior predictive distribution of
the consumption and inventory demand shock coincide with that of a Gaussian.

Proceeding with structural analysis, Table S.3 revisits the posterior distribution of
αqp, βqp, and the estimated importance of supply shocks for real oil price variation.
Comparing the baseline DPMM results with that of R3 and R4, there is little difference
in the posterior of the supply elasticity αqp, concentrating most of the mass near zero.
With respect to βqp, the model using student-t errors implies a larger median estimate
(−1.22) in absolute terms, than obtained in the baseline results (−0.94). Also, posterior
uncertainty measured by the distance between the 5% and 95% quantiles is somewhat
larger. On the other hand, for model R4, the posterior median elasticity is smaller (−0.79)
compared to the baseline. This is to be expected, as it effectively shrinks the posterior

Figure S.12. Posterior predictive densities (90% credible interval) of standardized structural

shocks ε̃i,T+1 = σ
− 1

2
i (εi,T+1 −μi ) obtained in R4.
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Table S.3. Further robustness analysis for the main empirical findings.

5% 50% 95%

Panel A: Posterior αqp

Baseline 0.002 0.013 0.027
R3 0.001 0.010 0.023
R4 0.003 0.015 0.030

Panel A: Posterior βqp

Baseline −1.58 −0.94 −0.63
R3 −1.88 −1.22 −0.75
R4 −1.22 −0.79 −0.55

h = 4 h = 16

Panel C: Contribution of εst to the FEVD of the real price of oil

Baseline
0.05 0.06

(0.02, 0.10) (0.03, 0.11)

R3
0.06 0.07

(0.02, 0.19) (0.03, 0.22)

R4
0.07 0.08

(0.03, 0.13) (0.04, 0.13)

Note: For robustness check R3, the non-Gaussian model is estimated with parametric student-t errors instead of nonpara-
metric DPMMs. For robustness check R4, the non-Gaussian model is estimated with αi = 1.0563E − 04 such that E[ki|αi , T ] = 1
and Variance Var[ki|T , α]1/2 = 0.02, placing a strong prior weight on Gaussian marginals.

toward that obtained under the Gaussian (BH19) model, which peaks near −0.3 (see
Figure 5).

With respect to the variance decomposition of the real oil price, the model using
student-t distribution instead of the DPMM (R3) points toward a similar importance of
supply shocks than the baseline estimates. However, once more the uncertainty is con-
siderably larger. 95% quantiles of 0.19 (h = 4) and 0.22 (h = 4) are twice as large than
obtained by the baseline model. Hence, although the proposed SVAR–DPMM is non-
parametric, there seem to be efficiency gains over the parametric student-t alternative.5

Finally, the model strongly favoring Gaussian shocks a priori (R4) yields very similar re-
sults to the baseline results. This suggests that the variance decomposition robust results
are robust with respect to the choice of αi.
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