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The importance of supply and demand for oil prices:
Evidence from non-Gaussianity

Robin Braun
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When quantifying the importance of supply and demand for oil price fluctuations,
a wide range of estimates have been reported. Models identified via a sharp upper
bound on the short-run price elasticity of supply find supply shocks to be minor
drivers. In turn, when replacing the upper bound with a weakly informative prior,
supply shocks turn out to be substantially more important. In this paper, I revisit
the evidence in a model that combines weakly informative priors with identifi-
cation by non-Gaussianity. For this purpose, a SVAR is developed where the un-
known distributions of the structural shocks are modeled nonparametrically. The
empirical findings suggest that once identification by non-Gaussianity is incor-
porated into the model, posterior mass of the short-run oil supply elasticity shifts
toward zero and oil supply shocks become minor drivers of oil prices. In terms
of contributions to the forecast error variance of oil prices, the model arrives at
median estimates of just 6% over a 16-month horizon.

Keywords. Oil market, Structural Vector Autoregression (SVAR), identification by
non-Gaussianity, nonparametric Bayes.
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1. Introduction

Since Kilian (2009), an increasing number of papers have studied the distinct role of
supply and demand shocks in driving oil price fluctuations. When quantifying their rel-
ative importance, a wide range of estimates have been reported. On the one hand, Kilian
(2009, 2022a), Kilian and Murphy (2012, 2014), Juvenal and Petrella (2015), Antolín-Díaz
and Rubio-Ramírez (2018), Zhou (2020), and Cross, Nguyen, and Tran (2022) report that
oil prices are mainly demand driven and that supply shocks are not important. Their es-
timates typically attribute less than 10% of the long-term variability in oil prices to sup-
ply. On the other hand, recent papers of Baumeister and Hamilton (2019) and Caldara,
Cavallo, and Iacoviello (2019) point toward a substantially larger role of supply, estimat-
ing variance contributions of up to 37%. Most of the disagreement can be attributed
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to differences in the identification strategy (Herrera and Rangaraju (2020)):1 imposing
a very small upper bounds on the short-run price elasticity of supply yield negligible
effects of supply shocks, and vice versa.

In this paper, I revisit the evidence based on a novel identification strategy. The idea
is to combine economically motivated prior distributions as in Baumeister and Hamil-
ton (2019) with identification by non-Gaussianity. The latter is based on the assump-
tion that structural shocks are mutually independent and display some degree of non-
Gaussianity. As documented in this paper, large deviations from Gaussianity character-
ize many oil market shocks, and their mutual independence is not an unreasonable as-
sumption. My findings indicate that once non-Gaussianity is exploited, the posterior
distribution of the short-run oil-supply concentrates near zero and supply shocks are
found to be minor drivers of oil prices.

To build up intuition of the identification strategy, consider a stylized bivariate
model for supply and demand:

supply: qt = αpt + σ1ε
s
t

demand: qt = βpt + σ2ε
d
t

(
εst
εdt

)
∼ (0, I2 ),

where qt and pt are changes in (log) quantity and (log) prices, α and β are the price elas-
ticities of supply and demand, and σ1/2 the standard deviations of the supply (εst ) and
demand shocks (εdt ). The model is not identified from the second moment of the data,
as there are four structural parameters but only three reduced- form covariance param-
eters. The literature typically proceeds imposing identifying restrictions, which reflect
priors on the sign and magnitude of the structural parameters. Besides conventional
sign restrictions on the slope of the demand (β < 0) and supply curve (α > 0), magni-
tude restrictions are common to achieve more informative results. For example, Kilian
and Murphy (2014) assume a very inelastic supply imposing a tight upper bound on
α ∈ (0, 0.025), while Baumeister and Hamilton (2019) allow for substantially larger val-
ues via a truncated student-t prior α∼ t0,∞(0.1, 0.2, 3) centered at 0.1 and with a scale
of 0.2 and 3 degrees-of-freedom. Unfortunately, small differences in these priors have
substantial implications for estimates of the relative importance of supply and demand
shocks. The reason is that forecast errors in oil production and prices are fairly uncorre-
lated, yielding a very large set of sign-restricted models equally consistent with the data.

In this paper, I leverage non-Gaussianity as additional source of identifying infor-
mation. Figure 1 shows a scatterplot of forecast errors from a bivariate VAR for global
oil prices and oil production. When the joint distribution is characterized by the sec-
ond moment (“Gaussian Setting”), many different models are observationally equiva-
lent. Consider two arbitrarily chosen supply and demand schedules (A and B), which
yield the same reduced form but imply very different structural dynamics. In model A,
supply is inelastic and demand is elastic. Consequently, in such a model oil production
would be mainly driven by supply shocks while oil prices would be largely caused by

1As noted in Aastveit et al. (2021), the disagreement is much less pronounced once a shorter sample is
used for estimation, excluding the large oil price shocks of the 1970s.
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Figure 1. Identifying oil demand and supply curves by non-Gaussianity.

demand shocks. In turn, for model B, supply is more elastic and demand is inelastic, im-
plying the exact opposite. Incorporating prior knowledge on elasticities ultimately boils
down to picking a range of models from the set of observationally equivalent models,
shaping the answer about oil price drivers a priori. While narrative evidence and exter-
nal estimates have been used to inform the priors (see, e.g., Newell and Prest (2019),
Caldara, Cavallo, and Iacoviello (2019), Bjørnland, Nordvik, and Rohrer (2021)), a fairly
wide range of estimates suggest that the evidence is not conclusive (Kilian (2022b)).

In the right panel of Figure 1 (“Non-Gaussian Setting”), I illustrate how the joint
distribution of the reduced-form errors can help discriminate among observationally
equivalent models. The solid lines correspond to contour lines of the estimated joint
density implied by the model developed in this paper. The estimator yields a unique
supply and demand schedule consistent with the data, rotating the curves such that
the forecast errors cluster near the supply and demand schedule, in line with heavy-
tailed structural shocks. Hereby, the non-Gaussian shape makes certain shifts of the
supply and demand curve more likely than others; this way working as a probabilistic
instrument (see also Rigobon (2003) for a similar interpretation for identification by het-
eroskedasticity). For the data considered in the scatterplot, the proposed identification
approach points toward a steep supply and flat demand curve.

Identification by non-Gaussianity yields a set of independent shocks, which per
se are not useful for economic analysis. In this paper, I suggest a Bayesian approach
where non-Gaussianity is only used in combination with economically meaningful re-
strictions. Specifically, I incorporate non-Gaussianity into the state-of-the art oil market
model of Baumeister and Hamilton (2019) (BH19 henceforth) who identify four struc-
tural shocks based on a mix of prior distributions and sign restrictions. There are various
benefits from adopting such a combined identification approach. First, the economic
structure allows to interpret the shocks at all stages of the analysis, and thereby yields
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an unique, order-invariant system of equations. Second, identification of the model re-
mains guaranteed by the economic restrictions, even if there is little identifying infor-
mation from non-Gaussianity in a given finite sample, or complete absence of non-
Gaussianity.

The empirical analysis suggest that at least two out of four structural shocks in BH19
display strong deviations from Gaussianity. Tests for mutual independence suggest that
it is reasonable to use this information for identification purposes. I find that non-
Gaussianity shifts posterior mass of the supply elasticity toward zero, while demand
becomes more elastic. Furthermore, oil supply shocks are found to be less important
drivers of oil prices. In terms of forecast error variance decompositions, posterior me-
dian estimates suggest a share of 6% for supply shocks, as opposed to 32% obtained by
BH19. These findings are supportive of earlier papers in the literature obtained under a
strong upper bound on the supply elasticity.

Besides offering new evidence on the drivers of oil prices, this paper develops a
new Bayesian semiparametric model where the marginal distributions of each struc-
tural shock is left unspecified. This is implemented via the use of univariate Dirichlet
process mixture models (DPMM) (Escobar and West (1995)). Much like kernel density
estimators, those are the standard model in Bayesian non-parametric statistics to model
unknown density functions.2

There are various benefits from adopting a semiparametric approach. First of all, the
model offers robustness to misspecification of the error term. This is particularly im-
portant in non-Gaussian SVAR models. As highlighted in Fiorentini and Sentana (2022),
specifying the wrong marginal distribution risks inconsistent estimation of shocks stan-
dard deviations, thereby invalidating inference on forecast error variance decomposi-
tions. Besides robustness, the estimators flexibility to adapt to the unknown shock dis-
tribution can also offer efficiency gains. As illustrated in the empirical application, pos-
terior confidence in the oil market model are more narrow under the semiparametric
model than under a parametric alternative that relies on student-t distributions. A fur-
ther point in favor of the DPPM model is that assessing the amount of non-Gaussianity
in the data is a straightforward task. A simple comparison of the posterior predictive
density with the kernel of a standard normal gives an indication of how much identify-
ing information one can expect from the statistical properties of each shock.

To conduct inference, I develop a novel MCMC algorithm that iteratively draws from
the conditional distributions of the VAR parameters and those of the DPMMs. While
most conditionals are well known and straightforward to draw from, the challenging
part of the algorithm is drawing the matrix A, which relates VAR forecast errors ut to
structural shocks εt via Aut = εt . Here, I make use of the algorithm proposed originally in
Waggoner and Zha (2003), already generalized for various settings (Villani (2009), Chan,
Koop, and Yu (2023)). I show how the algorithm can be adopted to allow for nonzero nor-
malizing constraints on A. This facilitates prior elicitation on elements in A, as structural

2For an earlier use of Dirichlet process priors for nonparametric modeling of error distributions in eco-
nomics; see, for example, Hirano (2002).
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parameters can be separated from the scale of structural shocks. Besides posterior infer-
ence, I also discuss evaluation of the marginal likelihood providing a tool to test overi-
dentifying restrictions. Here, I rely on the cross-entropy method of Chan and Eisenstat
(2015), evaluating the likelihood via a collapsed sequential importance sampling algo-
rithm (Basu and Chib (2003)).

The methodological part of this paper relates to the literature in various ways. First,
the use of nonparametric density estimators for identification of non-Gaussian SVARs is
new to the literature.3 Previous methods either required specifying a functional form for
the error distribution (Lanne, Meitz, and Saikkonen (2017), Lanne and Luoto (2020), Ant-
tonen, Lanne, and Luoto (2021)) or a selection of suitable moments or criteria function
(Lanne and Luoto (2021), Herwartz (2018)). Large-sample arguments for pseudolikeli-
hood inference are used to discuss robustness to model mis-specification (Gourieroux,
Monfort, and Renne (2017), Fiorentini and Sentana (2022)), but without the focus on
providing an efficient procedure that adapts flexibly to the error distribution.

Second, the combined identification approach offers some conceptual benefits
compared to the currently prevailing empirical strategy for non-Gaussian SVARs. Typ-
ically, the model is first estimated based on non-Gaussianity before a labeling exercise
follows with the goal to attach an economic meaning to the shocks (Lanne, Meitz, and
Saikkonen (2017)). Unfortunately, this may fail in practice, as there may be no combina-
tion of shocks that satisfies the researchers economic priors. In contrast, the proposed
Bayesian framework allows to express all the economic identifying information via the
prior distribution. The analysis leads to a joint posterior, which combines all the infor-
mation at hand, be it from the prior or the likelihood.

Finally, the paper relates to recent work by Drautzburg and Wright (2023) who pro-
pose to exploit non-Gaussianity in order to narrow down the set of admissible models
in a sign-restricted SVAR model. This idea is very similar to the combined identification
scheme proposed in this paper. However, I adopt a fully Bayesian approach to infer-
ence while their analysis leverages frequentist methods. Furthermore, the integrated use
of DPMMs exploits the nonparametric density estimator at all stages of inference. This
contrasts their two step estimation, which exploits non-Gaussianity only at the stage of
identifying suitable rotations of orthogonalized shocks.

The paper is structured as follows. In Section 2, the methodology is covered for
a non-Gaussian SVAR model where structural shocks follow Dirichlet process mixture
models (DPMM). Section 3 proceeds applying the method revisiting the importance of
supply and demand shocks for oil price fluctuations. Section 4 concludes. The Online
Supplemental Material (Braun (2023)) contains the Appendix to this article, providing
technical details, illustrations, and additional empirical results.

2. Methodology

In the following, I introduce the semiparametric non-Gaussian SVAR model. I start with
a quick review of the identification problem and standard results that arise under inde-

3In the Independent Component Analysis (ICA) literature, kernel density estimators have been exploited
by Boscolo, Pan, and Roychowdhury (2004). However, they do not discuss inference for their estimator, and
hence, their method is not directly useful for SVAR analysis.
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pendent and non-Gaussian shocks (Section 2.1). Section 2.2 proceeds with an instruc-
tive description of the nonparametric methods used to model the marginal distribu-
tions of each shock. The multivariate model is outlined in Section 2.3 and Bayesian in-
ference is covered thereafter (Section 2.4). Finally, I complement the methodology with
a marginal likelihood estimator that some researchers may find helpful in order to con-
duct formal model comparison (Section 2.5).

2.1 Non-Gaussian SVARs

Consider the following SVAR(p) specification for aK-dimensional time series vector yt :

3yt = c+
p∑
j=1

Ajyt−j + ut , ut ∼ (0, �u ), (1)

Aut = εt , εt ∼ (0, �ε ), (2)

where �u is a full covariance matrix and �ε is diagonal. Motivated by the empirical
application, this paper considers an A type of model in the terminology of Lütkepohl
(2005), meaning that orthogonal structural shocks (εt ) are modelled as a linear function
of reduced-form errors (ut ). The reduced-form covariance matrix of the VAR forecast er-
rors is linked to the structural parameters by �u = A−1�ε(A−1 )′. Throughout the paper,
stationarity is assumed, that is,

detA(z) = det
(
IK −A1z− · · · −Apzp

) �= 0 for |z| ≤ 1.

It follows that the SVAR(p) has a MA(∞) representation given by yt = μy + ∑∞
j=1�jεt−j

where �j = �jA−1, �0 = IK , �j = ∑j
i=1�j−iAi for j ∈ N with Ai = 0 for i > p. The ikth

entry of matrix�j contains the impulse response, capturing the dynamic effect of struc-
tural shock k on the ith variable in yt , j periods after the shock.

Without additional assumptions, the covariance structure of the forecast errors
jointly identifies A and �ε only up to orthogonal rotations. To see this, consider the alter-
native model Ã =Q′�−1/2

ε A and �̃ε = IK for any orthogonal matrixQ satisfyingQQ′ = IK
and Q−1 =Q′. The implied covariance matrix is equivalent to the original model given
that Ã−1�̃ε(Ã−1 )′ = A−1�

1/2
ε QQ′�1/2

ε (A−1 )′ = A−1�ε(A−1 )′. SVAR analysis proceeds by
imposing additional restrictions to solve this identification problem and a comprehen-
sive review of different strategies is given in Kilian and Lütkepohl (2017).

In this paper, I will exploit identification by non-Gaussianity. This entails imposing
the following distributional assumptions on the structural shocks εt = [ε1t , 	 	 	 , εKt ]′:

(i) εt is a strictly stationary random vector with E[εit ] = 0 and E[ε2
it ] < ∞ for i =

1, 	 	 	 ,K.

(ii) The structural shocks are mutually independent, and at least K − 1 have non-
Gaussian marginal distributions.

(iii) Each component of εt is serially uncorrelated, that is, Cov(εit , εi,t+k ) = 0, ∀k �=
0, i= 1, 	 	 	 ,K.
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As established in Lanne, Meitz, and Saikkonen (2017), assumptions (i)–(iii) identify the
SVAR model up to permutation, sign and scale. In other words, the set of orthogonal
rotation matrices yielding observationally equivalent models reduces toQ= PD, where
P is aK-dimensional permutation matrix andD a diagonal matrix with elements ±1.

At this point, it is useful to scrutinize the identifying assumptions. First, identi-
fication by non-Gaussianity requires mutual independence of structural shocks. It is
important to acknowledge that this is an equally restrictive assumption than conven-
tional SVAR restrictions such as zero or sign restrictions. This is because it rules out
higher-order dependence in structural shocks, which can arise if the underlying data-
generating process is subject to certain nonlinearities.

An important example is the presence of common stochastic volatility dynamics in
the second moment of shocks (see Olea, Plagborg-Møller, and Qian (2022)). Specifically,
consider the bivariate SVAR(0) model Aut = εt , where further it holds that[

ε1t

ε2t

]
= σt

[
ε̃1t

ε̃2t

]
,

logσt =φσ logσt−1 + εσt .

Here, ε̃t is independent white noise and σt is an AR(1) scalar stochastic volatility fac-
tor which is driven by a third structural shock εσt . In this example, εt are orthogonal
white noise, and the presence of σt implies non-Gaussian marginals. However, the ele-
ments in εt are not mutual independent, invalidating identification by non-Gaussianity.
This contrasts to conventional SVAR methods, which only require orthogonality of the
shocks and, therefore, can still succeed to identify εt depending on the accuracy of the
identifying restrictions.4

However, unlike conventional restrictions, it is possible to test for the empirical plau-
sibility of the mutual independence assumption in each application. Recently, a series
of tests have been developed for this purpose. These include the popular nonpara-
metric test based on distance covariances (Matteson and Tsay (2017)), which is able
to test for all forms of dependence between the structural shocks. As an alternative,
Olea, Plagborg-Møller, and Qian (2022) propose testing correlations between squared
structural shocks, with the goal to direct power against shocks that share a common
volatility structure.5 Unfortunately, these tests have been developed under a frequentist
paradigm, where the distribution of the test statistics under the null hypothesis is sim-
ulated based on resampling schemes. Ultimately, this means that they are not directly
applicable in the Bayesian framework of this paper. However, one may still study the
posterior of these test statistics (and resampled versions thereof) in order to defend the
empirical plausibility of the mutual independence assumptions.

4Other forms of nonlinearities may arise in the conditional mean of the model, thereby inducing higher-
order dependence in forecast errors of a linear model. One salient example is the presence of the zero
lower bound, which effectively censors the nominal interest rate. However, conventional linear VAR models
would also fail to give consistent estimates in this setting; see Mavroeidis (2021).

5See also Davis and Ng (2023) and Amengual, Fiorentini, and Sentana (2022) for alternative tests of mu-
tual independence.
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Second, note that the identification conditions are compatible with common forms
of heteroskedasticity observed in structural shocks induced, for example, by GARCH dy-
namics (Normandin and Phaneuf (2004), Lanne and Saikkonen (2007)) or stochastic
volatility (Bertsche and Braun (2022)). As long as the volatility models are shock spe-
cific, mutual independence holds and non-Gaussianity can be applied for identification
purposes.

Third, identification by non-Gaussianity yields a set of identified shocks that need
to be combined with economic identifying information to be interpretable. In this pa-
per, I propose to use economically motivated prior distributions as in Baumeister and
Hamilton (2015) to ensure economic identification.

Finally, note that the invertibility assumption of the model can be relaxed. As pointed
out in Gouriéroux, Monfort, and Renne (2020), non-Gaussianity can also aid identifica-
tion under nonfundamentalness, for example, generated by dynamic stochastic general
equilibrium models involving news shocks (Mertens and Ravn (2010)).

2.2 Dirichlet process mixture models for structural shocks

To model non-Gaussianity, I make use of nonparametric Dirichlet process mixture mod-
els (DPMM). Before introducing the full multivariate model, I start with a review of the
univariate DPMM, which is used to model each shock’s marginal distribution. Readers
familiar with Bayesian nonparametrics may want to skip this part. For ease of exposi-
tion, I will drop the i index during this subsection, and reintroduce it for the multivariate
model.

Each structural shock is assumed to be independent and follow the following hierar-
chical model:

εt|θt ∼ F(θt ),

θt ∼G,

G∼ DP(G0, α),

for t = 1, 	 	 	 , T . Here, F(θt ) is a probability distribution parametrized by θt with prior
θt ∼G. In a DPMM,G has the characteristic of being random itself, following a Dirichlet
process (DP) G ∼ DP(G0, α) (Ferguson (1973)). A Dirichlet process is uniquely charac-
terized by a base distribution G0 and a scalar concentration parameter α ∈ R+. Realiza-
tions of a DP yield almost surely discrete priors for θt , which is why the model can be
thought of a countably infinite mixture model. In order to facilitate understanding of
the resulting model, I will review two instructive representations of the DPMM.

The first is known as the Pólya Urn representation and goes back to Blackwell and
MacQueen (1973). The idea is to marginalize outG, yielding an intuitive and more direct
representation of the prior implied for θ. In particular, for t = 1, 	 	 	 , T , the distribution
can be iteratively constructed as follows:

θt|θt−1, 	 	 	 , θ1 ∼ 1
t − 1 + α

t−1∑
j=1

δθj + α

t − 1 + αG0,
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∼
k∑
j=1

nj

t − 1 + αδθj + α

t − 1 + αG0,

where δ(·) is the Dirac measure and {θj , j = 1, 	 	 	 , k} are the distinct values (clusters)

of {θj , j = 1, 	 	 	 , t}, which have cluster size nj = ∑t−1
t=1 1(θt = θj ). In words, the first line

states that at any point of time t, θt may take either the value of a previously drawn pa-
rameter or be sampled from the base distribution G0. The Pólya Urn scheme illustrates
the main properties of the DPM prior of θt . First, the realizations are almost surely dis-
crete. Second, there is a “richer get richer” property, which leads to heavy clustering of
the mixing parameters θ. This is highlighted in the second line, stating that the probabil-
ity of θt joining a certain cluster θj increases in the cluster size nj . Therefore, the model
for εt can be interpreted as a flexible yet parsimonious mixture model where the number
of components is random and increasing in the sample size. The strength of clustering is
governed by the concentration parameter α and lower values are associated with fewer
mixture components (clusters) for a given sample size. Finally, the choice of Base distri-
butionG0 will determine the location of the clusters.

A second convenient representation of the DPMM relates the model to finite mixture
models some readers may be more familiar with. As outlined in Neal (2000), a direct link
can be established by casting the following model with kmixture components:

εt|ct , θ ∼ F(θct ), (3)

ct|p∼ Discrete(p1, 	 	 	 , pk ), (4)

p∼ Dirichlet(α/k, 	 	 	 , α/k), (5)

θj ∼G0, j = 1, 2, 	 	 	 , (6)

where ct is a discrete assignment variable linking each observation to one of the mix-
ture components. Each component is associated with a unique parameter θj , which
are drawn from the base distribution G0. If the mixing proportions p = (p1, 	 	 	 , pk )
are given a symmetric Dirichlet prior with concentration parameters α/k, a DPMM is
obtained letting k→ ∞. Exploiting well-known properties of the Dirichlet multinomial
distribution, the conditional probability of ct given the sequence {ct−1, 	 	 	 , c1} can be
shown to be (Neal (2000)):

P(ct = c|ct−1, 	 	 	 , c1 ) = P(ct−1, 	 	 	 , c1, ct = c)/P(ct−1, 	 	 	 , c1 ) = nt,c + α/k
t − 1 + α ,

where nt,c is the number of cj for j < t equal to c, that is, the size of the active clusters.
Hence, when k→ ∞,

P(ct = c|ct−1, 	 	 	 , c1 ) → nt,c

t − 1 + αi , (7)

P(ct �= cj for all j < t|ct−1, 	 	 	 , c1 ) → α

t − 1 + α , (8)

where the first line gives the probability that the tth shock εt is associated with cluster
c, while the second line gives the residual probability that εt is associated with a cluster
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not observed in {ct−1, 	 	 	 , c1}. When compared with the Pólya Urn representation, these

equations yield the same clustering behavior and model representation.

In order to operationalize the DPMM, one needs to choose a density F(θt ) with

corresponding base distribution G0. For this paper, I adopt a simple yet very flexible

specification proposed in Escobar and West (1995), where F(θt ) is a Gaussian distribu-

tion parametrized by mean μt and variance σ2
t ; hence, θt = (μt , σ2

t )′. For computational

convenience, a conjugate base distribution G0 is chosen, which is the normal inverse

gamma: (μ, σ2 ) ∼ N iG(s/2, S/2,m, τ) ∼ p(σ2 )p(μ|σ2 ), where p(σ2 ) ∼ iG(s/2, S/2) is

inverse gamma and p(μ|σ2 ) ∼ N (m, τσ2 ) normal.

For the Gaussian DPMM, its instructive to look at the implied predictive density con-

ditional on a realization of the mixture parameters θ1:T = {θT , 	 	 	 , θ1}:

p(εT+1|θ1:T ) =
∫
p(εT+1|θT+1 )p(θT+1|θ1:T )dθT+1

= 1
α+ T

T∑
t=1

φ(εT+1; μt , σt ) + α

α+ T Ts(εT+1;m,M ),

=
k∑
j=1

nj

t − 1 + αφ
(
εT+1; μj , σ


j

)+ α

α+ T Ts(εT+1;m,M ),

whereφ(·; μ, σ ) denotes the density of the normal distribution and Ts(·;m,M ) the den-

sity of a student-t with modem, scaleM1/2 forM = (1+τ)S/s and s degrees- of-freedom.

At first sight, the predictive density shares some similarities with the popular Gaus-

sian kernel density estimator p(εT+1|ε1:T ) ∝ ∑T
t=1φ(εT+1; εt ,H ) where H is a global

smoothing parameter. However, there are a few key differences worth mentioning. First,

the fact that the DP induces heavy clustering in θt means the predictive is shrunk to-

ward a finite set of k� T local modes {μj , j = 1, 	 	 	 , k}. Furthermore, the component

scales {σj , j = 1, 	 	 	 , k} may differ allowing for local smoothing. Finally, the density is

shrunk globally toward that of a t-distribution, with decreasing importance as sample

size increases. The global smoothing parameterα governs both the strength of clustering

(and hence sparsity) in θ1:T as well as the strength of shrinkage toward the t-density. For

more details and theoretical insights including consistency and convergence rates see,

for example, Escobar and West (1995), Ghosal et al. (1999), and Ghosh and Ramamoorthi

(2003).

With respect to computational simplicity, adopting a conjugate base distribution fa-

cilitates MCMC inference on the mixing parameters θt . To see this, recall that the struc-

tural shocks εt are assumed to be independent, and hence exchangeable, which yields

the following prior based on the Pólya Urn representation:

θt|θ−t ∼ 1
T − 1 + α

∑
j �=t
δθj + α

T − 1 + αG0,
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where θ−t = {θj , j �= t}. Combined with the likelihood F(εt|θt ), the posterior is given by
the following mixture:

θt|θ−t , εt ∼
∑
t �=j
qtjδθj + rtHt , (9)

where qtj = bF(εt|θj ), rt = bα
∫
F(εt|θ)dG0(θ), and Ht is the posterior of θ based on

G0 and εt . Furthermore, b is a normalizing constant such that
∑
j �=t qtj + rt = 1. For the

conjugate choiceG0, the posterior is analytically tractable and of known form, implying
that rt can be computed in closed form and a random draw is easily generated.

Cycling through the conditionals in (9) may lead to poor convergence. Hence, in this
paper I rely on a refinement developed in Neal (2000) yielding improved posterior mix-
ing. Akin to the finite mixture representation (equations (3)–(6)), the algorithm exploits
that θt = θct can be represented in terms of latent allocation variables ct and that given
conjugacy, we can integrate analytically over the cluster parameters θj . Combining the
prior for ct implicit in equations (7)–(8) with the integrated likelihood, this yields the
conditional:

P(ct = cj , j = 1, 	 	 	 , k|c−t , εt ) = b n−t,cj
T − 1 + α

∫
F(εt|θ)dH−t,cj (θ), (10)

P(ct �= cj for all j �= t|c−t , εt ) = b α

T − 1 + α
∫
F(εt|θ)dG0(θ), (11)

where c−t = {ci, i �= t}, and cj , j = 1, 	 	 	 , k are unique values in c−t of count n−t,cj , H−t,cj
is the posterior distribution of θ based on prior G0 and all shocks of ε−t = {εi, i �= t} as-
signed to cluster cj . Finally, b is a normalizing constant. In a second step, conditional
on the assignment variables and exploiting the conjugacy of G0, the (active) cluster pa-
rameters θj , j = 1, 	 	 	 , k can be drawn from known distributions in a straightforward
manner. The resulting algorithm is reliable, easy to implement, and widely used.

Besides density F(·) and base distribution G0, one is required to select a value for
the concentration parameter α. To understand the impact of α on the complexity of the
model, note Figure 2. For a given value of α, the graph shows the implied distribution for
the number of unique clusters k and a set of 50 arbitrary predictive densities obtained
conditional on drawing θ1:T .The sample size underlying the figure is set to T = 200, re-
flecting typical time-series lengths in macroeconomics. For α = 1 (left column, larger
value), most of the prior probability mass for k concentrates at values below 10, with a
mode between 5 and 6. The predictive densities illustrate the wide range of distributions
that can be generated under the DPMM, displaying all kinds of multimodality, skewness,
and fat tails. On the other hand, a smaller value α= 0.1 (right column) implies that the
prior mass for the number of clusters k concentrates at much lower values, with prior
mode at just one component. This translates into the prior predictive to be much more
concentrated around unimodal shapes, although the variability remains high.

Given the key role for model complexity, α can be thought of as the global smoothing
parameter. In order to facilitate selection of α in practice, it can be useful to relate it to
the a priori expected number of clusters and variance thereof. Both moments depend
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Figure 2. Top: implied prior for the number of clusters K. Base distribution is given by
N iG(s/2 = 5, S/2 = 3/5,m= 0, τ = 2). Bottom: p(εT+1|θ1:T ) based on 50 prior draws from θ1:T .

on α and the sample size T (Teh et al. (2010)) as follows:

E(k|T , α) = α(ψ(α+ T ) −ψ(α)
)
,

Var(k|T , α) = α(ψ(α+ T ) −ψ(α)
) + α2(ψ′(α+ T ) −ψ′(α)

)
,

where ψ(·) is the digamma function. In the empirical application, I leverage these
formulas to express a prior view on the number of mixture components. The mean-
variance Gaussian mixture adopted in this paper is very flexible, able to approximate
a wide range of distributions with only few mixture components. For macroeconomic
data with relatively low sample size, a reasonable range could therefore be values of α
such that 2 ≤ E(k|T , α) ≤ 7. For example, with T = 500, setting α= 0.5 gives E(k|T , α) =
4 and Var(k|T , α) = 2.85. It is also possible to consider a more conservative choice that
puts a larger weight on the identifying information embedded in the economic prior dis-
tributions. This can be achieved by setting α very small, effectively centering the prior
around a single Gaussian component.

Finally, at the cost of additional computational complexity, it is also possible to spell
out a prior distribution for α and learn it from the data. In this case, a convenient prior is
the gamma distribution α∼ G(aα, bα ) since it allows for simple posterior inference (Es-
cobar and West (1995)). Similarly, the parameters underlying the base distribution τ and
m could be treated as random adjusting it to different scales of the data. The conjugate
hyperpriors τ ∼ iG(aτ , bτ ) and m ∼ N (mm, Vm ) are the simplest choice yielding Gibbs
steps that can be easily incorporated in the posterior simulator.
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2.3 SVAR–DPMM

The next step is to embed the DPMM into the multivariate SVAR model, which yields the
model proposed in this paper. Let xt = [y ′

t−1, 	 	 	 , y ′
t−p, 1]′ and stack the autoregressive

coefficients into the K × Kp + 1 matrix A+ = [A1,A2, 	 	 	 ,Ap, c]. Assuming the avail-
ability of p fixed presample values y0, 	 	 	 , y−p+1, the full model reads:

A(yt − A+xt ) = εt , (12)

εit|θit ∼ F(θit ), (13)

θit ∼Gi, (14)

Gi ∼ DP(Gi0, αi ), (15)

for i = 1, 	 	 	 ,K, t = 1, 	 	 	 , T . Here, equation (12) corresponds to the linear SVAR model
(Section 2.1) while equations (13)–(15) to the individual DPMM specified for each struc-
tural shock. Following Section 2.2, F(θit ) is chosen to be a univariate normal distribu-
tion with mean μit and variance σ2

it , that is, θit = [μit , σ2
it ]. The base distribution G0i is

the conjugate normal inverse gamma distribution N iG(si/2, Si/2,mi, τi ).
Denote by Ai• the ith row of A. The following prior distributions are considered for

the underlying SVAR model parameters, which completes the specification:

Ai• ∼ p(Ai• ), (16)

α+ ∼ N (mα+ , Vα+ ), (17)

for i= 1, 	 	 	 ,K and α+ = vec(A+ ). Similar to Baumeister and Hamilton (2015), the prior
of the structural parameters in Ai• is allowed to take an arbitrary form, enabling the
researcher to incorporate identifying information with a high degree of flexibility. To
facilitate efficient inference, however, I assume prior independence between different
rows of A. As I discuss in Appendix A.1, this allows me to use an extension of the al-
gorithm of Waggoner and Zha (2003) to draw from the conditional posterior of A. For
the vectorized reduced-form slope parameters α+, a Gaussian prior is specified, a fairly
common choice, which allows for straightforward inference. The normal prior is widely
used in VAR analysis and flexible enough to accommodate both noninformative priors
as well as a variety of shrinkage priors including the popular Minnesota prior (Litter-
man (1986)). Finally, theK concentration parameters {αi, i= 1, 	 	 	 ,K} are either treated
as fixed or given a prior αi ∼ G(aα, bα ), while similar mechanics apply to the parameters
underlying the base distribution. In case they are treated as random, τi ∼ iG(aτ , bτ ) and
mi ∼ N (mm, Vm ).

When embedding DPMMs within the SVAR model, some care must be taken with re-
spect to identifiability of location and scale of the shocks. First, unlike Gaussian errors,
the marginals arising from DPMMs are not guaranteed to be mean zero. Hence, the in-
tercept of the VAR model is not identified, and can be readily dropped. Alternatively, one
may simply ignore the issue as usual quantities important for structural analysis remain
unaffected, including impulse response functions or variance decompositions. With re-
spect to scale, a similar problem arises. While in Gaussian SVARs, the scale is often fixed
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to unity, doing so within DPMMs is rather involved; see, for example, the approach taken
in an earlier version of this paper based on methodology developed in Yang, Dunson,
and Baird (2010). For this paper, I follow the model of BH19 and identify the scale of the
shocks by normalizing certain elements in A to unity. This is particularly natural if the
empirical model can be written as a simultaneous equation system, as is the case for the
oil market model considered in this paper. Finally, recall that non-Gaussianity identifies
shocks up to an arbitrary permutation (see Section 2.1). In this paper, a unique labeling
is obtained through economic restrictions reflected in the prior of A.

2.4 Posterior inference

Denote the SVAR parameters ϕ = {A, α+} and define the collection of auxiliary mixing
parameters as θ = {θit , i = 1, 	 	 	 ,K, t = 1, 	 	 	 , T }. The posterior distribution of ϕ based
on observed dataY is proportional to prior times likelihoodp(ϕ|Y ) ∝ p(Y |ϕ)p(ϕ). Note
that for DPMM models, the likelihood itself is not directly available, but must be ob-
tained by integrating out the auxiliary parameters θ, that is, p(Y |ϕ) = ∫

p(Y |θ, ϕ) ×
p(θ|ϕ)dθ. Since both likelihood and posterior are intractable, a full-scale MCMC al-
gorithm is used in this paper to conduct posterior inference on the augmented set of
parameters ξ= {ϕ, θ}. In the following, I will quickly sketch the algorithm at a high level,
and refer to Appendix A.1 for a detailed description.

Let ξ−x be all parameters in ξ but x, and initialize the parameters at some arbitrary
initial values. Then the algorithm draws from the posterior by iterating through the fol-
lowing blocks of conditionals:

(1) For each row Ai•, draw the SVAR structural parameters from p(ai|Y , ξ−{ai} ) via an
extension of the algorithm proposed in Waggoner and Zha (2003). Denote by A′

i• =
wi +Wiai where ai is a vector of ri free elements, Wi a K × ri selection matrix, and
wi an K × 1 vector containing constrained values. In Appendix A.1, I show how a
random draw can be generated from p(ai|Y , ξ−{ai } ) when wi �= 0, using either a
uniform or Gaussian prior for ai. Under a more general prior, such as priors on
nonlinear functions of ai, a Metropolis–Hastings step can be added to correct for
the difference in prior density between proposed and current value of ai. For the
priors considered in the empirical application, the MH acceptance probabilities
are very high and vary between 0.6 and 0.99 depending on the row of A.

(2) Draw the VAR regression parameters fromp(α+|Y , ξ−{α+} ), which is a multivariate
normal distribution.

(3) Draw the DPMM parameters as proposed in Algorithm 3 of Neal (2000) (Sec-
tion 2.2). This includes the hyperparameters (αi, τi,mi, i = 1, 	 	 	 ,K) in case they
are treated as random variables (Escobar and West (1995)).

In order to compute variance and historical decompositions in the SVAR–DPMM
model, it is necessary to back out the unconditional variance of structural shocks. Within
the MCMC algorithm, it is straightforward to recover these moments from the predictive
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density. Conditional on a draw of θ, it is

p(εi,T+1|θi,1:T ) =
k∑
j=1

nij

T − 1 + αiφ
(
εi,T+1; μij , σ


ij

)+ αi
αi + T Tsi (εi,T+1;mi,Mi ),

where M = (1 + τi )Si/si. Effectively, this is a mixture of ki + 1 distributions with com-
ponent weights given by wij = nij

T−1+αi , j ≤ ki and wi,ki+1 = αi
αi+T . Corresponding compo-

nent means are μcij = μij , j ≤ ki and μci,ki+1 = mi, while variances are given by (σcij )2 =
(σij )2, j ≤ ki and (σci,ki+1 )2 =Mi

si
si/(si−2) . Hence, mean and variance of the predictive can

be backed out by standard formulas for mixture models:

E(εi,T+1|θi,1:T ) = μi =
ki+1∑
j=1

wijμ
c
ij , (18)

Var(εi,T+1|θi,1:T ) = σ2
i =

ki+1∑
j=1

wij
((
σcij

)2 + (
μcij

)2 −μ2
i

)
. (19)

It might also be useful to study higher-order moments such as skewness and kurto-
sis. Here, a generic formula for themth central moment can be used given byE[(εi,T+1 −
μi )m] = ∑ki+1

j=1 wij
∑m
l=0

(m
l

)
(μij − μi )m−lCj(l), where Cj(l) denotes the lth central mo-

ment of the jth mixture component density. Given posterior draws of ξ, inference for
predictive moments is a straightforward byproduct to obtain from the algorithm.

2.5 Model comparison

The Bayesian paradigm adopted in this paper postulates to reflect any available identi-
fying information in the prior distributions. In some cases, however, a researcher might
be interested in testing competing economic restrictions. In the following, I will provide
formal tools to test such overidentifying restrictions in the SVAR–DPMM via Marginal
Likelihoods (ML) and Bayes factors.

Consider two modelsM1 andM0, each defined by a likelihood function p(Y |ϕi,Mi )
and a prior p(ϕi|Mi ) (for i = 0, 1). In the context of testing overidentifying restrictions,
think of M0 as the more restrictive model subject to overidentifying constraints while
M1 is the less restrictive model. A popular metric to quantify the support of the overi-
dentifying restrictions is the Bayes factor, defined as

BF10 = p(Y |M1 )
p(Y |M0 )

,

where p(Y |M1 ) and p(Y |M0 ) are the marginal likelihoods P(Y |Mi ) = ∫
p(Y |ϕi,Mi ) ×

p(ϕi|Mi )dϕi (for i = 1, 2), that is, the probabilities that the data Y has been generated
according to models M1 and M0, respectively. Under equal prior probability of M1 and
M0, the Bayes factor has the natural interpretation of posterior odds ofM1 overM0. High
values of the Bayes factor then suggest strong evidence in favor of the less restrictive
model and can be interpreted as evidence against the overidentifying restrictions. For
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a comprehensive guide on how applied researchers typically interpret magnitudes of
Bayes factors, see Kass and Raftery (1995).

For the model considered in this paper, neither p(Y |Mi ) nor the likelihood p(Y |
ϕi,Mi ) can be evaluated analytically. Therefore, I suggest to rely on the simulation based
cross-entropy (CE) method of Chan and Eisenstat (2015), which has successfully been
used to estimate marginal likelihoods in VARs of similar complexity, such as VARs with
stochastic volatility (Chan and Eisenstat (2018)). The core of the method exploits an im-
portance sampling estimator for the integral underlying the marginal likelihood. Sim-
plifying the notation by dropping dependence on the model, this estimator is

p̂IS(Y ) = 1
M

M∑
j=1

p
(
Y |ϕ(j))p(ϕ(j))
f
(
ϕ(j)) , (20)

where ϕ(1), 	 	 	 , ϕ(J ) are independent draws from an importance density f (·) that dom-
inates the posterior, that is, f (x) = 0 ⇒ p(Y |x)p(x) = 0. Note that a hypothetical zero
variance estimator is given by the (intractable) posterior f (ϕ) = p(Y |ϕ)p(ϕ)

p(Y ) . In order to
obtain a feasible estimator with low variance, the CE approach involves selecting a den-
sity that is close to the posterior in the sense of the cross-entropy distance D(f1, f2 ) =∫
f1(x) log f1(x)

f2(x) dx. A density f (·; v) ∈ F with parameters v is chosen such that it min-
imizes D(f , f (·; v)) with respect to v. Algebraic manipulation show that the optimal
parameters vce maximize

vce = arg max
v

∫
p(Y |ϕ)p(ϕ) log f (ϕ; v),

which given posterior draws ϕ(1), 	 	 	 , ϕ(M ) can be approximated by

vce = arg max
v

M−1
M∑
j=1

log f (ϕ; v).

This closely resembles a maximum likelihood estimation problem for v for the den-
sity f (ϕ; v), and posterior draws acting as observations. I suggest to choose the following
parametric family for the DPMM–SVAR parameters ϕ= {A(a), α+}, where a is the vector
of free parameters underlying the matrix A:

F = {
fN (α+; v1,α+ , v2,α+ ) × fN (a; v1,a, v2,a )

}
,

where fN (·; v1, v2 ) is the multivariate normal with mean v1 and covariance matrix v2.
This simple choice allows to compute vce in closed form using posterior means and
covariance matrices. It is also straightforward to work with a truncated version of
fN (a; v1,a, v2,a ) if a lot of posterior probability mass lies near the boundary of sign re-
stricted parameters in a.

In order to operationalize the IS estimator in equation (20), one also is required to
estimate the likelihood ordinate p(Y |ϕ). Given mutual independence of the error terms
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εt = A(yt − A+xt ), the likelihood can be factored as p(Y |ϕ) = |A|T
∏K
i=1p(εi|ϕ), where

p(εi|ϕ) =
∫ {

T∏
t=1

∫
f (εit|ϕ, θit )dG(θit )

}
dP(G|αi,Gi0 ),

and dP(G|αi,Gi0 ) the DP measure. Also, for the Gaussian mean-variance mixture re-
call that θit = [μit , σ2

it ]
′ and f (εit|ϕ, θit ) = N (εit ; μit , σ2

it ) (see Section 2.2). Evaluating
the likelihood requires to integrate over the latent auxiliary variables θit and it’s ran-
dom prior distributionGi, which is analytically infeasible. However, given the conjugate
base distribution, it is possible to follow Basu and Chib (2003) and exploit a collapsed
sequential importance sampler for numerical evaluation. For each shock (i = 1, 	 	 	 ,K)
and g = 1, 	 	 	 ,G runs, the underlying algorithm proceeds as follows. First, evaluate
u

(g)
i1 = p(εi1|ϕ) = ∫

p(εi1|ϕ, θi )dGi0(θi ) and set c(g)
i1 = 1. Then, for t = 2, 	 	 	 , T sequen-

tially iterate as follows:

1. Compute the predictive probability:

u
(g)
it = p(εit|εi,(t−1), c(g)

i,(t−1), ϕ,Gi0
)
,

= αi
αi + t − 1

∫
p(εit|ϕ, θi )dGi0(θi ) +

kt−1∑
j=1

nj,t−1

αi + t − 1

∫
p(εit|ϕ, θi )dHj,t−1(θi ),

where εi,(t−1) = {εil : l ≤ t − 1}, Hj,t−1(θi ) is the posterior of θi based on prior Gi0
and all nj,t−1 shocks assigned to the jth cluster, that is, {εil : l ≤ t − 1, cl = j}.

2. Draw c
(g)
it from the following categorical distribution:

p
(
cit = j|εi,(t ), c(g)

i,(t−1), ϕ
) =

⎧⎪⎨
⎪⎩
b

nj,t−1

ai + t − 1

∫
p(εit|ϕ, θi )dHj,t−1(θi ) for 1 ≤ j, ≤ kt−1,

b
αi

αi + t − 1

∫
p(εit|ϕ, θi )dGi0(θi ) for j = kt−1 + 1.

Computing ω(g)
i = u

(g)
i1

∏T
t=2 u

(g)
it for each run, the ith shock likelihood estimate is

then given by p̂(εi|ϕ) = 1
G

∑G
g=1ω

(g)
i .

The multivariate joint likelihood estimate is then simply given by p̂(Y |ϕ) = |A|T ×∏K
i=1 p̂(εi|ϕ), which can be used to evaluate the marginal likelihood estimator of equa-

tion (20). Note that the resulting procedure resembles the Importance Sampling Squared
(IS2) approach of Tran, Scharth, Pitt, and Kohn (2013). To trade off computational costs
of estimating the likelihood and accuracy of the ML estimator, one may follow their anal-

ysis in settingG adaptively such that the variance of ̂logp(Y |ϕ) is about one. Given that
the ML estimator is not used in the empirical application of this paper, I use Appendix C
to illustrate the reliability of the procedure based on simulated data.

3. The importance of supply and demand for oil prices

In the following, I will use the model to revisit the importance of supply and demand
shocks for oil price fluctuations. The empirical strategy is kept simple. Throughout the
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analysis, I revisit the four variable oil market model considered in many papers (Kil-
ian and Murphy (2014), Baumeister and Hamilton (2019)) and recover structural shocks
with two different identification strategies. The first strategy closely follows Baumeister
and Hamilton (2019) (BH19 henceforth) by imposing a set of sign restrictions combined
with weakly informative prior distributions on structural parameters. Combined with
a Gaussian (pseudo)likelihood, the resulting posterior distribution reflects information
of the prior updated by the covariance structure of the data. The second identification
strategy relies on the same identifying information for structural parameters, but in ad-
dition, assumes mutual independence and non-Gaussianity of the shocks (BH19+NG).
Hence, any difference in the posteriors between the two identification approaches will
reflect the additional identifying information from non-Gaussianity.

3.1 Model and identification

Following Baumeister and Hamilton (2019), the model includes the following four ob-
servables:

yt =
[
100 ×�qt , 100 ×�yat , 100 ×�pt , �it

]′
,

where qt is the log of global crude oil production (in million barrels per day) and yat
is a measure of world economic activity proxied by industrial production of the OECD
plus 6 major countries. Furthermore, pt is the log of the real oil price, defined as the US
Refiner’s Acquisition Cost of oil deflated with the US consumer price index, and �it is
a proxy for OECD oil inventories expressed as a fraction of global crude oil production.
The data set is monthly and covers the period from 1974m1 until 2019m12. For a detailed
description of the data set, I refer to the paper of BH19.

Abstracting from dynamics and the � notation, the structural oil market model takes
the form of the following simultaneous equations:

Supply : qt = αqppt + εst , (21)

Economic activity : yat = αyppt + εadt , (22)

Consumption demand : qt − it = βqyyat +βqppt + εcdt , (23)

Inventory demand : it =ψ1qt +ψ3pt + εidt , (24)

Measurement error : it = χit + εmet , (25)

where εt = [εst , ε
ea
t , εcdt , εidt , εmet ]′ ∼ (0, �ε ) are uncorrelated structural shocks, which im-

plies that �ε = diag(σ2
1 , 	 	 	 , σ2

5 ) is diagonal. Note that there are five equations that sum-
marize the contemporaneous relations across four observables. First, consider equation
(25), which reflects an assumption about additive measurement error in the observed
inventories variable it . Specifically, it decomposes the variable into an unobserved “true”
inventory series it and a measurement error εmet . BH19 rationalize this approach by not-
ing that inventory data is only available for OECD countries, which is arguably only a
fraction χ of world inventories. Equation (21) characterizes the behavior of global oil
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supply, relating production to real oil prices via the coefficient αqp. Given that both vari-
ables are expressed in log deviations, the coefficient αqp can be interpreted as the (short-
run) price elasticity of oil supply. The third equation (22) characterizes global economic
activity (EA), decomposing world industrial production into a component driven by oil
prices and an EA shock εeat . Equation (23) models consumption demand, relating quan-
tity consumed qt − it to world output and oil prices. Here, βqp is the oil price elasticity
of demand while βqy characterizes the response of demand to increased economic ac-
tivity. Finally, equation (24) captures residual demand for oil inventory, which is related
to quantity and prices via coefficients ψ1 and ψ3.

Adding dynamics, the simultaneous equation model can be written as an A- type
structural VAR as described in Section 2:

yt = c+
p∑
j=1

Ajyt−j + ut , (26)

⎛
⎜⎜⎜⎜⎜⎝

1 0 −αpq 0 0
0 1 −αyp 0 0
1 −βqy −βqp 0 −1

−ψ1 0 −ψ3 0 1
0 0 0 1 −χ

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎜⎜⎜⎝
u
q
t

u
y
t

u
p
t

uit
ui


t

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ũt

=

⎛
⎜⎜⎜⎜⎜⎝
εst
εeat
εcdt
εidt
εmet

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
εt

. (27)

Equation (26) models the reduced-form dynamics of the observables with a VAR, yield-
ing prediction errors ut = [u

q
t , uyt , upt , uit ]

′. In order to allow for sufficient dynamics, the
model includesp= 12 lags. The structural model is given in equation (27) and written in
terms of augmented errors ũt = [ut , ui



t ]′, which includes ui


t , the unobserved prediction
error for the (latent) global inventory series. A simple counting exercise reveals that this
model cannot be identified from second moments of the data, given that ui



t is unob-
served. In particular, there are 12 structural parameters (7 elements in A plus 5 elements
in �ε) but there are only 10 reduced-form parameters available in the covariance matrix
of the observable prediction errors ut .

Two identification strategies are considered throughout this section, differing in the
specification of the error term. In the first model (BH19), a Gaussian (pseudo)likelihood
is used, that is, εt ∼ N (0, �ε ). Here, identification is obtained via a set of sign-restricted
prior distributions for elements underlying the A matrix. In the second specification,
the same sign restrictions and prior information holds, with the additional identifying
assumption that all shocks but the measurement error (εmet ) are mutually independent
and non-Gaussian (BH19+NG). It is important to note that this model is the more re-
strictive model, ruling out any higher-order dependence across shocks (see Section 2.3).
For the latter model, each marginal is modeled in a Bayesian nonparametric way, that
is, for i= 1, 	 	 	 , 4, I assume Dirichlet process mixture models of the form εit|θit ∼ F(θit ),
θit ∼Gi,Gi ∼ DP(Gi0, αi ). Following the methodology outlined in Section 2, I set F(·) as
the univariate normal distribution parameterized by mean and variance θit = [μit , σ2

it ].
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The priors for the parameters (Gi ) follow Dirichlet processes with conjugate normal in-
verse gamma base distributionsG0i ∼ N iG(si/2, Si/2,mi, τi ). Finally, in both models the
latent measurement error is assumed to be Gaussian, that is, εmet ∼ N (0, σ2

5 ).
The priors and sign restrictions used for each parameter are set out in Table 1. First,

consider the structural parameters underlying A. Regarding the oil price elasticities of
supply αqp and demand βqp, BH19 make use of truncated student-t distributions con-
centrated around 0.1 and −0.1, respectively. While these values seem to be small, the
prior mean for αqp is typically restricted to much lower values (Zhou (2020)). However,
with scales of 0.2 and 3 degrees-of-freedom, the distributions are only weakly informa-
tive. As for the income elasticity βqy , BH19 draw on external evidence from the literature
to elicit a positively truncated student-t distribution with mode around 0.7, scale 0.2
and 3 degrees-of-freedom. The effect of oil prices on economic activity αyp is judged
to be rather small, reflected in a (negatively) truncated t-distribution with mode at just
−0.05. A smaller scale of 0.1 reflects more prior certainty than for the other parameters
endowed with a student-t prior, but the degrees-of-freedom are still set to 3; hence, the
distribution is relatively spread out. For the parameters of the inventory equation ψ1

andψ3, no prior knowledge is available, so uninformative student-t priors are used con-
centrated around 0 with scale of 0.5 and 3 degrees-of-freedom. With respect to χ, the
fraction of inventories held by OECD countries, BH19 specify a Beta prior concentrated
around 0.6, matching roughly the share of OECD countries in world oil consumption.
The prior parameters are set in such a way that the standard deviation is equal to 0.1,
reflecting a moderate degree of uncertainty for this number.

The diagonal elements of �ε are given weakly informative inverse gamma priors in
the Gaussian model, for all shocks but the measurement error. In the non-Gaussian
model, shock variances are indirectly parameterized by the Dirichlet process mixture
model. To keep the model simple, the same inverse gamma prior is used as the base dis-
tribution of the scale, while a weakly informative specification is used for the location.
The global smoothing parameters are chosen such that for the sample size at hand, the
a priori expected number of mixture components (ki) is E(ki|T , αi ) = 3 for each shock,
which can be obtained for αi = 0.3.6

Finally, consider the variance of the measurement error. Instead of a direct prior for

σ2
5 , BH19 express a prior belief on the nonlinear transformation ρ = χ−1σ2

5
σ2

3 +χ−2σ2
5

. This is

motivated by the fact that, since uit is unobserved, the algorithm developed in their pre-
vious paper (Baumeister and Hamilton (2015)) cannot be readily applied. To get around
this issue, BH19 rewrite the first four equations of (27) using observables. Algebraic ma-
nipulations yield A†ut = ε†

t , for

A† =

⎛
⎜⎜⎜⎝

1 0 −αqp 0
0 1 −αyp 0
1 −βqy −βqy −χ−1

−ψ̃1 0 −ψ̃3 1

⎞
⎟⎟⎟⎠ ,

6For this value of αi , the a priori variance of ki is Var(ki|T , α) = 1.9. Note that the results are not sensitive
to using a more involved model where αi and the parameters underlying the base distribution are treated
as random variables (Section 2.4).
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Table 1. Summary of prior distributions.

Student-t Distribution

Location Scale dof Sign Restriction

αqp Oil supply elasticity 0.1 0.2 3 αqp > 0
αyp Effect of p on activity −0.05 0.1 3 αyp < 0
βqy Income elasticity of oil demand 0.7 0.2 3 βqy > 0
βqp Oil demand elasticity −0.1 0.2 3 βqp < 0
ψ1 Effect of q on inventories 0 0.5 3 none
ψ3 Effect of p on inventories 0 0.5 3 none

Beta Distribution

Mean Standard Deviation Sign Restriction

χ Fraction of inventories 0.6 0.1 none
ρ Importance of measurement error in uit 0.25 0.12 none

Normal Distribution

Mean Variance Sign Restriction

α+ vector of autoregressive parameters 0 100 × I none

Inverse Gamma Distribution (Only Gaussian Model)

Mean Variance Sign Restriction

σ2
i , i= 1, 2, 3, 4 shock variances 2 2 none

Normal Inverse Gamma Distribution (Only Non-Gaussian Model)

Mean Variance Sign Restriction

σ2 scale of DPMM base distributions 2 2 none
μ location of DPMM base distributions 0 σ2 none

Other Fix Parameters (Only Non-Gaussian Model)

Value

αi, i= 1, 2, 3, 4 concentration parameter 0.3 none

ψ†
1 = χψ1, ψ†

3 = χψ3, and ε†
t = [ε1t , ε2t , ε3t − χ−1ε5t , χε4t + ε5t ]. BH19 then show that

premultiplying the system further by

�=

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 ρ 1

⎞
⎟⎟⎟⎠
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yields orthogonal shocks εt = �ε†
t , and hence allows the use of their standard algorithm

for A = �A†. Note that ρ can be thought of the as the negative coefficient from a re-
gression of ε†

4t on ε†
3t . Since by construction ρ ∈ (0, χ), BH19 use a Beta prior centered

around 0.25χ as to reflect a moderate importance of the measurement error.
Unfortunately, in the non-Gaussian model this simplification strategy cannot be ap-

plied. First, although the residuals in εt are orthogonal by construction, they are no
longer independent. This means, it is necessary to infer the latent inventory prediction
errors uit and measurement error εmet during estimation, and keep them apart from the
other non-Gaussian structural shocks. Second, a prior on ρ instead of σ2

5 is not com-
patible with the inference algorithm proposed for the DPMM–SVAR of this paper, given
that it would induce prior dependence between structural parameters and the DPMM
model of the third shock, invalidating the MCMC algorithm proposed in this paper. To

see this, first solve for σ2
5 = ρσ2

3
χ−1−ρχ−2 . Hence, the implicit prior for σ2

5 not only depends

on χ and ρ, but also σ2
3 , which is parameterized by the DPMM of the third shock (see

Section 2.4). To break the dependence, I instead express a prior belief on the fraction
of variance in the latent inventories explained by the measurement error. Noting that

uit = χ−1uit + ε5t , the resulting coefficient is given by ρ = σ2
5

χ−2 var(uit )+σ2
5

∈ (0, 1), where I

use a training sample (pre-1974 inventory data) to set var(uit ) ≈ 1.3. Reflecting a mod-
erate degree of importance, I set the Beta prior such that E(ρ ) = 0.25 with standard
deviation 0.12.

3.2 Inference

Posterior inference for the model is conducted via the Markov Chain Monte Carlo al-
gorithm described in Appendix A.1, iterating through the conditional distributions of
α+, each row of A, and the auxiliary parameters underlying each of the Dirichlet pro-
cess mixture models. Note that due to the additional complexity induced by the mea-
surement error equation, the algorithm needs to be modified in two ways. First, an
additional block is a necessary draw from the conditional distribution of uit , the la-
tent “true” inventory series. The full conditional for [ui1 , 	 	 	 , uiT ]′ is Gaussian and de-
scribed in Appendix A.2. The second modification concerns drawing the parameters
underlying the measurement error equation (25). For this purpose, note that σ2

5 can
be absorbed into A5• = [0, 0, 0, σ−1

5 , −χσ−1
5 ]′, normalizing the the variance to unity

(ε5t ∼ N (0, 1)). Furthermore, recall that a prior is imposed on ρ = σ2
5

χ−21.3+σ2
5

rather than

σ2
5 , and algebraic manipulations yield A5• = [0, 0, 0, a54, a55]′ for a54 = (1.3 ρ

(1−ρ )χ
−2 )1/2

and a55 = −χ(1.3 ρ

(1−ρ )χ
−2 )1/2. Since both elements a54 and a55 are nonlinear functions

of χ and ρ, it is necessary to compute the Jacobian of transformation at the stage of
drawing A5•. This takes into account that the proposal distribution is developed under
a uniform prior for elements in A5•, which is not necessarily uniform for χ and ρ. As
described in Appendix A.1, it is straightforward to account for the Jacobian during the
Metropolis–Hastings step. Finally, Appendix A.3 also describes how the algorithm is ad-
justed when the errors are Gaussian (BH19). Here, I simply replace the block responsible
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Figure 3. Posterior predictive densities (90% credible interval) of standardized structural

shocks ε̃i,T+1 = σ
− 1

2
i (εi,T+1 − μi ). The blue dashed line indicates the density of a standard nor-

mal distribution.

for drawing the DPMM parameters with a block that draws from the conditional distri-
bution of the shock variances in �ε.

3.3 Empirical results

Before discussing results from structural analysis obtained under the two identification
schemes, it is useful to assess the empirical plausibility of assuming non-Gaussianity
and mutual independence in the oil market context.

In Figure 3, posterior median estimates of the predictive densities are provided for
standardized structural shocks, alongside 90% posterior confidence sets (shaded area).
Furthermore, for comparison, the density of a standard normal distribution is drawn
in as blue dashed line. The results suggest that three out of four structural shocks dis-
play large degrees of non-Gaussianity in some regions of the predictive density. Table 2
further contains summary statistics for skewness and kurtosis of the posterior predic-
tive distributions. The supply and economic activity shock display strong excess kurto-
sis and left skewness, while for the consumption demand shock there is evidence for
a minor degree of excess kurtosis. In line with the visual analysis of the posterior pre-
dictive, there is no evidence of skewness or excess kurtosis for the inventory demand
shock. Overall, the evidence suggests that there is potential for considerable identifying
information that can be exploited in the context of the oil-market application.

Next, I study the plausibility of the mutual independence assumption, which is im-
portant for the non-Gaussian model. Given that the structural shocks are endowed with
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Table 2. Skewness and kurtosis of the identified oil market shocks (non-Gaussian model).

Moment εst εeat εcdt εidt εmet

Skewness
−1.08 −0.68 0.03 0.01 0

(−1.51, −0.22) (−0.99, −0.33) (−0.02, 0.12) (−0.58, 0.91)

Kurtosis
12.76 6.53 3.53 3.38 3

(9.68, 16.75) (5.10, 8.65) (3.24, 3.85) (2.86, 6.73)

Note: The table gives posterior median estimates of the skewness and kurtosis of structural shocks in the non-Gaussian
model. Values in brackets indicate corresponding 90% posterior credibility sets.

independent DPMMs, popular testing strategies such as Bayes factors cannot be pur-
sued to assess independence within the current framework. However, it is straightfor-
ward to report posterior predictive distributions of popular frequentist test statistics.
I follow this route and report the posterior of two popular statistics used previously
in non-Gaussian SVAR analysis. The first is a nonparametric test developed in Matte-
son and Tsay (2017). Denote by E = [ε1 : 	 	 	 : εT ]′ the T ×K structural shocks, then the
statistic is given by U(E) = T

∑K−1
j=1 IT (Ûj , Ûj+ ), where j+ = {l : j < l ≤ K} denotes the

indices (j + 1, 	 	 	 ,K), Ûj has elements defined as ûi,k = 1
T rank{εij : εij ∈ Ej }, and IT

is the empirical distance covariance as defined in Matteson and Tsay (2017). Distance
covariances are a multivariate dependence measure for two random vectors, which is
zero only under mutual independence. The test statistic converges to a nondegener-
ate distribution, which can be easily approximated by a bootstrap. While this test is
consistent against all types of dependence, others may have higher power against cer-
tain alternatives. One alternative is discussed in Olea, Plagborg-Møller, and Qian (2022),
testing for shared volatility factors in structural shocks. They propose the test statistic

S(E) =
√

1
K(K−1)

∑K
i=1

∑
j �=iCorr(ε2

it , ε
2
jt )

2, which measures the root mean squared sam-

ple cross-correlations of squared structural shocks. Again, a bootstrap is used to approx-
imate the distribution of the test under the null hypothesis of independence.

Figure 4 plots the posterior of these two test statistics, for the non-Gaussian (top row)
and Gaussian model (bottom row) separately. For comparison, I overlap each distribu-
tion with that of the same statistic computed for randomly repermuted shocks, denoted
by U0(E) and S0(E).7 This helps to get an indication of how the posterior of the test
statistic would look like under the null of mutual independence.

With respect to the non-Gaussian model (top row), the distribution of U(E) is virtu-
ally indistinguishable from that based on resampled shocks (U0(E)), suggesting no evi-
dence against mutual independence. The test of Olea, Plagborg-Møller, and Qian (2022)
indicates that some differences are present between the posteriors of S(H ) and S0(H ).
However, the distributions overlap to a large extend hinting at non-conclusive evidence.
I find that the posterior median of the test statistic S(H ) roughly aligns with the 90%
quantile of the posterior obtained for resampled shocks (S0(H )). A frequentist interpre-
tation would suggest that under mutual independence 10 out of 100 random samples

7Consistent with mutual independence, each shock ε̂j,t is resampled independently of the other shocks
instead of resampling all components in the vector εt jointly. This is repeated at each iteration of the pos-
terior inference algorithm.
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Figure 4. Posterior distribution of the test statistic proposed by Olea, Plagborg-Møller, and
Qian (2022) (S(E)) and Matteson and Tsay (2017) (U(E)) for the non-Gaussian (top row) and
Gaussian (bottom row) model. For comparison, S0(H ) andH0(H ) denote the corresponding test
statistics under the null hypothesis, obtained using shocks that are randomly repermuted under
the mutual independence assumption.

end up yielding such a difference, which is fairly weak evidence against the null. In the
light of these results, I proceed under the assumption that the data does not object ex-
ploiting the mutual independence assumption for identification purposes.

The results for the conventionally identified SVAR are given in the bottom row. The
posterior distributions of U(E) and U0(E) still largely overlap, although a discrepancy
starts to become visible. For the test of Olea, Plagborg-Møller, and Qian (2022), how-
ever, the evidence against mutual independence is very strong. The posterior of the test
statistic S(E) is substantially larger than in BH19+NG, and a comparison with the dis-
tribution of the resampled statistic S0(H ) suggests very little overlap. It is fair to say that
this evidence does not invalidate the results of BH19 per se, as the success of conven-
tional identification strategies does not depend on mutual independence. On the other
hand, readers comfortable maintaining the assumption of mutual shock independence
may view this as evidence against the posterior estimates obtained by Baumeister and
Hamilton (2019).

Given the strong deviations from Gaussianity in oil market shocks, one can expect
that the posterior distributions of structural parameters differ across the two identifica-
tion schemes. In Figure 5, I plot prior and posterior distributions for key structural pa-
rameters in the model and indeed find considerable differences. The first column com-
pares prior and posterior distribution of αqp, the short-run oil price elasticity of supply.
Under a Gaussian likelihood (top), the prior distribution is peaking close to the prior
mode, although uncertainty decreased substantially. In contrast, in the non-Gaussian
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Figure 5. Prior (orange solid line) and posterior density of key structural parameters. Top panel:
Gaussian model. Bottom panel: non-Gaussian model.

model, posterior mass is concentrated very close to zero. With respect to the effect of oil
prices on activity, αyp, the posterior distributions are very similar across both identifi-
cation approaches. Compared to the prior, both posteriors concentrate strongly around
values close to zero. Stronger differences in the posteriors are visible in the parameters
underlying the consumption demand equation. With respect to the income elasticity of
oil demand (βqy ), prior and posterior coincide in the Gaussian model, which may reflect
that there is very little information in the covariance structure of the data to learn about
this parameter. In the non-Gaussian model, however, the prior distribution is updated
to some extent. While the modal value is still below one, a remarkable degree of poste-
rior mass is attached to larger values. A similar picture arises for the oil demand elas-
ticity (βqp). In the Gaussian model, the prior is only slightly revised but posterior mass
still concentrates around high density regions of the prior. Instead, in the non-Gaussian
model, the posterior is revised to a much larger extent. The posterior mode indicates
that the demand elasticity is estimated to be larger than indicated by the prior, with a
modal value of −0.9. However, posterior uncertainty remains high. Posteriors of the re-
maining structural parameters of the simultaneous equation model do not differ, and I
refer the interested reader to Appendix D for the details.

Differences in the posterior distribution of key structural parameters will have im-
plications for structural analysis. In Figure 6, I provide (pointwise) posterior medians
and 90% credible sets for impulse response functions (IRFs) up to 16 months, each stan-
dardized to increase oil prices by 1% on impact.8 The IRFs track the dynamic response of
structural innovations on the level of the four endogenous variables. First, consider the
effects of the oil supply shock (first row). In the non-Gaussian model, a much larger dis-
ruption in supply is required to achieve a price increase of the same magnitude. In turn,

8For an alternative approach involving joint inference on impulse response functions, see Inoue and
Kilian (2022).
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Figure 6. Posterior median IRFs with 90% credible intervals (shaded areas). Blue (dashed lines):
Gaussian model. Red (solid lines): non-Gaussian model.

this leads to a considerably stronger response of global economic activity and draw-
down of inventories compared to the Gaussian specification. The opposite can be found
for the consumption demand shock. Here, the estimated increase in oil produced is con-
siderably more muted in the non-Gaussian model. No significant difference can be ob-
served across the identification schemes for the response of global economic activity
and oil inventories. In line with the literature, economic activity may slightly increase
while inventories are drawn-up to mitigate some of the price increase.

IRFs to an Economic Activity (EA) shock are virtually indistinguishable across both
identification approaches (BH19 and BH19+NG). An EA shock that increases oil prices
by 1% is associated with a slowly increasing production, increase in global activity, and
decrease in inventories. With respect to the inventory demand shock, some subtle dif-
ferences are found. First, note that the response of world activity, oil price, and inven-
tory are quite similar across specifications. For both models, oil prices and inventories
display a positive co-movement, while global activity is barely affected. However, the
impact response of global oil production differs. While in BH19, oil production is es-
timated to increase for a few months before gradually decreasing, the impact in the
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Table 3. Forecast Error Variance Decomposition (FEVD) of the real oil price growth.

Horizon εst εeat εcdt εidt εmet

Gaussian Model

4
0.32 0.06 0.57 0.03 0.01

(0.15, 0.55) (0.03, 0.11) (0.34, 0.75) (0.01, 0.08) (0, 0.03)

16
0.29 0.08 0.53 0.03 0.06

(0.15, 0.5) (0.04, 0.12) (0.32, 0.68) (0.01, 0.08) (0.03, 0.1)

Non-Gaussian Model

4
0.05 0.05 0.87 0.01 0.02

(0.02, 0.1) (0.01, 0.12) (0.79, 0.93) (0, 0.02) (0, 0.03)

16
0.06 0.06 0.8 0.01 0.06

(0.03, 0.11) (0.03, 0.12) (0.72, 0.86) (0, 0.03) (0.03, 0.1)

Note: The table gives posterior median estimates of the contribution of each shock to the forecast error variance of the real
oil price at the 4- and 16-months horizon. Values in brackets indicate corresponding 90% posterior credibility sets.

non-Gaussian model is virtually zero and is estimated to decrease afterwards. Hence, in
BH19+NG, the shock behaves similar to the oil supply news shock discussed in Känzig
(2021). These shocks reflect an anticipated decrease in oil production, which is associ-
ated with a sudden precautionary build-up of oil inventories and strong increase in oil
prices. Note, however, that the effect on oil prices is more muted than documented in
Känzig (2021).

Finally, Table 3 contains the forecast error variance decomposition of the real price
of oil at the 4- and 16-months horizon. Once more, the main difference across the two
identification approaches is found along the effects of supply and consumption demand
shocks (highlighted in bold). As for the supply shocks, they are found to be more impor-
tant in the Gaussian model than the non-Gaussian model. In particular, posterior me-
dian estimates indicate that in the BH19 model, supply shocks explain around one-third
of the variance observed in real oil prices, with 90% credible sets covering anything be-
tween 15% and 55%. On the contrary, if non-Gaussianity is exploited as an additional
identification device, posterior median estimates suggest that supply shocks explain
only a very small fraction of oil price movements, with median estimates at just 6%. In
this identification scheme, posterior credibility sets are substantially more narrow and
indicate that supply shocks are unlikely to explain more than 11% of the variation. As for
demand shocks, the opposite effect can be documented. Here, 90% posterior credible
sets suggest that in the Gaussian model, consumption demand shocks explain between
32% and 75% of the variation. This contrasts sharply with much larger estimates asso-
ciated with the non-Gaussian model. Specifically, posterior credible sets cover values
between 72% and 93%.

Summing up, the results from the empirical analysis yield two main findings. First,
when non-Gaussianity is exploited for identification, oil supply is estimated to be more
inelastic, while (consumption) demand is more elastic than reported in Baumeister and
Hamilton (2019). Second, under non-Gaussianity, supply shocks are found to be only
minor drivers of oil price fluctuations and demand shocks explain most of the variation.
These results are in line with early papers in the literature that impose a very inelas-
tic supply as identifying restriction, leaving the demand elasticity relatively unrestricted
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(Kilian and Murphy (2012, 2014), Zhou (2020)). However, in contrast to these papers, the
estimates obtained above are not a result of strong priors but of identifying information
contained in assuming mutual independence and non-Gaussianity of shocks.

In Appendix E, I offer more insights on the relationship between restricting αpq in
a conventionally identified model (BH19), and resulting posterior estimates of the de-
mand elasticityβqp and variance decomposition of the real price of oil. First, the findings
of BH19 are obtained when restricting αpq near the prior mean of 0.1, yielding relatively
inelastic demand and supply shocks explaining around 30% of oil price fluctuations. On
the other hand, the results of BH19+NG are obtained when restricting αqp to a very small
value (0.01), yielding a more elastic demand and little role of supply shocks.

3.4 Robustness

It is fair to say that for many experts in the oil market literature, the posterior of the
short-run price elasticity of demand (βqp) obtained under non-Gaussianity is too large
in absolute terms to be economically plausible. Typically, values below −0.8 have been
considered unreasonable, which corresponds to often cited estimates of the long-run
elasticity of demand (see, e.g., Hausman and Newey (1995)). As discussed in Appendix E,
models that find (or directly impose) a small oil supply elasticity, end up with a fairly
large coefficient for βqp, and the model of this paper is no exception in this regard.

While there is question on what statistic is the most appropriate to measure demand
elasticity (Kilian (2022b)), I conduct two robustness exercises to test how much the re-
sults are driven by the posterior of βqp. First, if βqp < −0.8 is considered unreasonable
a priori, I can follow Kilian and Murphy (2012) and Baumeister and Peersman (2013)
by directly truncating the prior of βqp over the interval (−0.8, 0). Table 4 shows the re-
sults of such an exercises, labeled as R1. To maintain comparability, I provide results for
both the Gaussian and non-Gaussian model, reporting posterior estimates for αqp, βqp,
and the contribution of εst to the FEVD of the real price of oil. First, note that the esti-
mates for the Gaussian model are not affected under the alternative prior. This is not a
surprise given that the bulk of the posterior mass of βqp already lies above −0.8 in the
baseline results (see Figure 5). In the non-Gaussian model, 90% posterior credibility sets
of βqp are now between −0.6 and −0.79 reflecting the additional hard constraint. Other
than that, imposing the alternative prior does not materially affect the posterior of αqp
nor estimates of the supply shocks contribution to the forecast error variance of the oil
price. While estimates are slightly higher than reported under the baseline results, sup-
ply shocks still play a minor role. Point estimates suggest that only 10% of price variation
is driven by supply shocks.

In a second robustness check, I assess the sensitivity of the results to using data only
starting from January 1985. This is motivated by the fact that previous studies document
a possible break in oil-market dynamics around that date; see, for example, Baumeis-
ter and Peersman (2013). Corresponding results are labeled as R2 in Table 4. Under the
shorter sample, the posteriors of the Gaussian model point toward smaller elasticities
(in absolute terms) of supply and demand, which resembles findings of Aastveit et al.
(2021). A similar pattern applies to the results obtained by the non-Gaussian model.
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Table 4. Robustness analysis for the main empirical findings.

Gaussian Non-Gaussian

5% 50% 95% 5% 50% 95%

Panel A: Posterior αqp
R1 0.06 0.12 0.21 0.01 0.02 0.03

Panel A: Posterior βqp
R1 −0.48 −0.28 −0.16 −0.79 −0.70 −0.52
R2 −0.29 −0.17 −0.09 −0.36 −0.24 −0.16

Gaussian Non-Gaussian

h= 4 h= 16 h= 4 h= 16

Panel C: Contribution of εst to the FEVD of the real price of oil

R1
0.31 0.29 0.08 0.08

(0.14, 0.54) (0.14, 0.49) (0.05, 0.12) (0.05, 0.13)

R2
0.32 0.29 0.2 0.19

(0.15, 0.55) (0.15, 0.48) (0.11, 0.29) (0.12, 0.27)

Note: For robustness check R1, the model is reestimated based on a student-t prior of βqy truncated on the interval
(−0.8, 0). For robustness check R2, the model is reestimated based on a shortened sample covering January 1985 to December
2019. In panel C, the values in brackets give 90% posterior confidence sets.

While the posterior for αqp is still very close to zero, 90% credibility sets of βqp lie be-
tween −0.16 and −0.36. This is much lower than observed in the full sample. Regard-
ing the contribution of εst to the FEVD of the real price, point estimates of around 19–
20% obtained under the non-Gaussian model are considerable higher than in the base-
line specification. However, the same qualitative pattern is observed in that once non-
Gaussianity is introduced into the model; supply shocks become less important drivers
of oil prices.

Another interesting exercise is to check if the results obtained under non-Gaussianity
are sensitive to a more informative prior forαqp. To this end, I re-estimate the model with
a tighter prior α∼ t0,∞(0.1, 0.05, 100), that is, a positively truncated student-t distribu-
tion with 100 degrees-of-freedom, scale of 0.05, and the same mode 0.1. Interestingly,
the results are not affected. For the oil market model studied in this paper, the informa-
tion from non-Gaussianity seems to clearly dominate weakly informative prior distri-
butions. In order to materially alter the estimates obtained under BH19-NG, one would
have to tighten the prior a lot more, which becomes difficult to justify economically.

In Appendix F, I provide further robustness analysis with respect to the error specifi-
cation used in the combined identification scheme (BH19+NG). First, I study the use of
parametric student-t distributions instead of nonparametric DPMMs. I find that point
estimates turn out to be fairly similar, but that posterior uncertainty is larger in the para-
metric alternative. This points toward a higher efficiency of the nonparametric estima-
tor in the empirical application. Second, I study if the results are sensitive to the choice
of αi, the global smoothing parameter of the density estimators. Specifically, αi is set
such that a priori, the model strongly favors only one mixture component, and hence
Gaussian shocks. In this model, only the supply and economic activity shock display
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non-Gaussian posterior predictive distributions. However, the main empirical results
are very similar to those reported by the baseline DPMM model.

Finally, note that Carriero, Marcellino, and Tornese (2023) also revisit the model of
Baumeister and Hamilton (2019), but based on identification by heteroskedasticity in-
stead of non-Gaussianity. Unlike this paper, the identification strategy allows for mu-
tual dependence of shocks via the presence of cross-sectional volatility clustering. It is
encouraging that their findings on the importance of supply shocks are very similar to
those presented in this paper, pointing toward further robustness of the results to an al-
ternative set of statistically motivated identifying assumptions. Earlier are also provided
in Lütkepohl and Netšunajev (2014) and Herwartz and Plödt (2016).

4. Conclusion

In this paper, new evidence is provided on the relative importance of supply and de-
mand shocks for oil price fluctuations. To disentangle their effects, identification by
non-Gaussianity is exploited in addition to a set of sign restrictions and weakly infor-
mative prior distributions for structural parameters (Baumeister and Hamilton (2019)).
The empirical findings indicate that under this identification strategy, oil supply shocks
become minor drivers of oil prices. The results are compatible with estimates obtained
previously in the literature (Kilian (2009), Kilian and Murphy (2012, 2014), Zhou (2020)),
however, without the need of very strong identifying restrictions for structural parame-
ters.

From an econometric point of view, this paper offers a novel Bayesian estimator
for non-Gaussian SVAR models. Specifically, each structural shocks marginal density is
modeled nonparametrically using Bayesian infinite mixture models. The benefit from
pursuing a nonparametric approach is that estimates are robust to misspecification of
the error term, and that the procedure requires no prior knowledge on the form of non-
Gaussianity. The flexible density estimators are perfectly able to exploit deviations from
normality at any region of the sample space, and hence, flexibly capture excess kurtosis,
skewness, or other type of non-Gaussianity often documented in structural shocks.

It is important to acknowledge that identification via non-Gaussianity is not cost-
free, and requires strong assumptions on the independence of structural shocks. Higher-
order dependence can arise easily in rotations of orthogonalized linear VAR prediction
errors, for example, under nonlinearities in the second moment of shocks. To test the
empirical plausibility of the mutual independence assumption, this paper simply re-
ports posterior distributions of frequentist test statistics and resampled versions thereof
(Matteson and Tsay (2017), Olea, Plagborg-Møller, and Qian (2022)). Future work should
focus on developing coherent Bayesian tests with the goal to provide powerful devices
to test the mutual independence assumption.
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