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A.1. Accuracy measure

Let the number of state variables be n (so gt is a length-n vector of state transition equa-
tions), and the number of feasibility constraints be k (so ft is a length-k vector of feasi-
bility constraints). For convenience, we assume that all state variables are continuous.
Let βtλt be a n× 1 column vector representing the Lagrange multipliers of the vector of
state transition equations xt+1 = gt(xt , at , εt+1 ), and βtνt be a k× 1 column vector rep-
resenting the Lagrange multipliers of the vector of feasibility constraints ft(xt , at ) ≥ 0.
The system of associated Euler equations at period s for the stochastic model (1) is34

λs = βEs
{∇xs+1

[
gs+1(xs+1, as+1, εs+2 )λs+1 + fs+1(xs+1, as+1 )νs+1

]}
, (A.1)

where Es is the expectation operator conditioned on time-s information, ∇xs+1 is the
gradient operator over xs+1,
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34These Euler equations are only valid for problems with exogenous probabilities in state transition. If a
model uses an endogenous probability, the Euler equation should be adjusted accordingly. See Section A.6
for one example.
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is an n× k matrix.35 The normalized Euler error is defined as∥∥∥∥ β

λs
Es
{∇xs+1

[
gs+1(xs+1, as+1, εs+2 )λs+1 + fs+1(xs+1, as+1 )νs+1

]}− 1
∥∥∥∥, (A.2)

where 1 is a vector of ones, the division operation is elementwise, and ‖ · ‖ is a norm
operator. Note that the normalized Euler error is unit free, and thus more suitable for
measuring errors than nonnormalized measures.

The common method to estimate Euler errors is to use approximate policy functions
in (A.2). Approximating value or policy functions can be challenging if they are nons-
mooth or have a high-dimensional state space. We can instead estimate the normalized
Euler errors at the simulated solutions only. In the optimization step of Algorithm 1, we
can obtain multipliers λi

s at no cost by solving the deterministic model (2), since these
multipliers are explicitly given in the equations in Algorithm 2. Thus, we implement Al-
gorithm 1 or 2 to generate simulated paths of (xis , ai

s ) and the associated multipliers λi
s,

and save them for accuracy measures.
Given the time-s information (xis , ai

s , λi
s ), the next state in the original stochastic

model (1), gs(xis , ai
s , εs+1 ), is random and dependent on εs+1 ∈ �, where � represents

the set of all possible vectorial values of εs+1. To use the Euler equation (A.1), we have
to estimate the next state xs+1 and its associated decision as+1 as well as shadow prices
(λs+1, νs+1 ), all of which are random.36 We approximate them by the solutions from the
deterministic model (2) at their corresponding random states xs+1 at time s + 1. For ex-
ample, if εs+1 is a discrete random variable vector with a finite number of possible val-
ues {ε(j)

s+1}, we compute x(j)
s+1 = gs(xis , ai

s , ε(j)
s+1 ) for every ε

(j)
s+1 ∈ �, then solve (2) with the

starting time s + 1 and starting state x(j)
s+1 to find the associated optimal decision a(j)

s+1

and their corresponding multipliers (λ(j)
s+1, ν(j)

s+1 ). That is, we solve

max
at∈Dt (xt )

s+�s∑
t=s+1

βt−s−1ut(xt , at ) +β�sVs+�s+1(xs+�s+1 )

s.t. xt+1 = gt(xt , at , 0), t = s + 1, � � � , s +�s ,

ft(xt , at ) ≥ 0, t = s + 1, � � � , s +�s , (A.3)

where xs+1 is given by x(j)
s+1. We then compute the conditional expectation in equation

(A.1). When εs+1 is a continuous random variable vector, we can use its quadrature
nodes ε

(j)
s+1, then implement quadrature rules to estimate the conditional expectation

35In a typical Euler equation, the Lagrange multipliers are often substituted by marginal utilities or some
other expressions derived from Karush–Kuhn–Tucker conditions, but in many cases such substitutions are
complicated. Instead we can directly obtain the multipliers from numerical optimization solvers. For ex-
ample, the constrained optimization solver in Matlab, fmincon, has the command

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = fmincon(FUN, X0,. . . )

to report the multipliers in the vector LAMBDA.
36xs+1 can be nonrandom conditional on time-s information.
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in equation (A.1). Thus, we can approximately estimate the Euler error (A.2) at period s

and state xis as

E i
s =

∥∥∥∥ β

λi
s

∑
j

wjE
{∇xs+1

[
gs+1

(
x(j)
s+1, a(j)

s+1, εs+2
)
λ

(j)
s+1 + fs+1

(
x(j)
s+1, a(j)

s+1

)
ν

(j)
s+1

]}− 1
∥∥∥∥, (A.4)

where x(j)
s+1 are all possible states or quadrature nodes conditional on xis , wj are the cor-

responding probabilities or quadrature weights, a(j)
s+1, λ(j)

s+1, and ν
(j)
s+1 are obtained from

solving the next-period optimization model (A.3) with state x(j)
s+1, and E is over εs+2.

If we have m simulated paths, then we can compute the approximate L∞ Euler error
of the first T ∗ periods solutions for these simulated paths, defined as

max
0≤s<T ∗

(
max

1≤i≤m
E i
s

)
, (A.5)

where the norm operator in (A.4) for defining E i
s is chosen to be the L∞ norm, that is, the

maximum absolute values of all the vector elements inside the norm operator. Similarly,
we can compute the approximate L1 Euler error of the first T ∗ period’s solutions among
the simulated paths, defined as

1
mT ∗

∑
0≤s<T ∗,1≤i≤m

E i
s , (A.6)

where the norm operator in (A.4) for defining E i
s is chosen to be the L1 norm, that is, the

average of the absolute values of all the vector elements inside the norm operator.
Note that if the simulated solutions at the first T ∗ periods do not contain extreme

events, then a small approximate L∞ or L1 Euler error in the first T ∗ periods cannot
guarantee an accurate solution (see Jin and Judd (2002), Juillard and Villemot (2011)).
This is shown in the climate tipping example in Section A.6, in which the Euler errors at
the early periods with zero tipping probabilities are nearly zero, but the Euler errors at
the periods with nonzero tipping probabilities are around 0.1–1%. That is, the solution
at the early periods should be regarded to have two or three-digit accuracy, although
their Euler errors are nearly zero. The reason is that our Euler error measure at period
s depends on solutions at both periods s and s + 1: if the solution at period s + 1 has
0.1–1% errors, then with a small Euler error at period s, the solution at s would also have
around 0.1–1% errors. This is similar to backward VFI with time-varying approximation
domains: we may use a linear or quadratic function to approximate value functions and
VFI can still converge, and the function approximation errors (and the Euler errors) at
the initial periods could be very small if the approximation domains at the initial periods
are narrow, but we cannot say the VFI solution at the initial periods is accurate, because
of the potential large approximation errors at the later periods with wide approximation
domains (see Cai (2019) for more discussion).

If there are m simulated paths with T ∗ periods, and J possible values of εt (or J

quadrature nodes for a continuous εt ) in each period, then the accuracy measures need
to solve m×T ∗ × J optimization problems (A.3), so the accuracy measure method could
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be time consuming. We can instead randomly choose some periods and some simula-
tion paths (e.g., the worst or the best scenario) to measure accuracy, or choose some
specific periods (e.g., those with extreme points or those around the time when the oc-
casionally binding constraints become binding) and assess all simulated solutions at
those periods.

Moreover, in most cases, the Euler error in the first period can already show if SCEQ
can provide a solution with acceptable accuracy. Note that the Euler error in the first
period can be directly computed by the solutions from Algorithm 1 or 2 without solving
additional optimization problems, as the initial state is observed and unique. That is,
starting from the initial state, Algorithm 1 or 2 have already provided m simulated states
in the second period and their associated decisions and multipliers, so we can just esti-
mate the expectation in (A.2) as the average across the simulated solutions for s = 0. In
addition, in many cases the Euler error in the first period is the largest as it depends on
the initial state, which could be an extreme point.

Furthermore, the accuracy measure process can be naturally parallelized across the
simulated xis for every s and i, and also its associated next-period nodes x(j)

s+1 for every j.
That is, if we can have m × T ∗ × J compute cores, we can let each compute core run
only one optimization problem to obtain the values of x(j)

s+1, a(j)
s+1, λ(j)

s+1 and ν
(j)
s+1 for each

xis and j, and then collect them to compute the Euler errors. Thus, the accuracy mea-
sure method could be very fast with parallelism: the running time could be around the
time spent to solve one optimization problem (A.3). For example, it took only seconds
on a Mac Pro desktop computer to solve one optimization problem (A.3) in all of our
examples, including the problems with 200 countries and �s = 50.

In addition, if we solve all different possible paths of (xis , ai
s , λi

s ) using Algorithm 1 or
2, then this accuracy measure has almost no computational cost, as the expectation in
(A.4) can be directly computed from the values in the different possible simulated paths.

A.2. Another illustrative example

Here, we solve the same optimal growth model described in Section 4.1, but we let β =
0.96, δ = 0.1, and u(c) = −c−1, in which there is no analytical solution and the certainty
equivalent approximation has effect on the solution.We follow the exact same procedure
of SCEQ as in Section 4.1 to obtain the new illustrative example’s solution. The estimated
normalized Euler error at the initial state is 1.9 × 10−4, and the L∞ Euler error over the
1000 simulated paths is 5.7 × 10−4.

We also solve this simple problem via value function iteration (VFI) to obtain the
optimal policy function for consumption, using the 7-node Gauss–Hermite quadrature
rule to compute the conditional expectation of the value function in the Bellman equa-
tion (Bellman (1957)):

V (xt ) = max
ct

u(ct ) +βEt
{
V (xt+1 )

}
(A.7)

subject to the transition laws of the state variable vector xt = (Kt , θt ).
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To make sure that next period’s θ is inside the approximation domain of θ for the
value function for all Gauss–Hermite quadrature nodes, we have to choose it from the
interval [0.223, 4.482].37 With this wide range for θ, we have to choose a wide range for K
([0.04, 29.1]) so that next period’s capital will be inside the approximation domain of K
for all possible values of θ.38 That is, the two-dimensional approximation domain for the
state variable vector (K, θ) is [0.04, 29.1] × [0.223, 4.482], much wider than the ranges of
the SCEQ’s simulated states ([0.75, 1.34] × [0.81, 1.25]).

This wide approximation domain requires a very high-degree approximation. For
this specific example, we can do a nonlinear change of variables so that the value func-
tion can be approximated with a lower degree approximation. Using ln(K) and ln(θ) as
the state variables, we approximate the value function as a degree-30 complete Cheby-
shev polynomial of ln(K) and ln(θ) (see, e.g., Cai and Judd (2014)). We also approximate
the corresponding consumption policy functions by a degree-30 complete Chebyshev
polynomial of ln(K) and ln(θ), denoted CVFI(K, θ). The normalized L∞ Euler error of
the solution CVFI(K, θ), defined as

max
K,θ

∣∣∣∣1 −βE

[
u′(CVFI(K+, θ+ )

)
u′(CVFI(K, θ)

) (
1 − δ+ θ+AαKα−1+

) ∣∣∣ (K, θ)

]∣∣∣∣
is 1.2 × 10−4, where θ+ is next period’s productivity shock conditional on the current
period’s θ, and K+ is next period’s capital: K+ = (1 −δ)K+θAKα − CVFI(K, θ). Thus, we
see the VFI solution is accurate enough for checking the accuracy of our SCEQ solution.

For comparison with the VFI solution, we use the superscript “SCEQ” to denote the
SCEQ solution. We then compare c

i,SCEQ
t and CVFI(Ki,SCEQ

t , Ai,SCEQ
t ) for all 1 ≤ i ≤ 1000

and t < 20. We find the L∞ relative error of the SCEQ solution, defined as

max
0≤t<20,1≤i≤1000

∣∣ci,SCEQ
t − CVFI(Ki,SCEQ

t , Ai,SCEQ
t

)∣∣
CVFI(Ki,SCEQ

t , Ai,SCEQ
t

)
is 0.0016, and the L1 relative error, defined as

1
20,000

∑
0≤t<20,1≤i≤1000

∣∣ci,SCEQ
t − CVFI(Ki,SCEQ

t , Ai,SCEQ
t

)∣∣
CVFI(Ki,SCEQ

t , Ai,SCEQ
t

)
is 8.0 × 10−4.39 The relative errors are close to the estimated Euler errors of the SCEQ
solution, so SCEQ’s own accuracy measures with Euler errors are also good for checking
solution accuracy.

37The range of ln(θ) is proportional to σ/(1 − ρ), so if ρ or σ is larger, then the range has to be wider.
Moreover, if we use more Gauss–Hermite quadrature nodes, then the range will also be wider.

38If we use a narrower range for K, then next period’s capital could be binding at its bounds, which
creates kinks when approximating the value function, so the solution may be inaccurate (particularly for
those states near the bounds). Moreover, the kinks might prevent the value function iteration process from
converging.

39We view the VFI optimal consumption policy to be the “true” solution as there is no analytical solution
for the optimal growth problem.
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A.3. A simple multicountry model

Judd, Maliar, and Maliar (2012) and Maliar and Maliar (2015) uses a multicountry model
similar to our Case 3 in Section 4.2.3 for testing their method, but their model is simpler:
it does not have kinks, a wide-ranging state space, labor, or adjustment costs. That is,
the social planner maximizes the aggregate welfare

max
c

E

( ∞∑
t=0

βt
N∑
j=1

τj log(ct,j )

)
(A.8)

subject to

N∑
j=1

(ct,j + kt+1,j ) =
N∑
j=1

(
(1 − δ)kt,j + ζt,jA(Kt,j )α

)
, (A.9)

where β = 0.99, α = 0.33, δ = 0.025, τj ≡ 1, A = (1 − (1 − δ)β)/(αβ), and ζt,j follows the
same stochastic process (21). The initial state for the jth country is set as

K0,j = exp
(

ln(Kmin ) + (
ln(Kmax ) − ln(Kmin )

) j − 1
N − 1

)
with Kmin = 0.8 and Kmax = 1.2 for j = 1, � � � , N , using the state space in Judd, Maliar,
and Maliar (2012) and Maliar and Maliar (2015). Note that the state space is much nar-
rower than what we use in our Case 3 in Section 4.2.3. We apply SCEQ to generate 1000
simulated paths of the first 20 periods.

Table A.1 reports SCEQ’s running times (in hours) and Euler errors at the initial state,
for the number of countries N = 20, 40, and 200 with �s = 50. We see that SCEQ solves
the problems within minutes or hours, at the same order of magnitude with the method
of Judd, Maliar, and Maliar (2012) and Maliar and Maliar (2015). However, SCEQ can
be much faster, down to seconds or minutes, if we use many compute cores for paral-
lelism, while the method of Judd, Maliar, and Maliar (2012) and Maliar and Maliar (2015)
does not have efficient parallelization. The Euler errors of our solution are around 0.5%,
less accurate than the method of Judd, Maliar, and Maliar (2012) and Maliar and Maliar
(2015) with 0.01–0.1% Euler errors. Thus, for stationary problems without kinks nor a

Table A.1. SCEQ’s running times and errors for
the simple multicountry model.

N

Time (in Hours)
for SCEQ

Euler Error at
the Initial State

20 0.15 5.3(−3)
40 0.28 5.5(−3)

200 2.58 5.3(−3)

Note: a(−n) means a× 10−n .
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wide-ranging state space, the method of Judd, Maliar, and Maliar (2012) and Maliar and
Maliar (2015) could be more accurate than SCEQ, which is not surprising because of the
certainty equivalent approximation error of SCEQ in exchange of its simplicity, stability,
and flexibility in solving problems with kinks, nonstationarity, high dimension, and a
wide-ranging state space.

A.4. Parameters in DSICE

This section specifies the values of the parameters and deterministic exogenous pro-
cesses in Section 4.3, such as Lt (world population), At (deterministic total factor pro-
ductivity), σt (carbon intensity of output), θ1,t (mitigation cost coefficient), ELand,t (an-
nual carbon emissions from biological processes), and FEX,t (exogenous radiative forc-
ing):

Lt = 6514e−0.035t + 8600
(
1 − e−0.035t), (A.10)

At = 0.0272 exp
(
0.0092

(
1 − e−0.001t)/0.001

)
, (A.11)

σt = 0.13418 exp
(−0.0073

(
1 − e−0.003t)/0.003

)
, (A.12)

θ1,t = 1.17σt
(
1 + e−0.005t)
2θ2

, (A.13)

ELand,t = 1.1e−0.01t , (A.14)

FEX,t =
{

−0.06 + 0.0036t if t ≤ 100,

0.3 otherwise.
(A.15)

The transition matrix of the carbon cycle is

�M =
⎡⎢⎣1 −φ12 φ21 0

φ12 1 −φ21 −φ23 φ32

0 φ23 1 −φ32

⎤⎥⎦ , (A.16)

where φij is the rate at which carbon diffuses from level i to level j, where i, j = 1, 2, 3
represent the atmosphere, upper ocean, and lower ocean, respectively. The transition
matrix of temperature system is

�T =
[

1 −ϕ21 − ξ2 ϕ21

ϕ12 1 −ϕ12

]
, (A.17)

where ϕij is the heat diffusion rate from level i to level j, where i, j = 1, 2 represent the
atmosphere and ocean, respectively.

Table A.2 lists the values and definitions of the parameters.
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Table A.2. Parameters in the deterministic version of DSICE.

γ = 1.45 risk-aversion parameter
β= 0.985 utility discount factor
α = 0.3 capital share
δ= 0.1 annual capital depreciation rate
π1 = 0 climate damage factor parameter
π2 = 0.0028388 climate damage factor parameter
θ2 = 2.8 mitigation cost parameter
K0 = 137 initial capital (in $ trillions)
MAT,0 = 808.9 initial carbon concentration in atmosphere (billion tons)
MUO,0 = 1255 initial carbon concentration in upper ocean (billion tons)
MLO,0 = 18,365 initial carbon concentration in lower ocean (billions tons)
TAT,0 = 0.7307 global average surface temperature increase above the year

1900 temperature level (in °C)
TOC,0 = 0.0068 global average ocean temperature increase above the year

1900 temperature level (in °C)
φ12 = 0.019 rate of carbon diffusion from atmosphere to upper ocean
φ23 = 0.0054 rate of carbon diffusion from upper ocean to lower ocean
φ21 = 0.01 rate of carbon diffusion from upper ocean to atmosphere
φ32 = 0.00034 rate of carbon diffusion from lower ocean to upper ocean
ξ1 = 0.037 temperature transition parameter
ξ2 = 0.047 rate of TAT,t decrease due to infrared radiation to space
ϕ12 = 0.01 0 rate of heat diffusion from atmosphere to ocean
ϕ21 = 0.0048 rate of heat diffusion from ocean to atmosphere
η= 3.8 radiative forcing parameter
M∗

AT = 596.4 preindustrial atmospheric carbon concentration

A.5. Euler equations for DSICE with economic risk

Let βsλM
s ≡ βs(λMAT

s , λMUO
s , λMDO

s ), βsλT
s ≡ βs(λTAT

s , λTOC
s ), and βsλK

s be the time-s
shadow prices of (22), (23), and (24), respectively, for DSICE with economic risk. Let

Ỹs := �(TAT,s )Ys −�s

with Ys = ÃsK
α
s L

1−α
s . The system of associated Euler equations is

λK
s = βEs

{
λK
s+1

[
1 − δ+ ∂Ỹs+1

∂Ks+1

]
+βλMAT

s+1
∂EInd

s+1

∂Ks+1

}
,

λM
s = βEs

{
λM
s+1�M +

(
λTAT
s+1ξ1

∂Fs+1

∂MAT,s+1
, 0, 0

)}
,

λT
s = βEs

{
λT
s+1�T +

(
λK
s+1

∂Ỹs+1

∂TAT,s+1
, 0
)}

.

Let xt denote the vector of continuous state variables (K, M�
t , T�

t ), and at the vector
of action variables (Ct , μt ). Let xt+1 = gt(xt , at , εt+1 ) denote the six transition laws of the
continuous state variables: (22), (23), and (24). Let λt := (λK

t , λM
t , λT

t )�. The normalized
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Euler error at time s is defined as

Es =
∥∥∥∥ β

λs
Es
(∇xs+1 gs+1(xs+1, as+1, εt+2 )λs+1

)− 1
∥∥∥∥,

where the division is elementwise.

A.6. DSICE with climate risk

A climate tipping event may be triggered by global warming and will permanently dam-
age economic output. If the climate tipping event has not occurred by time t, then the
probability of the tipping event at time t is

ptip,t = 1 − exp
{−�max{0, TAT,t − TAT}

}
, (A.18)

where � = 0.0035 is the hazard rate parameter and TAT is the temperature anomaly for
which ptip,t = 0. Once the tipping event happens, it is irreversible and incurs a damage
of J = 0.05 to output. That is, the tipping process is a Markov chain with an endogenous
tipping probability. We use Jt to measure the possible values of the Markov chain, where
Jt = 0 if the tipping event has not occurred by time t, and Jt = J at all times t after the
tipping event.

Output Yt = AtK
α
t L

1−α
t is reduced by the temperature anomaly and a potential tip-

ping event, with a damage factor of

�(TAT,t , Jt ) = 1 − Jt

1 +π1TAT,t +π2(TAT,t )2 .

Thus, the transition law of capital is

Kt+1 = (1 − δ)Kt +�(TAT,t , Jt )Yt −Ct −�t . (A.19)

We maximize the social planner’s objective function (26) subject to the transition
laws (22)–(23), (A.19), and the Markov chain of Jt . This problem is nonstationary and
stochastic with seven endogenous state variables (of which six are continuous) and oc-
casionally binding constraints, so it is challenging to solve using standard methods.
Here, we apply SCEQ to overcome these challenges, as we do for the model with eco-
nomic risk.

SCEQ requires replacing the stochastic Markov chain Jt by its conditional expecta-
tion E(Jt | Js ) for t > s in the optimization step of Algorithm 1, given the simulated state
vector at the current time s. Since the tipping probability is endogenous, the conditional
expectation E(Jt | Js ) is also endogenous, unless the tipping event has occurred by the
current time s (i.e., Js = J), in which case E(Jt | Js = J ) = J. If Js = 0, that is, the tipping
event has not occurred by the current time s, then

E(Jt | Js = 0) =
(

1 −
t−s−1∏
i=0

(1 −ptip,s+i )

)
J
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for any t > s. Thus, in the optimization step of Algorithm 1, we are solving

max
Ct ,μt

600∑
t=s

βt−su(Ct/Lt )Lt (A.20)

subject to the transition laws (22)–(23) and the following deterministic transition equa-
tion of capital:

Kt+1 = (1 − δ)Kt +�
(
TAT,t , E(Jt | Js )

)
Yt −Ct −�t , (A.21)

for all t ≥ s. That is, if the tipping event has happened by the current time s, then

Kt+1 = (1 − δ)Kt +�(TAT,t , J )Yt −Ct −�t , (A.22)

for all t ≥ s, and in the simulation step of Algorithm 1, we have

Ki
s+1 = (1 − δ)Ki

s +�
(
T i

AT,s , J
)
Yi
s −Ci

s −�i
s,

for the ith simulation; otherwise in the optimization step of Algorithm 1,

Kt+1 =

⎧⎪⎪⎨⎪⎪⎩
(1 − δ)Kt +�

(
TAT,t ,

(
1 −

t−s−1∏
i=0

(1 −ptip,s+i )

)
J

)
Yt −Ct −�t if t > s,

(1 − δ)Kt +�(TAT,t , 0)Yt −Ct −�t if t = s,

and in the simulation step of Algorithm 1, we have

Ki
s+1 = (1 − δ)Ki

s +�
(
T i

AT,s , 0
)
Yi
s −Ci

s −�i
s,

for the ith simulation.
Note that the tipping event is irreversible. If the tipping event has happened by time

s, then there are no more stochastic events from time s onwards, so in the optimization
step of Algorithm 1 we solve (A.20) subject to the transition laws (22)–(23) and (A.22).
The simulation step of Algorithm 1 will not change the solution paths of state and de-
cision variables after s, because there is only one simulation path after time s for each
state or decision variable. Therefore, if we are interested in the first T ∗ years’ simulated
results, there are T ∗ different simulated paths for each state or decision variable: the first
is where the tipping event does not happen in the first T ∗ years (the “pretipping path”),
the second is where the tipping event happens in the second year (assuming its tipping
probability is nonzero), and so on, with the last path having the tipping event happen
in year T ∗. That is, we just need to solve 2T ∗ − 1 optimization problems to obtain the
T ∗ different paths: T ∗ optimization problems are for the pretipping path, and the other
T ∗ − 1 optimization problems are for the cases where the tipping event happens before
or at T ∗ (assuming that the tipping state has not happened in the first period). With these
T ∗ paths of atmospheric temperature anomalies, we can compute their corresponding
tipping probabilities (A.18), then generate 1000 or more simulated paths of carbon taxes
and other state and decision variables as well as shadow prices of the constraints, using
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Figure A.1. Carbon tax for DSICE with climate risk.

the corresponding carbon taxes saved in the T ∗ different paths, without solving more
optimization problems.

Figure A.1 displays distributions of the optimal carbon taxes in the first T ∗ = 100
years from 10,000 paths simulated from the T ∗ = 100 different paths obtained by SCEQ.
The red solid line represents the optimal carbon taxes in the corresponding determinis-
tic model, assuming no tipping event. The upper envelope in Figure A.1 represents the
pretipping path of optimal carbon taxes. In contrast, the lower envelope represents the
optimal carbon taxes after the tipping event happens.

The initial optimal carbon tax of the stochastic model is significantly higher than that
of the deterministic model. Moreover, the optimal carbon tax jumps down significantly
once the tipping event occurs, because the tipping probability depends on temperature,
so before the tipping event happens there is an incentive to further reduce emissions
and lower temperature anomaly to delay or prevent the tipping event from happening.
Once the tipping event happens, this incentive is gone. This pattern has been shown in
Cai, Judd, and Lontzek (2017) and Cai and Lontzek (2019). Figure A.1 also displays the
timing of some sample tipping events. For example, the first drop (which occurs in the
year 2023 in Figure A.1) is the first tipping point out of our 10,000 simulations. By the
end of the 21st century, 17% of the paths have exhibited a tipping point.

To check the errors of our solution, we compute the Euler errors. Since our problem
has an endogenous probability, depending on the atmospheric temperature anomaly,
the Euler equations (A.1) and the Euler errors (A.4) should be adjusted (see Ap-
pendix A.7). For this specific example, we can compute the errors for all possible paths.
We are interested in the solution in the first 100 years, and there are at most 100 different
paths in the first 100 years: in our case, there are only 86 different paths because the
atmospheric temperature anomalies in the first 14 years are less than TAT = 1 °C in our
solution, so the corresponding tipping probability is zero. That is, we just need to solve
186 optimization problems to obtain all different paths.
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As the tipping event is irreversible, the solution after the tipping event is determin-

istic, so SCEQ will provide an accurate solution for the periods after the tipping event.

Thus, we just need to check the errors on the pretipping path, shown as the upper enve-

lope in Figure A.1. Moreover, we can obtain the tipping probabilities ptip,s at each time s

from the pretipping path of atmospheric temperature anomalies. Therefore, we use the

86 different paths to obtain the Euler errors Es , defined in Appendix A.7, at each time s

on the pretipping path. The Euler errors Es in the first 14 years are nearly zero, as there is

no tipping event in these initial years. But in the 15th year, Es becomes 0.0014 in the L∞

norm. To obtain a good estimate of Euler errors, we should choose the number of years

of interest, T ∗, to be large enough to cover at least one period with tipping. We find that

the L∞ Euler error over the first 100 years is also 0.0014, while the L1 Euler error is much

smaller (1.4 × 10−4).

We also compare the SCEQ solution with the solution obtained from VFI as in Cai,

Judd, and Lontzek (2017) and Cai and Lontzek (2019). We use time-varying approxi-

mation domains and degree-6 complete Chebyshev polynomials for approximating the

value functions in VFI. We compare the pretipping paths of optimal carbon taxes in the

first 100 years across the two solutions. If we treat the VFI solution as the “true” solu-

tion, the relative L∞ error is 0.0096 and the relative L1 error is 0.0049. In addition, the

relative L∞ error is 6.8 × 10−5 and 0.0059 for Ct and μt , respectively, and the relative

L1 error is 3.1 × 10−5 and 0.0041 for Ct and μt , respectively. These results indicate that

SCEQ can obtain a solution with acceptable accuracy for a problem with an endogenous

tipping risk, even though the risk has a significant impact on the solution (as shown in

Figure A.1).

For this specific example, SCEQ took only 2 minutes on a single compute core. The

fast running time of SCEQ is due to the small number of different simulation paths (86)

and the corresponding optimization problems (186), so we do not have to run 1000

simulation paths as in the DSICE example with economic risk, which requires solving

100,000 optimization problems for the first 100 years.

We also apply SCEQ to solve cases with a larger risk aversion parameter γ = 2 or a

larger tipping damage J = 0.1. Table A.3 displays the Euler errors and the relative errors

of the optimal carbon taxes along the pretipping path in comparison with correspond-

ing VFI solutions for the first 100 years. A larger degree of risk aversion γ implies larger

errors, as SCEQ uses the certainty equivalent approximation ignoring risk aversion, so

γ serves as the inverse of intertemporal elasticity of substitution. Also, a larger tipping

damage J implies a larger variance (which SCEQ ignores), and hence larger errors. How-

ever, the SCEQ solution of carbon taxes still has only an error of 4.5% in the L∞ norm

for the worst case scenario (both γ and J are larger),40 if we treat the VFI solution as the

true solution.

40The relative errors for the optimal decision variables (Ct , μt ) are smaller and closer to the Euler errors
for the worst case scenario: the relative L∞ error is 1.6 × 10−4 and 0.027 for Ct and μt , respectively, and the
relative L1 error is 8.4 × 10−5 and 0.019 for Ct and μt , respectively.
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Table A.3. Errors for carbon taxes in the first 100 years.

γ J

Euler Error Relative Error

L∞ L1 L∞ L1

1.45
0.05 1.4(−3) 1.4(−4) 9.6(−3) 4.9(−3)
0.1 3.7(−3) 4.4(−4) 3.5(−2) 1.9(−2)

2
0.05 2.1(−3) 2.2(−4) 1.5(−2) 7.2(−3)
0.1 6.2(−3) 7.0(−4) 4.5(−2) 2.6(−2)

Note: a(−n) means a× 10−n .

A.7. Euler equations for DSICE with climate risk

If the tipping event happens at s, then the stochastic problem becomes deterministic
from time s onwards, as the tipping event is irreversible. Our SCEQ solution at times
larger than s is therefore accurate as there is no certainty approximation error for the
deterministic problem. Thus, to estimate Euler errors, we assume that the tipping event
has not happened by time s, that is, Js = 0.

Let βsλM
s ≡ βs(λMAT

s , λMUO
s , λMDO

s ), βsλT
s ≡ βs(λTAT

s , λTOC
s ), and βsλK

s be time-s
shadow prices of (22), (23), and (A.19), respectively, for the DSICE model with climate
risk. Let

Ŷs := �(TAT,s , Js )Ys −�s .

Let Vtipped,s+2 be the aggregate welfare from time s + 2 onwards, assuming that the tip-
ping event happens in period s + 2, that is,

Vtipped,s+2 = max
Ct ,μt

∞∑
t=s+2

βt−s−2u(Ct/Lt )Lt

subject to the transition laws (22), (23), and (A.22), and let Vuntipped,s+2 be the aggregate
welfare from time s + 2 onwards, assuming that the tipping event has not happened by
period s + 2, that is,

Vuntipped,s+2 = max
Ct ,μt

Es

{ ∞∑
t=s+2

βt−s−2u(Ct/Lt )Lt

}

subject to the transition laws (22), (23), and (A.19).
Thus, the system of associated Euler equations for (26) is

λK
s = βEs

{
λK
s+1

[
1 − δ+ ∂Ŷs+1

∂Ks+1

]
+βλMAT

s+1
∂EInd

s+1

∂Ks+1

}
,

λM
s = βEs

{
λM
s+1�M +

(
λTAT
s+1ξ1

∂Fs+1

∂MAT,s+1
, 0, 0

)}
,

λT
s = βEs

{
λT
s+1�T +

(
λK
s+1

∂Ŷs+1

∂TAT,s+1
, 0
)}

+β2(�s+2, 0),
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where

�s+2 := (1 −ptip,s )
∂ptip,s+1

∂TAT,s+1
(Vtipped,s+2 − Vuntipped,s+2 ).

Note that the term β2(�s+2, 0) is not present in the standard Euler equations (A.1) with
exogenous transition probabilities. In computing the Euler error (A.4), Vuntipped,s+2 is
approximated by

Ṽuntipped,s+2 = max
Ct ,μt

∞∑
t=s+2

βt−s−2u(Ct/Lt )Lt

subject to the transition laws (22), (23), and (A.21) conditional on Js = 0.
Given the time-s information with Js = 0, λK

s+1, λM
s+1, λT

s+1, Ŷs+1, EInd
s+1, Js+1, and all

decision variables at s + 1 are random with two possible values: one value for the case
that the tipped event happens at s + 1 (Js+1 = J), the other value for the case that the
tipping event does not happen at s + 1 (Js+1 = 0). Thus, the conditional expectation
operator in the above Euler equations for a random variable Xs+1 at time s + 1 is

Es{Xs+1} = ptip,sXtipped,s+1 + (1 −ptip,s )Xuntipped,s+1,

where Xtipped,s+1 is the value of Xs+1 for the case that the tipped event happens at time
s + 1, and Xuntipped,s+1 the value of Xs+1 for the case that the tipped event does not
happen at time s + 1.

Let xt denote the vector of continuous state variables (K, M�
t , T�

t ), and at the vector
of action variables (Ct , μt ). Let xt+1 = gt(xt , at , Jt ) denote the six transition laws of the
continuous state variables: (22), (23), and (A.22). Let λt := (λK

t , λM
t , λT

t )�. The normalized
Euler error on the pretipping path at time s is defined as

Es =
∥∥∥∥ β

λs

[
Es
(∇xs+1 gs+1(xs+1, as+1, Js+1 )λs+1

)+β(0, 0, 0, 0, �s+2, 0)�
]− 1

∥∥∥∥,

where the division is elementwise.

A.8. New Keynesian model and equilibrium conditions

The representative household chooses consumption ct of final goods, labor supply �t ,
and government bonds bt to maximize the total present value of expected utilities, that
is,

max
ct ,�t ,bt

E

{ ∞∑
t=0

(
t∏

i=0

βi

)
U(ct , �t )

}
(A.23)

subject to the budget constraint

ptct + bt

1 + rt
= wt�t + bt−1 + Tt +�t , (A.24)

where pt is price of the final good, rt is the nominal interest rate of bonds, wt is wage for
labor supply, Tt is the lump-sum transfer from the government, and �t is the total profit
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from all firms at period t. The utility function is

U(c, �) = ln(c) − �1+η

1 +η
,

where η = 1. The parameters in the stochastic process of βt are β∗ = 0.994, ρ = 0.8, and
σ = 0.005. The first-order conditions of the household problem imply

1 = Et

{
βt+1

1 + rt

πt+1

ct

ct+1

}
(A.25)

and

wt = ptct�
η
t , (A.26)

where πt ≡ pt/pt−1 is the gross inflation rate.
The final-good firm buys intermediate goods yi,t with prices pi,t from intermediate

firms, and produces a final good yt with the following production function:

yt =
(∫ 1

0
y

α−1
α

i,t di

) α
α−1

, (A.27)

where α= 6. The final-good firm chooses yi,t to maximize its profit:

max
yi,t

ptyt −
∫ 1

0
pi,tyi,t di,

which, from the first-order condition, implies that

yi,t = yt

(
pi,t

pt

)−α

. (A.28)

The intermediate firms rent labor supply �i,t from the household and have the sim-
ple production function

yi,t = �i,t . (A.29)

We assume the Calvo parameter θ is set as 0.9: 90% of the firms in each period keep the
same price as the previous period, and 10% of the firms have optimal prices. A reopti-
mizing intermediate firm i ∈ [0, 1] chooses its price pi,t to maximize the present value of
expected profits over the time when the optimal pi,t remains effective:

max
pi,t

Et

{ ∞∑
j=0

( j∏
k=0

βt+k

)
λt+jθ

j(pi,tyi,t+j −wt+j�i,t+j )

}
(A.30)

subject to the constraints yi,t+j = �i,t+j from (A.29) and

yi,t+j = yt+j

(
pi,t

pt+j

)−α
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from (A.28) by letting pi,t+j = pi,t . Here, λt is the Lagrange multiplier of the budget con-

straint (A.24), satisfying

λt = 1
ptct

, (A.31)

from the first-order conditions of the household problem (A.23). Let πt,j = pt+j/pt .

From (A.26), (A.31), and the first-order condition of the reoptimizing intermediate firm

problem (A.30), for any reoptimizing firm i we have

pi,t

pt
≡ qt = αχt,1

(α− 1)χt,2
, (A.32)

where

χt,1 ≡ yt�
η
t +Et

{ ∞∑
j=1

( j∏
k=1

βt+k

)
θjπα

t,jyt+j�
η
t+j

}
,

χt,2 ≡ yt

ct
+Et

{ ∞∑
j=1

( j∏
k=1

βt+k

)
θjπα−1

t,j

yt+j

ct+j

}
.

We have the recursive formulas for χt,1 and χt,2:

χt,1 = yt�
η
t + θEt

{
βt+1π

α
t+1χt+1,1

}
, (A.33)

χt,2 = yt

ct
+ θEt

{
βt+1π

α−1
t+1 χt+1,2

}
. (A.34)

From (A.27) and (A.28), we have

pt =
(∫ 1

0
p1−α
i,t di

) 1
1−α

=
(

(1 − θ)(qtpt )1−α + θ

∫ 1

0
p1−α
i,t−1 di

) 1
1−α

= (
(1 − θ)(qtpt )1−α + θp1−α

t−1

) 1
1−α .

This follows that

qt =
(

1 − θπα−1
t

1 − θ

) 1
1−α

. (A.35)

From (A.28), (A.29) and the market clearing condition,

�t =
∫ 1

0
�i,t di,
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we get

vt+1 ≡ �t/yt =
∫ 1

0

(
pi,t

pt

)−α

di

= (1 − θ)q−α
t + θ

∫ 1

0

(
pi,t−1

pt

)−α

di

= (1 − θ)q−α
t + θπα

t

∫ 1

0

(
pi,t−1

pt−1

)−α

di

= (1 − θ)q−α
t + θπα

t vt . (A.36)

From vt+1 = �t/yt , (A.33) can be rewritten as

χt,1 = y
1+η
t vt+1 + θEt

{
βt+1π

α
t+1χt+1,1

}
.

Let π∗, r∗, and y∗ be the steady-state gross level of inflation, nominal interest rate,
and output, respectively. Let π∗ = 1.005 be given. We have r∗ = π∗/β∗ − 1 from (A.25).
From (A.34), the steady state of χt,2 is

χ∗
2 = 1

(1 − sg )
(
1 − θβ∗(π∗)α−1) .

From (A.32) and (A.35), the steady state of χt,1 is

χ∗
1 = χ∗

2q
∗α− 1

α

with

q∗ =
(

1 − θ
(
π∗)α−1

1 − θ

) 1
1−α

and from (A.36) the steady state of vt is

v∗ = (1 − θ)
(
q∗)−α

1 − θ
(
π∗)α .

Therefore, from vt = �t/yt and (A.33), we get

y∗ =
(
χ∗

1
(
1 − θβ∗(π∗)α)(

v∗)η ) 1
1+η

.

Let government spending gt be always equal to sgyt with sg = 0.2. From the market
clearing condition yt = ct + gt , we have

ct = (1 − sg )yt . (A.37)

Thus, (A.34) can be rewritten as

1 = 1
χt,2

(
1

1 − sg
+ θEt

{
βt+1π

α−1
t+1 χt+1,2

})
.
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Following the Taylor rule, we have the nominal interest rate as

rt = max(zt , 0) (A.38)

with

zt = (
1 + r∗

)( πt

π∗
)φπ

(
yt

y∗
)φy

− 1, (A.39)

where we choose φπ = 2.5 and φy = 0.25. Thus, (A.25) can be rewritten as

1 = Et

{
βt+1

1 + max(zt , 0)
πt+1

yt

yt+1

}
.
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