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This article collects the supplemental contents to the main paper. Section A col-
lects the key results for the theorems in Section 3. Section B shows the double
robustness of moment condition used in the paper. Section C considers the es-
timation and inference of UQPE with general machine learning estimators and
cross-fitting. Section D collects the proofs of theoretical results in the main paper.
Section E collects the proofs of theoretical results in Section C. Section F provides
additional simulation results.

Appendix A: Theoretical results for Section 3

Theorem A.1. If Assumptions 1 and 2 hold, then for j = 0, 1 and any e > 0, there exists
a class of functions denoted as G(j) such that {m̂j(x, q) : q ∈ Qδ} ⊂ G(j) with probability
greater than 1 − e and

sup
Q

N
(
G(j), ‖ · ‖Q,2, ε

∥∥G(j)
∥∥
Q,2

) ≤ C

(
pb

ε

)csb

for every ε ∈ (0, 1], (A.1)

where C, c are positive constants, N(·) is the covering number, G(j) is the envelope for G(j),
‖ · ‖Q,2 is the L2 norm for a probability measure Q, and the supremum is taken over all
finitely discrete probability measures. In addition, we have

sup
q∈Qδ

∫ ∣∣m̂j(x, q) −mj(x, q)
∣∣2
dFX(x) = OP

(
sb log(pb )

N

)
, (A.2)

sup
q∈Qδ,x∈X

∣∣m̂j(x, q) −mj(x, q)
∣∣ = OP

(
ζNsb

√
log(pb )

N

)
. (A.3)

Yuya Sasaki: yuya.sasaki@vanderbilt.edu
Takuya Ura: takura@ucdavis.edu
Yichong Zhang: yczhang@smu.edu.sg

© 2022 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://qeconomics.org. https://doi.org/10.3982/QE1896

mailto:yuya.sasaki@vanderbilt.edu
mailto:takura@ucdavis.edu
mailto:yczhang@smu.edu.sg
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://qeconomics.org
https://doi.org/10.3982/QE1896


2 Sasaki, Ura, and Zhang Supplementary Material

Theorem A.2. If Assumptions 1 and 3 holds, then for any e > 0, there exists a class of
functions denoted as Gω such that ω̂(x) ∈Gω with probability greater than 1 − e and

sup
Q

N
(
Gω, ‖ · ‖Q,2, ε

∥∥Gω
∥∥
Q,2

) ≤ C

(
ph

ε

)csh

for every ε ∈ (0, 1], (A.4)

where Gω is the envelope of G(ω). In addition, we have, for all c > 0,∫ (
ω̂(x) −ω(x)

)2
dFX(x) = oP

(
Ncsh log(ph )/N

)
(A.5)

and

sup
x∈X

∣∣ω̂(x) −ω(x)
∣∣ = oP (1). (A.6)

Theorem A.3. If Assumptions 1–4 hold, then

sup
τ∈ϒ

∣∣∣∣∣θ̂(τ) − θ(τ) − 1
N

N∑
i=1

IFθ
i (τ)

∣∣∣∣∣ = oP
(
N−1/2),

sup
τ∈ϒ

∣∣∣∣∣θ̂∗(τ) − θ̂(τ) − 1
N

N∑
i=1

ηiIFθ
i (τ)

∣∣∣∣∣ = oP
(
N−1/2).

Theorem A.4. If Assumptions 1–3, 5, 6 hold, then

ÛQPE(τ) − UQPE(τ) = 1
N

N∑
i=1

IFi(τ) +
θ(τ)f (2)

Y (qτ )

(∫
u2K1(u)du

)
h2

1

2f 2
Y (qτ )

+R(τ)

ÛQPE
∗
(τ) − ÛQPE(τ) = 1

N

N∑
i=1

ηi · IFi(τ) +R∗(τ),

where the residuals satisfy supτ∈ϒ max{|R(τ)|, |R∗(τ)|} = oP ((log(N )Nh1 )−1/2 ).

Appendix B: Double robustness

The double robustness of (3) follows from Chernozhukov, Escanciano, Ichimura, Newey,
and Robins (forthcoming, Theorem 3). In this section, for the sake of completeness, we
demonstrate that (3) is doubly robust.

Lemma B.1 (Double robustness). Suppose Assumption 1 holds. If:

(i)
∫

|m̃1(x, qτ )| dFX(x),
∫

|ω̃(x)1{y ≤ qτ}| dFY ,X(y, x),
∫

|ω̃(x)m0(x, qτ )| dFX(x),
and

∫
|ω(x)m̃0(x, qτ )| dFX(x) are finite;

(ii) for every x−1 in the support of X−1, the mappings x1 �→ (m0(x, qτ ) − m̃0(x, qτ ))
and x1 �→ fX1|X−1=x−1 (x1 ) are continuously differentiable with(

m0(x, qτ ) − m̃0(x, qτ )
)
fX1|X−1=x−1 (x1 ) → 0
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as x1 → ±∞; and

(iii)
∫
m̃1(x, qτ )dFX(x) = ∫

∂
∂x1

m̃0(x, qτ )dFX(x);

then (4) and (5) hold.

In this lemma, conditions (i) and (ii) are regularity conditions for the nuisance
parameter values. Condition (iii) is satisfied if m̃1(x, qτ ) = ∂

∂x1
m̃0(x, qτ ). It is reason-

able since m̃0(x, qτ ) is a value for m0(x, qτ ) and m̃1(x, qτ ) is a value for m1(x, qτ ) =
∂

∂x1
m0(x, qτ ).

Proof. Note that (4) follows from∫ (
m̃1(x, qτ ) −ω(x)

(
1{y ≤ qτ} − m̃0(x, qτ )

))
dFY ,X(y, x)

=
∫

m̃1(x, qτ )dFX(x)

−
∫∫ (

m0(x, qτ ) − m̃0(x, qτ )
)( ∂

∂x1
fX1|X−1=x−1 (x1 )

)
dx1 dFX−1 (x−1 )

=
∫

m̃1(x, qτ )dFX(x)

+
∫∫ (

m1(x, qτ ) −
(

∂

∂x1
m̃0(x, qτ )

))(
fX1|X−1=x−1 (x1 )

)
dx1 dFX−1 (x−1 )

=
∫

m1(x, qτ )dFX(x)

= θ(τ),

where the first equality follows from Fubini’s theorem, and the second equality follows
from integration by parts. Next, (5) follows from∫ (

m1(x, qτ ) − ω̃(x)
(
1{y ≤ qτ} −m0(x, qτ )

))
dFY ,X(y, x)

=
∫

m1(x, qτ )dFX(x) −
∫∫

ω̃(x)
(
m0(x, qτ ) −m0(x, qτ )

)
fX1|X−1=x−1 dx1 dFX−1 (x−1 )

=
∫

m1(x, qτ )dFX(x)

= θ(τ).

This completes a proof of the lemma.

Appendix C: Estimation and inference of UQPE with general preliminary

machine learning estimators

C.1 Estimation and inference procedures with cross-fitting

Based on the moment condition (3), we propose to estimate θ(τ) by a cross-fitting ap-
proach (Chernozhukov et al., 2018, Definition 3.2). We split the sample of size N into a
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random partition {I1, � � � , IL} of approximately equal size. For simplicity, let |Il| = n for
every l so that N = nL. In this section, we assume that, for every index l ∈ {1, � � � , L} of
fold, we can construct an estimator (ω̂l(x), m̂0,l(x, q), m̂1,l(x, q)) by using all the obser-
vations except those in Il. Letting q̂τ be the full sample τth empirical quantile of Y , we
estimate θ(τ) by

θ̂cf (τ) = 1
L

L∑
l=1

1
n

∑
i∈Il

(
m̂1,l(Xi, q̂τ ) − ω̂l(Xi )

(
1{Yi ≤ q̂τ} − m̂0,l(Xi, q̂τ )

))
. (C.1)

With this estimator for θ(τ), our proposed estimator for UQPE(τ) is

ÛQPEcf (τ) = − θ̂cf (τ)

f̂Y (q̂τ )
,

where f̂Y (y ) is defined in Section 2.2.
For an inference about UQPE(τ), we propose the multiplier bootstrap without re-

calculating the preliminary estimators (ω̂l(x), m̂0,l(x, q), m̂1,l(x, q)) in each bootstrap
iteration. Using independent standard normal random variables {ηi}Ni=1 that are inde-

pendent of the data, we compute the bootstrap estimator ÛQPE
∗
cf (τ) in the following

steps. We construct the bootstrap estimator (q̂∗
τ , f̂ ∗

Y ) for (qτ , fY ) in the same way as in
Section 2.3. The bootstrap estimator for θ(τ) is

θ̂∗
cf (τ) = 1

L

L∑
l=1

1∑
i∈Il

(ηi + 1)

∑
i∈Il

(ηi + 1)
(
m̂1,l

(
Xi, q̂

∗
τ

) − ω̂l(Xi )
(
1
{
Yi ≤ q̂∗

τ

} − m̂0,l
(
Xi, q̂

∗
τ

)))
.

With these components, the bootstrap estimator ÛQPE
∗
cf (τ) is given by

ÛQPE
∗
cf (τ) = − θ̂∗

cf (τ)

f̂ ∗
Y

(
q̂∗
τ

) .

We can use the above multiplier bootstrap method to conduct various types of infer-
ence. For example, we can construct a confidence band CBθ

ϒ,cf for θ(τ) over ϒ by com-

puting θ̂cf (τ) ± σ̂θ(τ)cθϒ,cf (1 − α) for τ ∈ ϒ, where σ̂θ(τ) is an estimator of the standard

error of θ̂cf (τ) and cθϒ,cf (1 − α) is the (1 − α) quantile of supτ∈ϒ |(θ̂∗
cf (τ) − θ̂cf (τ))/σ̂θ(τ)|

conditional on the data. Also, we can construct a confidence band CBϒ,cf for UQPE

over ϒ by computing ÛQPEcf (τ) ± σ̂(τ)cϒ,cf (1 − α) for τ ∈ ϒ, where σ̂(τ) is an esti-

mator of the standard error of ÛQPEcf (τ) and cϒ,cf (1 − α) is the (1 − α) quantile of

supτ∈ϒ |(ÛQPE
∗
cf (τ) − ÛQPEcf (τ))/σ̂(τ)| conditional on the data.

C.2 Asymptotic theory

In this section, we investigate the asymptotic properties of the estimators (ÛQPEcf (τ),

θ̂cf (τ)) and the bootstrap estimators (ÛQPE
∗
cf (τ), θ̂∗

cf (τ)) introduced in the previous sec-
tion.
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Assumption C.1. For every index l ∈ {1, � � � , L} of folds, there exist sequences νN , AN , πN

such that the following conditions hold with probability approaching one:

sup
Q

N
({
m̂j,l(x, q) : q ∈ Qδ

}
, ‖ · ‖Q,2, ε

∥∥G(j)
l

∥∥
Q,2

)
�

(
AN

ε

)νN

for every ε ∈ (0, 1], (C.2)

sup
q∈Qδ

∫ ∣∣m̂1,l(x, q) −m1(x, q)
∣∣2
dFX(x) =OP

(
π2
N

)
, (C.3)

∫ ∣∣ω̂l(x) −ω(x)
∣∣2
dFX(x) =OP

(
π2
N

)
, (C.4)

sup
q∈Qδ

∫ ∣∣ω̂l(x)m̂0,l(x, q) −ω(x)m0(x, q)
∣∣2
dFX(x) =OP

(
π2
N

)
, (C.5)

∫ (
sup
q∈Qδ

∣∣m̂1,l(x, q)
∣∣)2+d

dFX(x) =OP (1), (C.6)

∫ (
sup
q∈Qδ

∣∣ω̂l(x)
(
1 + ∣∣m̂0,l(x, q)

∣∣)∣∣)2+d
dFX(x) = OP (1), (C.7)

sup
q∈Qδ

∣∣∣∣∫ (
m̂1,l(x, q) − ∂

∂x1
m̂0,l(x, q)

)
dFX(x)

∣∣∣∣ = OP

(
π̃2
N

)
, (C.8)

sup
q∈Qδ

∣∣∣∣∫ (
ω̂l(x) −ω(x)

)(
m̂0,l(x, q) −m0(x, q)

)
dFX(x)

∣∣∣∣ =OP

(
π̃2
N

)
, (C.9)

where, in (A.1), N(·) is the covering number, G(j)
l is the envelope for {m̂j(x, q) : q ∈ Qδ},

and the supremum in (C.2) is taken over all finitely discrete probability measures.

Several comments are in order. First, this assumption consists of a list of high-
level conditions that should be satisfied by the preliminary estimator (ω̂l(x), m̂0,l(x, q),
m̂1,l(x, q)). While we state these high-level conditions here for the sake of accommo-
dating a general class of preliminary estimators, the preliminary estimators considered
in the paper satisfy these requirements. Second, (A.1) is the entropy condition for the
classes of functions {m̂j,l(x, q) : q ∈ Qδ}. We require this condition because (1) we want
to derive the linear expansion for θ̂(τ) that is uniform in τ and (2) m̂j,l(x, q̂τ ) has the
estimated q̂τ inside for j = 0, 1. We can directly verify (A.1) for general machine learning
estimators via a kernel convolution technique in Section C.3. Third, it is worth mention-
ing that term (C.8) is zero if we construct m̂1(x, q) by m̂1(x, q) = ∂

∂x1
m̂0(x, q).

Theorem C.1. If Assumptions 1 and C.1 hold, π2
NνN log(AN/πN ) = o(1), ν2

N log2(AN/

πN ) = o(N
d

2+d ), and π̃N = o(N−1/4 ), then supτ∈ϒ |θ̂cf (τ) − θ(τ) − 1
N

∑N
i=1 IFθ

i (τ)| =
oP (N−1/2 ), and supτ∈ϒ |θ̂∗

cf (τ) − θ̂cf (τ) − 1
N

∑N
i=1 ηiIFθ

i (τ)| = oP (N−1/2 ).
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Corollary C.1. Suppose assumptions in Theorem C.1 hold and supτ∈ϒ |
√
Nσ̂θ(τ) −

Var(IFθ
i (τ))| = oP (1). Then P({θ(τ) : τ ∈ϒ} ∈ CBθ

ϒ,cf ) → 1 − α.

Theorem C.2. If Assumptions 1, 5, and C.1 hold, π2
NνN log(N ) log(AN/πN )h1 = o(1),

ν2
N log(N ) log2(AN/πN )h1 = o(N

d
2+d ), and π̃N = o((log(N )Nh1 )−1/4 ), then ÛQPEcf (τ) −

UQPE(τ) = 1
N

∑N
i=1 IFi(τ) + θ(τ)f (2)

Y (qτ )(
∫
u2K1(u)du)h2

1
2f 2

Y (qτ )
+ R(τ) and ÛQPE

∗
cf (τ) −

ÛQPEcf (τ) = 1
N

∑N
i=1 ηi · IFi(τ) + R∗(τ), where supτ∈ϒ max{|R(τ)|, |R∗(τ)|} =

oP ((log(N )Nh1 )−1/2 ).

The following corollary summarizes the validity for the bootstrap inference.

Corollary C.2. Suppose assumptions in Theorem C.2 hold and
√
Nh1 = o(h−2

1 ). If
h1 Var(IFi(τ)) is bounded away from zero and supτ∈ϒ |√Nh1σ̂(τ) − √

h1 Var(IFi(τ))| =
oP (log−1/2(N )), then P({UQPE(τ) : τ ∈ϒ} ∈ CBϒ,cf ) → 1 − α.

C.3 Kernel smoothing general machine learning estimators

In this section, we propose a kernel convolution method to smooth general machine
learning estimators m̂j,l(x, q) over q. This convolution benefits the theoretical argu-
ments for the uniform consistency over q because the resulting convolution is Lipschitz
continuous, as shown in the proof of Theorem C.3. Chernozhukov, Fernández-Val, and
Kowalski (2015) introduce the kernel convolution as a theoretical device in their proof.
The key advantage is they do not need to implement kernel convolution in practice, and
thus avoid the choice of the tuning parameter. On the other hand, we apply the kernel
convolution technique in a difference context and require implementing it on the origi-
nal machine learning estimator. For a generic machine learning estimator m̂0(x, q), the
entropy of the class of functions {m̂j,l(x, q) : q ∈ Qδ} for j = 0, 1 and l ∈ {1, � � � , L} is usu-
ally unknown. This kernel convolution method provides one way to introduce smooth-
ness to m̂j,l(x, q) over q, and thus reduces the entropy of {m̂j,l(x, q) : q ∈ Qδ}.

Assumption C.2.

1. m0(x, q) and m1(x, q) are 2kth order differentiable with respect to q, and all the
derivatives are bounded uniformly over x.

2. K2(·) is a symmetric function with bounded support,
∫
K2(u)du = 1,

∫
ujK2(u)du =

0 for j = 1, � � � , 2k−1, supu |K2(u)| <∞ and
∫
u2k|K2(u)| du <∞. h2 = c2N

−1
2(2k+1) for

some positive constant c2.

We use the higher-order kernel to fully exploit the smoothness of m0(x, q) and re-
duce the bias caused by the kernel convolution method. We further assume that the er-
rors of the initial machine learning estimators {m̆j,l(x, q)}j=0,1,l∈{1, ���,L} and
{ω̂l(x)}l∈{1, ���,L} satisfy the following conditions.
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Assumption C.3. For every subsample index l ∈ {1, � � � , L}, there exists a vanishing se-
quence ρN such that

sup
x∈X ,q∈Qδ

∣∣m̆j,l(X , q) −mj(X , q)
∣∣ = OP (h2ρN ), j = 0, 1, (C.10)

sup
q∈Qδ

∫ ∣∣m̆0(x, q) −m1(x, q)
∣∣2
dFX(x) =OP

(
h2

2ρ
2
N

)
, (C.11)

∫ ∣∣ω̂(x) −ω(x)
∣∣2
dFX(x) = OP

(
h2

2ρ
2
N

)
, (C.12)∫ (

sup
q∈Qδ

∣∣m̆0(x, q)
∣∣)2+d

dFX(x) =OP (1), (C.13)

∫ (
sup
q∈Qδ

∣∣ω̂(x)
(
1 + ∣∣m̆0(x, q)

∣∣)∣∣)2+d
dFX(x) =OP (1), (C.14)

sup
q∈Qδ

∣∣∣∣∫ (
m̆0(x, q) − ∂

∂x1
m̆0(x, q)

)
dFX(x)

∣∣∣∣ =OP

(
π̃2
N ,1

)
, (C.15)

sup
q∈Qδ

∣∣∣∣∫ (
ω̂(x) −ω(x)

)(
m̆0(x, q) −m0(x, q)

)
dFX(x)

∣∣∣∣ = OP

(
π̃2
N ,1

)
. (C.16)

Deriving these error bounds for various machine learning methods is beyond the
scope of our paper. Partial results are available in the literature. For example, the L2

bounds for the random forest method and deep neural networks have already been
established in Wager and Athey (2018), Schmidt-Hieber (2020), and Farrell, Liang, and
Misra (2021)), respectively.

Our final first-stage estimator of (m0(x, q), m1(x, q), ω(x)) is (m̂0(x, q), m̂0(x, q),
ω̂(x)), where m̂0(x, q) = ∫ m̆0(x,t )

h2
K2( q−t

h2
)dt for j = 0, 1. The next theorem shows that

the high-level conditions in Assumption C.1 hold for (m̂0(x, q), m̂0(x, q), ω̂(x)).

Theorem C.3. Suppose Assumptions 1, C.2, and C.3 hold, then (m̂0(x, q), m̂0(x, q),
ω̂(x)) satisfy Assumption C.1 with νN = 1, AN = 1, and πN = h2ρN + h2k

2 , and π̃2
N =

π̃2
N ,1 + o(N−1/2 ).

Appendix D: Proof of the results in the main text

D.1 Proof of (3)

Lemma D.1. Equation (3) holds under Assumption 1.

Proof. This statement follows from

E
[
m1(X , qτ ) − θ(τ) −ω(X )

(
1{Y ≤ qτ} −m0(X , qτ )

)]
= −

∫
ω(x)

(
1{y ≤ qτ} −m0(x, qτ )

)
dFY ,X(y, x)
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= −
∫

ω(x)

(∫
1{y ≤ qτ}dFY |X=x(y ) −m0(x, qτ )

)
dFX(x)

= 0,

where the first equality follows from the definition of θ(τ), the second equality comes
from the law of iterated expectations, and the last equality follows from the definition of
m0(x, q).

D.2 Proof of Theorem A.1

In the proof of Theorem A.1, we use the notation

G(0) = {
�

(
b(X )�β

)
: β ∈Rp, ‖β‖0 ≤Msb

}
,

and

G(1) =
{
�

(
b(X )�β

)(
1 −�

(
b(X )�β

)) ∂

∂x1
b(X )�β : β ∈Rp, ‖β‖0 ≤Msb,

sup
x∈X

∣∣∣∣ ∂

∂x1
b(x)�β

∣∣∣∣ ≤M

}
,

where M is a sufficiently large constant.

Lemma D.2. Under the assumptions in Theorem A.1,

(i ) sup
q∈Qδ

‖β̂q −βq‖1 =OP

(√
s2
b log(pb )

N

)
,

(ii ) sup
x∈X ,q∈Qδ

∣∣m̂0(x, q) −m0(x, q)
∣∣ =OP

(√
ζ2
Ns2

b log(pb )
N

)
,

(iii ) sup
q∈Qδ

(∫ (
m̂0(x, q) −m0(x, q)

)2
dFX(x)

)1/2

=OP

(√
sb log(pb )

N

)
,

(vi ) sup
x∈X ,q∈Qδ

∣∣m̂1(x, q) −m1(x, q)
∣∣ =OP

(√
ζ2
Ns2

b log(pb )
N

)
,

(v ) sup
q∈Qδ

(∫ (
m̂1(x, q) −m1(x, q)

)2
dFX(x)

)1/2

=OP

(√
sb log(pb )

N

)
,

where, in each of the five the statements, the norm on the left-hand side is with respect to X

and the stochastic convergenceOP in the right-hand side is with respect to the randomness
of the estimators.
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Proof. The first three results have been established by Belloni, Chernozhukov,
Fernández-Val, and Hansen (2017). For the fourth result, we have∣∣m̂1(X , q) −m1(X , q)

∣∣
≤

∣∣∣∣�(
b(X )�β̂q

)(
1 −�

(
b(X )�β̂q

)) ∂

∂x1
b(X )�β̂q −�

(
b(X )�βq

)
× (

1 −�
(
b(X )�βq

)) ∂

∂x1
b(X )�βq

∣∣∣∣
+

∣∣∣∣ ∂

∂x1

(
m0(X , q) −�

(
b(X )�βq

))∣∣∣∣
≤

∣∣∣∣ ∂

∂x1
b(X )�(β̂q −βq )

∣∣∣∣ + ∣∣�(
b(X )�β̂q

) −�
(
b(X )�βq

)∣∣
+

∣∣∣∣ ∂

∂x1

(
m0(X , q) −�

(
b(X )�βq

))∣∣∣∣
≤ sup

x∈X

∣∣∣∣ ∂

∂x1
b(x)‖∣∣β̂q −βq‖1+

∣∣m̂0(X , q) −m0(X , q)

∣∣∣∣
+

∣∣∣∣ ∂

∂x1

(
m0(X , q) −�

(
b(X )�βq

))∣∣∣∣
+ ∣∣(m0(X , q) −�

(
b(X )�βq

))∣∣,
where the first inequality is due to the triangle inequality and Assumption 2, and the
second inequality is due to the facts that �(·)(1 − �(·)) is bounded, f (u) = u(1 − u) is
Lipschitz-1 continuous in u, and supx∈X ,q∈Qδ | ∂

∂x1
b(x)�βq| < c. Taking supq∈Qδ,x∈X on

both sides, we have supx∈X ,q∈Qδ |m̂1(x, q) −m1(x, q)| = OP (
√
ζ2
Ns2

b log(pb )/N ). Similarly,

by Assumption 2.3,

sup
q∈Qδ

(∫ (
m̂1(x, q) −m1(x, q)

)2
dFX(x)

)1/2

= OP

(√
sb log(ph ∨N )

N

)
.

This complete a proof of the lemma.

We note that Belloni et al. (2017) have shown supq∈Qδ ‖β̂q‖0 = OP (sb ). In addition, by

Lemma D.2, we have supx∈X ,q∈Qδ | ∂
∂x1

b(x)�(β̂q −βq )| ≤ ζN supq∈Qδ ‖β̂q −βq‖1 = oP (1).

This implies, with probability approaching one, supx∈X ,q∈Qδ | ∂
∂x1

b(X )�β̂q| =O(1). Then
(A.1) directly follows from the argument in the proof of Belloni et al. (2017, Theorem 5.1).
Lemma D.2 verifies (A.2) and (A.3) in Theorem A.1. This concludes the proof.

D.3 Proof of Theorem A.2

Define εN = √
log(ph )/N . We let �N be a sequence that diverges to ∞ but �N = o(Nc )

for any constant c > 0. Define J0 = Supp(ρ) and Ĵ = Supp(ρ̂). We denote ρ∗ =
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arg minρ

∫
(ω(x) − h(x)�ρ)2 dFX(x) + 2εN

∑
j∈J c

0
|ρj|. For a generic p × 1 vector ρ, let

ρJ be the p× 1 vector such that its jth element is ρj if j ∈ J and 0 otherwise.
First, we are going to show (A.6). It is sufficient to show

‖ρ̂− ρ‖1 =OP

(
�Nε

(2ξ−1)/(1+2ξ)
N

)
, (D.1)

because, given (D.1), we have

sup
x∈X

∣∣ω̂(x) −ω(x)
∣∣ ≤ sup

x∈X

∣∣∣h(x)‖
∣∣∣ρ̂− ρ‖1 + sup

x∈X

∣∣∣h(x)�ρ−ω(x)
∣∣∣ = oP (1).

The proof of Chernozhukov, Newey, and Singh (2022, Lemma A6) shows∥∥ρ̂− ρ∗∥∥
1 ≤ C

√
sh

∥∥ρ̂− ρ∗∥∥
2 =OP

(
�Nε

(2ξ−1)/(1+2ξ)
N

)
(D.2)

under Assumption 3.3. Therefore, in order to prove (D.1), it suffices to show∥∥ρ− ρ∗∥∥
1 = OP

(
�Nε

(2ξ−1)/(1+2ξ)
N

)
. (D.3)

By Chernozhukov, Newey, and Singh (2022, equation (B.2)), with εN =√
log(ph )/N , we have(

ρ− ρ∗)�
G

(
ρ− ρ∗) + 2εN

∑
j∈J c

0

∣∣ρ∗
j

∣∣ ≤ (ρ− ρ)�G(ρ− ρ) ≤ C1ε
4ξ/(2ξ+1)
N ,

where ρ is the coefficient of a linear projection ofω(X ) onh(X ) such thatEh(X )(ω(X )−
h(X )�ρ) = 0. Given ρj = 0 for j ∈ J c

0 and the definition of ρ, we have∥∥(
ρ∗ − ρ

)
J c

0

∥∥
1 =

∑
j∈J c

0

∣∣ρ∗
j

∣∣ ≤ C1ε
(2ξ−1)/(2ξ+1)
N and

∫ (
ω(x) − h(x)�ρ∗)2

dFX(x) = (
ρ− ρ∗)�

G
(
ρ− ρ∗) ≤ C1ε

4ξ/(2ξ+1)
N .

By Bickel, Ritov, and Tsybakov (2009, Lemma 4.1), Assumption 3.4 implies there exist
constants κ and c such that

inf
ρ
=0,‖ρJ c

0
‖1≤κ‖ρJ0 ‖1

ρ�Gρ

‖ρJ0‖2
2

≥ c > 0. (D.4)

It implies ‖ρ∗ − ρ‖1 ≤ Cε
(2ξ−1)/(2ξ+1)
N .1 Therefore, we have (D.3).

1If κ‖(ρ∗ −ρ)J0 ‖1 ≤ C1ε
(2ξ−1)/(2ξ+1)
N , then ‖ρ∗ −ρ‖1 ≤ ‖(ρ∗ −ρ)J0 ‖1 +‖(ρ∗ −ρ)J c

0
‖1 ≤ Cε

(2ξ−1)/(2ξ+1)
N . On

the other hand, if κ‖(ρ∗ −ρ)J0 ‖1 >C1ε
(2ξ−1)/(2ξ+1)
N ≥ ‖(ρ∗ −ρ)J c

0
‖1, then we have ‖(ρ∗−ρ)J0 ‖2

1 ≤ |J0‖|(ρ∗ −
ρ)J0 ‖2

2 ≤ 1
c sh(ρ∗ − ρ)�G(ρ∗ − ρ) = 1

c sh
∫

(h(x)(ρ∗ − ρ))2 dFX (x) ≤ 1
c 2sh(

∫
(h(x)ρ∗ − ω(x))2 dFX (x) +

C(sh )−2ξ ) ≤ Cε
(2ξ−1)/(2ξ+1)
N , where the second inequality is by (D.4), the third inequality is due to Assump-

tion 3.3, and the last inequality is by sh = Cε
−2/(2ξ+1)
N . This again implies ‖ρ∗ −ρ‖1 ≤ ‖(ρ∗ −ρ)J0 ‖1 +‖(ρ∗ −

ρ)J c
0
‖1 ≤ Cε

(2ξ−1)/(2ξ+1)
N .
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Second, we want to show

‖ρ̂‖0 =OP (sh ). (D.5)

Let e be an arbitrary positive number. There exists a constant κ > 0 such that
P(λmax(Ĝ) > κ) ≤ e/2, where λmax(Ĝ) is the largest eigenvalue for Ĝ. By the first-order
condition, we have

λR‖ρ̂‖1/2
0 = ∥∥{−M̂ + Ĝρ̂}Ĵ

∥∥
2

≤ ∥∥{
M̂ − Ĝρ∗}

Ĵ
∥∥

2 + ∥∥{
Ĝ

(
ρ̂− ρ∗)}

Ĵ
∥∥

2

≤ ‖ρ̂‖1/2
0

∥∥M̂ − Ĝρ∗∥∥∞ + sup
‖a‖0≤‖ρ̂‖0,‖a‖2=1

a�Ĝ
(
ρ̂− ρ∗)

≤ ‖ρ̂‖1/2
0 λR/�N + sup

‖a‖0≤‖ρ̂‖0,‖a‖2=1
a�Ĝ

(
ρ̂− ρ∗),

where the last equality holds because Chernozhukov, Newey, and Singh (2022) show
‖Ĝρ∗ − M̂‖∞ = OP (εN ) in the proof of their Lemma A5. For the second term on the
right-hand side of the above display, there exists a large constant C > 0 such that, with
probability greater than 1 − e/2,

∣∣a�Ĝ
(
ρ̂− ρ∗)∣∣ ≤

(
1
N

N∑
i=1

(
h(Xi )

�a
)2

)1/2(
1
N

N∑
i=1

(
h(Xi )

�(
ρ̂− ρ∗))2

)1/2

≤
(

1
N

N∑
i=1

(
h(Xi )

�a
)2

)1/2∣∣(ρ̂− ρ∗)�
Ĝ

(
ρ̂− ρ∗)∣∣

≤
(

1
N

N∑
i=1

(
h(Xi )

�a
)2

)1/2(∥∥ρ̂− ρ∗∥∥
1

∥∥Ĝ(
ρ̂− ρ∗)∥∥∞

)1/2

≤ C

(
1
N

N∑
i=1

(
h(Xi )

�a
)2

)1/2

(shλR )1/2λ
1/2
R ,

where the last inequality holds due to (D.2) and the fact that ‖Ĝ(ρ̂ − ρ∗ )‖∞ = OP (λR ).2

Therefore, there exists a large constant C > 0 such that

P

(
‖ρ̂‖0 ≤ Csh sup

‖a‖0≤‖ρ̂‖0,‖a‖2=1

1
N

N∑
i=1

h(Xi )
�a

)
≥ 1 − e/2. (D.6)

2We have ‖Ĝ(ρ̂−ρ∗ )‖∞ ≤ ‖Ĝρ̂−M̂‖∞ +‖M̂ −M‖∞ +‖Gρ∗ −M‖∞ +‖(Ĝ−G)ρ∗‖∞ = OP (λR ), where we

use the facts that by the first-order condition for lasso regressions, ‖Ĝρ̂− M̂‖∞ =O(λR )and‖Gρ∗ −M‖∞ =
O(εN ), ‖M̂ −M‖∞ = OP (εN ) by Assumption 3, and ‖(Ĝ−G)ρ∗‖∞ = OP (εN ) by Chernozhukov, Newey, and
Singh (2022, Lemma A4).



12 Sasaki, Ura, and Zhang Supplementary Material

If ‖ρ̂‖0 > 3Ccsh for the constant C in (D.6) where c is defined in Assumption 3.4, then

Csh sup
‖a‖0≤‖ρ̂‖0,‖a‖2=1

1
N

N∑
i=1

h(Xi )
�a≤ Csh

⌈ ‖ρ̂‖0

3Ccsh

⌉
sup

‖a‖0≤3Ccsh,‖a‖2=1

1
N

N∑
i=1

h(Xi )
�a

≤ 0.5‖ρ̂‖0 < ‖ρ̂‖0,

where the first inequality is due to Belloni and Chernozhukov (2011, Lemma 13) under
‖ρ̂‖0/(3Ccsh ) > 1, and the second inequality uses

c ≥ sup
‖a‖0≤3Ccsh,‖a‖2=1

1
N

N∑
i=1

h(Xi )
�a

provided that

sup
ρ
=0,‖ρ‖0≤mN

ρ�Ĝρ

‖ρ‖2
2

≤ c. (D.7)

Therefore, by Assumption 3.4, we have

P
(‖ρ̂‖0 > 3Ccsh

) ≤ P

(
‖ρ̂‖0 >Csh sup

‖a‖0≤‖ρ̂‖0,‖a‖2=1

1
N

N∑
i=1

h(Xi )
�a

)
+ P((D.7) is false) ≤ e.

Third, we are going to show (A.4). By (D.1) and (D.5), for any e > 0, we can find M

and c such that ω̂(x) ∈ Gω with probability greater than 1 − e, where

Gω = {
h(X )�ρ : ρ ∈Rph , ‖ρ‖0 ≤Msh, ‖ρ− ρ‖1 ≤MNc

(
log(ph )/N

) ξ−1/2
1+2ξ

}
.

Then (A.4) directly follows the argument in the proof of Belloni et al. (2017, Theorem 5.1).
Last, we are going to show (A.5). Assumption 3 implies Assumptions 1–6 in Cher-

nozhukov, Newey, and Singh (2022), where their α0, ρ∗, ρ̃, and ρ̂ in our context are ω(x),
ρ∗, ρ, and ρ̂, respectively.3 Then (A.5) holds due to Chernozhukov, Newey, and Singh
(2022, Theorem 1) and the fact that Nc(log(ph )/N )2ξ/(1+2ξ) =O(Ncsh log(ph )/N ) for any
constant c > 0.

D.4 Proof of Theorem A.3

For a proof of this theorem, we let PNf and Pf denote 1
N

∑N
i=1 f (Zi ) and Ef , respec-

tively. We write aN � bN for two positive sequences aN and bN if there exists a constant
independent of n such that aN ≤ cbN . The constant c may vary in different contexts.
For any estimator θ̂, we follow the empirical processes literature and denote Ef (X , θ̂) as
Ef (X , θ) evaluated at θ = θ̂.

The proof of Theorem A.3 is divided into three sections. In Section D.4.1, we prove
three technical lemmas that will be used later. In Section D.4.2, we derive the linear ex-
pansion for θ̂(τ). In Section D.4.3, we derive the linear expansion for θ̂∗(τ).

3In particular, Assumption 3.4 implies Assumption 3 in Chernozhukov, Newey, and Singh (2022) by
Bickel, Ritov, and Tsybakov (2009, Lemma 4.1).
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D.4.1 Useful lemmas Define φi(q) = m1(Xi, q) −ω(Xi )(1{Yi ≤ q} −m0(Xi, q)) − θ(τ)
and φ̂i(q) = m̂0(Xi, q) − ω̂(Xi )(1{Yi ≤ q} − m̂0(Xi, q)) − θ(τ).

Lemma D.3. If Assumptions 1–3 hold, then supτ∈ϒ |P(φ̂i(q̂τ ) − φi(q̂τ ))| =
OP (

Nc
√

sbsh log(pb ) log(ph )
N ) and supτ∈ϒ |P(φ̂i(q̂∗

τ ) −φi(q̂∗
τ ))| =OP (

Nc
√

sbsh log(pb ) log(ph )
N ).

Proof. We focus on the first result and the second one can be proved in the same man-
ner. Using the law of iterated expectations and m0(x, q) = ∫

1{y ≤ q}dFY |X=x(y ), we have∫ (
m1(x, q) −ω(x)

(
1{y ≤ q} −m0(x, q)

))
dFY ,X(y, x)

−
∫ (

m̂0(x, q) − ω̂(x)
(
1{y ≤ q} − m̂0(x, q)

))
dFY ,X(y, x)

=
∫ (

m̂1(x, q) −m1(x, q)
)
dFX(x) +

∫
ω(x)

(
m̂0(x, q) −m0(x, q)

)
dFX(x)

+
∫ (

ω̂(x) −ω(x)
)(
m̂0(x, q) −m0(x, q)

)
dFX(x).

The integration by parts implies∫
ω(x)

(
m̂0(x, q) −m0(x, q)

)
fX1|X−1=x−1 (x1 )dx1

= −
∫ (

∂

∂x1
m̂0(x, q) − ∂

∂x1
m0(x, q)

)
fX1|X−1=x−1 (x1 )dx1,

where (m̂0(x, q) −m0(x, q))fX1|X−1=x−1 (x1 ) disappears on the boundary of x1. Then∫ (
m1(x, q) −ω(x)

(
1{y ≤ q} −m0(x, q)

))
dFY ,X(y, x)

−
∫ (

m̂1(x, q) − ω̂(x)
(
1{y ≤ q} − m̂0(x, q)

))
dFY ,X(y, x)

=
∫ (

m̂1(x, q) − ∂

∂x1
m̂0(x, q)

)
dFX(x)

+
∫ (

ω̂(x) −ω(x)
)(
m̂0(x, q) −m0(x, q)

)
dFX(x).

Because supτ∈ϒ |q̂τ − qτ| = oP (N−1/2 ), we have, with probability approaching one,∣∣P(
φ̂i(q̂τ ) −φi(q̂τ )

)∣∣
≤ sup

q∈Qδ

∣∣∣∣∫ (
m̂1(x, q) − ∂

∂x1
m̂0(x, q)

)
dFX(x)

∣∣∣∣
+ sup

q∈Qδ

∣∣∣∣∫ (
ω̂(x) −ω(x)

)(
m̂0(x, q) −m0(x, q)

)
dFX(x)

∣∣∣∣
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≤
(∫ (

ω̂(x) −ω(x)
)2
dFX(x)

)1/2

sup
q∈Qδ

(∫ (
m̂0(x, q) −m0(x, q)

)2
dFX(x)

)1/2

=OP

(
Nc

√
sbsh log(pb ) log(ph )

N

)
,

where the second inequality holds due to the fact that m̂1(x, q) = ∂
∂x1

m̂0(x, q) and the
last equality holds due to Theorems A.1 and A.2.

Lemma D.4. Let η̃i = 1 for every i = 1, � � � , N or η̃i = 1 + ηi for every i = 1, � � � , N . If As-
sumptions 1–3 hold, then

sup
q∈Qδ

|(PN − P)η̃i

(
φ̂i(q) −φi(q)

)
= OP

(
πN

(√
sh log(ph )/N + √

sb log(pb )/N
) +N−(1+d)/(2+d)(sh log(ph ) + sb log(pb )

))
.

Proof. Define M(M ) the set of (m̃1(x, q), m̃0(x, q), ω̃(x)), which satisfies{
m̃j(x, q) : q ∈ Qδ

} ⊂ G(j), j = 0, 1,

sup
q∈Qδ

∫ ∣∣m̃j(x, q) −mj(x, q)
∣∣2
dFX(x) ≤Msb log(pb )/N , j = 0, 1,

sup
q∈Qδ,x∈X

∣∣m̃j(x, q) −mj(x, q)
∣∣ ≤MζNsb

√
log(pb )/N , j = 0, 1,

∫ ∣∣ω̃(x) −ω(x)
∣∣2
dFX(x) ≤MN2csh log(ph )/N .

For such (m̃1(x, q), m̃0(x, q), ω̃(x)), we have

sup
q∈Qδ

∫ ∣∣ω̃(x)m̃0(x, q) −ω(x)m0(x, q)
∣∣2
dFX(x)

≤
∫ (

ω̃(x) −ω(x)
)2
dFX(x) + sup

q∈Qδ

∫
ω2(x)

(
m̃0(x, q) −m0(x, q)

)2
dFX(x)

≤MN2csh log(ph )/N

+ sup
q∈Qδ

(∫
ω2+d(x)dFX(x)

)2/(2+d)(∫ (
m̃0(x, q) −m0(x, q)

)4/d+2
dFX(x)

)d/(2+d)

≤MN2csh log(ph )/N +M

(
sup

q∈Qδ,x∈X

∣∣m̃0(x, q) −m0(x, q)
∣∣4/d

× sup
q∈Qδ

(∫
ω2+d(x)dFX(x)

)2/(2+d) ∫ (
m̃0(x, q) −m0(x, q)

)2
dFX(x)

)d/(2+d)

≤MN2csh log(ph )/N +M
(
ζ

4/(2+d)
N s

(4+d)/(2+d)
b

)
log(pb )/N ≡ π2

N .
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Therefore, we have

sup
q∈Qδ

∫ ∣∣ω̃(x)m̃0(x, q) −ω(x)m0(x, q)
∣∣2
dFX(x) ≤Mπ2

N ,

sup
q∈Qδ

∣∣ω̃(x)m̃0(x, q) −ω(x)m0(x, q)
∣∣ ≤M ,

∫ (
sup
q∈Qδ

∣∣m̃0(x, q)
∣∣ + sup

q∈Qδ

∣∣m1(x, q)
∣∣)2+d

dFX(x) ≤M and

∫ (
sup
q∈Qδ

∣∣ω̃l(x)
(
1 + ∣∣m̃0(x, q)

∣∣)∣∣ + sup
q∈Qδ

∣∣ω(x)
(
1 +m0(x, q)

)∣∣)2+d
dFX(x) ≤M .

Define

F(Xi ) = 4|η̃i|
(∣∣ω(x)

∣∣ +M
) + |η̃i|

(
sup
q∈Qδ

∣∣m1(x, q)
∣∣ +M

)
and

F =
{

η̃i

(
m̃1(Xi, q) − ω̃(Xi )

(
1{Yi ≤ q} − m̃0(Xi, q)

))
−η̃i

(
m1(Xi, q) −ω(Xi )

(
1{Yi ≤ q} −m0(Xi, q)

)) :

(
m̃1(x, q), m̃0(x, q), ω̃(x)

) ∈ M(M )

}
.

By Theorems A.1 and A.2, we have

sup
Q

N
(
F , ‖ · ‖Q,2, ε‖F‖Q,2

) ≤ C

(
pb

ε

)csb
(
ph

ε

)csh

,

sup
f∈F

Ef 2

≤ C sup
q∈Qδ

E
(
m̃1(x, q) −m1(x, q)

)2

+CE
(
ω̃(x) −ω(x)

)2 +C sup
q∈Qδ

E
(
m̃0(x, q)ω̃(x) −m0(x, q)ω(x)

)2 ≤Mπ2
N and

EF2+d < ∞.

By Chernozhukov, Chetverikov, and Kato (2014b, Corollary 5.1), we have

P sup
f∈F

∣∣(PN − P)f
∣∣

�

√√√√π2
Nsb
N

log
(
pbE

[
F(X )2]1/2

πN

)
+

√√√√π2
Nsh
N

log
(
phE

[
F(X )2]1/2

πN

)

+
shE

[(
max
i

F(Xi )
)2]1/2

N
log

(
phE

[
F(X )2]1/2

πN

)
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+
sbE

[(
max
i

F(Xi )
)2]1/2

N
log

(
pbE

[
F(X )2]1/2

πN

)
� πN

(√
sh log(ph )/N + √

sb log(pb )/N
) +N−(1+d)/(2+d)(sh log(ph ) + sb log(pb )

)
,

where the last inequality is due to the fact that E[F(X )2]1/2 = O(N1/(2+d) ). In addition,
Theorems A.1 and A.2 show that, for any e > 0, we can find a sufficiently large constant
M > 0 such that (m̂0, m̂0, ω̂) ∈ M(M ) occurs with probability greater than 1 − e. This
further implies that φ̂i(q) ∈ F with probability greater than 1 − e, and thus

sup
q∈Qδ

|(PN − P)η̃i

(
φ̂i(q) −φi(q)

)
= OP

(
πN

(√
sh log(ph )/N + √

sb log(pb )/N
) +N−(1+d)/(2+d)(sh log(ph ) + sb log(pb )

))
.

This leads to the desired result.

Lemma D.5. If Assumptions 1–3 hold, then supτ∈ϒ |(PN − P)(φi(q̂τ ) − φi(qτ ))| =
oP (N−1/2 ) and supτ∈ϒ |(PN − P)(ηi + 1)(φi(q̂∗

τ ) −φi(qτ ))| = oP (N−1/2 ).

Proof. We know that supτ∈ϒ |q̂τ − qτ| = OP (N−1/2 ) and supτ∈ϒ |q̂∗
τ − qτ| = OP (N−1/2 ).

(See Section D.6.2 for more detail.) These conditions imply that, for any ε > 0, there
exists a constant M > 0 such that

P

(
sup
τ∈ϒ

∣∣q̂∗(τ) − qτ
∣∣ ≤MN−1/2, sup

τ∈ϒ
|q̂τ − qτ| ≤ MN−1/2

)
≥ 1 − ε.

Next, we show

sup
|v|≤M ,τ∈ϒ

∣∣(PN − P)η̃i

(
φi

(
qτ + vN−1/2) −φi(qτ )

)∣∣ = oP
(
N−1/2).

Let F = {η̃i(φi(qτ + vN−1/2 ) −φi(qτ )) : |v| ≤M , τ ∈ϒ} with envelope

F(Xi ) = |η̃i| sup
q∈Qδ

∣∣m1(x, q)
∣∣ + |η̃i| sup

q∈Qδ

∣∣ω(x)
(
1 +m0(x, q)

)∣∣.
Note that F is nested in {η̃i(φi(q1 ) − φi(q2 )) : q1, q2 ∈ R}. Because mj(x, q) is Lipschitz
continuous in q and {1{Y ≤ q} : q ∈ R} is a VC class with VC index 2, we have J(v) =∫ v

0

√
1 + log(supQN(F , ‖ · ‖Q,2, ε‖F‖Q,2 ))dε � v

√
log(a/v) for some constant a > 0.

Last,

sup
f∈F

Pf 2 ≤ P sup
τ∈ϒ, |v|≤M

{∣∣m1
(
X , qτ + vN−1/2) −m1(X , qτ )

∣∣
+ ∣∣ω(X )

∣∣(∣∣m0
(
X , qτ + vN−1/2) −m0(X , qτ )

∣∣
+ ∣∣1{Y ≤ qτ} − 1

{
Y ≤ qτ + vN−1/2}∣∣)}2

� N−1/2.
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By Chernozhukov, Chetverikov, and Kato (2014b, Corollary 5.1, we have

P sup
|v|≤M ,τ∈ϒ

∣∣(PN − P)
(
φi

(
qτ + vN−1/2) −φi(qτ )

)∣∣
= P

∣∣∣sup
f∈F

(PN − P)f
∣∣∣

�
√

1

N3/2 log
(
aE

[
F(X )2

]1/2
N

) +
E

[(
max
i

F(Xi )
)2]1/2

N
log

(
aE

[
F(X )2]1/2

N
)

= o
(
N−1/2).

Therefore, the statement of this lemma holds.

D.4.2 Linear expansion for θ̂(τ) Taking η̃i = 1 and by (6) and Lemmas D.3, D.4, and
D.5, we have

θ̂(τ) − θ(τ) = PNφ̂i(q̂τ )

= (PN − P)φi(qτ ) + Pφi(q̂τ ) + (PN − P)
(
φ̂i(q̂τ ) −φi(q̂τ )

)
+ P

(
φ̂i(q̂τ ) −φi(q̂τ )

) + (PN − P)
(
φi(q̂τ ) −φi(qτ )

)
.

Rearranging the above equation and the extra condition in Theorem A.3, we have

θ̂(τ) − θ(τ) = (PN − P)
(
φi(qτ )

) + Pφi,l(q̂τ ) +RN (τ),

where

sup
τ∈ϒ

∣∣RN (τ)
∣∣ =OP

(
πN

(√
sh log(ph )/N + √

sb log(pb )/N
)

+N−(1+d)/(2+d)(sh log(ph ) + sb log(pb )
))

+OP

(
Nc

√
sbsh log(pb ) log(ph )

N

)
+ oP

(
N−1/2).

By Em1(X , qτ ) = 0 and the usual delta method,

Pφi(q̂τ ) = (
Em1(X , q̂τ ) −Em1(X , qτ )

)
=

∂

∂q
Em1(X , qτ )

fY (qτ )

1
N

N∑
i=1

(
τ − 1{Yi ≤ qτ}

) + oP
(
N−1/2),

where the oP (N−1/2 ) term holds uniformly over τ ∈ϒ. Then

θ̂(τ) − θ(τ) = PNηiIFθ
i (τ) +Rθ(τ),
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where

sup
τ∈ϒ

∣∣Rθ(τ)
∣∣ = OP

(
πN

(√
sh log(ph )/N + √

sb log(pb )/N
)

+N−(1+d)/(2+d)(sh log(ph ) + sb log(pb )
))

+OP

(
Nc

√
sbsh log(pb ) log(ph )

N

)
+ oP

(
N−1/2). (D.8)

the desired result holds because under the condition in Theorem A.3, supτ∈ϒ |Rθ(τ)| =
oP (N−1/2 ).

D.4.3 Linear expansion for θ̂∗(τ) By Lemmas D.3, D.4, and D.5 with η̃i = 1 + ηi, we
have

θ̂∗(τ) − θ(τ) = 1∑
i∈[N]

1 +ηi

∑
i∈[N]

(1 +ηi )φ̂i

(
q̂∗
τ

)

= N∑
i∈[N]

1 +ηi

(
(PN − P)(1 +ηi )φi(qτ ) + P(1 +ηi )φi

(
q̂∗
τ

)

+ (PN − P)(1 +ηi )
(
φ̂i

(
q̂∗
τ

) −φi

(
q̂∗
τ

)) + P(1 +ηi )
(
φ̂i

(
q̂∗
τ

) −φi

(
q̂∗
τ

))
+ (PN − P)(1 +ηi )

(
φi

(
q̂∗
τ

) −φi(qτ )
))

= N∑
i∈[N]

1 +ηi

(
(PN − P)(1 +ηi )φi(qτ ) + P(1 +ηi )φi

(
q̂∗
τ

)) +R∗
N (τ),

where

sup
τ∈ϒ

∣∣R∗
N (τ)

∣∣ =OP

(
πN

(√
sh log(ph )/N + √

sb log(pb )/N
)

+N−(1+d)/(2+d)(sh log(ph ) + sb log(pb )
))

+OP

(
Nc

√
sbsh log(pb ) log(ph )

N

)
+ oP

(
N−1/2).

In addition,

P(1 +ηi )φi

(
q̂∗
τ

) = (
Em1

(
X , q̂∗

τ

) −Em1
(
X , q∗

τ

))
=

∂

∂q
Em1(X , qτ )

fY (qτ )

1
N

N∑
i=1

(1 +ηi )
(
τ − 1{Yi ≤ qτ}

) + oP
(
N−1/2),

where the oP (N−1/2 ) term holds uniformly over τ ∈ϒ. Therefore, we have

θ̂∗(τ) − θ̂(τ) = PNηiIFθ
i (τ) +R∗

N (τ),
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where

sup
τ∈ϒ

∣∣R∗
θ(τ)

∣∣ = OP

(
πN

(√
sh log(ph )/N + √

sb log(pb )/N
)

+N−(1+d)/(2+d)(sh log(ph ) + sb log(pb )
))

+OP

(
Nc

√
sbsh log(pb ) log(ph )

N

)
+ oP

(
N−1/2). (D.9)

the desired result holds because under the condition in Theorem A.3, supτ∈ϒ |Rθ(τ)| =
oP (N−1/2 ).

D.5 Proof of Corollary 1

The desired result holds due to the linear expansions in Theorem A.3 and the fact that
{IFθ

i (τ) : τ ∈ϒ} is Donsker.

D.6 Proof of Theorem A.4

D.6.1 Linear expansion for ÛQPE(τ) Note that f̂Y (q̂τ ) − fY (qτ ) = A1(τ) + A2(τ) +
A3(τ), where A1(τ) ≡ (PN −P) 1

h1
K1( Yi−q̂τ

h1
), A2(τ) ≡ P 1

h1
K1( Yi−q̂τ

h1
)−fY (q̂τ ) and A3(τ) ≡

fY (q̂τ ) − fY (qτ ). Below we will analyze A1(τ), A2(τ), and A3(τ), and then derive the lin-
ear expansion of ÛQPE(τ).

First, we will analyze A1(τ). Let R1(τ) = A1(τ) − (PN − P) 1
h1
K1( Yi−qτ

h1
). Because

supτ∈ϒ |q̂τ − qτ| = OP (N−1/2 ). For any ε > 0, there exists a constant M > 0 such that,
with probability greater than 1 − ε,

sup
τ∈ϒ

∣∣R1(τ)
∣∣ ≤ sup

q∈Qδ, |v|≤M

∣∣∣∣(PN − P)

(
1
h1

K1

(
Yi − q− v/

√
N

h1

)
− 1

h1
K1

(
Yi − q

h1

))∣∣∣∣.
In the following, we aim to bound supq∈Qδ,|v|≤M |(PN −P) η̃i

h1
(K1( Yi−q−v/

√
N

h1
)−K1( Yi−q

h1
))|.

Consider the class of functions F = { η̃i
h1

(K1( y−q−v/
√
N

h1
)−K1( y−q

h1
)) : q ∈ Qδ, |v| ≤M } with

an envelope function Fi = C|η̃i|/h for some constant C > 0 such that
(E[(maxi Fi )2])1/2 �

√
log(N ). We note that F is a VC-class with a fixed VC index and

sup
f∈F

Pf 2 = sup
q∈Qδ,|v|≤M

∫ (
K1

(
u− v√

Nh1

)
−K1(u)

)2

fY (q+ h1u)du � 1/
(
Nh2

1
)
.

Therefore, Chernozhukov, Chetverikov, and Kato (2014b, Corollary 5.1) implies

E sup
q∈Qδ, |v|≤M

∣∣∣∣(PN − P)

(
η̃i

h1

(
K1

(
Yi − q− v/

√
N

h1

)
−K1

(
Yi − q

h1

)))∣∣∣∣
�

√
log(N )
Nh1

+ log(N )3/2

Nh1
,

and thus, supτ∈ϒ |R1(τ)| = oP (N−1/2 ).
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Second, we will analyze A2(τ). Let R2(τ) = A2(τ) − f (2)
Y (qτ )(

∫
u2K1(u)du)
2 h2

1. By the Tay-
lor expansion, we have

sup
τ∈ϒ

∣∣R2(τ)
∣∣ ≤ sup

τ∈ϒ

∣∣∣∣∣∣∣∣
∫ (

fY (q̂τ + uh1 ) − fY (q̂τ )
)
K1(u)du−

f (2)
Y (qτ )

(∫
u2K1(u)du

)
2

h2
1

∣∣∣∣∣∣∣∣
� sup

τ∈ϒ

∣∣f (2)
Y (qτ ) − f (2)

Y (q̃τ )
∣∣(∫

u2K1(u)du
)

2
h2

1,

where q̃τ is between q̂τ and q̂τ + h1 such that supτ∈ϒ |q̃τ − qτ| ≤ supτ∈ϒ |q̃τ − q̂τ| +
supτ∈ϒ |q̂τ − qτ| = OP (h1 + N−1/2 ). Therefore, supτ∈ϒ |R2(τ)| = OP (h3

1 + h1N
−1/2 ) =

oP (N−1/2 ).
Third, we will analyze A3(τ). By the delta method, we have

A3(τ) = f (1)
Y (qτ )(q̂τ − qτ ) +R′

3(τ) = f (1)
Y (qτ )

fY (qτ )

(
1
N

N∑
i=1

(
τ − 1{Yi ≤ qτ}

)) +R3(τ),

where supτ∈ϒ |R′
3(τ)| + supτ∈ϒ |R3(τ)| = oP (N−1/2 ).

Last, we will derive the linear expansion of ÛQPE(τ). Combining the analyses of
A1(τ), A2(τ), and A3(τ), we have

f̂Y (q̂τ ) − fY (qτ ) = (PN − P)
1
h1

K1

(
Yi − qτ

h1

)

+
f (2)
Y (qτ )

(∫
u2K1(u)du

)
2

h2
1 +R4(τ), (D.10)

where supτ∈ϒ |R4(τ)| = OP (N−1/2 ). By (D.8) and the condition in Theorem A.4, we have

sup
τ∈ϒ

∣∣θ̂(τ) − θ(τ)
∣∣ = oP

((
log(N )Nh1

)−1/2)
.

Therefore, we have

sup
τ∈ϒ

∣∣f̂Y (q̂τ ) − fY (qτ )
∣∣ =OP

(
log1/2(N )(Nh1 )−1/2 + h2

1
)
,

sup
τ∈ϒ

∣∣∣∣ θ̂(τ) − θ(τ)
fY (qτ )

∣∣∣∣ = oP
((

log(N )Nh1
)−1/2)

,

sup
τ∈ϒ

∣∣∣∣
(
θ̂(τ) − θ(τ)

)(
f̂Y (q̂τ ) − fY (qτ )

)
f̂Y (q̂τ )fY (qτ )

∣∣∣∣ = oP
((

log(N )Nh1
)−1/2)

,

and

sup
τ∈ϒ

∣∣∣∣θ(τ)
(
f̂Y (q̂τ ) − fY (qτ )

)2

f 2
Y (qτ )f̂Y (q̂τ )

∣∣∣∣ = OP

(
log(N )(Nh1 )−1 + h4

1
) = oP

((
log(N )Nh1

)−1/2)
.
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Therefore,

ÛQPE(τ) − UQPE(τ)

= − θ̂(τ) − θ(τ)
fY (qτ )

+ θ(τ)
(
f̂Y (q̂τ ) − fY (qτ )

)
f 2
Y (qτ )

+
(
θ̂(τ) − θ(τ)

)(
f̂Y (q̂τ ) − fY (qτ )

)
f̂Y (q̂τ )fY (qτ )

− θ(τ)
(
f̂Y (q̂τ ) − fY (qτ )

)2

f 2
Y (qτ )f̂Y (q̂τ )

= 1
N

N∑
i=1

IFi(τ) +
θ(τ)f (2)

Y (qτ )

(∫
u2K1(u)du

)
h2

1

2f 2
Y (qτ )

+R(τ), (D.11)

where supτ∈ϒ |R(τ)| = oP ((log(N )Nh1 )−1/2 ).

D.6.2 Linear expansion for ÛQPE
∗
(τ) First, we will derive the linear expansion of q̂∗

τ .
Note that q̂∗

τ is the optimizer of the objective function
∑N

i=1 ρτ(Yi − q) − q
∑N

i=1 ηi(τ −
1{Yi ≤ q̂τ}). Define the local parameter as û = √

N(q̂∗
τ − qτ ). Then

û = arg min
u

N∑
i=1

ρτ
(
Yi − qτ − uN−1/2) − uN−1/2

N∑
i=1

ηi

(
τ − 1{Yi ≤ q̂τ}

)
Note that u �→ ∑N

i=1 ρτ(Yi − qτ − uN−1/2 ) − uN−1/2 ∑N
i=1 ηi(τ − 1{Yi ≤ q̂τ}) is convex in

u for any τ ∈ϒ. By the Knight’s identity, we can show that(
N∑
i=1

ρτ
(
Yi − qτ − uN−1/2) − uN−1/2

N∑
i=1

ηi

(
τ − 1{Yi ≤ q̂τ}

))

−
(

− u√
N

N∑
i=1

(ηi + 1)
(
τ − 1{Yi ≤ qτ}

) + fY (qτ )u2

2

)

is oP (1) pointwise in u. By the convexity lemma (Pollard (1991)), we have

q̂∗
τ − qτ = 1

NfY (qτ )

N∑
i=1

(ηi + 1)
(
τ − 1{Yi ≤ qτ}

) +R∗
1(τ), (D.12)

where supτ∈ϒ |R∗
1(τ)| = oP (N−1/2 ).

Second, we will derive the linear expansion of f̂ ∗
Y (q̂∗

τ ). Let N̂ = ∑N
i=1(ηi + 1).

Note that f̂ ∗
Y (q̂∗

τ ) − fY (qτ ) = N

N̂
(PN − P) (1+ηi )

h1
K1( Yi−q̂∗

τ
h1

) + N

N̂
(P 1

h1
K1( Yi−q̂∗

τ
h1

) − fY (q̂∗
τ )) +

N

N̂
(fY (q̂∗

τ ) − fY (qτ )). Following the same argument in the proof in Section D.6.1 and the

fact that |N
N̂

− 1| =OP (N−1/2 ), we have

N

N̂
(PN − P)

(1 +ηi )
h1

K1

(
Yi − q̂∗

τ

h1

)
= (PN − P)

(1 +ηi )
h1

K1

(
Yi − qτ

h1

)
+R∗

1(τ),
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N

N̂

(
P

1
h1

K1

(
Yi − q̂∗

τ

h1

)
− fY

(
q̂∗
τ

)) =
f (2)
Y (qτ )

(∫
u2K1(u)du

)
h2

1

2
+R∗

2(τ),

and

N

N̂

(
fY

(
q̂∗
τ

) − fY (qτ )
) = f (1)

Y (qτ )
(
q̂∗
τ − qτ

) +R∗
3(τ)

= f (1)
Y (qτ )

fY (qτ )

(
1
N

N∑
i=1

(ηi + 1)
(
τ − 1{Yi ≤ qτ}

)) +R∗
4(τ),

where supτ∈ϒ,j=1, ���,4 |R∗
j (τ)| = oP (N−1/2 ). This implies

f̂ ∗
Y

(
q̂∗
τ

) − fY (qτ ) = (PN − P)(ηi + 1)
1
h1

K1

(
Yi − qτ

h1

)

+
f (2)
Y (qτ )

(∫
u2K1(u)du

)
2

h2
1 +R∗

5(τ),

where supτ∈ϒ |R∗
5(τ)| = OP (N−1/2 ).

Last, we will derive the linear expansion of ÛQPE
∗
(τ). By (D.8), (E.4), and the condi-

tion in Theorem A.4, we have

sup
τ∈ϒ

∣∣θ̂∗(τ) − θ(τ)
∣∣ = oP

((
log(N )Nh1

)−1/2)
.

Therefore,

ÛQPE
∗
(τ) − UQPE(τ)

= − θ̂∗(τ) − θ(τ)
fY (qτ )

+ θ(τ)
(
f̂ ∗
Y

(
q̂∗
τ

) − fY (qτ )
)

f 2
Y (qτ )

+
(
θ̂∗(τ) − θ(τ)

)(
f̂ ∗
Y

(
q̂∗
τ

) − fY (qτ )
)

f̂ ∗
Y

(
q̂∗
τ

)
fY (qτ )

− θ(τ)
(
f̂ ∗
Y

(
q̂∗
τ

) − fY (qτ )
)2

f 2
Y (qτ )f̂ ∗

Y

(
q̂∗
τ

)

= 1
N

N∑
i=1

(1 +ηi )IFi(τ) +
θ(τ)f (2)

Y (qτ )

(∫
u2K1(u)du

)
h2

1

2f 2
Y (qτ )

+R∗
6(τ) (D.13)

where supτ∈ϒ |R∗
6(τ)| = oP ((log(N )Nh1 )−1/2 ). Taking difference between (D.11) and

(D.13), we have

ÛQPE
∗
(τ) − ÛQPE(τ) = 1

N

N∑
i=1

ηiIFi(τ) +R∗(τ),

where supτ∈ϒ |R∗(τ)| = oP ((log(N )Nh1 )−1/2 ).
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D.7 Proof of Corollary 2

Corollary 2 is a direct consequence of Chernozhukov, Chetverikov, and Kato (2014a,
Corollary 3.1). In order to apply Chernozhukov, Chetverikov, and Kato (2014a, Corol-
lary 3.1), we need to verify Conditions H1–H4. Our Theorem A.4 shows that

ÛQPE(τ) − UQPE(τ) = 1
N

N∑
i=1

θ(τ)

f 2
Y (qτ )h1

K1

(
Yi − qτ

h1

)
+R(τ)

and

ÛQPE
∗
(τ) − ÛQPE(τ) = 1

N

N∑
i=1

ηi
θ(τ)

f 2
Y (qτ )h1

K1

(
Yi − qτ

h1

)
+R∗(τ),

where supτ∈ϒ |R(τ)| = oP ((Nh1 log(N ))−1/2 ) and supτ∈ϒ |R∗(τ)| = oP ((Nh1 log(N ))−1/2 ).
Therefore, the original and multiplier bootstrap estimators can be approximated by
local empirical processes with a kernel function and the approximation errors are
oP ((log(N ))−1/2 ) uniformly over τ ∈ ϒ. Following Chernozhukov, Chetverikov, and Kato
(2014b, Proposition 3.2 and Remark 3.2), the approximation errors are asymptotically
negligible. Focusing on the local empirical process part, Conditions H1–H4 can be veri-
fied by Chernozhukov, Chetverikov, and Kato (2014a, Theorem 3.2). Specifically, Condi-
tion VC in Chernozhukov, Chetverikov, and Kato (2014a) holds where, in their notation,
an and vn are constants, bn = h

−1/2
1 , Kn = log(N ), σ2

n is bounded, and log4(N )/Nh1 =
o(N−c ) for some constant c > 0 as we assume h1 = cN−H for H < 1/4.

Appendix E: Proofs of results in Section C

E.1 Proof of Theorem C.1

For a proof of this theorem, we let PNf , Pn,lf , Plf , and Pf denote 1
N

∑N
i=1 f (Zi ),

1
n

∑
i∈Il f (Zi ), E(f (Zi )|{Zj }j∈Icl ), and Ef , respectively. We write aN � bN for two positive

sequences aN and bN if there exists a constant independent of n such that aN ≤ cbN . The
constant c may vary in different contexts. For any estimator θ̂, we follow the empirical
processes literature and denote Ef (X , θ̂) as Ef (X , θ) evaluated at θ = θ̂.

The proof of Theorem C.1 is divided into three sections. In Section E.1.1, we prove
several technical lemmas that will be used later. In Section E.1.2, we derive the linear
expansion of θ̂cf (τ). In Section E.1.3, we derive the linear expansion of θ̂∗

cf (τ).

E.1.1 Useful lemmas Define φi(q) = m1(Xi, q) − ω(Xi )(1{Yi ≤ q} − m0(Xi, q)) − θ(τ)
and φ̂i,l(q) = m̂1,l(Xi, q) − ω̂l(Xi )(1{Yi ≤ q} − m̂0,l(Xi, q)) − θ(τ).

Lemma E.1. Under the Assumptions 1 and C.1, 1
L

∑L
l=1 Pl(φ̂i,l(q̂τ )−φi(q̂τ )) = oP (π̃2

N ) for
any estimator (ω̂l(x), m̂0,l(x, q), m̂1,l(x, q)) of (ω(x), m0(x, q), m1(x, q)) and any quan-
tile index τ ∈ϒ.
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Proof. Using the law of iterated expectations and m0(x, q) = ∫
1{y ≤ q}dFY |X=x(y ), we

have ∫ (
m1(x, q) −ω(x)

(
1{y ≤ q} −m0(x, q)

))
dFY ,X(y, x)

−
∫ (

m̂1,l(x, q) − ω̂l(x)
(
1{y ≤ q} − m̂0,l(x, q)

))
dFY ,X(y, x)

=
∫ (

m̂1,l(x, q) −m1(x, q)
)
dFX(x) +

∫
ω(x)

(
m̂0,l(x, q) −m0(x, q)

)
dFX(x)

+
∫ (

ω̂l(x) −ω(x)
)(
m̂0,l(x, q) −m0(x, q)

)
dFX(x).

The integration by parts implies∫
ω(x)

(
m̂0,l(x, q) −m0(x, q)

)
fX1|X−1=x−1 (x1 )dx1

= −
∫ (

∂

∂x1
m̂0,l(x, q) − ∂

∂x1
m0(x, q)

)
fX1|X−1=x−1 (x1 )dx1,

where (m̂0,l(x, q) −m0(x, q))fX1|X−1=x−1 (x1 ) disappears on the boundary of x1. Then∫ (
m1(x, q) −ω(x)

(
1{y ≤ q} −m0(x, q)

))
dFY ,X(y, x)

−
∫ (

m̂1,l(x, q) − ω̂l(x)
(
1{y ≤ q} − m̂0,l(x, q)

))
dFY ,X(y, x)

=
∫ (

m̂1,l(x, q) − ∂

∂x1
m̂0,l(x, q)

)
dFX(x)

+
∫ (

ω̂l(x) −ω(x)
)(
m̂0,l(x, q) −m0(x, q)

)
dFX(x).

Because supτ∈ϒ |q̂τ − qτ| = oP (N−1/2 ), we have, with probability approaching one,∣∣Pl

(
φ̂i,l(q̂τ ) −φi(q̂τ )

)∣∣ ≤ sup
q∈Qδ

∣∣∣∣∫ (
m̂1,l(x, q) − ∂

∂x1
m̂0,l(x, q)

)
dFX(x)

∣∣∣∣
+ sup

q∈Qδ

∣∣∣∣∫ (
ω̂l(x) −ω(x)

)(
m̂0,l(x, q) −m0(x, q)

)
dFX(x)

∣∣∣∣
= oP

(
π̃2
N

)
,

where the last equality holds due to (C.8) and (C.9).

Lemma E.2. Let η̃i = 1 for every i = 1, � � � , N or if η̃i = 1 + ηi for every i = 1, � � � , N . If the
assumptions in Theorem A.4 hold, then

sup
l∈{1, ���,L},q∈Qδ

∣∣(Pn,l − Pl )η̃i

(
φ̂i,l(q) −φi(q)

)∣∣
=OP

(
πNν

1/2
N N−1/2 log1/2(AN/πN ) + νNN−(1+d)/(2+d) log(AN/πN )

)
.
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Proof. Define Ml(M ) the set of (m̃1(x, q), m̃0(x, q), ω̃(x)), which satisfies{
m̃j(x, q) : q ∈ Qδ

} ⊂ {
m̂j(x, q) : q ∈ Qδ

}
, j = 0, 1

sup
q∈Qδ

∫ ∣∣m̃1(x, q) −m1(x, q)
∣∣2
dFX(x) ≤MπN ,

∫ ∣∣ω̃(x) −ω(x)
∣∣2
dFX(x) ≤MπN ,

sup
q∈Qδ

∫ ∣∣ω̃(x)m̃0(x, q) −ω(x)m0(x, q)
∣∣2
dFX(x) ≤MπN ,

∫ (
sup
q∈Qδ

∣∣m̃1(x, q)
∣∣ + sup

q∈Qδ

∣∣m1(x, q)
∣∣)2+d

dFX(x) ≤M and

∫ (
sup
q∈Qδ

∣∣ω̃l(x)
(
1 + ∣∣m̃0(x, q)

∣∣)∣∣ + sup
q∈Qδ

∣∣ω(x)
(
1 +m0,l(x, q)

)∣∣)2+d
dFX(x) ≤M .

Define

Fl(Xi ) = |η̃i| sup
q∈Qδ

∣∣ω̂l(x)
(
1 + ∣∣m̂0,l(x, q)

∣∣)∣∣
+ |η̃i| sup

q∈Qδ

∣∣ω(x)
(
1 +m0,l(x, q)

)∣∣ + |η̃i| sup
q∈Qδ

∣∣m̂1,l(x, q)
∣∣ + |η̃i| sup

q∈Qδ

∣∣m1(x, q)
∣∣,

and

Fl =
{
η̃i

(
m̂1,l(Xi, q) − ω̂l(Xi )

(
1{Yi ≤ q} − m̂0,l(Xi, q)

))
−η̃i

(
m1(Xi, q) −ω(Xi )

(
1{Yi ≤ q} −m0(Xi, q)

)) : q ∈ Qδ

}
.

By Assumption C.1, for any δ > 0, we can find a sufficiently large constant M > 0
such that (m̂1,l, m̂0,l, ω̂l ) ∈ Ml(M ) occurs with probability greater than 1 − δ. Condi-
tional on {(m̂1,l, m̂0,l, ω̂l ) ∈ Ml(M )} and {Xi, Yi}i∈Icl , we can treat m̂1,l, m̂0,l, ω̂l as fixed,

and PlF
2+d
l < ∞. In addition, by Van der Vaart and Wellner (1996, Theorem 2.7.11)

and the fact that supQN({m̂j(x, q) : q ∈ Qδ}, ‖ · ‖Q,2, ε‖G(j)
l ‖Q,2 ) � ( AN

ε )νN , we have

supQN(Fl, ‖ · ‖Q,2, ε‖Fl‖Q,2 ) � ( AN
ε )νN . Furthermore, note that

sup
f∈Fl

Plf
2 ≤ sup

q∈Qδ

Pl

(∣∣m̂1,l(X , q) −m1(X , q)
∣∣ + ∣∣ω̂l(X ) −ω(X )

∣∣
+ ∣∣ω(X )m0(X , q) − ω̂l(X )m̂0,l(X , q)

∣∣)2

� π2
N .

By Chernozhukov, Chetverikov, and Kato (2014b, Corollary 5.1), we have

Pl sup
q∈Qδ

∣∣(Pn,l − Pl )
(
φ̂i,l(q) −φi(q)

)∣∣
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≤ Pl

∣∣∣ sup
f∈Fl

(Pn,l − Pl )f
∣∣∣

�

√√√√√π2
NνN

N
log

(AN

(∫
Fl(x)2 dFX(x)

)1/2

πN

)

+
νNE

[(
max
i

Fl(Xi )
)2]1/2

N
log

(AN

(∫
Fl(x)2 dFX(x)

)1/2

πN

)
.

Because E[Fl(X )2+d] < ∞, we have E[(maxi Fl(Xi ))2]1/2 = O(N1/(2+d) ) on {(m̂1,l, m̂0,l,
ω̂l ) ∈ M(ε, M )}.4 By letting n be sufficiently large, we have

Pl sup
q∈Qδ

∣∣(Pn,l − Pl )
(
φ̂i,l(q) −φi(q)

)∣∣
� πNν

1/2
N N−1/2 log1/2(AN/πN ) + νNN−(1+d)/(2+d) log(AN/πN ).

This leads to the desired result.

Lemma E.3. Under the assumptions in Theorem A.4, supl∈{1, ���,L},τ∈ϒ |(Pn,l −Pl )(φi(q̂τ ) −
φi(qτ ))| = oP (N−1/2 ) and supl∈{1, ���,L},τ∈ϒ |(Pn,l − Pl )(ηi + 1)(φi(q̂∗

τ ) − φi(qτ ))| =
oP (N−1/2 ).

The proof of this lemma is similar to that of Lemma D.5, and thus is omitted.

E.1.2 Linear expansion for θ̂cf (τ) Taking η̃i = 1 and by (C.1), Lemmas E.1, E.2, and E.3,
we have

θ̂cf (τ) − θ(τ)

= 1
L

L∑
l=1

Pn,lφ̂i,l(q̂τ )

= 1
L

L∑
l=1

(Pn,l − Pl )φi(qτ ) + 1
L

L∑
l=1

Plφi(q̂τ ) + 1
L

L∑
l=1

(Pn,l − Pl )
(
φ̂i,l(q̂τ ) −φi(q̂τ )

)

+ 1
L

L∑
l=1

Pl

(
φ̂i,l(q̂τ ) −φi(q̂τ )

) + 1
L

L∑
l=1

(Pn,l − Pl )
(
φi(q̂τ ) −φi(qτ )

)
.

In addition, by Em1(X , qτ ) = 0 and the usual delta method,

Plφi(q̂τ ) = (
Em1(X , q̂τ ) −Em1(X , qτ )

)
4If {Xi} is sequence of i.i.d. nonnegative random variables with EX2+d

i ≤ M , then

(E(maxi=1, ���,N Xi )2 )1/2 � N
1

2+d . It is shown as follows. Note that E(maxi=1, ���,N Xi )2 =
2

∫ ∞
0 xP(maxi=1, ���,N Xi > x)dx = 2

∫ αN
0 xP(maxi=1, ���,N Xi > x)dx + 2

∫ ∞
αN

xP(maxi=1, ���,N Xi > x)dx ≤
α2
N + 2N

∫ ∞
αN

EX2+d

X1+d dx≤ α2
N + 2MN

δαδN
. We can obtain the desired result by taking αN = N

1
2+d .
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=
∂

∂q
Em1(X , qτ )

fY (qτ )

1
N

N∑
i=1

(
τ − 1{Yi ≤ qτ}

) + oP
(
N−1/2),

where the oP (N−1/2 ) term holds uniformly over l = 1, � � � , L and τ ∈ ϒ. Therefore, we
have

sup
τ∈ϒ

∣∣∣∣∣θ̂(τ) − θ(τ) − 1
N

N∑
i=1

(
φi(qτ ) +

∂

∂q
Em1(X , qτ )

fY (qτ )

(
τ − 1{Yi ≤ qτ}

))∣∣∣∣∣
= OP

(
πNν

1/2
N N−1/2 log1/2(AN/πN ) + νNN−(1+d)/(2+d) log(AN/πN ) + π̃2

N

)
+ oP

(
N−1/2). (E.1)

The RHS of the above display is oP (N−1/2 ) because under the condition in Theorem C.1,
π̃2
N = o(N−1/2 ) and

πNν
1/2
N N−1/2 log1/2(AN/πN ) + νNN−(1+d)/(2+d) log(AN/πN ) = o

(
N−1/2).

This leads to the desired result.

E.1.3 Linear expansion for θ̂∗
cf (τ) Let n̂l =

∑
i∈Il (ηi + 1). Then

θ̂∗
cf (τ) − θ(τ) = 1

L

L∑
l=1

n

n̂l
Pn,l(ηi + 1)φ̂i,l

(
q̂∗
τ

)

= 1
L

L∑
l=1

n

n̂l
(Pn,l − Pl )(ηi + 1)φi

(
q̂∗
τ

) + 1
L

L∑
l=1

n

n̂l
Plφ̂i,l

(
q̂∗
τ

) +R∗
1(τ)

= 1
L

L∑
l=1

n

n̂l
(Pn,l − Pl )(ηi + 1)φi

(
q̂∗
τ

) + 1
L

L∑
l=1

n

n̂l
Plφi

(
q̂∗
τ

) +R∗
2(τ)

= 1
L

L∑
l=1

n

n̂l
(Pn,l − Pl )(ηi + 1)φi(qτ ) + 1

L

L∑
l=1

n

n̂l
Plφi

(
q̂∗
τ

) +R∗
3(τ)

= (PN − P)(ηi + 1)φi(qτ ) + 1
L

L∑
l=1

n

n̂l
Plφi

(
q̂∗
τ

) +R∗
4(τ), (E.2)

where

sup
τ∈ϒ

∣∣Rj(τ)
∣∣

= OP

(
πNν

1/2
N N−1/2 log1/2(AN/πN ) + νNN−(1+d)/(2+d) log(AN/πN ) + π̃2

N

)
+ oP

(
N−1/2)



28 Sasaki, Ura, and Zhang Supplementary Material

for j = 1, � � � , 4, the second equality is due to Lemma D.4 and Plηiφ̂i,l(q̂∗
τ ) = (Plηi ) ×

(Plφ̂i,l(q̂∗
τ )) = 0, the third equality is due to Lemma E.1, the fourth equality is due to

Lemma E.3 and the fact that supτ∈ϒ |q̂∗
τ − qτ| = OP (N−1/2 ), and the fifth equality holds

because supτ∈ϒ |(Pn,l − Pl )(ηi + 1)φi(qτ )| = OP (N−1/2 ) and n̂l/n = 1 + oP (1). For the
second term on the RHS of (E.2), we have

1
L

L∑
l=1

n

n̂l
Plφi

(
q̂∗
τ

) =
(

1
L

L∑
l=1

n

n̂l

)(
Em1

(
X , q̂∗

τ

) −Em1(X , qτ )
)

=
∂

∂q
Em1(X , qτ )

fY (qτ )

(
N∑
i=1

(ηi + 1)
N

(
τ − 1{Yi ≤ qτ}

))

+ oP
(
N−1/2), (E.3)

where the last equality is due to the delta method and (D.12). Combining (E.2) and (E.3),
we have

θ̂∗
cf (τ) − θ(τ) = 1

N

N∑
i=1

(ηi + 1)

(
m1(Xi, qτ ) − θ(τ) −ω(Xi )

(
1{Yi ≤ qτ} −m0(Xi, qτ )

)

+
∂

∂q
Em1(X , qτ )

fY (qτ )

(
τ − 1{Yi ≤ qτ}

)) + R̃∗
N (τ), (E.4)

where supτ∈ϒ |R̃∗
N (τ)| = OP (πNν

1/2
N N−1/2 log1/2(AN/πN ) + νNN−(1+d)/(2+d) ×

log(AN/πN ) + π̃2
N ) + oP (N−1/2 ). Taking the difference between (E.1) and (E.4), we have

θ̂∗
cf (τ) − θ̂cf (τ) = 1

N

N∑
i=1

ηi

(
m1(Xi, qτ ) − θ(τ) −ω(Xi )

(
1{Yi ≤ qτ} −m0(Xi, qτ )

)

+
∂

∂q
Em1(X , qτ )

fY (qτ )

(
τ − 1{Yi ≤ qτ}

)) +R∗
N (τ),

where supτ∈ϒ |R∗
N (τ)| = OP (πNν

1/2
N N−1/2 log1/2(AN/πN ) + νNN−(1+d)/(2+d) ×

log(AN/πN ) + π̃2
N ) + oP (N−1/2 ). Due to the condition in Theorem C.1, we have

supτ∈ϒ |R∗
N (τ)| = oP (N−1/2 ), which is the desired result.

E.2 Proof of Theorem C.2

E.2.1 Linear expansion for ÛQPE(τ) By Theorem A.3 and the condition in Theo-
rem A.4, we have

sup
τ∈ϒ

∣∣θ̂cf (τ) − θ(τ)
∣∣ = oP

((
log(N )Nh1

)−1/2)
.



Supplementary Material Unconditional quantile regression 29

Based on (D.10), we have

sup
τ∈ϒ

∣∣∣∣f̂Y (q̂τ ) − fY (qτ )
∣∣ = OP

(
log1/2(N )(Nh1 )−1/2 + h2

1
)
,

sup
τ∈ϒ

∣∣∣∣
(
θ̂cf (τ) − θ(τ)

)(
f̂Y (q̂τ ) − fY (qτ )

)
f̂Y (q̂τ )fY (qτ )

∣∣∣∣ = oP
((

log(N )Nh1
)−1/2)

and

sup
τ∈ϒ

∣∣∣∣θ(τ)
(
f̂Y (q̂τ ) − fY (qτ )

)2

f 2
Y (qτ )f̂Y (q̂τ )

∣∣∣∣ = OP

(
log(N )(Nh1 )−1 + h4

1
) = oP

((
log(N )Nh1

)−1/2)
.

Therefore,

ÛQPEcf (τ) − UQPE(τ)

= − θ̂cf (τ) − θ(τ)

fY (qτ )
+ θ(τ)

(
f̂Y (q̂τ ) − fY (qτ )

)
f 2
Y (qτ )

+
(
θ̂cf (τ) − θ(τ)

)(
f̂Y (q̂τ ) − fY (qτ )

)
f̂Y (q̂τ )fY (qτ )

− θ(τ)
(
f̂Y (q̂τ ) − fY (qτ )

)2

f 2
Y (qτ )f̂Y (q̂τ )

= 1
N

N∑
i=1

IFi(τ) +
θ(τ)f (2)

Y (qτ )

(∫
u2K1(u)du

)
h2

1

2f 2
Y (qτ )

+R(τ), (E.5)

where supτ∈ϒ |R(τ)| = oP ((log(N )Nh1 )−1/2 ).

E.2.2 Linear expansion for ÛQPE
∗
cf (τ) Recall that

f̂ ∗
Y

(
q̂∗
τ

) − fY (qτ ) = (PN − P)(ηi + 1)
1
h1

K1

(
Yi − qτ

h1

)
+

f (2)
Y (qτ )

(∫
u2K1(u)du

)
2

h2
1

+R∗
5(τ),

where supτ∈ϒ |R∗
5(τ)| =OP (N−1/2 ). Then

ÛQPE
∗
cf (τ) − UQPE(τ)

= − θ̂∗
cf (τ) − θ(τ)

fY (qτ )
+ θ(τ)

(
f̂ ∗
Y

(
q̂∗
τ

) − fY (qτ )
)

f 2
Y (qτ )

+
(
θ̂∗
cf (τ) − θ(τ)

)(
f̂ ∗
Y

(
q̂∗
τ

) − fY (qτ )
)

f̂ ∗
Y

(
q̂∗
τ

)
fY (qτ )

− θ(τ)
(
f̂ ∗
Y

(
q̂∗
τ

) − fY (qτ )
)2

f 2
Y (qτ )f̂ ∗

Y

(
q̂∗
τ

)

= 1
N

N∑
i=1

(1 +ηi )IFi(τ) +
θ(τ)f (2)

Y (qτ )

(∫
u2K1(u)du

)
h2

1

2f 2
Y (qτ )

+R∗
6(τ) (E.6)
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where supτ∈ϒ |R∗
6(τ)| = oP ((log(N )Nh1 )−1/2 ). Taking difference between (E.5) and (E.6),

we have ÛQPE
∗
(τ) − ÛQPE(τ) = 1

N

∑N
i=1 ηiIFi(τ) + R∗(τ), where supτ∈ϒ |R∗(τ)| =

oP ((log(N )Nh1 )−1/2 ).

E.3 Proof of Theorem C.3

We will show (A.1)–(C.9) in Assumption C.1. First, we will show (A.1). To verify the first
condition in Assumption C.1, we note that

sup
x∈X ,q∈Qδ

∣∣∣∣ ∂

∂q
m̂j,l(x, q)

∣∣∣∣
= sup

x∈X ,q∈Qδ

∣∣∣∣∫ m̆j,l(x, t )

h2
2

K(1)
2

(
t − q

h2

)
dt

∣∣∣∣
≤ sup

x∈X ,q∈Qδ

∣∣∣∣∫ mj(x, t )
h2

dK2

(
t − q

h2

)∣∣∣∣ + sup
x∈X ,q∈Qδ

∣∣m̆j,l(x, q) −mj(x, q)
∣∣

h2

∫
d
∣∣K2(u)

∣∣

≤ sup
x∈X ,q∈Qδ

∣∣∣∣∫
∂

∂q
mj(x, t )

h2
K2

(
t − q

h2

)
dt

∣∣∣∣ + sup
x∈X ,q∈Qδ

∣∣m̆j,l(x, q) −mj(x, q)
∣∣

h2

∫
d
∣∣K2(u)

∣∣
≤ sup

x∈X ,q∈Qδ

∣∣∣∣ ∂

∂q
mj(x, q)

∣∣∣∣ ∫ ∣∣K2(u)
∣∣du+ sup

x∈X ,q∈Qδ

∣∣m̆j,l(x, q) −mj(x, q)
∣∣

h2

∫
d
∣∣K2(u)

∣∣
< ∞,

where the first inequality is due to the triangle inequality, the second equality is due
to the integration by parts and the fact that the kernel function K2(·) vanishes at the
boundary, and the last inequality is due to the facts that supx∈X ,q∈Qδ | ∂

∂qmj(x, q)| is

bounded and that supx∈X ,q∈Qδ
|m̆j,l(x,q)−mj(x,q)|

h2
= OP (ρN ) = oP (1). Given the derivative

∂
∂q m̂j,l(x, q) is uniformly bounded with probability approaching one, there exists a con-
stant M such that |m̂j,l(x, q1 ) − m̂j,l(x, q2 )| ≤M|q1 − q2|. The class of Lipschitz continu-
ous functions is a VC-class with a fixed VC-index. This implies μN =AN = 1.

Second, (A.3) follows from

sup
x∈X ,q∈Qδ

∣∣m̆j,l(x, q) − m̂j,l(x, q)
∣∣

= sup
x∈X ,q∈Qδ

∣∣∣∣∫ m̆j,l(x, t ) − m̆j,l(x, q)

h2
K2

(
t − q

h2

)
dt

∣∣∣∣
≤ 2 sup

x∈X ,q∈Qδ

∫ sup
t∈Qδ

∣∣m̆j,l(x, t ) −mj(x, t )
∣∣

h2

∣∣∣∣K2

(
t − q

h2

)∣∣∣∣dt
+ sup

x∈X ,q∈Qδ

∣∣∣∣∫ mj(x, t ) −mj(x, q)
h2

K2

(
t − q

h2

)
dt

∣∣∣∣
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≤ 2 sup
x∈X ,t∈Qδ

∣∣m̆j,l(x, t ) −mj(x, t )
∣∣ ∫ ∣∣K2(u)

∣∣du
+ sup

x∈X ,q∈Qδ

∣∣∣∣ ∂2k

∂q2k
mj(x, q)

∣∣∣∣h2k
2

∫
u2k

∣∣K2(u)
∣∣du

=OP

(
h2ρN + h2k

2

)
,

where the last inequality holds because of (C.10) and the fact that supx∈X ,q∈Qδ | ∂2k

∂q2kmj(x,

q)| <∞. Therefore,

sup
q∈Qδ

∫ ∣∣m̂1,l(x, q) −m1(x, q)
∣∣2
dFX(x)

� sup
q∈Qδ

∫ ∣∣m̂1,l(x, q) − m̆1(x, q)
∣∣2
dFX(x) + sup

q∈Qδ

∫ ∣∣m̆1,l(x, q) −m1(x, q)
∣∣2
dFX(x)

= OP

(
ρ2
Nh2

2 + h4k
2

)
.

Third, (C.4) is the same as (C.12).
Fourth, we will show (C.5). Note that∣∣ω̂l(x)m̂0,l(x, q) −ω(x)m0(x, q)

∣∣
≤ ∣∣ω̂l(x) −ω(x)

∣∣∣∣m̂0,l(x, q)
∣∣ + ∣∣ω(x)

(
m̂0,l(x, q) −m0(x, q)

)∣∣.
Then

sup
q∈Qδ

∫ ∣∣ω̂l(x)m̂0,l(x, q) −ω(x)m0(x, q)
∣∣2
dFX(x)

� sup
q∈Qδ

∫ (
ω̂l(x) −ω(x)

)2
m̂2

0,l(x, q)dFX(x) +
∫

ω2(x)
(
m̂0,l(x, q) −m0(x, q)

)2
dFX(x)

�
∫ (

ω̂l(x) −ω(x)
)2
dFX(x) +

∫
ω2(x)dFX(x) sup

x∈X ,q∈Qδ

∣∣m̂0,l(x, q) −m0(x, q)
∣∣2

=OP

(
ρ2
Nh2

2 + h4k
2

)
,

where the last equality holds due to the fact that

sup
x∈X ,q∈Qδ

∣∣m̂0,l(X , q) −m0(X , q)
∣∣

≤ sup
x∈X ,q∈Qδ

∣∣m̂0,l(X , q) − m̆0,l(X , q)
∣∣ + sup

x∈X ,q∈Qδ

∣∣m̆0,l(X , q) −m0(X , q)
∣∣

= OP

(
h2ρN + h2k

2

)
.

Fifth, (C.6) holds because supx∈X ,q∈Qδ |mj(x, q)| is bounded for j = 0, 1 and
supx∈X ,q∈Qδ |m̆1,l(x, q) − m̂1,l(x, q)| = oP (1).
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Sixth, (C.7) follows from supx∈X ,q∈Qδ |m0(x, q)| ≤ 1, supx∈X ,q∈Qδ |m̆0,l(x, q) −
m̂0,l(x, q)| = oP (1), and E|ω(X )|2+d <∞.

Seventh, (C.8) holds because

sup
q∈Qδ

∣∣∣∣∫ (
m̂1,l(x, q) − ∂

∂x1
m̂0,l(x, q)

)
dFX(x)

∣∣∣∣
≤ sup

q∈Qδ

∫
1
h2

sup
t∈Qδ

∣∣∣∣∫ (
m̆1,l(x, t ) − ∂

∂x1
m̆0,l(x, t )

)
dFX(x)

∣∣∣∣∣∣∣∣K2

(
q− t

h2

)∣∣∣∣dt
=OP

(
π̃2
N ,1

)
.

Eighth, we will show (C.9). Note that∣∣∣∣∫ (
ω̂l(x) −ω(x)

)(
m̂0,l(x, q) −m0(x, q)

)
dFX(x)

∣∣∣∣
≤

∣∣∣∣∫ (
ω̂l(x) −ω(x)

)(
m̆0,l(x, q) −m0(x, q)

)
dFX(x)

∣∣∣∣
+

∫ ∣∣∣∣∫ (
ω̂l(x) −ω(x)

)(
m̆0,l(x, q) −m0(x, q)

)
dFX(x)

∣∣∣∣
h2

∣∣∣∣K2

(
t − q

h2

)∣∣∣∣dt
+

∫ ∣∣∣∣∫ (
ω̂l(x) −ω(x)

)(
m̆0,l(x, t ) −m0(x, t )

)
dFX(x)

∣∣∣∣
h2

∣∣∣∣K2

(
t − q

h2

)∣∣∣∣dt
+

∫ ∣∣ω̂l(x) −ω(x)
∣∣∣∣∣∣∫ m0(x, t ) −m0(x, q)

h2
K2

(
t − q

h2

)
dt

∣∣∣∣dFX(x). (E.7)

By Assumption C.3, we have

sup
q∈Qδ

∣∣∣∣∫ (
ω̂l(x) −ω(x)

)(
m̆0,l(x, q) −m0(x, q)

)
dFX(x)

∣∣∣∣ = OP

(
π̃2
N ,1

)
.

For the second term on the RHS of (E.7), we have, by (C.16),

sup
q∈Qδ

∫ ∣∣∣∣∫ (
ω̂l(x) −ω(x)

)(
m̆0,l(x, t ) −m0(x, t )

)
dFX(x)

∣∣∣∣
h2

K2

(
t − q

h2

)
dt =OP

(
π̃2
N ,1

)
.

Similarly, we can show the third term is OP (π̃2
N ,1 ) uniformly over q ∈ Qδ as well. For the

fourth term on the RHS of (E.7), we have∫ ∣∣ω̂l(x) −ω(x)
∣∣∣∣∣∣∫ m0(x, t ) −m0(x, q)

h2
K2

(
t − q

h2

)
dt

∣∣∣∣dFX(x)

≤
∫ ∣∣ω̂l(x) −ω(x)

∣∣∣∣∣∣ ∂2k

∂q2k
m0(x, q̃)

∣∣∣∣h2k dFX(x)
∫

u2k
∣∣K2(u)

∣∣du= oP
(
N−1/2),
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Table 8. Monte Carlo simulation results with the interaction terms as well as the powers of x−1

in h(x−1 ). The true UQPE is numerically computed. The 95% coverage is uniform over the set
[0.20, 0.80].

Estimates 95% Cover

DGP N p
(p

2

)
τ True UQPE Mean Bias RMSE Point Unif.

1 (i) 500 15 105 0.20 1.00 1.03 0.03 0.16 0.962 0.966
0.40 1.00 1.02 0.02 0.13 0.956
0.60 1.00 1.02 0.02 0.14 0.936
0.80 1.00 1.02 0.02 0.17 0.958

2 (i) 500 15 105 0.20 1.12 1.14 0.02 0.17 0.970 0.964
0.40 1.03 1.05 0.03 0.13 0.956
0.60 0.95 0.97 0.02 0.13 0.948
0.80 0.88 0.90 0.02 0.15 0.952

3 (i) 500 15 105 0.20 1.14 1.17 0.02 0.17 0.966 0.958
0.40 1.05 1.07 0.02 0.13 0.958
0.60 0.97 0.99 0.02 0.13 0.952
0.80 0.90 0.92 0.02 0.16 0.944

where we use the fact that supx∈X ,q∈Qδ | ∂2k

∂q2km0(x, q)| <∞, h2k
2 =O(N

−k
2k+1 ), and

∫ ∣∣ω̂l(x) −ω(x)
∣∣dFX(x) ≤

(∫ (
ω̂l(x) −ω(x)

)2
dFX(x)

)1/2

=OP (h2ρN ) = oP
(
N

−1
2(2k+1)

)
.

Appendix F: Additional simulation studies

In this section, we present additional Monte Carlo simulations to those presented in
Section 4 in the main text.

F.1 Interaction terms

The dictionaries b(x) and h(x) employed for the simulations presented in the main text
include the powers of x, but do not include interactions among the coordinates of x.
In this section, we present simulation analysis when b(x) and h(x) include the interac-
tions among x−1 as well as the powers of x. We follow the same data generating design
as in Section 4 in the main text. While we use (N , p) = (500, 100) in Section 4, we use

(N , p) = (500, 15) in the current section. This choice is made because p = 15 entails(p
2

) = 105 interactions, and the dimensions are therefore comparable with those con-
sidered in Section 4 in the main text.

Table 8 summarizes simulation results with the interaction terms of x−1 as well as
the powers of x included in b(x) and h(x). In comparison with the baseline case without
the interaction terms, the results are very similar in terms of the bias, RMSE, and the
95% coverage accuracy.
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Table 9. Monte Carlo simulation results with the kernel convolution. The true UQPE is numer-
ically computed. The 95% coverage is uniform over the set [0.20, 0.80].

Estimates 95% Cover

DGP N p h2 τ True UQPE Mean Bias RMSE Point Unif.

1 (i) 500 100 (i) 0.20 1.00 1.03 0.03 0.16 0.950 0.954
0.40 1.00 1.02 0.02 0.13 0.948
0.60 1.00 1.03 0.02 0.14 0.944
0.80 1.00 1.00 0.00 0.16 0.950

500 100 (ii) 0.20 1.00 1.04 0.04 0.16 0.946 0.956
0.40 1.00 1.02 0.02 0.13 0.948
0.60 1.00 1.02 0.02 0.14 0.948
0.80 1.00 1.01 0.01 0.15 0.950

2 (i) 500 100 (i) 0.20 1.12 1.15 0.03 0.18 0.950 0.956
0.40 1.03 1.05 0.02 0.13 0.946
0.60 0.96 0.98 0.02 0.13 0.952
0.80 0.87 0.88 0.01 0.14 0.942

500 100 (ii) 0.20 1.12 1.16 0.04 0.18 0.956 0.950
0.40 1.03 1.05 0.02 0.13 0.954
0.60 0.95 0.98 0.03 0.13 0.954
0.80 0.87 0.89 0.02 0.14 0.946

3 (i) 500 100 (i) 0.20 1.15 1.17 0.03 0.18 0.952 0.952
0.40 1.04 1.06 0.02 0.13 0.946
0.60 0.97 1.00 0.03 0.13 0.950
0.80 0.91 0.91 0.00 0.14 0.950

500 100 (ii) 0.20 1.15 1.18 0.04 0.18 0.954 0.950
0.40 1.04 1.06 0.02 0.13 0.954
0.60 0.97 1.00 0.03 0.13 0.950
0.80 0.90 0.92 0.01 0.14 0.954

F.2 Kernel convolution

We directly use the lasso preliminary estimator (cf. Section 2.2) in the baseline simula-
tion studies presented in Section 4 in the main text. In this Appendix section, we present
additional simulation analysis based on further applying the kernel convolution method
(cf. Section C.3) to the preliminary lasso estimator. We continue to use the same data
generating design as in the baseline design presented in Section 5 in the main text for
the purpose of comparisons.

Table 9 summarizes simulation results based on the kernel convolution method ap-
plied to the lasso preliminary estimator, with the tuning parameter value given by two
alternative rules, (i) h2 = 0.1N−1/6 and (ii) h2 = 0.2N−1/6. Observe that the results are
overall very similar to those presented in Table 1 in Section 5 in the main text, in terms
of the magnitudes of the bias and RMSE as well as the 95% coverage. This finding sug-
gests that, when the lasso preliminary estimator is used, there do not seem substantially
additional benefits of using the kernel convolution method. This is reasonable because
of the sufficiently low complexity of the function space of the lasso estimates.
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Table 10. Monte Carlo simulation results with the second-order kernel. The true UQPE is nu-
merically computed. The 95% coverage is uniform over the set [0.20, 0.80].

Estimates 95% Cover

DGP N p τ True UQPE Mean Bias RMSE Point Unif.

1 (i) 500 100 0.20 1.00 1.03 0.03 0.19 0.972 0.986
0.40 1.00 1.02 0.02 0.15 0.968
0.60 1.00 1.02 0.02 0.17 0.970
0.80 1.00 0.99 −0.01 0.19 0.956

2 (i) 500 100 0.20 1.12 1.14 0.02 0.21 0.968 0.984
0.40 1.03 1.04 0.02 0.16 0.968
0.60 0.95 0.98 0.03 0.16 0.976
0.80 0.88 0.87 −0.01 0.17 0.952

3 (i) 500 100 0.20 1.15 1.17 0.02 0.21 0.966 0.986
0.40 1.04 1.06 0.02 0.16 0.964
0.60 0.97 1.00 0.02 0.16 0.972
0.80 0.90 0.90 0.00 0.16 0.954

F.3 Higher-order kernel

In Section 4 in the main text, we use a second-order kernel (second-order Epanech-
nikov kernel) with the undersmoothed rule-of-thumb optimal choice h1 of the band-
width to satisfy the assumption for valid inference. Another option is to use the rule-
of-thumb optimal choice h1 = 1.06σ(Y )N−1/5 without an undersmoothing while us-
ing a higher-order-kernel function (e.g., fourth-order Epanechnikov kernel) instead of a
second-order kernel function. With this approach, the optimal rate h1 ∝ N−1/5 with re-
spect to a second-order kernel is effectively undersmoothing with respect to the fourth-
order kernel. This may have a practical advantage in that a researcher can directly use
the choice rule h1 = 1.06σ(Y )N−1/5 without an ad hoc undersmoothing. A disadvan-
tage, on the other hand, is that we require a higher-order of smoothness of the density
function. In this section, we demonstrate through simulations that this alternative ap-
proach works as well.

Table 10 summarizes simulation results based on the rule-of-thumb optimal choice
h1 = 1.06σ(Y )N−1/5 along with the fourth-order Epanechnikov kernel function. These
simulation results overall indicate accurate estimates as the baseline results presented
in Section 4 in the main text albeit slight overcoverages. That said, we emphasize once
again that this approach works at the expense of more smoothness assumption.

F.4 Testing UQPE(τ) = 0, ∀τ ∈ϒ

While we have thus far studied the finite sample performance of ÛQPE(τ) for general
purposes of estimation and inference for UQPE(τ), we now focus on the finite sample
performance of θ̂(τ). Recall that θ̂(τ) and its asymptotic properties are useful for testing
θ(τ) = 0, ∀τ ∈ϒ, which in turn is equivalent to the hypothesis UQPE(τ) = 0, ∀τ ∈ϒ.

The basic simulation design carries over from Section 4, but the current design dif-
fers in the following two points. First, the function g(·) is now defined by g(x) = 0 and we
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Table 11. Monte Carlo simulation results for θ under the sparsity designs (i) and (ii). The 95%
coverage is uniform over the set [0.20, 0.80].

Estimates 95% Cover

DGP N p τ True θ Mean Bias RMSE Point Unif.

(i) The most sparse design—θ

0 (i) 250 100 0.20 0.00 0.00 0.00 0.03 0.952 0.938
0.40 0.00 0.00 0.00 0.04 0.930
0.60 0.00 0.00 0.00 0.03 0.938
0.80 0.00 0.00 0.00 0.03 0.944

0 (i) 500 100 0.20 0.00 0.00 0.00 0.02 0.936 0.940
0.40 0.00 0.00 0.00 0.02 0.930
0.60 0.00 −0.01 −0.01 0.03 0.934
0.80 0.00 0.00 0.00 0.02 0.932

(ii) The second most sparse design—θ

0 (ii) 250 100 0.20 0.00 −0.01 −0.01 0.03 0.946 0.940
0.40 0.00 −0.01 −0.01 0.04 0.916
0.60 0.00 −0.01 −0.01 0.04 0.924
0.80 0.00 −0.01 −0.01 0.03 0.936

0 (ii) 500 100 0.20 0.00 0.00 0.00 0.02 0.918 0.918
0.40 0.00 −0.01 −0.01 0.02 0.924
0.60 0.00 −0.01 −0.01 0.02 0.902
0.80 0.00 −0.01 −0.01 0.02 0.914

refer to it as DGP 0. This design conforms with the null hypothesis UQPE(τ) = 0, ∀τ ∈ ϒ.
Second, for the purpose of evaluating the rate of convergence, we vary the sample size
N ∈ {250, 500}. Table 11 summarizes the simulation results for θ̂. Observe the the biases
are small and the coverage frequencies are close to the nominal probabilities. Further-
more, the convergence rate is consistent with the theoretical prediction of the root-N
rate.
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