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The extended perturbation method: With applications to the
New Keynesian model and the zero lower bound
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We introduce the extended perturbation method, which improves the accuracy of
standard perturbation by reducing approximation errors under certainty equiva-
lence. For the New Keynesian model with Calvo pricing, extended perturbation is
more accurate than standard perturbation, which implies explosive dynamics be-
cause it omits the upper bound on inflation implied by this model. In contrast, ex-
tended perturbation enforces this bound and generates stable dynamics. We also
show that extended perturbation can accurately solve a New Keynesian model
that enforces the zero lower bound for the monetary policy rate by considering
a smooth nonlinear modification of the standard Taylor rule.
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1. Introduction

The solution to dynamic stochastic general equilibrium (DSGE) models is frequently
approximated by the perturbation method to obtain higher-order Taylor series expan-
sions of the policy function. The popularity of this approximation is mainly explained
by its ability to (i) preserve nonlinearities in the model, (ii) improve parameter iden-
tification compared to a linearized solution, and (iii) capture effects of uncertainty to
explore determinants of risk premia and implications of uncertainty shocks (see An
and Schorfheide (2007), Kim and Ruge-Murcia (2009), Fernández-Villaverde, Guerrón-
Quintana, Rubio-Ramírez, and Uribe (2011), Rudebusch and Swanson (2012), among
others).
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Despite the widespread use of second- and third-order perturbation approxima-
tions, it is well known that they often generate explosive dynamics even when the corre-
sponding linearized solution is stable. The perturbation approximation may also strug-
gle to preserve key properties of the true solution such as monotonicity and convexity, as
emphasized by Haan and De Wind (2012). These findings suggest that the second- and
third-order perturbation approximations currently applied in the literature may not al-
ways be sufficiently accurate. A tractable alternative that preserves the stability of the
true solution, but not necessarily its monotonicity and convexity, is to apply a prun-
ing scheme, as proposed by Kim, Kim, Schaumburg, and Sims (2008) for models ap-
proximated to second order and extended to higher order by Haan and De Wind (2012),
Andreasen, Fernandez-Villaverde, and Rubio-Ramirez (2018), and Lombardo and Uhlig
(2018).

The contribution of the present paper is to improve the accuracy of the perturbation
approximation by combining it with the extended path of Fair and Taylor (1983). This is
done by decomposing the policy function into (i) a deterministic component under cer-
tainty equivalence and (ii) a stochastic component containing the effects of uncertainty.
The perturbation method is currently applied to approximate both parts of the policy
function. However, a relatively low Taylor series expansion of the certainty equivalent
component (e.g., to second or third order) may generate unnecessary approximation
errors, given that this part of the policy function can be computed very accurately by
the extended path at a small computational cost. Based on this observation, we pro-
pose to compute the certainty equivalent component of the policy function by the ex-
tended path, whereas the stochastic part of the policy function remains approximated
by standard perturbation. We name this combined solution method extended perturba-
tion, which improves the accuracy of standard perturbation by reducing approximation
errors under certainty equivalence.

The approximation order in extended perturbation is determined by the order of the
polynomial used for the stochastic part of the policy function. For a first- and second-
order approximation, we show that extended perturbation gives a stable solution, pro-
vided the model is stable under certainty equivalence. This result does not generalize
beyond second order due to the local nature of the uncertainty correction from stan-
dard perturbation. We therefore present a test for stability, and a simple procedure to
ensure stability if the approximation does not pass this stability test.

Using a standard New Keynesian model with Calvo pricing, we show that extended
perturbation is more accurate than standard perturbation when using approximations
up to fifth order. We also find that extended perturbation is stable even when standard
perturbation explodes. To understand this difference, we use our stability test to locate
critical state configurations that lead to explosive dynamics. The analysis shows that
standard perturbation is unable to account for an upper bound on inflation with Calvo
pricing, and this leads to an explosive price-inflation spiral in the approximation. This
upper bound on inflation has been largely ignored in the literature, but extended pertur-
bation properly accounts for this bound, and hence generates a stable approximation.

In an empirical application, we enforce the zero lower bound (ZLB) for the mone-
tary policy rate in the New Keynesian model by proposing a smooth nonlinear modi-
fication of the existing Taylor rule. Higher-order perturbation methods are well suited



Quantitative Economics 13 (2022) The extended perturbation method 1173

for solving this model, because the proposed Taylor rule does not introduce a kink, as
implied by the widely used shadow rate specification (see Gust, Herbst, Lopez-Salido,
and Smith (2017, Arouba, Cuba-Borda, and Schorfheide (2018), among many others).
We then show that this modified version of the New Keynesian model can generate long
stays at the ZLB and is easy to solve using extended perturbation, which provides a very
accurate solution.

The paper proceeds as follows. Section 2 presents the extended perturbation
method, and Section 3 studies its stability. Section 4 analyzes accuracy and stability
of this approximation for a standard New Keynesian model. The computational issues
related to extended perturbation are discussed in Section 5, and Section 6 presents our
ZLB application. Section 7 concludes.1

2. The extended perturbation method

We start by introducing the considered class of DSGE models in Section 2.1. The ex-
tended perturbation method is presented in Section 2.2, while Sections 2.3 and 2.4 pro-
vide an analytical and numerical example, respectively. We finally compare extended
perturbation to other approximation methods in Section 2.5.

2.1 DSGE models

We consider the broad class of DSGE models, which can be expressed as

Et
[
f(xt , xt+1, yt , yt+1 )

] = 0, (1)

where Et denotes the conditional expectation given information available in period t.
The state vector xt with dimension nx × 1 belongs to the Borel set Xx ⊆ R

nx . The control
variables are stored in yt with dimension ny × 1 and yt ∈ Xy , where Xy refers to the Borel
subset of Rny . We further let nx + ny = n. The function f maps elements from Xx ×Xx ×
Xy × Xy into R

n, and we assume that this mapping is at least m times differentiable,
wherem will be used below to indicate the approximation order of the model.

We further let xt ≡ [x′
1,t x′

2,t ]
′, where x1,t contains the endogenous state variables

and x2,t denotes the exogenous states. The dimensions of these vectors are nx1 × 1 and
nx2 × 1, respectively, with nx1 + nx2 = nx. The dynamics of x2,t are given by

x2,t+1 = � (x2,t ) + ση̄εt+1, (2)

where the function � maps elements from the Borel set Xx2 ⊆ R
nx into Xx2 and is re-

quired to be at least m times differentiable. The innovations εt+1 belong to the Borel
set Xε ⊆ R

nx and has dimension nε × 1. These innovations are assumed to be indepen-
dent and identically distributed with zero mean and a unit covariance matrix, that is,
εt+1 ∼ IID(0, I). We also require that each element of εt+1 has a finite mth moment
to compute the standard perturbation approximation up to mth order. The function �

1We also provide a MATLAB package that implements the extended perturbation approximation up to
fifth order.



1174 Andreasen and Kronborg Quantitative Economics 13 (2022)

must be specified such that it generates a stable process for x2,t .2 In linear systems, this
corresponds to requiring that all eigenvalues of the Jacobian ∂�/∂x′

2,t lie inside the unit
circle. For nonlinear systems, � must satisfy the general stability condition for nonlinear
first-order Markov processes provided below in Section 3.1.

We focus on models with a unique and globally stable solution that has one steady
state. This implies that we do not consider models with multiple steady states, local in-
determinancy as in Lubik and Schorfheide (2004), and models with limit cycles around
an unstable steady state as in Beaudry, Galizia, and Portier (2020), which can be solved
by various modifications of standard perturbation.

The exact solution to the considered class of DSGE models may then be expressed
as

yt = g(xt , σ ), (3)

xt+1 = h(xt , σ ) + σηεt+1, (4)

η≡
[

0nx1 ×nε
η̄

]
.

The assumption that innovations enter linearly in (2) and (4) is without loss of generality,
because the state vector may be extended to account for nonlinearities between xt and
εt+1 as shown by Andreasen (2012). The perturbation parameter σ ≥ 0 scales the square
root of the covariance matrix for the innovations η with dimension nx × nε and enables
us to capture effects of uncertainty in the policy functions. In particular, when σ = 0 we
get the deterministic model under certainty equivalence, that is,

gCE(xt ) ≡ g(xt , σ = 0),

hCE(xt ) ≡ h(xt , σ = 0),
(5)

whereas the model with uncertainty is obtained by letting σ = 1. Unfortunately, the pol-
icy functions g and h in (3) and (4) are generally unknown and must be approximated.

2.2 The extended perturbation method

This paper builds on the observation that the policy functions can be decomposed into
two parts: (i) a certainty equivalent solution and (ii) a stochastic component, which we
define as the difference between the true solution and the certainty equivalent solution.
That is,

gstoch(xt , σ ) ≡ g(xt , σ ) − gCE(xt ),

hstoch(xt , σ ) ≡ h(xt , σ ) − hCE(xt ),
(6)

2This implies that trends may only be included in the considered class of DSGE models if a given model
after rescaling has an equivalent representation without trending variables. A similar requirement is needed
to apply the standard perturbation method (see, for instance, King and Rebelo (1999)).
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where gstoch and hstoch denote the stochastic part of the policy function, as indicated by
the superscript. Inserting (6) into (3) and (4), the exact solution may be expressed as

yt = gCE(xt ) + gstoch(xt , σ ),

xt+1 = hCE(xt ) + hstoch(xt , σ ) + σηεt+1.

Following the work of Judd and Guu (1997), the perturbation method is usually applied
to approximate both (gCE, hCE ) and (gstoch, hstoch ) at the steady state (ss), that is, at xss =
xt+1 = xt and σ = 0. However, a relatively low Taylor series expansion of gCE and hCE to
second or third order may generate unnecessary approximation errors, given that gCE

and hCE can be computed very accurately by the extended path at a small computational
cost. This is done by setting all innovations to their expected value of zero and imposing
a terminal condition yt+N at some finite horizon N for the system in (1). For a given
state xt , the extended path then finds {xEP

t+i}
N
i=1 and {yEP

t+i}
N−1
i=0 that satisfy the equilibrium

conditions in (1) in the absence of uncertainty for the next N periods, implying that
gCE(xt ) = yEP

t and hCE(xt ) = xEP
t+1.3

Thus, we suggest to solve for gCE and hCE by the extended path, but continue to ap-
proximate the stochastic part of the policy function gstoch and hstoch by standard pertur-
bation. This alternative might appear to be a somewhat ad hoc combination of a global
solution method (the extended path) and a local method (the perturbation approxima-
tion), but the procedure does have a proper theoretical foundation. To realize this, we
first show in the Appendix that the uncertainty adjustments implied by the perturbation
approximation remain valid, as they also match the curvature of the true solution at the
steady state when gCE and hCE are approximated by the extended path instead of Taylor
series expansions. Second, an infinite Taylor series expansion of the certainty equivalent
solution to the g-function at the steady state implies

gCE(xt ) =
∞∑
k=0

g(xss, 0)xk

k! (xt − xss )⊗k,

where g(xss, 0)xk with dimension ny × (nx )k denotes partial derivatives of g at the steady
state taken k times with respect to xt and (xt−xss )⊗k = (xt−xss )⊗(k−1) ⊗(xt−xss ). A sim-
ilar expression obviously applies for the h-function. This shows that our combined solu-
tion procedure may be interpreted as adding higher-order certainty equivalent terms to
a standard perturbation approximation. For instance, in the case of a third-order ap-

proximation (m = 3), we add all the higher-order terms
∑∞
k=m+1

g(xss,0)xk
k! (xt − xss )k.

Thus, our procedure may be considered as a tractable way to “extend” the standard per-
turbation approximation by additional higher-order terms that are otherwise not pos-
sible to include due to computational constraints. Based on this observation, we name
our combined solution procedure the extended perturbation method, which improves
the accuracy of standard perturbation by reducing approximation errors in the certainty
equivalent part of the policy function.

3Further details on the extended path are provided below in Section 5.1.
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The approximation order for extended perturbation is determined by the order of
the Taylor series expansion used to approximate gstoch and hstoch. We illustrate this by
presenting approximations up to fifth order for the g-function, while similar expres-
sions apply for the h-function. Here and throughout, we use subscripts to denote partial
derivatives of a given function when evaluated at the steady state. A first-order approxi-
mation simply reproduces the certainty equivalent solution by the extended path. This is
because the partial derivatives gstoch

x and gstoch
σ are zero at the steady state (see Schmitt-

Grohé and Uribe (2004)).
At second order, we have

yt = gCE(xt ) + 1
2

gσσσ2, (7)

where gσσ captures a constant uncertainty correction due to variance risk. The cross-
derivative gσx is zero as shown in Schmitt-Grohé and Uribe (2004), implying that the
uncertainty correction is not state dependent at second order.

The third-order approximation reads

yt = gCE(xt ) + 1
2

gσσσ2 + 3
6

gσσxσ
2(xt − xss ) + 1

6
gσσσσ3, (8)

as gσxx = 0 (see Andreasen (2012)). Thus, gσσx captures a linear state-dependent uncer-
tainty correction due to variance risk, while gσσσ corrects the level of the approximation
for skewness risk; for instance induced by rare disasters as in Rietz (1988).

The fourth-order approximation is given by

yt = gCE(xt ) + 1
2

gσσσ2 + 1
6

gσσσσ3 + 1
24

gσσσσσ4

+
[

3
6

gσσxσ
2 + 4

24
gσσσxσ

3
]

(xt − xss )

+ 6
24

gσσxxσ
2(xt − xss )⊗2, (9)

as gσxxx = 0. The term gσσxx captures a quadratic correction for variance risk, while
gσσσx represents a state-dependent linear correction for skewness risk. Finally, gσσσσ
corrects the level of the approximation for kurtosis risk.

The fifth-order approximation takes the form

yt = gCE(xt ) + 1
2

gσσσ2 + 1
6

gσσσσ3 + 1
24

gσσσσσ4 + 1
120

gσσσσσσ5

+
[

3
6

gσσxσ
2 + 4

24
gσσσxσ

3 + 5
120

gσσσσxσ
4
]

(xt − xss )

+
[

6
24

gσσxxσ
2 + 10

120
gσσσxxσ

3
]

(xt − xss )⊗2

+ 10
120

gσσxxxσ
2(xt − xss )⊗3, (10)
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as gσxxxx = 0. The term gσσσσx includes a linear correction for kurtosis risk, while gσσσxx

provides a quadratic adjustment for skewness risk. Variance risk is further accounted for
by the term gσσxxx, and gσσσσσ modifies the level of the approximation for risks related
to the fifth moment.

The presence of the perturbation parameter σ in (7) to (10) is included to emphasize
that the two components of the policy function gCE(xt ) and gstoch(xt , σ ) capture differ-
ent and mutually exclusive aspects of the solution. The certainty equivalence compo-
nent gCE(xt ) is computed in the absence of uncertainty with σ = 0, which imply that all
uncertainty corrections in (7) to (10) are zero; however, the presence of uncertainty with
σ = 1 does not affect gCE(xt ) by construction, but it allows the uncertainty corrections
in (7) to (10) to affect the solution.

Thus, it is straightforward to form themth order approximation by the extended per-
turbation method. The required steps are:

Step 1: Use standard perturbation to obtain all derivatives of gstoch(xt , σ ) and
hstoch(xt , σ ) at the steady state to orderm.

Step 2: In any time period, use the extended path to compute gCE(xt ) and hCE(xt ) and

approximate gstoch(xt , σ ) and hstoch(xt , σ ) by ĝstoch(xt , σ ) and ĥ
stoch

(xt , σ ), respec-
tively, using the derivatives from standard perturbation.

2.3 An analytical example

We illustrate our approximation method by applying it to the asset pricing model of

Lucas (1978). A representative agent is here maximizing E0[
∑∞
t=0β

t c
θ
t
θ ] with respect to

consumption ct subject to ptet+1 + ct = (pt + dt )et , where et is the amount of the as-
set held in period t at price pt . Dividends dt are given by dt+1 = dt exp{xt+1}, where
xt+1 = (1 − ρ)xss + ρxt + σηεt+1 and εt+1 ∼ NID(0, 1). Denoting the price-dividend
ratio by yt = pt/dt , Burnside (1998) shows that the solution is

yt ≡ g(xt , σ ) =
∞∑
i=1

βi exp
{
ai + bi(xt − xss )

}
,

where ai = θxssi+ θ2σ2η2

2(1−ρ)2 [i− 2ρ(1−ρi )
1−ρ + ρ2(1−ρ2i )

1−ρ2 ] and bi = θρ(1−ρi )
1−ρ . The certainty equiv-

alent solution is obtained by letting σ = 0, implying that gCE(xt ) = ∑∞
i=1β

i exp{θxssi +
bi(xt − xss )}. Using the decomposition in (6), we have

g(xt , σ ) = gCE(xt ) +
∞∑
i=1

βi
(
exp

{
ai + bi(xt − xss )

} − exp
{
θxssi+ bi(xt − xss )

})
︸ ︷︷ ︸

gstoch(xt ,σ )

.

This analytic expression for gstoch(xt , σ ) shows that the stochastic part of the policy
function varies nonlinearly with xt . It is also easy to verify the results for the partial
derivatives of gstoch(xt , σ ) stated above. For instance, we clearly have ∂gstoch(xt , σ )/
∂xt |ss = 0 and ∂gstoch(xt , σ )/∂σ |ss = 0 at the steady state, showing that a first-order ap-
proximation to gstoch(xt , σ ) does not include any correction for uncertainty.
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2.4 A computational example

The key insight exploited by extended perturbation is that the extended path can be a
more efficient way to capture the information in higher-order derivatives of gCE(xt ) and
hCE(xt ) than the standard perturbation method. We illustrate this point by considering
the multicountry real business cycle model in Juillard and Villemot (2011) with k coun-
tries. This model has 2k+ 1 controls variables and 2k state variables, meaning that the
size and computational cost of the model is determined by k. We refer to our Appendix
in the Online Supplementary Material for further details about the model and the con-
sidered calibration. Panel A in Table 1 shows that the number of seconds to obtain the
standard perturbation solution increases rapidly with the approximation order for mod-
els with more than ten states. For a fifth-order approximation, it takes 79.0 seconds with
k= 8, 297.8 seconds (≈ 5 min.) with k= 10 and 1322.6 seconds (≈ 22 min.) with k= 12.
Panel B shows that simply simulating a sample path of 1000 observations may also be
costly when using a high approximation order. At fifth order, it takes 17.9 seconds with
k= 8, 68.2 seconds with k= 10, and 198.8 seconds with k= 12. This rapid increase in the
computing time is mainly because evaluating the fifth-order terms related to (xt−xss )⊗5

becomes increasingly expensive with many states. The execution time of simulating
1000 observations using the extended path increases much more slowly with the size of
the model and takes only 55.6 seconds with k= 10 and 74.6 seconds with k= 12, which
in both cases are faster than the time used by the corresponding fifth-order perturbation
approximation. Panel C reports the root mean squared errors (RMSECE) for the unit-free
Euler-equation errors along the same simulated sample path. To focus on the certainty
equivalence part of the solution, we evaluate these errors for a deterministic version of
the model and transform them by the 10-base logarithm (log10) to facilitate the interpre-
tation. The accuracy of standard perturbation improves monotonically with the order of
the approximation and is about 10−5 at fifth order, but it remains less accurate when
compared to the extended path with a RMSECE of about 10−15.

Accordingly, the time needed to compute very high perturbation approximations
(say, to fifth order) are substantial for models with more than 10 state variables. In addi-
tion, one should also account for sizable costs of running simulations at very high orders
of approximation, which are comparable to the time used by a benchmark version of the
extended path. In Section 5.1, we discuss several refinements of this benchmark version
of the extended path to substantially reduce its execution time.

2.5 Comparing extended perturbation to the literature

The extended perturbation method is related to the stochastic version of the extended
path in Fair and Taylor (1983), where the extended path is modified to account for uncer-
tainty. A recent application of this modification is considered in Adjemian and Juillard
(2013), where they account for uncertainty about the innovations in the first S ≥ 1 pe-
riods when running the extended path, after which all innovations are set to zero. For
these first S periods, the model equations implied by (1) are evaluated by numerical in-
tegration using Gaussian quadratures, and this makes the method of Adjemian and Juil-
lard (2013) computationally demanding because S must be substantially larger than one
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Table 1. A multicountry model: computational costs and accuracy. This table reports the num-
ber of seconds for computing the standard perturbation solution (panel A) and for simulating a
sample path of T = 1000 observations (panel B). The accuracy along the simulated sample path
from the extended path is reported in panel C by the log10-transformed root mean squared unit-
free Euler-equation errors for a deterministic version of the model. The standard perturbation
solution is obtained using the codes of Levintal (2017). For the extended path, the starting val-
ues and the controls at the end horizon (N = 50) are determined from a first-order approxima-
tion. All computations are carried out on a standard desktop with Windows 10 using an Intel(R)
Core(TM) i7-7600U CPU @ 280 GHz processor with 16 GB memory.

k= 4 k= 6 k= 8 k= 10 k= 12

Panel A: Seconds for perturbation solution
Perturbation: 1st-order 0.00 0.01 0.02 0.08 0.19
Perturbation: 2nd-order 0.00 0.01 0.02 0.08 0.19
Perturbation: 3rd-order 0.00 0.01 0.03 0.11 3.28
Perturbation: 4th-order 0.35 1.21 4.07 9.92 24.3
Perturbation: 5th-order 1.69 16.3 79.0 297.8 1322.6

Panel B: Seconds for simulating T = 1000
Perturbation: 1st-order 0.00 0.04 0.12 0.44 0.93
Perturbation: 2nd-order 0.00 0.05 0.13 0.44 1.02
Perturbation: 3rd-order 0.00 0.10 0.18 0.58 1.80
Perturbation: 4th-order 0.00 0.43 1.10 3.98 9.31
Perturbation: 5th-order 0.00 4.89 17.9 68.2 198.8
Extended path 14.0 21.0 31.6 55.6 74.6

Panel C: Accuracy by log10 (RMSECE)
Perturbation: 1st-order −2.8 −2.8 −2.9 −3.1 −3.1
Perturbation: 2nd-order −3.8 −3.9 −4.0 −4.2 −4.2
Perturbation: 3rd-order −4.3 −4.2 −4.4 −4.6 −4.5
Perturbation: 4th-order −5.0 −4.9 −5.2 −5.4 −5.3
Perturbation: 5th-order −5.4 −5.2 −5.6 −5.8 −5.7
Extended path −14.9 −14.9 −15.2 −15.2 −15.2

to obtain a reasonable degree of accuracy (e.g., about 30). To reduce the execution time
of their approximation, Adjemian and Juillard (2013) suggest to select a fairly low value
of S and instead apply the second-order uncertainty correction from standard pertur-
bation to risk correct all endogenous variables beyond S periods when computing the
extended path. That is, {yt+i + 1

2 gσσ }Ni=S+1 and {x1,t+i + 1
2 h1,σσ }Ni=S+1 are used instead of

{yt+i}Ni=S+1 and {x1,t+i}Ni=S+1 when running the extended path. In contrast, extended per-
turbation does not apply the uncertainty correction from standard perturbation when
running the extended path, but instead add these risk corrections to the certainty equiv-
alent solution implied by the extended path.

Another way to combine the extended path with the perturbation method is pre-
sented in Ajevskis (2017). He augments the certainty equivalent solution by a point-
wise second-order accurate estimate of gstoch and hstoch. Extended perturbation instead
modifies the solution from the extended path by adding the perturbation approximation
of gstoch and hstoch to this solution. Thus, the loadings for the uncertainty correction in
extended perturbation are only computed at the steady state, whereas the uncertainty
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correction in Ajevskis (2017) is limited to second order in the current implementation
and must be recomputed at every value of xt , making this method computationally more
demanding than extended perturbation in long simulations.

3. A stability test for smooth approximations

An important feature of any approximation method is to preserve stability of the exact
solution to the considered class of DSGE models. This stability requirement is easy to
examine in a linear approximation by inspecting the eigenvalues of the state transition
function. However, a similar stability condition is rarely discussed in relation to nonlin-
ear approximations. We therefore start in Section 3.1 by presenting a stability condition
for nonlinear Markov systems, which should be of general interest for researchers work-
ing with nonlinear approximations. This stability condition is then applied in Section 3.2
to analyze the stability of extended perturbation. Section 3.3 introduces a numerical test
for stability, which is relevant for extended perturbation beyond second order where sta-
bility cannot be guaranteed. A simple procedure to ensure stability of extended pertur-
bation beyond second order is finally provided in Section 3.4.

3.1 Stability of a nonlinear Markov system

This section presents a stability condition for the system in (3) and (4). It is here sufficient
to focus on the process for xt , given that the control variables are a smooth function of
the states. We apply the stability condition in Pötscher and Prucha (1997) for the first-
order nonlinear Markov system in (4). To present this condition, iterate (4) forward by k
periods to obtain

xt+k = h(k)(xt , εt+1, εt+2, 	 	 	εt+k−1, σ ) + σηεt+k,

where h(2)(xt , εt+1, σ ) ≡ h(h(xt , σ ) + σηεt+1, σ ) and so forth. Pötscher and Prucha
(1997) show that the system in (4) is stable if h(k) is contracting, which is a much weaker
condition than requiring h(xt , σ ) to be contracting. Two sufficient conditions ensure
that the contraction property holds for h(k). First, there must exist an integer k ≥ 1 at
which

sup
{∣∣∣∣stacnxj=1

[
i′j
∂h(k)

∂x′
(
xj ,

{
ε
j
d

}k−1
d=1, σ

)]∣∣∣∣
}
< 1, (11)

given xj ∈ Xx and εj ∈ Xε. Here, ∂h(k)

∂x′ (xj , {ε
j
d }k−1
d=1, σ ) is an nx × nx Jacobian matrix eval-

uated at (xj , {ε
j
d }k−1
d=1 ), and |A| denotes the norm given by the square root of the largest

eigenvalue of the matrix product A′A. The vector ij is the j’th column in the nx×nx iden-
tity matrix, and the stac-operator creates a matrix using the rows shown as arguments
to the operator.4 Hence, the condition in (11) states that for a sufficiently large integer k,

4For instance, let aj denote the j’th row of an m × n matrix A, then stacmj=1aj = A. The stac-operator is

used in (11) to allow rows in ∂h(k)/∂x′ to be evaluated at different points, as indicated by the superindex j
on the arguments at which ∂h(k)/∂x′ is evaluated.
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the largest norm of ∂h(k)/∂x′ must be strictly smaller than one for all values of xt and εt
in their feasible domains.

The second condition is much weaker than (11) and given by

sup
{∣∣∣∣∂h(k)

∂ε′
l

(
x, {εd }k−1

d=1, σ
)∣∣∣∣

}
<∞, (12)

where x ∈ Xx and εd ∈ Xε for l= 1, 2, 	 	 	 , k−1. It is clear that this second condition holds
for basically all smooth approximations to DSGE models if xt and ε are finite. We there-
fore focus on (11) in our subsequent discussion and leave (12) as a technical regularity
condition.

3.2 Stability of the extended perturbation approximation

Before analyzing the stability of extended perturbation, it is useful to study the stability
properties of the certainty equivalent solution. For the considered class of DSGE models
in Section 2.1, the imposed assumptions ensure stability under certainty equivalence,
as all state variables (in the absence of shocks) return to the steady state when time
tends to infinity.5 This stability requirement means that the state process under certainty
equivalence xCE

t is stable, where xCE
t evolves as xCE

t+1 = hCE(xCE
t )+σηεt+1. In other words,

hCE satisfies condition (11) and explosive sample paths for xCE
t do not appear.

We next analyze the stability of extended perturbation when gradually increasing
the approximation order, that is, the Taylor series expansion of hstoch. For this analysis,
it is useful to write the extended perturbation approximation as xt+1 = hExPer(xt , σ ) +
σηεt+1, where hExPer(xt , σ ) ≡ hCE(xt ) + ĥ

stoch
(xt , σ ). In a first-order approximation,

there is no correction for uncertainty because ĥ
stoch = 0, meaning that extended per-

turbation reduces to the stable certainty equivalent solution.
In a second-order approximation, there is a constant correction for uncertainty as

ĥ
stoch = 1

2 hσσσ2. This means that partial derivatives of hExPer with respect to the state
variables are equal to those of hCE for all values of xt , implying that the stability condi-
tion (11) also holds for hExPer. Thus, extended perturbation at second order guarantees a
stable approximation, because the uncertainty correction only recenters the stable cer-
tainty equivalent solution.

In a third-order approximation, the uncertainty correction is a linear function of the
state variables as shown in (8). This implies that partial derivatives of hExPer differ from
those of hCE and the stability condition (11) cannot be guaranteed to hold for hExPer

due to the local nature of the approximation to hstoch. In other words, the process for xt
does not necessarily inherit stability from the certainty equivalent solution, because the
term hσσx may generate instability if the linear approximation of hstoch is insufficiently
accurate.

5Stability under certainty equivalence is a standard assumption to impose, as it is routinely exploited
at the steady state (through the Blanchard–Kahn condition) to derive linearized solutions to DSGE models
and, therefore, also higher-order perturbation approximations. In any case, the stability assumption under
certainty equivalence can be tested using the procedure in Boucekkine (1995).
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Going beyond third order, the stochastic component of the policy function is ap-
proximated more accurately around the steady state by higher-order polynomials as
shown in (9) and (10). However, as at third order, we cannot guarantee a stable approx-

imation, because partial derivatives of ĥ
stoch

may violate the stability condition in (11)
for hExPer although satisfied for hCE.

3.3 Testing for stability

Given that extended perturbation does not necessarily provide a stable approximation,
it seems useful to have a test to determine if a given approximation is stable. The test
we propose applies to any approximation of DSGE models within the considered class
and builds on two simplifying assumptions. We first propose to only evaluate (11) on
a sparse grid containing extreme state values, as unstable dynamics are most likely to
appear at such points given the local nature of our approximation to hstoch. To construct
the grid, let Si = {lxi , uxi } for i = 1, 2, 	 	 	 , nx contain the lower bound lxi and the upper
bound uxi of the ith state variable. The values of {lxi , uxi }nxi=1 should cover the region where
the approximation is used.6 We then form the Cartesian set Sx ≡ ∏nx

i=1 Si, which has 2nx

elements. Our second simplifying assumption is to only consider the stability condition
in (11) when the rows in ∂h(k)/∂x′ are evaluated at the same point.7

Given these simplifying assumptions, the stability condition in (11) reduces to the
testable requirement that h(k) is contracting if there exists an integer k≥ 1 such that

max
{∣∣∣∣∂h(k)

∂x′
(
x,

{
ε(v)
d

}k−1
d=1, σ

)∣∣∣∣, for all x ∈ Sx and v= 1, 2, 	 	 	 , M
}
< 1. (13)

Here, each point in Sx is evaluated using M sample paths of the innovations {ε(v)
d }k−1

d=1 to
avoid that a nonstable system satisfies the contraction condition just because of a “for-
tunate” sample path for the innovations. The test may be carried out for different values
of k and M. Some guidance on a reasonable value of kmay be obtained by implement-
ing the test on a stable linear solution. We generally recommend using a fairly large value
of k, say 500 or 1000, because it is easier for h(xt , σ ) to satisfy the contraction property
when iterated many periods forward in time.8

Another method commonly used to detect unstable approximations is to simulate
multiple sample paths and see if any of these simulations explode. Compared to this
brute force approach, our stability test is computationally less demanding and, more
importantly, allows the researcher to locate critical state configurations where the ap-
proximation might explode. As we will show below in Section 4.3, such information is

6Guidance on how to set these bounds may be obtained from unconditional moments or extreme values
in a simulated sample using the extended perturbation approximation.

7At the expense of increasing the computational cost of the test, it is obvious that a finer grid for the state
variables may be considered and that rows in ∂h(k)/∂x′ could be evaluated at different points.

8Given that the Jabocian ∂h(k)/∂x′ is computed by numerical differentiation, the most efficient imple-
mentation of the test is to evaluate |∂h(jx )/∂x′| by gradually increasing jx and then stop for a given x ∈ Sx
when the condition is met, even though jx may be less than a predetermined value of k. If max{{jx}x∈Sx }<k,
then the stability condition in (13) is satisfied.
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valuable because it may allow the researcher to understand why a given approximation
is unstable.

3.4 Inducing stability

Section 3.2 showed that computing ĥ
stoch

(xt , σ ) by standard perturbation may lead
to instability of extended perturbation beyond second order. If a given approxima-
tion is unstable, the most natural solution is to increase the approximation order for

ĥ
stoch

(xt , σ ) until the condition in (13) is satisfied. If this is not possible due to compu-

tational constraints, another way to ensure stability is to downscale ĥ
stoch

(xt , σ ) as we
move away from steady state, where this local uncertainty correction may be less ac-
curate. Inspired by the work of Blasques and Nientker (2020), we consider the function

(xt ) ≡ e−τ×D(xt ), where τ ≥ 0 andD(xt ) = ∑nx

i=1(xi,t−xi,ss )2 measures the distance of xt
from xss. Thus, if extended perturbation is unstable, then we suggest to use the modified
state transition

xt+1 = hCE(xt ) + ĥ
stoch

(σ ) + (
ĥ

stoch
(xt , σ ) − ĥ

stoch
(σ )

)

(xt ) + σηεt+1, (14)

where variation in ĥ
stoch

(xt , σ ) from the constant risk correction ĥ
stoch

(σ ) is downscaled
to ensure stability. As an example of (14), consider a third-order approximation where

ĥ
stoch

(σ ) = 1
2 hσσσ2 + 1

6 hσσσσ3, implying that only ĥ
stoch

(xt , σ ) − ĥ
stoch

(σ ) = 3
6 hσσxxt

is scaled by 
(xt ). It is easy to see that 
(xt ) in (14) does not affect the level or the cur-
vature of the state transition function h(xt ) at the steady state, implying that the modi-
fied state transition in (14) also matches the curvature of the true solution at the steady
state. In comparison to the work of Blasques and Nientker (2020), we only downscale

ĥ
stoch

(xt , σ ) − ĥ
stoch

(σ ), whereas they also downscale all nonlinear terms in the Taylor
series expansions of hCE(xt ) to ensure stability of standard perturbation. As for the value
of τ, one possibility is to select the smallest τ that satisfies the stability test in Section 3.3.
A somewhat more computational demanding alternative is to follow the procedure in
Blasques and Nientker (2020) and set τ to minimize the model’s Euler equation errors
on some predefined grid.

4. A New Keynesian model

We next study the accuracy and stability of standard and extended perturbation using a
New Keynesian model with price stickiness as in Calvo (1983). Two reasons motivate our
choice of model. First, the New Keynesian model with Calvo pricing is one of the most
popular DSGE models in the literature. Second, and perhaps somewhat surprisingly,
some dimensions of this New Keynesian model are highly nonlinear even for a standard
calibration. The strong nonlinearities in the model also imply that standard perturba-
tion easily generate explosive dynamics, showing that unstable approximations are not
only seen at extreme calibrations, as found in Haan and De Wind (2012) for the neoclas-
sical growth model. We proceed by describing the New Keynesian model in Section 4.1,
before studying accuracy in Section 4.2 and stability in Section 4.3 for approximations
up to fifth order.
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4.1 Model description

A representative household maximizes

Ut =Et
∞∑
l=0

βl
(
c

1−φ2
t+l

1−φ2
+φ0

(1 − ht+l )1−φ1

1 −φ1

)
, (15)

where ct is consumption and ht is labor supply. In addition to a no-Ponzi-game condi-
tion, the optimization is subject to the real budget constraint

ct + bt + it = htwt + rkt kt +
Rt−1bt−1

πt
+ divt ,

where resources are allocated to consumption, one-period nominal bonds bt , and in-
vestment it . Letting wt denote the real wage and rkt the rental rate of capital kt , the
household receives (i) labor income wtht , (ii) income from capital services sold to firms
rkt kt , (iii) payoffs from bonds purchased in the previous periodRt−1bt−1/πt , and (iv) div-
idends from firms divt . Here, πt ≡ Pt/Pt−1 is gross inflation and Rt is the gross nominal
interest rate. The optimization of (15) is also subject to the law of motion for capital
kt+1 = (1 − δ)kt + it − κ

2 ( itkt − ψ)2kt , where κ ≥ 0 introduces capital adjustment costs
based on ii/kt as in Jermann (1998). The constantψ ensures that these adjustment costs
are zero in the steady state.

We consider a perfectly competitive representative firm that produces final output yt
using the intermediate goods yi,t and the production function yt = (

∫ 1
0 y

(η−1)/η
i,t di)η/(η−1)

with η > 1. This generates the demand function yi,t = ( Pi,tPt )−ηyt for the ith input yi,t ,

where Pt = [
∫ 1

0 P
1−η
i,t di]1/(1−η) denotes the aggregate price level and Pi,t is the price of

the ith good.
The intermediate goods are produced by monopolistic competitors using the pro-

duction function yi,t = atk
θ
i,th

1−θ
i,t , where technology at evolves as logat+1 = ρa logat +

σaεa,t+1 with εa,t+1 ∼NID(0, 1). The ith firm sets Pi,t , hi,t , and ki,t by maximizing the
present value of dividends. Beyond a no-Ponzi-game condition, the firm must satisfy de-
mand for the ith good. When setting prices, we follow Calvo (1983) and assume that only
a fraction α ∈ [0, 1) of firms set their prices optimally, with the remaining firms letting
Pi,t = Pi,t−1.

Finally, monetary policy is specified by a standard Taylor rule

log(Rt/Rss ) = ρ log(Rt−1/Rss ) + (1 − ρ)(κππ̂t + κyŷt ), (16)

where the policy rate is determined based on a desire to close the inflation gap π̂t ≡
log(πt/πss ) and the output gap ŷt ≡ log(yt/yss ), subject to smoothing changes in the pol-
icy rate with ρ ∈ [0, 1).

We adopt a relative standard parametrization for a quarterly model in Table 2.
Households have an intertemporal elasticity of substitution of 0.5 (φ2 = 2), allocate one-
third of their time endowment to labor in steady state (hss = 0.33), and have a Frisch la-
bor supply elasticity of one (φ1 = 2). Firms reset prices once a year on average (α= 0.75)
and impose an average markup of 20% (η = 6). The main objective of the central bank
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Table 2. The structural parameters.

β= 0.99 α= 0.75
hss = 0.33 ρ= 0.80
φ1 = 2.00 κπ = 1.50
φ2 = 2.00 κy = 0.125
κ= 2.00 ρa = 0.98
δ= 0.025 σa = 0.006

θ= 0.36 πss =
{

1.000 case A
1.005 case B

η= 6.00

is to stabilize inflation (κπ = 1.5, κy = 0.125), subject to smoothing changes in the pol-
icy rate (ρ= 0.8). We consider two values for the steady-state inflation rate πss. The first
specification (case A) imposes πss = 1.00, while the second specification (case B) intro-
duces trend inflation by letting πss = 1.005 to get an annual steady-state inflation rate of
2%.

4.2 Accuracy analysis

Accuracy of standard and extended perturbation are evaluated by computing unit-free
Euler errors {Ei,t }ni=1 at state xt for all n = 16 equations in the New Keynesian model.9

We report the mean absolute error MAE= log10(
∑T
t=1

∑n
i=1 |Ei,t |/(nT )), the root mean

squared error RMSE= log10(
√∑T

t=1
∑n
i=1E

2
i,t/(nT )), and the maximum error MaxE=

log10(max({{Ei,t }ni=1}Tt=1 )), which are transformed by the 10-base logarithm.
We first consider specification A without trend inflation in Table 3. Panel I evaluates

accuracy on a grid constructed using five points uniformly spaced along each dimen-
sion of the four-dimensional state space, giving a total of 54 = 625 points. The bounds
for the first three state variables (i.e., Rt−1, kt , and at ) in this grid range from −2 to +2
standard deviations in a log-linearized solution. For the fourth state variable, which is
the log-transformed price dispersion st linked to the Calvo pricing, the considered range
is from 0.00 to 0.04. We find that standard perturbation performs well on this grid with
progressively smaller errors as measured by the MAE and RMSE when increasing the ap-
proximation order. For instance, the MAE is −2.24 (or 10−2.24 = 0.0058) at first order and
−3.20 (or 10−3.20 = 0.0006) at fifth order. However, extended perturbation is even more
accurate and outperforms standard perturbation at every approximation order as indi-
cated by the bold figures in Table 3. This satisfying performance of extended perturba-
tion is due to the high accuracy of the certainty equivalent solution by the extended path
(i.e., extended perturbation at first order), which even outperforms standard perturba-
tion at fifth order. We also note that the MAE becomes smaller for extended perturbation
with a higher approximation order, showing that increasing the approximation order of
gstoch
t and hstoch

t help to improve accuracy.

9The Appendix in the Online Supplementary Material contains a summary of these 16 equations ex-
pressed in unit-free terms.
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Table 3. Accuracy of the New Keynesian model. This table reports the accuracy of standard
and extended perturbation for the two considered calibrations in Table 2 when the states are
obtained from a grid (panels I and III) or a simulated sample (panels II and IV). The grid is
constructed using 5 points uniformly spaced along each dimension of the state space, giving
54 = 625 grid points. The bounds for the interest rate, capital, and technology in the grid range
from -2 to +2 standard deviations in a log-linearized solution. For the price dispersion index, the
grid ranges from 0.00 to 0.04 in case A and from 0.00 to 0.10 in case B. The states in the simulated
sample are obtained from simulating extended perturbation at fifth order for 5000 observations
following a burn-in of 100 observations. The conditional expectations in the Euler equations are
evaluated using Gauss–Hermite quadratures with five points. Bold figures highlight the approxi-
mation with the best performance along a given accuracy measure.

Standard Perturbation Extended Perturbation

MAE RMSE MaxE MAE RMSE MaxE

Case A No trend inflation (πss = 1.00)
Panel I: On grid
1st order −2.24 −1.72 −0.55 −3.39 −2.63 −1.25
2nd order −2.59 −2.03 −0.61 −3.42 −2.63 −1.23
3rd order −2.82 −2.13 −0.52 −3.44 −2.63 −1.22
4th order −3.04 −2.22 −0.52 −3.45 −2.63 −1.21
5th order −3.20 −2.30 −0.53 −3.46 −2.63 −1.19

Panel II: On simulated sample
1st order −2.84 −2.20 −0.77 −3.19 −2.23 −0.71
2nd order −2.87 −1.98 −0.64 −3.21 −2.23 −0.71
3rd order −2.59 −1.55 0.00 −3.23 −2.23 −0.56
4th order −0.93 1.37 3.80 −3.24 −2.24 −0.56
5th order 0.07 2.22 4.62 −3.25 −2.24 −0.56

Case B With trend inflation (πss = 1.005)
Panel III: On grid
1st order −2.10 −1.59 −0.45 −2.99 −2.29 −0.97
2nd order −2.19 −1.49 0.22 −2.99 −2.29 −0.97
3rd order −1.69 0.11 2.11 −2.99 −2.29 −0.96
4th order −0.76 1.06 2.99 −2.98 −2.29 −0.95
5th order −1.82 −0.59 1.18 −2.98 −2.29 −0.94

Panel IV: On simulated sample
1st order −2.67 −2.11 −0.78 −2.90 −2.09 −0.59
2nd order −2.58 −1.87 −0.63 −2.92 −2.10 −0.58
3rd order −2.26 −1.41 0.16 −2.93 −2.10 −0.58
4th order −0.22 2.21 4.66 −2.93 −2.11 −0.58
5th order 5.03 7.47 9.92 −2.94 −2.12 −0.58

Panel II evaluates accuracy on a simulated sample of 5000 states from extended per-
turbation at fifth order, which we then use to study the accuracy of both perturbation
methods at the various approximation orders. We first note that standard perturbation
at first order is very accurate with a MAE of −2.84 and a RMSE of −2.20, but that per-
formance deteriorates fairly rapidly when increasing the approximation order. For in-
stance, the MAE is −2.59 at third order and only 0.07 at fifth order. Unreported results
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reveal that a higher approximation order gives smaller errors close to the steady state,
but also much larger errors far from the steady state. This is particularly evident when
the price dispersion exceeds the range [0.00, 0.04] used for the grid in Panel I, although
it only happens in 6% of our simulated sample. On the other hand, extended perturba-
tion remains very accurate and clearly outperforms standard perturbation with a MAE of
−3.19 at first order and a MAE of −3.25 at fifth order. This improved performance must
be due to the more accurate certainty equivalence solution by the extended path, which

implicitly adds the higher order terms
∑∞
k=m+1

g(xss,0)xk
k! (xt − xss )k to the standard m’th

order Taylor-series approximation as shown above. Given that there is no singularity in
the New Keynesian model, it also means that standard perturbation would eventually
match the performance of extended perturbation for a sufficiently high approximation
order and eventually converge to the true solution on a very large domain.

For specification B with trend inflation, standard perturbation at first order does
fairly well, but the accuracy deteriorates when increasing the approximation order, both
on the grid (Panel III) and in the simulated sample (Panel IV). As for specification A
without trend inflation, unreported results show that a higher approximation order gives
smaller errors close to the steady state, but also much larger errors when the price dis-
persion is far from steady state. This happens more often with trend inflation, where
the price dispersion exceeds 0.04 in 15% of our simulated sample, whereas the corre-
sponding figure is 6% for specification A. In contrast, extended perturbation remains
highly accurate with trend inflation and clearly does better than standard perturbation
for nearly all orders of the approximation.

4.3 Stability analysis

This section uses our stability test from Section 3.3 to study the dynamic properties of
standard and extended perturbation and to understand why a given approximation may
be unstable. To run the stability test for the New Keynesian model with specification A,
we first construct the set Sx with extreme state configurations. Using the conventional
notation, where a “hat” denotes percentage deviation from steady state, the bounds for
ât are given by ±3 standard deviations of technology. For the two endogenous states
(R̂t−1, k̂t ), the bounds are set to ±4 standard deviations in a log-linearized solution, and
hence slightly wider than for technology to account for effects of nonlinearities. The
price dispersion st is zero in steady state and constant in a log-linearized solution with-
out trend inflation, and we therefore use a simulated sample path of extended pertur-
bation to guide our bounds of 0.00 and 0.08 for ŝt . Using this specification of Sx, we find
that standard perturbation at second order passes the stability test with M = 50, but not
at third, fourth, and fifth order. This is because the state dynamics at several points di-
verge when iterated forward in time to compute the Jacobian ∂h(k)/∂x′, which at these
points display explosive eigenvalues. In contrast, extended perturbation at third, fourth,
and fifth order pass the stability test with M = 50. This reveals that the explosive behav-
ior of standard perturbation beyond second order must be due to approximation errors
in the certainty equivalent component of the policy function, as the two perturbation
methods rely on the same approximation to the stochastic part of the policy function.
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Figure 1. Inflation and price dispersion at extreme state configurations. The top row shows in-
flation π̂t , the price dispersion next period ŝt+1, and the mean absolute Euler errors across the
16 equations in the model when increasing ŝt . The middle and the bottom rows show the cor-
responding plots when changing the capital stock k̂t and the technology ât level, respectively.
Unless stated otherwise, the state variables that are not plotted are assigned the following val-
ues: (i) the capital stock k̂t and the lagged interest rate R̂t−1 equals −4 standard deviations in a
log-linear solution, (ii) the technology level ât equals −3 standard deviations, and (iii) the price
dispersion ŝt is 0.08. All structural parameters attain the values provided in Table 2 for specifi-
cation A. In the legends, “Per” denotes standard perturbation and “EPer” is an abbreviation for
extended perturbation.

For specification B with trend inflation, the same procedure as in specification A is
used to set the bounds for R̂t−1, k̂t , and ât in the stability test, while the upper bound of
ŝt is increased to 0.2 to better capture the more frequent extreme values of ŝt with trend
inflation. We find that standard perturbation is unstable at second order and beyond,
whereas extended perturbation at third, fourth, and fifth order once again passes the
stability test with M = 50.

An inspection of the 24 = 16 extreme state configurations in Sx reveals that a high
price dispersion, a low capital stock, and a low technology level may lead to explosive
dynamics for standard perturbation. To understand why, consider specification A in
Figure 1, where we plot π̂t and ŝt+1 as we change some of the state variables, while the
remaining states attain their extreme values from Sx, where the approximation is un-
stable. The top left chart shows that inflation π̂t in standard perturbation at third and
fifth order (the lines marked with circles and stars) increase sharply for higher values
of ŝt . This increase in inflation leads to even higher values of the price dispersion in
the next period ŝt+1, as seen in the middle chart at the top. A higher value of ŝt+1 then
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increases π̂t+1, which in turn increases ŝt+2 and so on. That is, standard perturbation
generates a price-inflation spiral, which eventually may lead to explosive dynamics. The
inflation dynamics from extended perturbation (the thick black line) is radically differ-
ent, because inflation converges to an upper threshold (the dotted line) for large values
of ŝt . This implies that ŝt+1 increases more slowly with higher values of ŝt , which helps to
improve accuracy, as shown by the top right chart in Figure 1. To see where this thresh-
old comes from, recall that the aggregate price level Pt = [

∫ 1
0 P

1−η
i,t di]1/(1−η) reduces to

P
1−η
t = (1 − α)P̃1−η

t + αP1−η
t−1 with Calvo pricing, or equivalently

1 = (1 − α)

(
P̃t

Pt

)1−η
+ α

(
1
πt

)1−η
, (17)

where P̃t denotes the new price of firms resetting their prices in period t. Consider the
case where P̃t is very large, for instance, due to a high price dispersion, a low capital
stock, or a low technology level. The constant elasticity of substitution (CES) function
then implies that (1 − α)(P̃t/Pt )1−η becomes very small as η > 1. In the limit when P̃t
becomes arbitrarily large, this term converges to zero and (17) implies the upper bound
πmax = α1/(1−η) for inflation. Intuitively, consumers simply substitute away from the
very expensive goods to the cheaper goods whose prices have not yet been updated,
and this ensures that inflation remains bounded.10 This upper bound on inflation ap-
pears to have been largely ignored in the literature (perhaps due to the widespread use
of a log-linearization), but our results show that it is important to ensure stability of a
nonlinear approximation to the New Keynesian model.

The charts in the middle and the bottom row of Figure 1 plot π̂t , ŝt+1, and Euler errors
when we instead vary the capital stock and the technology level, respectively. Standard
perturbation is again unable to account for the upper bound on inflation, and this leads
to a high value of the price dispersion in the next period ŝt+1, which then increases π̂t+1,
and hence starts the price-inflation spiral. Extended perturbation does not suffer from
this shortcoming, as it perfectly accounts for the upper bound on inflation, and hence
provides a more accurate approximation, as seen from the Euler errors in the charts to
the right in Figure 1.

Thus, our analysis reveals that a price-inflation spiral plays an important role in gen-
erating explosive dynamics in the New Keynesian model when using standard perturba-
tion beyond first order. This means that various modifications to the model that im-
ply less variation in inflation and the price dispersion should reduce the probability of
starting the price-inflation spiral and generating explosive sample paths. Omitting trend
inflation is one way to reduce the variability in st as shown above. Another possibility
is to follow Christiano, Eichenbaum, and Evans (2005) and adopt price-indexation for
nonoptimizing firms by letting Pi,t = Pi,t−1πt−1, as this also reduces the variability of st .

10We are grateful to an anonymous referee for helping us realize the economic intuition behind this
result. If we accommodate price indexation of the nonoptimizing firms, then (17) becomes 1 = (1 −
α)(P̃t/Pt )1−η + α(πt−1/πt )1−η, which implies an upper bound on the growth rate of inflation, that is,
πt/πt−1 = α1/(1−η).
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One may also consider a central bank that has a strong preference for closing the infla-
tion gap (i.e., a high κπ ), as this reduces the variation in inflation and hence makes it less
likely that inflation hits its upper bound.

5. Computational issues related to extended perturbation

This section deals with the computational issues related to extended perturbation. Sec-
tion 5.1 presents an efficient procedure to compute the certainty equivalent solution,
and Section 5.2 discusses issues related to including extended perturbation in an esti-
mation routine.

5.1 The certainty equivalent component of the policy function

The first step of extended perturbation involves computing derivatives of the model at
the steady state. The computational requirement of this step depends on the size of the
model and the considered order of approximation, as shown in Section 2.4. The second
step of extended perturbation is to obtain the certainty equivalent solution. Given the
state xt , the extended path computes gCE(xt ) and hCE(xt ) by truncating the infinite sys-
tem in (1) at period t +N , where a terminal value for the controls yt+N is imposed. In
the absence of uncertainty, this implies the finite dimensional system

f(xt , xt+1, yt , yt+1 ) = 0n×1,

f(xt+1, xt+2, yt+1, yt+2 ) = 0n×1,

· · ·
f(xt+N−1, xt+N , yt+N−1, yt+N ) = 0n×1,

(18)

with a total of nN equilibrium conditions. The initial state xt and yt+N are known by as-
sumption, and this allows the extended path to find the nN unknowns in {xEP

t+i}
N
i=1 and

{yEP
t+i}

N−1
i=0 by solving the fixed-point problem in (18), with gCE(xt ) = yEP

t and hCE(xt ) =
xEP
t+1. This fixed-point problem is typically solved within a few iterations using the

Newton–Raphson algorithm of Boucekkine (1995), that exploits the sparsity and recur-
sive nature of the system in (18). When this algorithm fails to converge, we simply min-
imize the squared residuals for the system in (18) using a Levenberg–Marquardt-type
nonlinear minimizer. Although each of these solution routines are very fast, the compu-
tational burden may nevertheless accumulate if the extended path is called repeatedly,
for instance, when simulating a long sample. We therefore present several refinements
of the extended path to make it more efficient.

First, the exogenous states {x2,t+j }Nj=1 can be eliminated from (18), as they can be
solved directly by iterating on (2). It is also desirable to eliminate any lagged control
variables that appear in xt from (18). For instance, in our New Keynesian model, we do
not need to separately solve for the short rate {Rt }Nt=1 in the controls and the lagged
short rate {Rt−1}Nt=1 in the states. By eliminating these variables, we reduce the number
of equations and unknowns in (18), which make the system easier to solve. These sim-
plifications also ensure that the extended path performs well on large models, as the



Quantitative Economics 13 (2022) The extended perturbation method 1191

Table 4. Computational costs of extended perturbation. This table reports the accuracy of ex-
tended perturbation at fifth order and various execution statistics for the same grid as considered
in Table 3 when using calibration A. We letDss = 0.00 and R = 0 in panel A, while R = 0 in panel
B. The computations are carried out on a standard desktop with Windows 10 using an Intel(R)
Core(TM) i7-7600U CPU @ 280 GHz processor.

Accuracy:
MAE Seconds

Average
Iterations AverageN∗

t

Fraction by
Extended Path

Panel A
Start = 1st −3.45 964 3.3 200 100%
Start = 4th −3.45 881 2.4 200 100%

Panel B
Start = 4th,Dss = 0.01 −3.45 654 2.5 120 100%
Start = 4th,Dss = 0.03 −3.45 333 2.5 72 100%
Start = 4th,Dss = 0.05 −3.47 134 2.5 57 100%

Panel C
Start = 4th,Dss = 0.05, R = 10−4 −3.46 105 1.7 64 44%
Start = 4th,Dss = 0.05, R = 10−3 −3.45 94 2.2 71 19%

number of shocks and lagged control variables only have a small effect on its execution
time.

Second, it is important to have an accurate terminal condition yt+N and good start-
ing values for {xEP

t+i, yEP
t+i−1}Ni=1 to obtain fast convergence of (18). For the benchmark ver-

sion of the extended path, these values are computed using a first-order approximation
as in Adjemian and Juillard (2010). For extended perturbation, higher-order derivatives
of the g- and h-functions are available, as they are required to compute the uncertainty
corrections. It therefore seems natural to use these higher-order derivatives when com-
puting {xEP

t+i, yEP
t+i−1}Ni=1 and yt+N ; however, a higher approximation order may not always

improve accuracy far from the steady state if the model is very nonlinear, as shown in
Section 4. The considered procedure is therefore to use a fourth-order approximation to
obtain {xEP

t+i, yEP
t+i−1}Ni=1 and yt+N , except when any of these elements are far from their

steady state—say, differ more than 50% or 100% from the steady state. In these events,
we simply use a first-order approximation. To illustrate the computational gain from the
different starting values, let us return to the setting in Section 4.2 where the performance
of extended perturbation at fifth order is evaluated on a grid. Panel A in Table 4 shows
that it takes 964 seconds to compute the required Euler errors using starting values from
a first-order approximation, where the extended path on average uses 3.3 iterations per
observation. When using starting values from a fourth-order approximation, the execu-
tion time falls to 881 seconds, because the extended path on average only uses 2.4 itera-
tions per observation. Importantly, this reduction in execution time is achieved without
affecting the accuracy of the approximation.

Third, it is desirable to use a relatively short horizon N , as the system in (18) grows
linearly in N . The extended path is commonly applied with the same N for all states.
But, if xt is close to xss, a smaller N should be needed than when xt is far from xss. We
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therefore introduce a state-dependent horizonN∗
t using the rule

N∗
t = min

{
N ∈N : max

{|yt+N − yss|
} ≤Dss st.N ∈ [Nmin,Nmax]

}
. (19)

That is, we select the shortest horizon where the largest element in yt+N is within the
distance Dss from its steady state, subject to N ∈ [Nmin,Nmax]. This implies that N∗

t de-
pends on Dss and the current state xt through yt+N . Standard perturbation is typically
fairly accurate close to the steady state, and we therefore suggest to let Dss = 0.03 or
Dss = 0.05 such that yt+N is within 3% or 5%, respectively, of its steady-state value. As
for the bounds, our experience is thatNmin = 50 andNmax = 200 perform well and imply
enough periods for yt+N to get sufficiently close to yss. Table 4 documents a substantial
reduction in the average horizonN from 200 in Panel A (withDss = 0) to only 57 in Panel
B withDss = 0.05. As a result, the execution time falls from 881 seconds in Panel A to just
134 seconds in Panel B withDss = 0.05, while the accuracy is basically unaffected.

Fourth, a standard perturbation approximation to gCE
t and hCE

t may for some states
be sufficiently accurate, for instance when xt is close to xss or when the model does
not display strong nonlinearities. This suggests that we do not always have to run the
extended path. To formalize this observation, let yPer

t ≡ gPer(xt ), xPer
t+1 ≡ hPer(xt ), and

yPer
t+1 = gPer(xPer

t+1 ) denote the standard perturbation solution to the certainty equivalent
part of the policy function. In the absence of uncertainty, the unit-free Euler errors for
this approximation are rt ≡ f(xt , xPer

t+1, yPer
t , yPer

t+1 ). The suggested approximation is then
given by

yt = 1{max |rt |≤R}gPer(xt ) + 1{max |rt |>R}gCE(xt ) + ĝstoch(xt ), (20)

xt+1 = 1{max |rt |≤R}hPer(xt ) + 1{max |rt |>R}hCE(xt ) + ĥ
stoch

(xt ) + σηεt+1, (21)

where R denotes the tolerated errors in the certainty equivalent component of the pol-
icy function. That is, we use the standard perturbation solution when max |rt | ≤ R, and
only run the extended path when the perturbation solution is considered to be insuf-
ficiently accurate with max |rt | > R. The recommendation is to consider a value of R
that is close to the accuracy level of extended perturbation for a given model. Hence, in
our case, we consider values of R = 10−4 or R = 10−3, given that the Euler errors when
accounting for uncertainty in the New Keynesian model typically are in this range (see
Section 4.2). Panel C in Table 4 shows that this refinement further reduces the execution
time to 105 seconds with R = 10−4 and to 94 seconds with R = 10−3, as we now only
run the extended path for 44% and 19% of the points on the grid, respectively. Again,
these improvements are obtained with no loss in accuracy. Despite these substantial
reduction in execution time (from 964 to 94 seconds), we also note that extended per-
turbation remains computational more demanding than standard perturbation, which
at fifth order only requires 0.5 seconds to evaluate these Euler errors.

To illustrate the benefit of these refinements, we consider the execution time of using
extended perturbation at fifth order to simulate 2000 observations for the New Keyne-
sian model with specification A. It takes 227 seconds when only eliminating exogenous
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states and lagged control variables withN = 200. Introducing the state-dependent hori-
zon N∗

t in (19) with Dss = 0.05 reduces the execution time to 61 seconds. If we in addi-
tion use (20) and (21) to occasionally compute the certainty equivalent component of
the policy function by standard perturbation, then we reduce the execution time to 18
seconds with R = 10−4 and 12 seconds with R = 10−3.11 In contrast, simulating 2000
observation using standard perturbation at fifth order takes 0.4 seconds.

5.2 Estimation

The previous section showed that the computational costs of extended perturbation are
modest, and it is therefore possible to include the approximation in existing estimation
routines for nonlinear DSGE models. The most obvious estimator is probably simulated
method of moments (SMM) following Duffie and Singleton (1993), as most uncondi-
tional moments can be estimated fairly accurately using samples of 1000 or 2000 obser-
vations. For instance, the Monte Carlo study in Ruge-Murcia (2012) shows that SMM per-
forms well on simulated samples of this length. Another possibility is indirect inference
with moments obtained from a vector autoregression, as suggested by Smith (1993). The
simulation results in Ruge-Murcia (2007) show that this estimator also performs well
when using simulated samples of 1000 or 2000 observations. Another alternative is the
nonlinear filtering approach in Andreasen (2013), where the central difference Kalman
filter (CDKF) computes a quasi log-likelihood function, which is maximized. This esti-
mator is appealing because it requires relatively few evaluations of the policy function,
and hence is feasible to implement with extended perturbation. To see this, consider a
30-year sample of quarterly data (T = 120), where a model with four states (nx = 4) is
estimated using four control variables as observables (ny = 4). In this case, it requires
only T × 2(ny + nx + 1) = 2160 evaluations of the policy functions to compute the quasi
log-likelihood function. When implementing one of these classical estimators, it is de-
sirable to exploit multiprocessing in the optimization step to reduce the execution time.
The class of evolutionary optimizers is well suited for multiprocessing, for instance, the
one proposed by Andreasen (2010).

From a Bayesian perspective, nonlinear DSGE models may be estimated by a parti-
cle filter to approximate the log-likelihood function, as illustrated in An and Schorfheide
(2007), Fernández-Villaverde and Rubio-Ramírez (2007), among others. However, the
particle filter requires several thousand evaluations of the policy functions to approx-
imate the log-likelihood function in a given period, implying that this approach is cur-
rently not computationally feasible with extended perturbation. Instead, Bayesian infer-
ence may be carried out using the approach in Kim (2002), where a limited-information
log-likelihood function is obtained from the objective function in SMM with the optimal
weighting matrix. Another alternative is to conduct Bayesian inference using an approx-
imated likelihood function for the moment conditions as in Creel and Kristensen (2013),
which also is computational feasible with extended perturbation.

11These computations are done on a standard desktop using Windows 10 with an Intel(R) Core(TM) i7-
7600U CPU with 2.80 GHz.
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6. The zero lower bound in the New Keynesian model

Following the financial crisis starting in 2008, an important requirement for the New
Keynesian model is to respect the zero lower bound for the monetary policy rate. In-
spired by the work of Black (1995), this is typically done by truncating the Taylor rule
for logRt at zero (see Fernandez-Villaverde, Gordon, Guerron-Quintana, and Rubio-
Ramirez (2015), Gust et al. (2017), Arouba, Cuba-Borda, and Schorfheide (2018), among
many others). However, such a shadow rate extension of the Taylor rule makes the New
Keynesian model very demanding to solve because it introduces a kink in the model
and several steady states. Higher-order perturbation methods are therefore ill-suited for
solving this version of the New Keynesian model. As an alternative, Section 6.1 proposes
a new Taylor rule that respects the ZLB and allows us to solve the New Keynesian model
by higher-order perturbation methods. Section 6.2 illustrates some of the implications
of applying this new Taylor rule within the New Keynesian model.

6.1 A new ZLB consistent Taylor rule

This section presents a Taylor rule that accounts for the ZLB without introducing the
computational challenges related to a shadow rate extension of this rule. Our suggestion
is simply to formulate a Taylor rule for the net interest rate rt instead of the gross interest
rate Rt ≡ 1 + rt as done in (16). That is, we propose the rule

log(rt/rss ) = ρ log(rt−1/rss ) + 1 − ρ
rss

(κππ̂t + κyŷt ), (22)




rt = rss exp
{
ρ log(rt−1/rss ) + 1 − ρ

rss
(κππ̂t + κyŷt )

}
,

where κπ and κy are scaled by 1/rss > 0 to make them comparable to the correspond-
ing parameters in (16).12 This rule obviously accounts for the ZLB without introducing
a kink and is therefore suitable for higher-order perturbation methods, including ex-
tended perturbation. We also note that (22) nests the stylized rule in Benhabib, Schmitt-
Grohe, and Uribe (2001) when ρ = 0 and κy = 0, and hence implies two steady-state
solutions; one at the ZLB and one away from the ZLB. We follow the common approach
in the literature and focus on the solution with a steady state away from the ZLB.

The first row in Table 5 reports the OLS estimates of the Taylor rule in (22) when using
quarterly US data from 1959 to 2020 for the effective federal funds rate, core CPI infla-
tion, and GDP in deviation from its potential level. We find a standard level of interest
rate smoothing with ρ̂= 0.93, and that the Federal Reserve assigns more weight to clos-
ing the inflation gap with κ̂π = 1.62 than the output gap with κ̂y = 0.91. These estimates
are very similar to those obtained for the standard Taylor rule in row (2), which does not

12To see this, note for instance that ∂rt
∂π̂

= rt
1−ρ
rss
κπ in (22), whereas the standard Taylor rule in (16) im-

plies ∂rt
∂π̂

= (1 + rt )(1 − ρ)κπ . Thus, when rt ≈ rss, we have that (1 + rt ) ≈ rt
rss

and the two Taylor rules give
comparable partial effects.
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Table 5. Estimated Taylor rules. The Taylor rule for the net interest rate log rt = α0 + ρ log rt−1 +
aππ̂t + ay ŷt + εt is estimated in rows (1), (4), and (5). The standard Taylor rule logRt = α0 +
ρ logRt−1 + aππ̂t + ay ŷt + εt with Rt ≡ 1 + rt is estimated in row (2). The shadow Taylor rule
logRt = max{0, α0 +ρ logRt−1 +aππ̂t +ay ŷt } +εt is estimated in row (3). In rows (2) and (3), κ̂π =
âπ/(1 − ρ̂) and κ̂y = ây/(1 − ρ̂), whereas the corresponding estimates are given by âπrss/(1 − ρ̂)
and ây rss/(1 − ρ̂), respectively, in rows (1), (4), and (5) with rss = 1/0.99 − 1 as in specification A.
The IV estimation in row (4) is implemented using π̂t−1 and ŷt−1 as instruments for π̂t and ŷt .
The figures in parenthesis are Newey–West standard errors computed with 4 lags. Unless stated
otherwise, the estimation is carried out on quarterly data from 1959 Q1 to 2020 Q1.

ρ aπ ay κπ κy R2

OLS estimation:
(1) New Taylor rule: log rt 0.93 11.35 6.37 1.62 0.91 0.969

(0.03) (5.49) (2.51)
(2) Standard Taylor rule: logRt 0.91 0.11 0.04 1.12 0.38 0.952

(0.04) (0.07) (0.01)
(3) Shadow Taylor rule 0.92 0.10 0.04 1.31 0.53 0.953

(0.04) (0.07) (0.01)
Robustness:

(4) New Taylor rule: log rt by IV 0.97 4.75 2.60 1.54 0.84 0.966
(0.02) (2.52) (0.82)

(5) New Taylor rule: log rt by OLS from 1985 0.80 71.19 15.00 3.66 0.77 0.976
(0.06) (26.16) (4.27)

respect the ZLB, and its shadow rate extension in row (3). The bottom part of Table 5
shows that the OLS estimates of the new Taylor rule in (22) are robust to instrumenting
π̂t and ŷt by their lagged values (row 4), and that starting the sample in 1985 leads to the
familiar increase in the policy response to the inflation gap (κ̂π = 3.66).

The column on the far right in Table 5 shows that the new Taylor rule in (22) im-
plies anR2 = 0.97, and hence provides a marginal better in-sample fit than the standard
Taylor-rule and its shadow rate extension, which both have an R2 = 0.95. To see where
some of this improvement comes from, consider the top chart in Figure 2, which shows
the effective federal funds rate and the fitted values from our new Taylor rule during the
ZLB period. We first note that the policy rate never equals zero but stays about 10 to 15
basis points above the lower bound during this period. This feature is consistent with
our new Taylor rule, which almost perfectly matches the policy rate at the lower bound.
The bottom chart in Figure 2 reveals that the standard Taylor rule in (16) unsurprisingly
predicts negative values for the policy rate. The fitted policy rates by its shadow rate ex-
tension are also too low, as they equal zero from the start of 2009 to the middle of 2014,
although the policy rate is slightly positive in this period.

6.2 Numerical illustrations

This section explores some of the effects of using the proposed Taylor rule in the New
Keynesian model from Section 4.1. That is, we replace (16) by (22), and express the pol-
icy rate in the consumption Euler equation by 1 + rt instead of Rt . The model is solved
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Figure 2. The fit of estimated Taylor rules at the ZLB. This figure shows the effective federal
funds rate and the fitted values for rt as implied by the new Taylor rule in (22), the standard
Taylor rule in (16), and its shadow rate extension. These Taylor rules are estimated by OLS using
quarterly data from 1959 Q1 to 2020 Q1.

by applying the standard log-transformation to all variables including rt , as this ensures
that the approximation always respects the ZLB. To simulate episodes where the econ-
omy approaches the ZLB, we omit technology shocks and follow the standard practice
in the literature and introduce a preference shock dt to the subjective discount factor β.
We assume that logdt+1 = ρd logdt + σdεd,t+1, where εd,t+1 ∼NID(0, 1), σd = 0.01, and
ρd = 0.98. For the Taylor rule, we use the estimates reported in row (1) in Table 5, while
the remaining parameters attain the values in Table 2 for specification A. We then study
the performance of standard and extended perturbation, where we focus on a second or-
der approximation, as the accuracy of standard perturbation deteriorates rapidly when
increasing the approximation order and additional higher-order uncertainty terms have
only a small impact on extended perturbation.

Figure 3 shows that this version of the New Keynesian model implies that the short
rate approaches the ZLB in a smooth manner when lowering d̂t . This generates a sub-
stantial reduction in inflation π̂t , which is much larger than implied by a linear solution
that does not respect the ZLB. This linear solution is obtained by a first-order approxi-
mation to the solution from extended perturbation around d̂t = 0. At the ZLB, we find
that consumption falls by more with extended perturbation than implied by this linear
solution. Thus, the implications of enforcing the ZLB by the proposed Taylor rule in (22)
are very similar to those reported for a shadow rate extension of the standard Taylor rule
(see, for instance, Fernandez-Villaverde et al. (2015)). The bottom right chart in Figure 3
reveals that extended perturbation provides a fairly accurate approximation at the ZLB,
and that it generates lower Euler errors when compared to standard perturbation.
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Figure 3. Policy functions at the ZLB with the new Taylor rule. This figure shows the level
of the annualized policy rate rt , inflation π̂t , consumption ĉt , and the Euler-equation errors
log10(MAEt ) as a function of the preference shock d̂t in the New Keynesian model with the new
Taylor rule in (22) when solved by standard and extended perturbation to second order. The
remaining states are fixed at k̂t = −2σk, r̂t−1 = −2.5σr , and ŝt = 0, where σk and σr denote the
standard deviation of k̂t and r̂t−1, respectively, in a log-linear approximation. The reported linear
solution is obtained by a first-order approximation to the solution from extended perturbation
around d̂t = 0.

The top chart in Figure 4 shows a simulated sample of 1000 observations for the
annualized short rate. We find that our new Taylor rule frequently takes the monetary
policy rate close to the ZLB. From observations 875 to 936, the short rate is below 50
basis points, meaning that the economy is close to the ZLB for 61 consecutive quarters,
or slightly more than 15 years. This shows that the new Taylor rule in (22) can generate
long stays at the ZLB. The bottom chart in Figure 4 reveals that extended perturbation
delivers a reasonable degree of accuracy with log10MAEt (for the entire model) being
around −3, also at the ZLB. In comparison, the corresponding series for the short rate
by standard perturbation follows the one from extended perturbation fairly closely until
observation 690, where standard perturbation explodes.

7. Conclusion

This paper introduces the extended perturbation approximation, which improves the
performance of standard perturbation by using a more accurate solution for the cer-
tainty equivalent component of the policy function. For the New Keynesian model with
Calvo pricing, we show that extended perturbation achieves higher accuracy than stan-
dard perturbation. We also show that the gain in accuracy is sufficiently large to generate
a stable approximation by extended perturbation when standard perturbation explodes.
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Figure 4. Simulations from the New Keynesian model enforcing the ZLB. The top chart shows
the level of the annualized policy rate rt in a simulated sample of 1.000 observations (with a
burn-in of 100 observations) in the New Keynesian model with the new Taylor rule in (22) when
solved by standard and extended perturbation to second order. The bottom chart shows the Eu-
ler equation errors log10(MAEt ) for the entire model at a given point in the simulation.

Our results therefore suggest that the explosive behavior of standard perturbation re-
ported in the literature may be related to inaccuracies in the certainty equivalent com-
ponent of the policy function that may be eliminated by using extended perturbation. To
reduce the computational costs of extended perturbation, we also introduce several im-
provements of the extended path, which substantially lower execution costs and make
extended perturbation feasible for estimation. In an application, we use extended per-
turbation on a New Keynesian model that enforces the ZLB by considering a Taylor rule
for the log-transformed net interest rate instead of the widely used shadow rate speci-
fication. The results show that this modified version of the New Keynesian model can
generate long stays at the ZLB and is easy to solve using extended perturbation, which
provides a very accurate solution.

Appendix: Uncertainty adjustment by standard perturbation

We clearly have that the stochastic part of the policy function is zero when we omit un-
certainty (σ = 0), that is, gstoch(xt , σ = 0) = 0 and hstoch(xt , σ = 0) = 0 for all values of xt .
This implies that all derivatives of g and gCE solely with respect to the state variables are
identical at σ = 0, and similarly for h and hCE. That is,

g(xt , σ = 0)xm = gCE(xt )xm for all xt ∈ Xx,

h(xt , σ = 0)xm = hCE(xt )xm for all xt ∈ Xx
(23)
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for m= {0, 1, 2, 	 	 	}, where subscripts refer to partial derivatives taken m times with re-
spect to xt . We also note that all derivatives involving the perturbation parameter σ are
identical for g and gstoch because σ does not appear in gCE, and similarly for h and hstoch.
That is,

g(xt , σ )xmσj = gstoch(xt , σ )xmσj for all xt ∈ Xx, σ ∈R+,

h(xt , σ )xmσj = hstoch(xt , σ )xmσj for all xt ∈ Xx, σ ∈R+
(24)

for m= {0, 1, 2, 	 	 	} and j = {1, 2, 	 	 	}, where subscripts refer to partial derivatives taken
m times with respect to xt and j times with respect to σ . The standard perturbation
method exploits partial derivatives of the model in (1) to first compute partial deriva-
tives of the g- and h-functions at the steady state with respect to xt . These partial deriva-
tives are subsequently used to compute partial derivatives of the g- and h-functions at
the steady state with respect to σ and xt . But (23) and (24) show that these partial deriva-
tives are unaffected by approximating gCE and hCE by the extended path instead of the
standard Taylor series expansion. As a result, the standard perturbation method can be
used to compute gstoch(xt , σ )xmσj and hstoch(xt , σ )xmσj at the steady state when the cer-
tainty equivalent part of the policy function is computed by the extended path.
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