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Minimizing sensitivity to model misspecification
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We propose a framework for estimation and inference when the model may be
misspecified. We rely on a local asymptotic approach where the degree of mis-
specification is indexed by the sample size. We construct estimators whose mean
squared error is minimax in a neighborhood of the reference model, based on one-
step adjustments. In addition, we provide confidence intervals that contain the
true parameter under local misspecification. As a tool to interpret the degree of
misspecification, we map it to the local power of a specification test of the ref-
erence model. Our approach allows for systematic sensitivity analysis when the
parameter of interest may be partially or irregularly identified. As illustrations, we
study three applications: an empirical analysis of the impact of conditional cash
transfers in Mexico where misspecification stems from the presence of stigma ef-
fects of the program, a cross-sectional binary choice model where the error dis-
tribution is misspecified, and a dynamic panel data binary choice model where
the number of time periods is small and the distribution of individual effects is
misspecified.
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1. Introduction

Although economic models are intended as plausible approximations to a complex eco-
nomic reality, econometric inference often relies on the model being an exact descrip-
tion of the population environment. To account for the possibility that their models are
misspecified, economists have developed a number of approaches such as specifica-
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tion tests, semi-parametric and nonparametric methods, and more recently bounds ap-
proaches. Implementing those approaches typically requires estimating a more general
model than the original specification, possibly involving nonparametric and partially
identified components.

In this paper, we consider a different approach, which consists in quantifying how
model misspecification affects the parameter of interest, and in modifying the estimate
in order to minimize the impact of misspecification. The goal of the analysis is twofold.
First, we provide simple adjustments, which do not require reestimating the model, and
provide guarantees on performance when the model is misspecified. Second, we con-
struct confidence intervals that account for model misspecification error in addition to
sampling uncertainty.

In our approach, we consider deviations from a reference specification of the model,
in a particular class. The reference model is parametric and fully specified given covari-
ates. It may, for example, correspond to the empirical specification of a structural eco-
nomic model. We do not assume that the reference model is correctly specified, and
allow for local deviations from it within a larger class of models. Relative to other ap-
proaches, a local analysis presents important advantages in terms of tractability.

We construct minimax estimators which minimize worst-case mean squared error
(MSE) in a given neighborhood of the reference model. The worst case is influenced by
the directions of model misspecification, which matter most for the parameter of in-
terest. We focus in particular on two types of neighborhoods, for two leading classes of
applications: Euclidean neighborhoods, in settings where the larger class of models con-
taining the reference specification is parametric, and Kullback–Leibler neighborhoods,
in semiparametric mixture models where misspecification of functional forms is mea-
sured by the Kullback–Leibler divergence between density functions.

The framework we propose is inspired by Hansen and Sargent’s (2001, 2008) work on
robust decision making under uncertainty and ambiguity. As in their work, optimal deci-
sions depend on the size of the neighborhood around the reference model. In this paper,
we do not attempt to provide a data-driven choice for the neighborhood size. Instead,
we take the size as given and derive formulas for optimal estimation in neighborhoods
of a given size. We discuss how to interpret the magnitude of the neighborhood size in
various parametric and semiparametric examples. In addition, we show that the neigh-
borhood size can be mapped to the local power—in certain directions—of a likelihood-
ratio test of correct specification of the reference model.

Our approach delivers a class of estimators that can be used for systematic sensitivity
analysis. In addition, we show how to construct confidence intervals which asymptot-
ically contain the population parameter of interest with prespecified probability, both
under correct specification and local misspecification. We show that acknowledging
misspecification leads to easy-to-compute enlargements of conventional confidence in-
tervals. Such confidence intervals are “honest,” in the sense that they account for the
bias of the estimator (e.g., Donoho (1994), Armstrong and Kolesár (2020)).

Our local approach leads to tractable expressions for worst-case bias and MSE, as
well as for minimum-MSE estimators in a given neighborhood of the reference model.
A minimum-MSE estimator takes the form of a one-step adjustment of the estimator
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based on the reference model by a term, which reflects the impact of model misspecifi-
cation, in addition to a more standard term, which adjusts the estimate in the direction
of the efficient estimator based on the reference model. Implementing the optimal es-
timator only requires computing the score and Hessian of a larger model, evaluated at
the reference model. The large model never needs to be estimated. This feature of our
approach is reminiscent of the logic of Lagrange Multiplier (LM) testing.

We illustrate our approach using three examples. We first study the evaluation of the
PROGRESA program in Mexico, which provides income transfers to households subject
to the condition that the child attends school. Todd and Wolpin (2006) estimate a struc-
tural model of education choice on villages that were initially randomized out. They
compare the predictions of the structural model with the estimated experimental im-
pact. As emphasized by Todd and Wolpin (2008) and Attanasio et al. (2012), the ability to
predict the effects of the program based solely on control villages imposes restrictions
on the economic model. Within a simple static model of education choice, we assess the
sensitivity of counterfactual predictions to a form of misspecification under which pro-
gram participation may have a direct “stigma” effect on the marginal utility of schooling
(Wolpin (2013)).

We next study the impact of misspecification of the error distribution in a cross-
sectional binary choice model. Our aim is to estimate the outcome probabilities under
different values of the covariates. While point-identification can be achieved under in-
dependence and sufficiently rich support of covariates (Manski (1988)), the quantities
of interest are partially identified in our setting. Relying on a normal (probit) reference
model, we show how our estimators and confidence intervals can be used for sensitivity
analysis, when the researcher is concerned about misspecification of the normal distri-
bution.

Our third and last example is a dynamic binary choice model in short panel data. We
assume that time-varying errors are i.i.d. normal, but leave the distribution of individual
heterogeneity given initial conditions unrestricted. In this setting also, common param-
eters and average effects often fail to be point-identified (Chamberlain (2010), Honoré
and Tamer (2006), and Chernozhukov et al. (2013)), thus motivating a sensitivity anal-
ysis approach. We show that minimizing worst-case MSE in such panel data settings
leads to a Tikhonov-regularized estimator, where the penalization reflects the degree of
misspecification allowed for. In simulations, we illustrate that our estimator can provide
substantial bias and MSE reduction relative to commonly used estimators.

Related work and outline As in the literature on robust statistics (Huber (1964), Huber
and Ronchetti (2009), Hampel et al. (1986), and especially Rieder (1994)), we rely on a
minimax approach and aim to minimize the worst-case impact of misspecification in a
neighborhood of a model. A difference with this work is that we focus on misspecifica-
tion of specific aspects of a model, by considering parametric or semiparametric classes
of models around the reference specification. By contrast, the robust statistics literature
has mostly focused on fully nonparametric classes, motivated by data contamination
issues.

A related literature studies orthogonalization and locally robust moment functions;
see Neyman (1959), Newey (1994), Chernozhukov et al. (2018), Chernozhukov et al.
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(2020), and also Fraser (1964). Here, we account for both bias and variance, weighting
them by the size of the neighborhood around the reference model. In addition, our
approach does not require the larger model to be point-identified. Our analysis also
connects to Bayesian robustness (e.g., Berger and Berliner (1986), Gustafson (2000), Vi-
dakovic (2000), Mueller (2012)), although our minimum-MSE estimators and confidence
intervals have a frequentist interpretation.

Also related are the literatures on statistical decision theory (e.g., Wald (1950), Cham-
berlain (2000), Watson and Holmes (2016), Hansen and Marinacci (2016), and especially
Hansen and Sargent (2008)) and the literature on sensitivity analysis in statistics and
economics (e.g., Rosenbaum and Rubin (1983), Leamer (1985), Imbens (2003), Altonji
et al. (2005), Nevo and Rosen (2012), Oster (2019), Masten and Poirier (2020, 2021)).
Our analysis of minimum-MSE estimation and sensitivity in the OLS/IV example is re-
lated to Hahn and Hausman (2005) and Angrist et al. (2017). Our approach based on
local misspecification has a number of precedents, such as Newey (1985), Conley et al.
(2012), Guggenberger (2012), Bugni et al. (2012), Kitamura et al. (2013), and Bugni and
Ura (2019). Also related is Claeskens and Hjort’s (2003) work on the focused information
criterion.

Recent papers rely on a local approach to misspecification to provide tools for sensi-
tivity analysis. Andrews et al. (2017) propose a measure of sensitivity of parameter esti-
mates to the moments used in estimation. Andrews et al. (2020) introduce a measure of
informativeness of descriptive statistics in the estimation of structural models; see also
Mukhin (2018). Our goal is different, in that we aim to provide a framework for estima-
tion and inference in the presence of misspecification. Armstrong and Kolesár (2021)
study models defined by over-identified systems of moment conditions that are approx-
imately satisfied at true values, up to an additive term that vanishes asymptotically, and
derive results for optimal estimation and inference. In this paper, we seek to ensure ro-
bustness to misspecification of a reference model within a larger class of models.

Our focus on specific forms of model misspecification also relates to recent ap-
proaches to estimate partially identified models (Chen et al. (2011), Norets and Tang
(2014), Schennach (2014), and Giacomini and Kitagawa (2021)). Christensen and Con-
nault (2019) consider structural models defined by equilibrium conditions, and develop
inference methods on the identified set of counterfactual predictions subject to restric-
tions on the distance between the true model and a reference specification. Our local
approach is complementary to these methods. It allows tractability in complex mod-
els, such as structural economic models, since implementation does not require esti-
mating a larger model. In our framework, we view the parametric reference model as a
useful benchmark, although its predictions need to be modified in order to minimize
the impact of misspecification. This aspect relates our paper to shrinkage methods (e.g.,
Hansen (2016, 2017), Fessler and Kasy (2019), and Maasoumi (1978)), with the difference
that here we are interested in a single parameter.

The plan of the paper is as follows. In Section 2, we describe our framework and de-
rive the main results. In Section 3, we apply our framework to parametric and semipara-
metric mixture models. In Section 4, we discuss how to use our approach for sensitivity
analysis, with a focus on the interpretation of neighborhood size. In Sections 5 and 6, we
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present our illustrations. Finally, we conclude in Section 7. The Online Supplementary
Material (Bonhomme and Weidner (2022)) contains an Appendix and codes for replica-
tion.

2. Framework of analysis

In this section, we describe the main elements of our approach in a general setting. In
the next section, we will specialize the analysis to a locally quadratic setting, which in-
cludes both parametric misspecification and semiparametric misspecification of distri-
butional functional forms.

2.1 Setup

We observe a random sample (Yi : i = 1, � � � , n) from a density fβ,π(y ) (with respect to
a continuous or discrete measure), where β ∈ B is a finite-dimensional parameter, and
π ∈� is a finite- or infinite-dimensional parameter. Throughout the paper, the param-
eter of interest is δβ,π , a scalar function or functional of β and π. We assume that δβ,π

and fβ,π are known, smooth functions of β and π. Examples of functionals of interest in
economic applications include counterfactual policy effects in structural models, and
average effects in panel data settings. The true parameter values β0 and π0 that gener-
ate the observed data Y1, � � � , Yn are unknown to the researcher. Our goal is to estimate
δβ0,π0 and construct confidence intervals for it. We abstract from covariates to simplify
the presentation, but it is straightforward to extend our results to conditional models of
the form fβ0,π0 (y|x); see Section 3.2.

Our starting point is that the researcher has chosen a reference model π(γ), which
parameterizes the unknown π ∈ � in terms of a finite-dimensional parameter γ ∈ G.
We say that the reference model is correctly specified if there exists a value γ ∈ G such
that π0 = π(γ). Otherwise, we say that the model is misspecified. To measure misspec-
ification, we rely on a distance measure d on �, and we denote the maximal amount of
misspecification as ε≥ 0.

In our theory, we consider an asymptotic sequence where ε = εn tends to zero as n
tends to infinity, so the maximal amount of misspecification gets smaller as the sample
size increases. The reason for focusing on ε tending to zero is tractability, as a small-ε
analysis allows us to rely on linearization techniques and obtain simple, explicit expres-
sions. Moreover, when estimating δβ0,π0 , the estimation bias due to misspecification (of
order ε1/2) and the standard deviation (of order n−1/2) are asymptotically comparable,
so both play a role in the mean squared error. This local asymptotic approach has a
number of precedents in the literature, notably Rieder (1994). Along the sequence, the
true parameter π0 = π0,n depends on n, and we assume that, for a fixed parameter γ∗,
d(π0,n, π(γ∗ )) ≤ εn for all n. This implies that limn→∞ d(π0,n, π(γ∗ )) = 0; that is, π0,n

converges to π(γ∗ ) as n tends to infinity. Hereafter, we drop the indices n and do not
make the sample size dependence of ε and π0 explicit. For example, we simply write
d(π0, π(γ∗ )) ≤ ε.
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Given the distance measure d, and some ε > 0, we define an ε-neighborhood around
π(γ∗ ) as

	ε(γ∗ ) = {
π0 ∈� : d

(
π0, π(γ∗ )

) ≤ ε}.

We assume that the true π0 that generates the data satisfies π0 ∈ 	ε(γ∗ ). Later we will
assume that γ∗ can be estimated consistently by some preliminary estimator γ̂. The dis-
tance measure d, the misspecification bound ε, and the preliminary estimator γ̂ are cho-
sen by the researcher.1

Examples. As a first example, consider a parametric model defined by Euclidean pa-
rameters β and π, where π = 0 under the reference model. For example, π can rep-
resent the effect of an omitted control variable in a regression, or the degree of endo-
geneity of a regressor as in the example we analyze in Section 3.3. Suppose that the re-
searcher is interested in the parameter δβ0,π0 = c′β0 for a known vector c, such as one
component of β0. In this case, we will take the weighted Euclidean (squared) distance
d(π0, π ) = ‖π0 −π‖2


 = (π0 −π )′
(π0 −π ), for a positive-definite matrix 
.
As a second example, consider a semiparametric mixture model whose likelihood

depends on a finite-dimensional parameter vector β and a nonparametric density π
of unobservables A ∈ A, abstracting from conditioning covariates for simplicity. The
joint density of (Y ,A) is gβ0 (y|a)π0(a), for some known function g. Suppose that the
researcher’s goal is to estimate an average effect δβ0,π0 = Eπ0�(A, β0 ), for a known
function �. It is common to estimate the model by parameterizing the unknown den-
sity as π(γ), where γ is finite-dimensional. We focus on situations where, although
the researcher thinks of π(γ) as a plausible approximation to the population distribu-
tion π0, she is not willing to rule out that it may be misspecified. In this case, we use
the Kullback–Leibler divergence to define semiparametric neighborhoods, and we take
d(π0, π ) = 2

∫
A log( π0(a)

π(a) )π0(a)da.

We focus on asymptotically linear estimators δ̂= δ̂(Y1, � � � , Yn ) that admit a stochas-
tic expansion of the form

δ̂= δβ0,π(γ∗ ) + 1
n

n∑
i=1

h(Yi, β0, γ∗ ) + oP0

(
n− 1

2 + ε1/2), (1)

where this expansion holds uniformly for all P0 = Pβ0,π0 such that π0 ∈ 	ε(γ∗ ), in a sense
that we will discuss below and make precise in Theorem 1. Along the sequence we con-
sider, the product εn tends to a positive constant, so the remainder in (1) is oP0 (n− 1

2 ).

1Instead of defining the ε-neighborhood of misspecified models around a fixed point π(γ∗ ), one could
alternatively consider all π0 in the set 	ε = ∪γ∈G	ε(γ), which is the ε-neighborhood around the manifold of
reference models π(γ), γ ∈ G. This alternative definition would avoid having to define γ∗, and we employed
it in the first version of this paper to justify the same local approximation to the worst-case MSE optimal
estimator derived below (see Section 2.3 in Bonhomme and Weidner (2018)). In the current presentation,
we only introduce the ε-neighborhood 	ε(γ∗ ) around a fixed γ∗; however, this has no effect on the minimax
misspecification adjustments that we derive. By fixing γ∗, this presentation also aligns with the way in which
local minimax results are typically discussed in statistics (see, e.g., Theorem 8.11 in Van der Vaart (2007)).
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Although asymptotic linearity is satisfied by many econometric estimators, it can fail in
certain semi-parametric problems (e.g., Cattaneo et al., 2014) and in problems involving
model selection or shrinkage (e.g., Liao (2013), Cheng and Liao (2015)), for example.

Equation (1) is a form of local regularity of the estimator δ̂. Consider first the cor-
rectly specified case, where ε= 0 andπ0 = π(γ∗ ). In this case, h(·, β0, γ∗ ) is the influence
function of δ̂. We assume that the following conditions are satisfied:

Eβ0,π(γ∗ )h(Y , β0, γ∗ ) = 0, (2)

and

∇βγδβ0,π(γ∗ ) +Eβ0,π(γ∗ )∇βγh(Y , β0, γ∗ ) = 0, (3)

where Eβ,π denotes the expectation under fβ,π , and ∇βγ denotes the derivative with
respect to the vector (β′, γ′ )′. Both (2) and (3) are standard properties of influence func-
tions of regular asymptotically linear estimators.

We will refer to (2) as unbiasedness, since it guarantees that δ̂ is asymptotically un-
biased for δβ0,π0 under correct specification of the reference model. We assume that
unbiasedness holds at all possible values of β0 and γ∗. Then, by differentiating (2) with
respect to β0 and γ∗ and plugging the resulting equations into (3), we obtain

Eβ0,π(γ∗ )h(Y , β0, γ∗ )∇βγ log fβ0,π(γ∗ )(Y ) = ∇βγδβ0,π(γ∗ ). (4)

Under unbiasedness, (3) and (4) are equivalent. We will later work with (4), since it only
features h(Y , β0, γ∗ ) and not its gradient. Under suitable conditions, (4) is necessary
and sufficient for the asymptotically linear estimator δ̂ to be regular; see, e.g., Newey
(1990). As an example, for m-estimators, (4) can be interpreted as the generalized infor-
mation matrix equality. Asymptotic linearity and regularity are commonly imposed in
the semi-parametric efficiency literature (Bickel et al. (1993)). These conditions rule out,
for example, superefficient estimators such as Hodges’ estimator. We will refer to (3), or
alternatively (4), as local robustness, using a terminology introduced by Chernozhukov
et al. (2020).2

Consider now the misspecified case, where ε > 0. In this case, we strengthen the
condition of asymptotic linearity, and require that δ̂ be locally asymptotically linear;
see, e.g., Klaassen (1987). Formally, under local, small-εmisspecification, we assume the
stochastic expansion (1) continues to hold, but now uniformly for all π0 ∈ 	ε(γ∗ ).3 In the
following, we focus on locally asymptotically linear estimators that satisfy (1), under the

2While in Chernozhukov et al. (2020) local robustness is imposed as a substantive restriction on more
general moment functions, in our setting (3) and (4) are regularity conditions given unbiasedness.

3To see why (1) is a plausible way of imposing asymptotic linearity here, letφ(Yi, β0, π0 ) be the influence
function of δ̂. Expanding as n→ ∞ and ε→ 0, we have

δ̂= δβ0,π(γ∗ ) + 1
n

n∑
i=1

φ
(
Yi, β0, π(γ∗ )

)︸ ︷︷ ︸
=h(Yi ,β0,γ∗ )

+[
π0 −π(γ∗ )

]′ [∇πδβ0,π(γ∗ ) +Eβ0,π(γ∗ )∇πφ
(
Y , β0, π(γ∗ )

)]︸ ︷︷ ︸
=0

+ oP0

(
n− 1

2 + ε 1
2
)
.
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conditions (2) and (4). Notice that, under local misspecification, the influence function
h(Y , β0, γ∗ ) has no longer mean zero under P0 in general.

Our goal in this paper is twofold. First, we will construct confidence intervals for
the target parameter δβ0,π0 which are uniformly asymptotically valid on 	ε(γ∗ ). Sec-
ond, an important goal of the analysis is to construct estimators δ̂ = δ̂(Y1, � � � , Yn ) that
are asymptotically optimal in a minimax sense. For this purpose, we will show how to
compute a function h such that the (trimmed) worst-case mean squared error (MSE)
Eβ0,π0[(δ̂− δβ0,π0 )2] in the ε-neighborhood 	ε(γ∗ ) of the reference model, among esti-
mators of the form

δ̂h,β̂, γ̂ = δβ̂,π(γ̂) + 1
n

n∑
i=1

h(Yi, β̂, γ̂), (5)

is minimized under our local asymptotic analysis. In fact, we will show how to compute
estimators that minimize (trimmed) worst-case MSE among asymptotically linear es-
timators; see Theorem 1 below for a precise statement. Here, β̂ and γ̂ are preliminary
estimators of β0 and γ∗ that are root-n consistent under correct specification. For ex-
ample, β̂ and γ̂ may be maximum likelihood estimators (MLE) based on the reference
model. It follows from (2) and (4) that, under regularity conditions on the preliminary
estimators, the form of the minimum-MSE h function is not affected by the choice of β̂
and γ̂.

Examples (cont). In our parametric example, a natural estimator is the MLE of c′β0

based on the reference specification, such as the OLS estimator under the assumption
that π = 0; for example, that the coefficient of an omitted control variable is zero. In a
correctly specified likelihood setting, such an estimator will be consistent and efficient.
However, when the reference model is misspecified, it may be dominated in terms of
bias or MSE by other regular estimators.

In our semiparametric mixture example, a commonly used (“random-effects”) es-
timator of δβ0,π0 = Eπ0�(A, β0 ) is obtained by replacing the population average by an
integral with respect to the parametric distribution π(γ̂), where γ̂ is the MLE of γ. An-
other popular (“empirical Bayes”) estimator is obtained by substituting an integral with
respect to the posterior distribution of A based on π(γ̂). We will compare the finite-
sample performance of these estimators to that of our minimum-MSE estimator in our
panel data illustration in Section 6.

2.2 Heuristic derivation of the minimum-MSE estimator

In this subsection, we provide heuristic derivations for the worst-case bias and the
minimum-MSE estimator. This will lead to the main expressions in equations (8) and
(10) below. In the next subsection, we will provide regularity conditions under which
these derivations are formally justified.

In this expansion, the term linear in π0 − π(γ∗ ) vanishes, whenever φ(Y , β0, π0 ) satisfies an influence
function regularity condition analogous to (3), and the term quadratic in π0 − π(γ∗ ) gives a contribution

oP0 (ε
1
2 ).
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We assume that 	ε(γ∗ ) is a convex set. For any linear map u :�→R, we define4

‖u‖γ∗,ε = sup
π0∈	ε(γ∗ )

ε−
1
2u′(π0 −π(γ∗ )

)
, ‖u‖γ∗ = lim

ε→0
‖u‖γ∗,ε. (6)

We assume that the distance measure d is chosen such that ‖ · ‖γ∗ is unique and
well-defined, and that it is a norm, dual to a local approximation to d(π0, π(γ∗ )) for
fixedπ(γ∗ ). Both our examples of distance measures—weighted Euclidean distance and
Kullback–Leibler divergence—satisfy these assumptions.

We focus on estimators δ̂ that satisfy (1) for a suitable h function for which (2) and
(4) hold. Under appropriate regularity conditions, the worst-case bias of δ̂ in the neigh-
borhood 	ε(γ∗ ) can be expanded for small ε and large n as

sup
π0∈	ε(γ∗ )

|Eβ0,π0 δ̂− δβ0,π0 | = bε(h, β0, γ∗ ) + o(n− 1
2 + ε 1

2
)
, (7)

where

bε(h, β0, γ∗ ) = ε 1
2
∥∥∇πδβ0,π(γ∗ ) −Eβ0,π(γ∗ )h(Y , β0, γ∗ )∇π log fβ0,π(γ∗ )(Y )

∥∥
γ∗ , (8)

for ‖ · ‖γ∗ the dual norm defined in (6).5

Then the worst-case MSE in 	ε(γ∗ ) can be expanded as follows, again under appro-
priate regularity conditions (see Lemma A2 in the Appendix):

sup
π0∈	ε(γ∗ )

Eβ0,π0

[
(δ̂− δβ0,π0 )2] = bε(h, β0, γ∗ )2 + Varβ0,π(γ∗ )

(
h(Y , β0, γ∗ )

)
n

+ o(n−1 + ε). (9)

We therefore define the minimum-MSE function hMMSE
ε (y, β0, γ∗ ) as

hMMSE
ε (·, β0, γ∗ ) = argmin

h(·,β0,γ∗ )

{
ε
∥∥∇πδβ0,π(γ∗ ) −Eβ0,π(γ∗ )h(Y , β0, γ∗ )∇π log fβ0,π(γ∗ )(Y )

∥∥2
γ∗

+ Varβ0,π(γ∗ )
(
h(Y , β0, γ∗ )

)
n

}
subject to (2) and (4). (10)

Finally, let β̂ and γ̂ be preliminary estimators that are consistent for β0 and γ∗ under
the reference model fβ0,π(γ∗ ). Then the minimum-MSE estimator of δβ0,π0 is given by

δ̂MMSE
ε = δβ̂,π(γ̂) + 1

n

n∑
i=1

hMMSE
ε (Yi, β̂, γ̂). (11)

This estimator minimizes an asymptotic approximation to the worst-case MSE in
	ε(γ∗ ). Using a small-ε approximation is crucial for analytic tractability, since the vari-
ance term in (9) only needs to be calculated under the reference model, and the opti-
mization problem (10) is convex. In practice, (10) only needs to be solved at β̂ and γ̂.

4The definition in (6) is stated for finite-dimensional π. This definition can be generalized to the case
where π is infinite-dimensional; see the Appendix and Section 3.

5When π is infinite-dimensional ∇π denotes a Gâteaux derivative.



916 Bonhomme and Weidner Quantitative Economics 13 (2022)

In addition, as we already pointed out, the form of the minimum-MSE estimator is not
affected by the choice of the preliminary estimators β̂ and γ̂.

The constraints on hMMSE
ε (·, β0, γ∗ ) imposed in (10) are the unbiasedness condition

(2) and the local robustness condition (4). As we discussed above, given unbiasedness,
local robustness is a regularity condition, and unbiasedness is a substantive condition
that implies that our estimator δ̂MMSE

ε is only optimal within the class of estimators that
are asymptotically unbiased for δβ0,π0 under the reference model.

Special cases To provide intuition about the minimum-MSE function hMMSE
ε , let us de-

fine two Hessian matrices Hβγ , of size dimβ + dimγ, and Hβπ , of size dimβ + dimπ,
as6

Hβγ = Eβ0,π(γ∗ )
[∇βγ log fβ0,π(γ∗ )(Y )

][∇βγ log fβ0,π(γ∗ )(Y )
]′

,

Hβπ = Eβ0,π(γ∗ )
[∇βπ log fβ0,π(γ∗ )(Y )

][∇βπ log fβ0,π(γ∗ )(Y )
]′

.

Throughout our analysis, we assume that Hβγ is invertible. This requires that the
Hessian matrix of the parametric reference model be nonsingular, thus requiring that
β0 and γ∗ be identified under the reference model. When ε= 0, we find that

hMMSE
0 (y, β0, γ∗ ) = ∇βγ log fβ0,π(γ∗ )(y )′H−1

βγ∇βγδβ0,π(γ∗ ). (12)

Thus, under the assumption that the parametric reference model is correctly specified,
δ̂MMSE
ε is simply the one-step approximation to the MLE for δβ0,π0 that maximizes the

likelihood with respect to the “small” parameter (β′, γ′ )′. This “one-step efficient” ad-
justment is purely based on efficiency considerations. Such one-step approximations
are classical estimators in statistics (e.g., Bickel et al. (1993)).

Another interesting special case of the minimum-MSE h function arises in the limit
ε → ∞, when the matrix or operator Hβπ is invertible. Note that invertibility of Hβπ ,
which may fail when π0 is not identified, is not needed in our analysis and we only use
it to analyze this limiting case. We then have that

lim
ε→∞h

MMSE
ε (y, β0, γ∗ ) = [∇βπ log fβ0,π(γ∗ )(y )

]′H−1
βπ∇βπδβ0,π(γ∗ ). (13)

In this limit, δ̂MMSE
ε is simply the one-step approximation to the MLE for δβ0,π0 that max-

imizes the likelihood with respect to the “large” parameter (β′, π ′ )′. For any ε, the es-
timator δ̂MMSE

ε is a nonlinear interpolation between the one-step MLE approximation
to the parametric reference model and the one-step MLE approximation to the large
model. We obtain one-step approximations in our approach, since (10) is only a local
approximation to the full MSE-minimization problem.

However, an estimator based on (13) may be ill-behaved in nonpoint-identified
problems, or in problems where the identification ofπ0 is irregular. By contrast, δ̂MMSE

ε is
always well-defined, since the variance of h(Y , β0, γ∗ ) acts as a sample size-dependent
regularization. The form of δ̂MMSE

ε is thus based on both efficiency and robustness.

6The definition of Hβπ generalizes to the infinite-dimensional π case; see the Appendix and Section 3.
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In addition, note that while neither (12) nor (13) involve the particular choice of dis-
tance measure with respect to which neighborhoods are defined, for given ε > 0, the
minimum-MSE estimator will depend on the chosen distance measure.

Lastly, it is common in applications with covariates to model the conditional dis-
tribution of outcomes Y given covariates X as fβ0,π0 (y|x), while leaving the marginal
distribution of X , fX(x), unspecified. Our approach can easily be adapted to deal with
such conditional models, as we will describe in Section 3.2 in a locally quadratic setting.

2.3 Properties of the minimum-MSE estimator

In this subsection, we provide a formal characterization of the minimum-MSE estima-
tor by showing that it achieves minimum worst-case MSE in a class of regular asymptot-
ically linear estimators, as n tends to infinity and εn tends to a constant. All sequences
can thus be equivalently indexed by ε or n; for example, hε in the following theorem
could equivalently be indexed by n. Moreover, under the stated assumptions, the heuris-
tic derivations of the previous subsection are formally justified. All proofs are in the Ap-
pendix.

Theorem 1. Let n → ∞ and ε → 0 such that εn → c, for some constant c ∈ (0, ∞).
Let Assumptions A1 and A2 in the Appendix hold, let β0 ∈ B and γ∗ ∈ G, and let δ̂ε =
δ̂ε(Y1, � � � , Yn ) be a sequence of estimators with an influence function expansion of the
form

δ̂ε = δβ0,π(γ∗ ) + 1
n

n∑
i=1

hε(Yi, β0, γ∗ ) + n−1/2Rn, (14)

where Rn is a sequence of random variables with

sup
π0∈	ε(γ∗ )

Pβ0,π0

(|Rn|> log(n)
) = o(1), sup

π0∈	ε(γ∗ )
Eβ0,π0

[
R2
n1

(|Rn| ≤ 2 log(n)
)] = o(1),

and hε(·, β0, γ∗ ) is a sequence of influence functions that satisfy the constraints (2) and
(4), as well as supπ0∈	ε(γ∗ ) Eβ0,π0 |hε(Y , β0, γ∗ )|κ =O(1), for some κ > 2. We then have, for
any sequencemn > 0 withmn → 0 andmnn1/2[log(n)]−1 → ∞, that

sup
π0∈	ε(γ∗ )

Eβ0,π0

[(
δ̂MMSE
ε − δβ0,π0

)2
1
(∣∣̂δMMSE

ε − δβ0,π0

∣∣ ≤mn
)]

≤ sup
π0∈	ε(γ∗ )

Eβ0,π0

[
(δ̂ε − δβ0,π0 )21

(|̂δε − δβ0,π0 | ≤mn
)] + o

(
1
n

)
. (15)

We establish Theorem 1 in a joint asymptotic sequence where ε tends to zero as
n tends to infinity and εn tends to a finite positive constant. Under this sequence, the
leading term in the worst-case MSE is of order ε (squared bias), or equivalently of order
1/n (variance). The theorem considers a trimmed MSE to allow for the possibility that
the estimators for δβ0,π0 do not have moments. The trimming cutoff mn shrinks to zero
at a rate slower than n−1/2 (or equivalently ε1/2), so that for estimators without heavy
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tails the leading-order bias and standard deviation should not be affected by the trim-
ming. The theorem states that the leading-order worst-case trimmed MSE achieved by
our minimum-MSE estimator δ̂MMSE

ε is at least as good as the one achieved by any other
sequence of estimators satisfying our regularity conditions. All the assumptions on δ̂ε
and hε(·, β, γ) that we require for this result are listed in the statement of the theorem.
Note that in Theorem 1 we assume that (14) holds, subject to (2) and (4). On might con-
jecture that the result holds absent these conditions. However, our current proof cru-
cially relies on them.7 We will provide explicit expressions for hMMSE

ε in various models
in the next section.

2.4 Confidence intervals

In addition to point estimates, our framework allows us to compute confidence intervals
that contain δβ0,π0 with prespecified probability under our local asymptotic analysis. To
see this, let δ̂ be an estimator satisfying (1), (2), and (4). For a given confidence level
α ∈ (0, 1), let us define the following interval:

CIε(1 − α, δ̂) =
[
δ̂±

(
bε(h, β̂, γ̂) + σ̂h√

n
c1−α/2

)]
, (16)

where bε(·) is given by (8), σ̂2
h is the sample variance of h(Y1, β̂, γ̂), � � � , h(Yn, β̂, γ̂), and

c1−α/2 =�−1(1−α/2) is the (1−α/2)-standard normal quantile. Under suitable regular-
ity, conditions, the interval CIε(1 −α, δ̂) contains δβ0,π0 with probability at least 1 −α as
n tends to infinity and εn tends to a constant, both under correct specification and under
local misspecification of the reference model. Formally, we have the following result.

Theorem 2. Let n→ ∞ and ε→ 0 such that εn→ c, for some constant c ∈ (0, ∞). Let
Assumptions A1 and A3 in the Appendix hold, and also assume that the influence function
h of δ̂ satisfies supπ0∈	ε(γ∗ ) Eβ0,π0h

2(Y , β0, γ∗ ) =O(1). Then we have

inf
π0∈	ε(γ∗ )

Pr
β0,π0

[
δβ0,π0 ∈ CIε(1 − α, δ̂)

] ≥ 1 − α+ o(1). (17)

Such “fixed-length” confidence intervals, which take into account both misspeci-
fication bias and sampling uncertainty, have been studied in different contexts (e.g.,
Donoho (1994), Armstrong and Kolesár (2020, 2021)).8

7Condition (14) is a form of local regularity of the sequence of estimators δ̂ε. The additional regularity
conditions in Assumptions A1 and A2 are smoothness conditions on fβ0,π0 (y ), δβ0,π0 ,π(γ), and d(π0, π(γ))
as functions of β0, π0, and γ, and an appropriate rate condition on the preliminary estimators β̂ and γ̂. In
particular, in Assumption A2, we require the preliminary estimators β̂ and γ̂ to have moments of order
larger than two. This may require modifying the preliminary estimators to ensure that they have finite mo-
ments, as in, for example, Hausman et al. (2011), who focus on GMM estimators.

8A variation suggested by these authors, which reduces the length of the interval, is to compute the in-
terval as δ̂± bε(h, β̂, γ̂) times the (1 − α)-quantile of |N (1, σ̂2

h/(nbε(h, β̂, γ̂)2 ))|.
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3. Locally quadratic case: Applications to parametric models and

semiparametric mixture models

In this section, we first derive explicit expressions for minimum-MSE estimators in a
class of models that have a locally quadratic structure; that is, where the dual norm ‖ ·‖γ∗
can be associated with an inner product. We then apply these results to parametric mod-
els and semiparametric mixture models. Our motivation for focusing on these settings is
that they allow us to develop practical implementation methods. We have not explored
implementation in other models with infinite-dimensional π parameters.

Formally, let us define the tangent space T of the parameter space� at π(γ∗ ), where
for simplicity we ignore the dependence on γ∗ in the notation.9 Let us then define the
cotangent space T as the set of linear maps u : T → R. Throughout this section, we as-
sume that T is a Hilbert space equipped with the norm ‖ · ‖γ∗ . This locally quadratic
structure characterizes our two leading examples of parametric and semiparametric
mixture models. In such cases, the tangent space (at an interior π(γ∗ )) is simply �, and
the cotangent space is the set of linear maps u :�→ R.

3.1 Characterization of the minimum-MSE estimator

Consider the case where the square of the local dual norm defined in (6) can be writ-
ten as ‖u‖2

γ∗ = u
u, where u
w represents some inner product of elements u and w

of the cotangent space T of � at π(γ∗ ). For conciseness, from now on we will remove
the subscripts β0, γ∗, and π(γ∗ ) throughout, unless there is a risk of confusion. In par-
ticular, unless otherwise noted, all expectations will be evaluated under the reference
model. Here, π can be finite-dimensional as in parametric models (which we analyze in
Section 3.3), or infinite-dimensional as in semiparametric mixture models where π is a
density (studied in Section 3.4).

Let us start by introducing some notation. Let sβγ(y ) = ∇βγ log f (y ) and sπ(y ) =
∇π log f (y ) denote the components of the score. We define the Hessian operators Hπ :
T → T ,Hπ,βγ : Rdimβ+dimγ → T , andHβγ,π : T → R

dimβ+dimγ by10

Hπ = Esπ(Y )sπ(Y )
, Hπ,βγ = Esπ(Y )sβγ(Y )′, Hβγ,π = Esβγ(Y )sπ(Y )
.

In addition, we define the following projected versions of the gradient ∇̃π = ∇π −
Hπ,βγH

−1
βγ∇βγ , score s̃π(y ) = sπ(y ) −Hπ,βγH

−1
βγ sβγ(y ), and Hessian H̃π =Hπ −Hπ,βγ ×

H−1
βγHβγ,π .

The next lemma characterizes the minimum-MSE h function in the locally quadratic
case.

9The tangent space at π(γ∗ ) includes all directions in which one can pass tangentially through π(γ∗ ).
See Barden and Thomas (2003) for a formal exposition.

10Formally, u
 is an element of the tangent space of � at π(γ∗ ); that is, u �→ u
 represents a linear map-
ping from the cotangent space T to the tangent space T .
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Lemma 1. For the locally quadratic case of this section, the three following equivalent
characterizations of hMMSE

ε defined in (10) hold:

hMMSE
ε (y ) = sβγ(y )′H−1

βγ∇βγδ+ (εn )̃sπ(y )

(∇̃πδ−E

[
hMMSE
ε (Y )̃sπ(Y )

])
(18)

= sβγ(y )′H−1
βγ∇βγδ+ (εn )̃sπ(y )


(∇πδ−E
[
hMMSE
ε (Y )sπ(Y )

])
(19)

= sβγ(y )′H−1
βγ∇βγδ+ s̃π(y )


[
H̃π + (εn)−1

I
]−1∇̃πδ, (20)

where I denotes the identity map on T .

3.2 Covariates

So far in our presentation, we have abstracted from covariates. We now consider the case
where in addition to the outcomes Yi we observe a vector of covariates Xi. We assume
that (Yi,Xi ) are randomly drawn from a conditional distribution of Yi givenXi given by
the model fβ0,π0 (y|x), and an unrestricted marginal distribution fX of Xi. Our param-
eter of interest is δβ0,π0,fX = EfXδβ0,π0 (X ), where EfX denotes an expectation over fX .
We consider estimators of the form

δ̂h = 1
n

n∑
i=1

δβ̂,π(γ̂)(Xi ) + 1
n

n∑
i=1

h(Yi,Xi, β̂, γ̂, f̂X ),

where β̂ and γ̂ are preliminary estimates whose probability limits are β0 and γ∗, and
f̂X is the empirical distribution of Xi in the sample. While fX is unknown and infinite-
dimensional, it only enters into our object of interest (and the expression of hMMSE

ε be-
low) as an expectation, and the corresponding sample average is still estimated at the√
n-rate. We have the following characterization of the minimum-MSE influence func-

tion.

Lemma 2. Consider the locally quadratic case of this section. Let Hβγ(x) and Hπ,βγ(x)
be conditional counterparts to Hβγ and Hπ,βγ , and likewise let sβγ(y|x), sπ(y|x) and
s̃π(y|x) = sπ(y|x) − [EfXHπ,βγ(X )][EfXHβγ(X )]−1sβγ(y|x) denote (projected) scores in
the conditional model. We have

hMMSE
ε (y, x) = δ(x) −EfXδ(X ) + sβγ(y|x)′

[
EfXHβγ(X )

]−1
EfX∇βγδ(X )

+ (εn )̃sπ(y|x)

{
EfX ∇̃πδ(X ) −EfXE

[
hMMSE
ε (Y ,X )̃sπ(Y |X )

]}
, (21)

with analogous counterparts to (19) and (20).

A first difference between (18) and (21) is that various expectations over fX occur
here, which we will replace by sample averages when calculating the estimator δ̂MMSE

ε in
practice. A second difference comes from the term δ(x) − EfXδ(X ). However, this term
does not contribute to δ̂MMSE

ε , since its sample average is zero once we replace fX by the
empirical distribution f̂X .11

11The term δ(x) −EfX δ(X ) ensures that hMMSE
ε is locally robust with respect to fX in the sense of (4).
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3.3 Parametric models

A simple locally quadratic example is a parametric model where π is finite-dimensional,
and the distance measure overπ is based on a weighted Euclidean metric ‖·‖
 for a pos-
itive definite weight matrix 
. Here, we treat 
 and the neighborhood size ε as known.
We will discuss the choice of 
, and the interpretation of ε, in Section 4.

The small-ε approximation to the bias of δ̂ is given by (8), with ‖ ·‖γ∗ = ‖ ·‖
−1 , where

−1 is the inverse of
. In this case, for vectors u, w ∈R

dimπ we have u
w= u′
−1w. Let

Hπ = E
[
sπ(Y )sπ(Y )′

]
,

H̃π = E
[
sπ(Y )sπ(Y )′

] −E
[
sπ(Y )sβγ(Y )′

]
H−1
βγE

[
sβγ(Y )sπ(Y )′

]
,

be the usual parametric Hessian matrices. We have Hπ = Hπ

−1, Hπ,βγ = E[sπ(Y ) ×

sβγ(Y )′], Hβγ,π = H ′
π,βγ


−1, s̃π = sπ −Hπ,βγH
−1
βγ sβγ , and H̃π = H̃π


−1. From (20) we
then obtain the following.

Corollary 1 (Parametric models).

hMMSE
ε (y ) = sβγ(y )′H−1

βγ∇βγδ+ s̃π(y )′
−1[H̃π + (εn)−1I
]−1∇̃πδ,

where I is the identity matrix of size dimπ.

In addition to the “one-step efficient” adjustment hMMSE
0 = s′βγH

−1
βγ∇βγδ, the mini-

mum-MSE function hMMSE
ε in Corollary 1 thus provides a further adjustment that is mo-

tivated by robustness concerns. It is easy to generalize this formula to account for con-
ditioning covariates whose distribution is unspecified, as in Lemma 2.

It is interesting to compute the limit of the MSE-minimizing h function as ε tends to
infinity in the case where Hπ is invertible. This leads to the following expression, which
is identical to (13),

lim
ε→∞h

MMSE
ε (y ) = sβγ(y )′H−1

βγ∇βγδ+ s̃π(y )′H̃†
π∇̃πδ, (22)

where H̃
†
π denotes the Moore–Penrose generalized inverse of H̃π . Comparing (22) and

Corollary 1 shows that the optimal δ̂MMSE
ε is a Ridge-regularized version of the one-step

full MLE, where (εn)−1I regularizes the projected Hessian matrix H̃π = H̃π

−1. Our “ro-

bust” adjustment remains well-defined under singularity, and it accounts for small or
zero eigenvalues of the Hessian in an MSE-optimal way.

A linear regression example. Studying a linear regression model helps to illustrate
some of the main features of our approach. Consider the model

Y =X ′β+U , X = CZ + V ,

where Y is a scalar outcome, and X and Z are random vectors of covariates and instru-
ments, respectively, β is a dimX parameter vector, and C is a dimX × dimZ matrix. We
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assume that U = π ′V + ξ, where ξ is normal with zero mean and variance σ2, indepen-
dent of X , Z, V , and V is normal with zero mean and nonsingular covariance matrix
�V , independent of Z. Let �Z be the covariance matrix of Z, and let �X = C�ZC ′ + �V .
For simplicity, we assume that C, �V , �Z , and σ2 are known, and we take 
 = I to be
the identity matrix. The parameters are thus β and π. In the reference model, we take
π = 0, hence treating X as exogenous whereas the larger model allows for endogeneity.
The target parameter is δβ0,π0 = c′β0, for a known dimβ× 1 vector c.

From (21), we have12

hMMSE
ε (y, x, z) = (

y − x′β0
)
x′�−1

X c

− (
y − x′β0

)[
(x−Cz) −�V �−1

X x
]′

× [(
�V −�V �−1

X �V
) + (εn)−1σ2I

]−1
�V �

−1
X c. (23)

Hence, when ε = 0 the minimum-MSE estimator of c′β0 is the “one-step efficient” ad-
justment in the direction of the OLS estimator, with influence function hMMSE

0 (y, x, z) =
(y−x′β0 )x′�−1

X c. As ε tends to infinity, assuming C�ZC ′ is invertible, it follows from (23)
that

lim
ε→∞h

MMSE
ε (y, x, z) = (

y − x′β0
)
[Cz]′

[
C�ZC

′]−1
c,

which is the influence function of the IV estimator.
For given ε > 0 and n, our adjustment remains well-defined even when C�ZC

′ is
singular.13 When c′β0 is identified (i.e., when c belongs to the range ofC), the minimum-
MSE estimator remains well behaved as εn tends to infinity, otherwise setting a finite ε
value is needed to control the increase in variance. The term (εn)−1 in (23) acts as a form
of regularization, akin to Ridge regression. In Appendix S4, we show how to extend the
parametric setting of this subsection to models defined by moment restrictions, and we
revisit this example while dropping the normality assumptions.

3.4 Semiparametric mixture models

We now consider a class of semiparametric models, where the distribution of outcomes
Y conditional on unobserved latent variables A ∈ A is described parametrically by
Y |A ∼ gβ0 (·|A), with finite-dimensional unknown parameter β0 ∈ B, while the distri-
bution of A ∼ π0 is left unrestricted in the “large” correctly specified model. Here, � is
the set of probability distributions over A. The distribution of observed outcomes as a
function of the unknown parameters β0 ∈ B and π0 ∈� is given by

fβ0,π0 (y ) =
∫
A
gβ0 (y|a)π0(a)da. (24)

12In this case, there is no γ parameter, sβ(y, x|z) = 1
σ2 x(y − x′β0 ), sπ (y, x|z) = 1

σ2 (x − Cz)(y − x′β0 ),

EfZHβ(Z ) = 1
σ2 �X , ∇̃π = ∇π −�V �−1

X ∇β, and EfZ H̃π(Z ) = 1
σ2 (�V −�V �−1

X �V ).
13Note that in the absence of an instrumentZ, the minimum-MSE estimator coincides with the one-step

efficient adjustment in the direction of the OLS estimator.
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The parameter of interest is a functional of β0 and π0, which takes the form of an expec-
tation overA; that is,

δβ0,π0 = Eπ0�β0 (A) =
∫
A
�β0 (a)π0(a)da,

where �β0 (a) is a known function of β0 and a.
In Section 6, we will illustrate this setup in two binary choice models: a cross-

sectional model, and a dynamic panel data model. In the first case, A is an error term
independent of covariates, normally distributed under the reference model. In the sec-
ond case, A is a latent individual effect correlated with initial conditions, specified us-
ing a parametric correlated random-effects reference model (Chamberlain (1984)). In
both models, we will estimate average effects, which are expectations with respect to
the distribution of A. Our approach will provide insurance against misspecification of
the parametric functional forms.

Let us specify a parametric reference model for the distribution of the latent vari-
ablesA, and denote the reference density by π(γ), where γ is a finite-dimensional para-
meter. Under the reference model, the distribution of outcomes is given by fβ0,π(γ∗ )(y ) =∫
A gβ0 (y|a)π(a|γ∗ )da. However, this model may be misspecified, and we assume that

the true distribution π0 belongs to the neighborhood 	ε(γ∗ ) = {π0 ∈ � : d(π0, π(γ∗ )) ≤
ε}, which we define here in terms of the Kullback–Leibler (KL) divergence d(π0, π(γ∗ )) =
2Eπ0 log[π0(A)/π(A|γ∗ )].

We are going to derive the expression of the minimum-MSE estimator by applying
(19). In this setting, elements of the cotangent space T of π(γ) at γ∗ can be represented
by functions u : A �→ R. For example, the gradient ∇πδβ,π is a cotangent element, which
can be represented by the function �β(·).14 For elements u, w ∈ T , we define their inner
product by u
w= Covπ(γ∗ )[u(A), w(A)]; that is, the corresponding squared norm in (6)
is ‖u‖2

γ∗ = Varπ(γ∗ )[u(A)]. One can show that this norm is indeed the dual to a suitable
local approximation to the KL divergence as defined in (6); see Appendix S2.

Let us omit again parameter subscripts from the notation for conciseness. From (24),
we see that sπ(y ) = ∇π log f (y ) can be represented by the function g(y|a)/f (y ). As a re-
sult, for u ∈ T we have

sπ(y )
u= Cov
[
u(A),

g(y|A)
f (y )

]
= E

[
u(A)|Y = y] −Eu(A),

where we have used that Eg(y|A)/f (y ) = 1. In addition, we have

s̃π(y )
u= E
[
u(A)|Y = y] −Eu(A) − sβγ(y )′H−1

βγE
[
sβγ(Y )u(A)

]
,

and, for any function h, E[h(Y )sπ(Y )] can be represented by the function E[h(Y )|A =
a].

Rewriting the first-order condition in equation (19), we thus obtain the following
result, which shows that hMMSE

ε is the solution to a linear system.

14Note that, since π integrates to one (and therefore tangent space elements integrate to zero), one can
equivalently represent ∇πδβ,π as �β(·) − c for any constant c. A possible choice is c = Eπ(γ∗ )�β(A).
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Corollary 2 (Semiparametric mixture models).

hMMSE
ε (y ) = sβγ(y )′H−1

βγ∇βγδ+ (εn)
{
E

[
�(A) − δ− hMMSE

ε (A)|Y = y]
− sβγ(y )′H−1

βγE
[
sβγ(Y )

(
�(A) − hMMSE

ε (A)
)]}

,

where h
MMSE
ε (a) := E[hMMSE

ε (Y )|A= a].

Corollary 2 can be generalized to account for conditioning covariates X . We now
apply Lemma 2 to provide two generalizations, which we will use in the two examples
in Section 6. In the first one, we assume that A and X are independent under π0. This
is the case in our cross-sectional illustration in Section 6.1, where A is an error term
independent of X . In this case, π0 is the marginal distribution of A. We then have the
following characterization.

Corollary 3 (Semiparametric mixture models, independent covariates).

hMMSE
ε (y, x)

= δ(x) −EfXδ(X ) + sβγ(y|x)′
[
EfXHβγ(X )

]−1
EfX∇βγδ(X )

+ (εn)
{
E

[
EfX

[
�(A,X )

] −EfXδ(X ) − hMMSE
ε (A)|Y = y,X = x]

− sβγ(y|x)′
[
EfXHβγ(X )

]−1
EfXE

[
sβγ(Y |X )

(
EfX

[
�(A,X )

] − hMMSE
ε (A)

)]}
,

where here h
MMSE
ε (a) := EfX [E(hMMSE

ε (Y ,X )|A= a,X )].

In the second generalization, we leave the joint distribution of (A,X ) unrestricted
under π0. This is the case in our panel data illustration in Section 6.2, where A is an in-
dividual effect that may be correlated withX . In this case, π0 is the conditional distribu-
tion ofA givenX , and we measure the distance between conditional distributions using
d(π0, π(γ∗ )) = 2EfXEπ0 log[π0(A|X )/π(A|X , γ∗ )]. We then have the following charac-
terization.

Corollary 4 (Semiparametric mixture models, correlated covariates).

hMMSE
ε (y, x)

= δ(x) −EfXδ(X ) + sβγ(y|x)′
[
EfXHβγ(X )

]−1
EfX∇βγδ(X )

+ (εn)
{
E

[
�(A,X ) −EfXδ(X ) − hMMSE

ε (A,X )|Y = y,X = x]
− sβγ(y|x)′

[
EfXHβγ(X )

]−1
EfXE

[
sβγ(Y |X )

(
�(A,X ) − hMMSE

ε (A,X )
)]}

,

where here h
MMSE
ε (a, x) := E(hMMSE

ε (Y ,X )|A= a,X = x).
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To provide intuition about the form of the solution in semiparametric mixture mod-
els, let us start by considering a setting where β0 and γ∗ are known to the researcher,
while abstracting from covariates for simplicity. Let EY|A and EA|Y denote the condi-
tional expectation operators of Y given A and A given Y , respectively. Corollary 2 im-
plies that (see Appendix S2 for a derivation)

hMMSE
ε =EA|Y

[
EY|A ◦EA|Y + (εn)−1

IA
]−1

(�− δ), (25)

where ◦ denotes the composition operator, and IA denotes the identity operator; that
is, IAπ = π for π : A → R. In semiparametric mixture settings such as panel data mod-
els, average effects are often only partially identified or not root-n estimable due to ill-
posedness.15 The presence of the Tikhonov penalty (εn)−1 in (25) bypasses these issues
by making the operator [EY|A ◦ EA|Y + (εn)−1

IA] nonsingular. By focusing on a shrink-
ing neighborhood of the reference distribution, as opposed to entertaining any possible
distribution, our approach avoids issues of nonidentification and ill-posedness while
guaranteeing MSE-optimality within that neighborhood.16

Next, consider the estimation of c′β0, for c a dimβ× 1 vector, and assume γ∗ known
for simplicity. Let IYh= h for h : Y →R, and let

W
ε = IY −EA|Y

[
EY|A ◦EA|Y + (εn)−1

IA
]−1

EY|A.

It follows from Corollary 2 that

hMMSE
ε (y ) =W

εsβ(y )′
{
E

[
sβ(Y )Wεsβ(Y )′

]}−1
c. (26)

As ε tends to infinity, Wε approximates the functional differencing projection opera-
tor W = IY − EA|YE

†
A|Y , where E

†
A|Y denotes the Moore–Penrose generalized inverse of

EA|Y (see Bonhomme (2012)). In this limit, the minimum-MSE estimator is the one-step
approximation to the semiparametric efficient estimator of c′β0. Yet, the efficient esti-
mator fails to exist when the matrix denominator in (26) is singular.17 Here, the term
(εn)−1 acts as a regularization of the functional differencing projection, which makes
hMMSE
ε well-defined irrespective of the nature of identification.

Lastly, consider a model with covariates X that are independent of the latent vari-
ables A, as in our illustration in Section 6.1. Assuming that β0 and γ∗ are known, and
that �(A) does not depend onX , and letting EY ,X |A and EA|Y ,X denote the conditional
expectation operators of (Y ,X ) given A and A given (Y ,X ), respectively, Corollary 3
implies

hMMSE
ε =EA|Y ,X

[
EY ,X |A ◦EA|Y ,X + (εn)−1

IA
]−1

EfX (�− δ). (27)

15See, for example, Chernozhukov et al. (2013), Pakes and Porter (2013), Severini and Tripathi (2012), and
Bonhomme and Davezies (2017).

16Note that regular estimation is possible when there exists a function ψ(y ) such that �(A) − δ =
E[ψ(Y )|A]. In this case, limε→∞ δ̂MMSE

ε is consistent for Eπ0�(A) = δ+Eπ0E[ψ(Y )|A] for all π0.
17In discrete choice panel data models, common parameters are generally not point-identified (Cham-

berlain (2010), Honoré and Tamer (2006)). In panel data models with continuous outcomes, identification
and regularity require high-level “nonsurjectivity” conditions, which may be hard to verify (Bonhomme
(2012)).
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The solution is similar to (25), with the difference that here, due to independence, both
Y andX are informative about the latentA.

3.5 Implementation in parametric models and semiparametric mixture models

To implement the method in parametric settings, the researcher needs to compute
the score and Hessian of the larger model. Since we focus on smooth models, meth-
ods based on numerical derivatives or simulation-based approximations can be used.
Minimum-MSE estimators are generally not available in closed form in semiparametric
mixture models. Nevertheless, in these models hMMSE

ε can be computed by minimizing
the quadratic objective (abstracting from covariates for simplicity)

E
(
�(A) − δ−E

[
h(Y )|A

])2 + (εn)−1
Eh2(Y ), (28)

with respect to h, subject to the linear constraints Eh(Y ) = 0 and Eh(Y )sβγ(Y ) = ∇βγδ.
This is a regularized linear inverse problem (see, e.g., Engl et al. (2000), and Kress (2014)),
which is well-posed given the presence of the Tikhonov penalty (εn)−1. Numerous nu-
merical approaches have been developed to solve linear inverse problems. In the illus-
trations, we implement a simulation-based method that relies on matrix operations. In
Appendix S3, we describe this method, and also explain how we compute confidence in-
tervals. Note that, given initial estimates β̂ and γ̂, computing minimum-MSE estimators
and confidence intervals does not require nonlinear optimization.

4. Using minimum-MSE estimates and confidence intervals for sensitivity

analysis

In this section, we discuss how to apply our approach in practice. So far, we have shown
how to compute minimum-MSE estimators and confidence intervals for different values
of ε. We now describe a strategy to choose an interpretable range for ε, and report the
results of the estimation on this range, in the spirit of sensitivity analysis.

4.1 Context-specific interpretations of magnitudes of ε

In order to apply our approach, an important first step is to form intuition about orders
of magnitudes of ε in the model under study. The literature on sensitivity analysis that
we referred to in the introduction provides intuition in certain models; see, for exam-
ple, the analysis of linear IV models in Conley et al. (2012). In Sections 5 and 6, we will
discuss the magnitudes of ε in our examples. In our evaluation of a conditional cash
transfer program in Section 5, misspecification stems from omitted stigma effects in
households’ preferences. In this case, we will show that ε can be mapped to the ratio
of the marginal utility of the subsidy (i.e., the “stigma” effect) to that of consumption.
Economic intuition can then suggest whether a given ε is large or small. In this set-
ting, one can motivate the assumption that ε shrinks as n increases as reflecting that
the econometrician’s uncertainty about the presence of stigma effects diminishes when
the sample gets larger.
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In the binary choice models we study in Section 6, π is infinite-dimensional, and
ε/2 is the squared radius of a Kullback–Leibler ball around a normal density. To visualize
the implications of assuming that the true π belongs to an ε-neighborhood of the nor-
mal, we will plot worst-case probability bounds, and show how setting ε to a particular
value imposes ex ante restrictions on the parameter of interest. Local approximations to
bounds on functionals ofπ are easy to compute. Alternatively, one may report estimated
worst-case distributions—that is, a π0 that achieves the supremum in (7)—in the spirit
of Christensen and Connault (2019).

4.2 Interpretation based on statistical testing

As a complement to forming context-specific intuition about magnitudes, here we out-
line a generic interpretation based on statistical testing. Specifically, we show that set-
ting ε is isomorphic to setting a lower bound on the local power of a likelihood-ratio test
of the reference model, against alternatives outside the neighborhood 	ε(γ∗ ) in certain
directions. The ε-neighborhood will thus contain all models that are hard to statistically
distinguish from the reference model in those directions. This logic has antecedents in
robust statistics (Huber and Ronchetti (2009)), and robust control in economics (Hansen
and Sargent (2008)).

To proceed, let us focus on the parametric case of Section 3.3 with identity weight
matrix 
. Let v be a unitary vector, and consider a likelihood-ratio test of the null
hypothesis H0 : π0 = π(γ∗ ) against the local alternative H1 : π0 = π(γ∗ ) + ξv/

√
n, for

some constant ξ > 0. Let the size of the test be α ∈ (0, 1). The local power of the test
is then p = Pr(Z[μ]> c̃α ), where c̃α is the (1 − α)-quantile of the chi-squared distribu-
tion with one degree of freedom, andZ[μ] follows a noncentral chi-squared distribution
with one degree of freedom and noncentrality parameter μ = ‖H̃1/2

π v‖ξ; see, for exam-
ple, Van der Vaart (2007, p. 237).18 For given α and p values, let μ(α, p) be such that
Pr(Z[μ(α, p)]> c̃α ) = p.19 It follows that μ(α, p) = ‖H̃1/2

π v‖ξ. Hence, noting that μ(α, p)
is increasing in p, and defining

ε(v) = μ(α, p)2

nv′H̃πv
,

taking ε≥ ε(v) ensures that local power in direction v is at leastpwhenever ξ/
√
n≥ ε 1

2 .20

Note that, for fixed α and p, the product ε(v)n is independent of n.
To ensure power larger than p outside the neighborhood in all directions v, one

could compute the supremum of ε(v) over all directions.21 Setting ε larger than all ε(v)’s

18Here, H̃π is the usual parametric (projected) Hessian matrix, since 
 is the identity.
19μ(α, p) is implicitly defined by �(μ(α, p) +�−1(α/2)) +�(−μ(α, p) +�−1(α/2)) = p, where � is the

standard normal cumulative distribution function.
20This definition is easy to extend to the general locally quadratic case of Section 3.1. Let v be a unitary

direction in the tangent space T of π(γ) at γ∗, and let 
γ∗ : T → T be the linear operator defined in the
Appendix in the Online Supplementary Material. In the parametric case 
γ∗ is simply the matrix 
. In
the general setup the noncentrality parameter is 〈v, H̃π
γ∗v〉1/2ξ, and ε(v) = μ(α, p)2/(n〈v, H̃π
γ∗v〉), for
〈v, u〉 ∈ R the scalar product between v ∈ T and u ∈ T .

21It is sufficient to consider directions that are orthogonal to the directions ∇γ∗π
′ of the reference model.
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is motivated by a desire to calibrate the fear of misspecification of the researcher: when
p is large, say 80%, all alternatives outside the neighborhood 	ε(γ∗ ) are then easy to
statistically distinguish from the reference model based on a sample of n observations.
However, for the supremum of ε(v) to be finite, H̃π needs to be nonsingular, which pre-
cludes models with partial or irregular identification. As an example, in the linear model
of Section 3.3, the supremum of ε(v) is infinite whenever �X − �V = C�ZC ′ is singular;
that is, whenever the IV model is underidentified. In such a case, there thus exist cer-
tain directions along which the specification test has no power, no matter how large ε is.
Likewise, in semiparametric models, the eigenvalues of the infinite-dimensional opera-
tor H̃π may not be bounded away from zero due to ill-posedness.

In partially or irregularly identified models, given some fixed values of α and p, a
possibility is to report several ε value: a first value ε1 that corresponds to the infimum of
ε(v) over all directions v—hence to the most favorable direction; a second value ε2 ≥ ε1,
such that power is at least p outside the neighborhood in the most favorable direction
in the subspace of directions orthogonal to the most favorable one; a third value ε3 ≥ ε2

that provides power guarantees along the most favorable direction orthogonal to the
previous two ones, and so on. Letting λk(B) denote the kth largest eigenvalue of B, we
have

εk = μ(α, p)2

nλk(H̃π )
, for k= 1, 2, � � � (29)

We will report the first few εk values in our illustrations—taking α= 5% andp= 80%—as
a complement to context-specific interpretations of orders of magnitude.22

4.3 Reporting results

By providing intuition about ε, either through an interpretation of magnitudes in the
context under study (see Section 4.1), and/or through a generic approach based on sta-
tistical testing (see Section 4.2), the researcher selects a range of possible values for ε. We
then recommend plotting the minimum-MSE estimator, and its associated 95% confi-
dence interval, as a function of ε on this range. In our illustrations, we will use this device
to report results, and we will indicate particular values of ε on the x-axis to facilitate in-
terpretation.

By reporting those minimum-MSE estimates and bias-adjusted confidence inter-
vals, we learn about the fragility of the estimation results under the reference model
parameterized by γ, relative to the larger model parameterized by π. Exploring the sen-
sitivity to model misspecification in that way is in line with the traditional suggestion
of comparing estimation results obtained from different model specifications (see, e.g.,
Leamer (1983, 1985)). However, our local approach does not require the researcher to
estimate the larger model, which is particularly relevant in situations where the latter is
partially or irregularly identified, or computationally hard to estimate.

22In Appendix S3, we describe how to compute εk in semiparametric mixture models using a simulation-
based approach.
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4.4 Remark: Shape of neighborhoods and choice of norm

Implementing our approach requires choosing a norm on �, which governs the shape
of 	ε(γ∗ ). In parametric models, the researcher may have a preferred weight matrix 
,
thus putting more weight on certain elements of the vector π. An automatic weighting
scheme is to set 
 to be equal to the diagonal of the projected Hessian matrix H̃π . This
choice can be motivated using a statistical testing logic as in Section 4.2, focusing on
componentwise directions in the canonical basis of Rdimπ . Taking the diagonal, instead
of the entire matrix H̃π , as a weight is in line with our aim to cover models where the
parameter of interest may not be regularly estimable.23

In semiparametric mixture models, where � is a set of densities, we rely on the
Kullback–Leibler divergence for computational convenience. KL is locally quadratic,
and this choice allows us to obtain the explicit characterizations of Lemma 1, and to
compute minimum-MSE estimators by solving linear systems. Note, however, that the
KL divergence does not impose shape or smoothness restrictions on the densities inside
the neighborhood.

5. Empirical illustration: Conditional cash transfers in Mexico

The goal of this section is to predict program impacts in the context of the PROGRESA
conditional cash transfer program, building on the structural evaluation of the program
in Todd and Wolpin (2006, TW hereafter) and Attanasio et al. (2012, AMS). We estimate
a simple model in the spirit of TW, and adjust its predictions against a specific form of
misspecification under which the program may have a “stigma” effect on preferences.

5.1 Setup

Following TW and AMS, we focus on PROGRESA’s education component, which consists
of cash transfers to families conditional on children attending school. Those represent
substantial amounts as a share of total household income. The implementation of the
policy was preceded by a village-level randomized evaluation in 1997–1998. As TW and
AMS point out, the randomized control trial is silent about the effect that other, related
policies could have, such as higher subsidies or unconditional income transfers, which
motivates the use of structural methods.

To analyze this question, we consider a simplified version of TW’s model described
in Wolpin (2013), which is a static, one-child model with no fertility decision. To describe
this model, let U(C, S, τ, v) denote the utility of a unitary household, where C is con-
sumption, S ∈ {0, 1} denotes the schooling attendance of the child, τ is the level of the
PROGRESA subsidy, and v are taste shocks. Utility may also depend on characteristicsX ,
which we abstract from for conciseness in the presentation.24 Note the direct presence

23In applications, other norms may have particular appeal. For example, measuring deviations according
to the supremum norm will lead to an �1 dual norm in (10), in the spirit of Armstrong and Kolesár (2021).
While our estimators and confidence intervals remain well-defined in this case, that setting is not locally
quadratic.

24Empirically, we include as covariates the age of the child and her parents, distance to the nearest
school, eligibility and year indicators, and the highest grade obtained. We perform estimation separately
by gender.
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of the subsidy τ in the utility function, which may reflect a stigma effect. This direct ef-
fect plays a key role in the analysis. The budget constraint is: C = Y + W (1 − S) + τS,
where Y is household income and W is the child’s wage. This is equivalent to: C =
Y + τ+ (W − τ)(1 − S). Hence, in the absence of a direct effect on utility, the program’s
impact is equivalent to an increase in income and a decrease in the child’s wage.

Following Wolpin (2013), we parameterize the utility function as

U(C, S, τ, v) = aC + bS + dCS + λτS + Sv,

where λ denotes the direct (stigma) effect of the program. The schooling decision is then

S = 1
{
U(Y + τ, 1, τ, v)>U(Y +W , 0, 0, v)

}
= 1

{
v > a(Y +W ) − (a+ d)(Y + τ) − λτ− b}.

Assuming that v is standard normal, independent of wages, income, and program status
(i.e., of the subsidy τ), we obtain

Pr(S = 1|y, w, τ) = 1 −�[
a(y +w) − (a+ d)(y + τ) − λτ− b],

where � is the standard normal cdf.
We use the specification with λ= 0 as our reference model, and estimate it on con-

trol villages. When λ= 0, the average effect of the subsidy on school attendance is

E
[
Pr

(
S = 1|Y ,W , τ = τtreat) − Pr(S = 1|Y ,W , τ = 0)

]
= E

(
�

[
a(Y +W ) − (a+ d)

(
Y + τtreat) − b] −�[

a(Y +W ) − (a+ d)Y − b]).

As Wolpin (2013) notes, data under the subsidy regime (τ = τtreat) is not needed to con-
struct an empirical counterpart to this quantity, since treatment status is independent
of Y ,W .25

We contrast two strategies to predict the effect of the program and other counter-
factual policies, while accounting for misspecification of the reference model due to
the presence of stigma effects. The first strategy—which we refer to as ex ante policy
prediction—is only based on data from control villages, whereas the second strategy—
ex post prediction—combines both control and treated villages. In both cases, we allow
for λ �= 0 in the larger model. While in the present simple static context one could easily
estimate a version of the larger model, in dynamic structural models such as the one
estimated by TW, estimating a different model in order to assess the impact of any given
form of misspecification may be computationally prohibitive. This highlights an advan-
tage of our approach, which does not require the researcher to estimate the parameters
under a new model.

To cast this setting into our framework, let β= (a, b, d), π = λ, and

δβ,π = E
(
�

[
a(Y +W ) − (a+ d)

(
Y + τtreat) −λτtreat − b] −�[

a(Y +W ) − (a+ d)Y − b]).

25AMS make a related point (albeit in a different model), and use both control and treated villages to esti-
mate their structural model. AMS also document the presence of general equilibrium effects of the program
on wages. We abstract from such effects in our analysis.
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We focus on the effect on eligible (i.e., poorer) households. We add covariates to gender-
specific school attendance equations, which include the age of the child and her parents,
year indicators, distance to school, and an eligibility indicator. We report estimates of
δβ0,π0 as well as confidence intervals.

5.2 Empirical results

We use the sample from TW. We drop observations with missing household income, and
focus on 1219 boys and 1089 girls aged 12 to 15.26 Descriptive statistics on the sample
show that average weekly household income is 242 pesos, the average weekly wage is 132
pesos, and the PROGRESA subsidy ranges between 31 and 59 pesos per week depending
on grade and gender. Average school attendance drops from 90% at age 12 to between
40% and 50% at age 15.

We start by providing intuition regarding the values of ε in the present context. In the
structural model, λ is the marginal utility of the subsidy for households sending their
child to school. In turn, the marginal utility of consumption is given by a + d. Hence,
bounding λ2 by ε is equivalent to bounding the ratio of marginal utility of the subsidy
to marginal utility of consumption by

√
ε/(a+ d). For example, households valuing the

subsidy as much as consumption in absolute value—arguably an upper bound on the
stigma effect—corresponds to ε= (a+ d)2.

In Figure 1, we show the minimum-MSE estimator of the impact of the PROGRESA
subsidy on eligible households, together with 95% confidence intervals, for a range of
values around ε= (a+d)2 (which we show in the dashed vertical line). In the horizontal
dotted line, we show estimates based on the reference model. In the top panel, we show
ex ante prediction results based on control villages only. We see that the minimum-MSE
estimator and the one based on the reference model are equal in this case. This is intu-
itive, since π = λ is scalar, and control villages provide no information about it.27 How-
ever, the confidence intervals—which account for model misspecification—are large.
When ε = ε, the 95% intervals include zero for both genders. This quantifies the un-
certainty associated with ex ante prediction when the researcher does not rule out the
presence of stigma.

In the bottom panel of Figure 1, we show the results of ex post prediction based on
both control and treated villages. In the sample of boys, the minimum-MSE estimator is
lower than the one based on the reference model, suggesting that the reference model
is misspecified. In contrast, the two estimators are close to each other in the sample of
girls.28 In addition, the 95% confidence intervals are substantially tighter than when us-

26Children’s wages are only observed for those who work. We impute potential wages to all children based
on a linear regression that in particular exploits province-level variation and variation in distance to the
nearest city, similar to AMS.

27This is analogous to the case of a linear regression with endogeneity and no instrument, which we
mentioned in footnote 13.

28Note that, for boys, minimum-MSE estimates at all ε values—including ε = 0—are lower than the es-
timate from the reference model (note that here we estimate the reference model using control villages
only, and use both controls and treated to compute the minimum-MSE estimator). This suggests that the
functional form of the schooling decision is not invariant to treatment status, highlighting that predictions
based off control villages are less satisfactory for boys (as also found by TW).
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Figure 1. Effect of the PROGRESA subsidy as a function of neighborhood size ε. Notes: Sample
from Todd and Wolpin (2006). In the top panel, we show estimates based on control villages only,
in the bottom panel we show estimates based on both controls and treated. We report ε on the
x-axis. The minimum-MSE estimates of the effect of PROGRESA on school attendance are shown
in solid. 95% confidence intervals based on those estimates are in dashed. The dotted line shows
the unadjusted prediction based on the reference model. The dashed vertical line indicates ε
(at which households value consumption and the subsidy equally) and the solid vertical line
indicates ε1 (at which a 5% likelihood ratio specification test has power 80%). Girls (left) and
boys (right).

ing control villages only. When ε = ε (shown in the vertical dashed line), the program
estimates on school attendance are positive and marginally significant at the 5% level
for girls, and positive and marginally significant at 10% for boys. In the vertical solid
line, we highlight the value ε1 given by (29) for k= 1. Since π = λ is scalar, setting ε≥ ε1

ensures that, for all models outside the neighborhood, a 5%-likelihood ratio specifica-
tion test has local power larger than 80%. Taking ε= ε1 implies that the ratio of marginal
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Table 1. Effect of the PROGRESA subsidy and counterfactual reforms.

Ex ante Ex post

PROGRESA impacts
Girls Boys Girls Boys

Model-based estimate 0.078 0.076 0.078 0.078
nonrobust CI (0.017,0.140) (0.038,0.114) (0.026,0.130) (0.043,0.112)
robust CI (−0.055,0.211) (−0.029,0.181) (0.006,0.150) (0.008,0.148)
MMSE estimate 0.078 0.076 0.075 0.036
robust CI (−0.055,0.211) (−0.029,0.181) (0.004,0.146) (−0.023,0.095)
Experimental – – 0.087 0.050

Counterfactual 1: doubling subsidy
Girls Boys Girls Boys

Model-based estimate 0.142 0.133 0.142 0.136
robust CI (−0.069,0.353) (−0.018,0.284) (0.027,0.258) (0.033,0.239)
MMSE estimate 0.142 0.133 0.137 0.076
robust CI (−0.069,0.353) (−0.018,0.284) (0.022,0.251) (−0.017,0.163)

Counterfactual 2: unconditional transfer
Girls Boys Girls Boys

Model-based estimate 0.003 0.005 0.003 0.005
robust CI (−0.213,0.218) (−0.231,0.240) (−0.208,0.214) (−0.239,0.249)
MMSE estimate 0.003 0.005 0.009 −0.071
robust CI (−0.213,0.218) (−0.231,0.240) (−0.232,0.250) (−0.279,0.136)

Note: Sample from Todd and Wolpin (2006). In the left two columns we show estimates based on control villages only,
in the right two columns we show estimates based on both controls and treated. “Model-based” estimates are based on the
reference model. ε = ε, which corresponds to households valuing consumption and the subsidy equally in absolute value. CI
are 95% confidence intervals. The unconditional transfer amounts to 5000 pesos in a year.

utility of the subsidy to marginal utility of consumption is bounded by 1.8 (girls) and 1.3
(boys). While ε1 is larger than ε, the implied minimum-MSE estimators and confidence
intervals are similar.29

In Table 1, we report estimates of the program impacts, as well as predictions of
counterfactual policies. The left two columns correspond to ex ante prediction based
on control villages only, while the right two columns correspond to ex post prediction
based on both controls and treated. We show the results for ε = ε, corresponding to
equal marginal utilities of subsidy and consumption in absolute value. In the top panel,
we focus on the impact of the PROGRESA subsidy on eligible households. We see that
PROGRESA has a positive impact on attendance of both boys and girls. The impacts
predicted by the reference model are large, approximately 8 percentage points, and are
quite close to the results reported in Todd and Wolpin (2006, 2008). However, the confi-
dence intervals which account for model misspecification (third row, left two columns)
are very large for both genders.

When adding treated villages to the sample (right two columns in Table 1), confi-
dence intervals accounting for misspecification are tighter. Moreover, the minimum-
MSE point estimates and those based on the reference model differ in this case. For

29Note that ε1 is infinite in the ex ante case (top panel of Figure 1). This is due to control villages not
providing any information about π in this case.
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boys, the minimum-MSE estimate is substantially lower than the one based on the ref-
erence model (3.6% versus 7.8%), while for girls the effects are similar. Interestingly, for
boys the minimum-MSE estimates are closer to the experimental differences in means
between treated and control villages.

Lastly, in the middle and bottom panels of Table 1, we show estimates of the effects
of two counterfactual policies: doubling the PROGRESA subsidy, and removing the con-
ditioning of the income transfer on school attendance. Unlike for the main PROGRESA
impacts, there is no experimental counterpart to such counterfactuals. While ex ante
predictions are associated with wide confidence intervals, ex post minimum-MSE esti-
mates based on both control and treated villages predict a substantial effect of doubling
the subsidy on girls’ attendance, and a more moderate effect on boys. By contrast, we
find insignificant effects of an unconditional income transfer.

6. Numerical illustrations: Binary choice models

In this section, we apply our approach to cross-sectional and panel data binary choice
models, where we allow for misspecification of the distribution of unobservables. In
both applications there is a substantial amount of misspecification, and we use simu-
lations to assess the behavior of the minimum-MSE estimator—which is theoretically
justified under local misspecification—in these settings of practical relevance.

6.1 Cross-sectional binary choice

Consider the binary choice model

Y = 1
{
X ′β0 +A≥ 0

}
, (30)

where A follows a distribution π0, independent of X . We are interested in estimating
the prediction function δβ0,π0 = Eπ0[1{x′

0β0 +A≥ 0}], at some x0 not necessarily in the
support of X . We focus on the reference specification A ∼ N (0, 1), independent of X .
We allow for the possibility that this parametric model is misspecified, while maintain-
ing independence between A and X under π0. We observe an i.i.d. sample (Yi,Xi ) for
i= 1, � � � , n.

In neighborhoods that consist of distributions of A independent of X , the mini-
mum-MSE influence function is given by Corollary 3, with ∇βδ = x0φ(x′

0β0 ) for φ the
standard normal density, �(a) = 1{x′

0β0 + a≥ 0}, and without γ parameter. Given a pre-

liminary estimator β̂ (e.g., obtained by probit), an empirical counterpart to h
MMSE
ε (a)

is

1
n

n∑
i=1

1
{
X ′
iβ̂+ a≥ 0

}
hMMSE
ε (1,Xi ) + (

1 − 1
{
X ′
iβ̂+ a≥ 0

})
hMMSE
ε (0,Xi ).

We compute hMMSE
ε (1,Xi ) and hMMSE

ε (0,Xi ), for i = 1, � � � , n, based on Corollary 3 by
solving a linear system. In this model, all conditional expectations are available in closed
form.
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Figure 2. Distributions of X and A in the binary choice models. Notes: In panel (a), we show
the frequencies of covariates (i.e., the first component ofX) in the cross-sectional model, and in
(b) we show the true density of A for the same model. In (c), we show the true densities of A in
the panel data model for Y0 = 0 (in solid) and Y0 = 1 (in dashed).

In model (30), under independence between A and X , β0 and π0 are point-
identified up to scale under sufficiently rich support of X (Manski (1988)). Under such
conditions, δβ0,π0 is identified. More generally, it is partially identified. We now set up
a simulation where the support of X is discrete, and we vary the number of support
points and the target x0. In this way, we learn how our estimators and confidence inter-
vals perform in settings where the support ofX , and hence the size of the identified set,
vary.

We will show estimates in data generating processes (DGPs) with a scalar covariate
and an intercept, and β0 = (2, −1)′, where the second element corresponds to the in-
tercept. We draw 1000 simulated samples of size n = 500, where A has mean zero and
variance one, and is distributed as a mixture of two normals whose means are approxi-
mately two standard deviations apart. Covariates are discrete uniform on [0, 1], with ei-
ther nX = 4 or nX = 20 points of support. We show the densities ofX andA in panels (a)
and (b) of Figure 2. We focus on the predicted values at x0 = (0.5, 1)′ and x0 = (−0.5, 1)′,
respectively. We refer to the first case as interpolation, and to the second one as extrap-
olation.

We report minimum-MSE estimates and confidence intervals on a range of ε values.
To provide intuition about orders of magnitude, one can compute (local approximations
to twice) the KL divergence between the standard normal and other common distribu-
tions. For example, a scaled student-t distribution with unitary variance and 5, 3, or 2.1
degrees of freedom, respectively, corresponds to a distance of 0.14, 0.24, and 1.5; the
true bimodal π0 in the DGP corresponds to a distance of 1.6; and the standardized lo-
gistic corresponds to a distance of 0.07. Restricting π0 to belong to an ε-neighborhood
of the normal also has implications for its functionals. As an example, in Figure 3, we
show pointwise bounds on Eπ0[1{a + A ≥ 0}], as a function of �(a), computed using
small-ε approximations. We see that taking ε = 0.1 tightly restricts possible values that
the parameter can take. By contrast, when ε = 1, the a priori bounds on the parameter
are very wide for a close to 0.5—which is relevant for the interpolation case—but the
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Figure 3. Bounds on Eπ0 [1{a+A≥ 0}] in ε-neighborhoods of the standard normal. Notes: The
dashed lines show supπ0∈	ε(γ∗ ) Eπ0 [1{a+A ≥ 0}] and infπ0∈	ε(γ∗ ) Eπ0 [1{a+A ≥ 0}] as a function
of �(a). The 45-degree line is in solid. Computations are based on small-ε approximations.

neighborhood does restrict the parameter value when a in close to zero or one—which
is relevant for the extrapolation case. Given this, we will interpret ε values of the order of
0.1 or lower as reflecting “mild” misspecification, and values of the order of 1 or larger as
corresponding to “large” misspecification.

In this example, it is also informative to interpret ε by relating it to the power of a
specification test, as we described in Section 4.2. When X has 4 support points, H̃π has
only nX − 1 = 3 nonzero eigenvalues (since the X ′β partition the real line into nX + 1
intervals, and the two elements in β are estimated), two of them corresponding to non-
constant eigenfunctions. In this case, ε1 and ε2 given by (29) are approximately 0.2 and
0.4 on average, where we set size to α = 5% and power to p = 80%. When X has 20
support points, H̃π has nX − 1 = 19 nonzero eigenvalues corresponding to nonconstant
eigenfunctions. The first three values ε1, ε2, and ε3 are approximately 0.3, 0.6, and 1.1
on average. In contrast with the parametric case of Section 5, here setting ε ≥ εk only
provides power guarantees along particular directions. In Appendix S5, we plot those
directions, and we provide additional intuition about the interpretation of ε based on
statistical testing in this example.

We show the results of the simulation in Figure 4. Consider first the top panel, where
we wish to interpolate the prediction function at x0 = 0.5. WhenX has 4 support points,
we see that the probit estimator based on the reference model, indicated by the solid
horizontal line, is substantially biased. By contrast, the bias of the minimum-MSE es-
timator is smaller, and it decreases as ε increases. We see that the minimum-MSE esti-
mator is close to unbiased for both ε1 and ε2. Moreover, the dispersion of the estimator
is stable as ε increases. In addition, we compute the identified set for δβ0,π0 in the DGP
using linear programming and a grid of β0 values. We find [0.334, 0.345], which shows
that the identified set is not wide in this DGP.

The case whereX has 20 support points is overall quite similar, but with several dif-
ferences. We see that the minimum-MSE estimator is virtually unbiased when ε≥ ε1. In
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Figure 4. Minimum-MSE estimator in the cross-sectional binary choice model. Notes: The
solid horizontal line corresponds to the mean probit estimator among 1000 simulations, the solid
curve to the mean minimum-MSE estimator (with 2.5% and 97.5% percentiles in dashed), and
the dotted horizontal line to the truth (i.e., δβ0,π0 , for the β0 and π0 we used in the DGP). ε is re-
ported on the x-axis, and the vertical lines indicate εk given by (29), for k ∈ {1, 2, 3}. nX denotes
the number of points of support of the first component ofX . n= 500.

this case, the identified set for δβ0,π0 is essentially a singleton: [0.334, 0.335]. Moreover,
we see that the variance of the minimum-MSE estimator increases with ε. Such a vari-
ance increase, and the associated regularization role of ε, also characterize models with
continuously distributed covariates and other ill-posed inverse problems.

Lastly, consider the lower panel in Figure 4. This extrapolation case is very differ-
ent from the interpolation one. Indeed, the data provide little information about the
value of the prediction function at x0 = −0.5. To illustrate, the identified set for δβ0,π0

is [0, 0.3219] (resp., [0, 0.2956]) when X has 4 (resp., 20) points of support. We see that
the minimum-MSE estimator has approximately the same bias as the probit estimator
in this case.

We show additional information about the simulation results in Tables S1 and S2 in
the Appendix. In particular, we report the lengths of our 95% confidence intervals (CI)
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for δβ0,π0 , which are asymptotically valid under ε-misspecification, and the associated
coverage probabilities. In all DGPs, we find that, when taking ε≥ ε1, the confidence in-
tervals contain the true value with a probability that exceeds 95%.30

6.2 Dynamic panel data binary choice

In this subsection, we present simulations in the following dynamic panel data probit
model with individual effects

Yt = 1{β0Yt−1 +A+Ut ≥ 0}, t = 1, � � � , T , (31)

where U1, � � � ,UT are i.i.d. standard normal, independent of A and Y0. Here, Y0 is ob-
served, so there are effectively T + 1 time periods. We focus on the average state depen-
dence effect δβ0,π0 = Eπ0[�(β0 +A) − �(A)], and we will also report estimates of the
autoregressive parameter β0. We assume that the probit conditional likelihood given
individual effects and lagged outcomes is correctly specified. However, we do not as-
sume knowledge of π0 or its functional form. We specify a normal reference density for
A given Y0, with mean μ1 +μ2Y0 and variance σ2; hence, here γ = (μ1, μ2, σ2 )′. Binary
choice panel data models are often partially identified for fixed T (Chamberlain (2010),
Honoré and Tamer (2006)), and no semiparametrically consistent estimators of β0 and
δβ0,π0 in the dynamic probit model are available in the literature. Here, we report simu-
lation results suggesting that minimum-MSE estimators can perform well under sizable
misspecification of the reference density.

In the simulation, we set a bimodal distribution that has modes {−1, 2} when Y0 = 0
and {−3, 0} when Y0 = 1, with some asymmetry between the two modes; see panel (c) of
Figure 2. We draw Y0 from a Bernoulli distribution with probability 0.5. We take n= 500,
and show the results for T = 5, 10, and 20, based on 1000 simulations. In neighborhoods
that consist of unrestricted joint distributions π0 of (A,X ), the minimum-MSE h func-
tion is given by Corollary 4, forX = Y0, and either �(a) =�(β0 +a) −�(a) or �(a) = β0,
depending on the quantity of interest. We use S = 1000 simulated draws to compute the
minimum-MSE estimators, since no closed-form solution is available in this case (see
Appendix S3).

In Figure 5, we see that the parametric random-effects dynamic probit estimates of
δβ0,π0 and β0 are substantially biased for T = 5 and T = 10, whereas the bias is smaller
when T = 20. By contrast, the minimum-MSE estimator performs better in terms of bias
for both quantities of interest, in particular when taking ε to be one of the first few εk’s
given by (29). In the top panel of Table 2, we show the bias and root MSE of various es-
timators of δβ0,π0 : the random-effects estimator based on the normal reference model,
an empirical Bayes estimator, the linear probability estimator, and the minimum-MSE
estimators based on ε1, ε2, ε3.31 We see that the minimum-MSE estimator dominates

30While this finding is interesting, note that our CI construction has coverage guarantees only when π0

belongs to an ε-neighborhood of π(γ∗ ), which is not the case here since the true distribution of A lies
outside the neighborhoods for the range of ε that we consider.

31The random-effects and empirical Bayes estimators are given by 1
n

∑n
i=1 Eπ(γ̂)[�(β̂+A) −�(A)] and

1
n

∑n
i=1 Eπ(γ̂)[�(β̂+A) −�(A)|Y = Yi], respectively. In fixed-lengths panels both estimators are consistent
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Figure 5. Minimum-MSE estimator in the dynamic panel binary choice model. Notes: The solid
horizontal line corresponds to the mean random-effects estimator among 1000 simulations, the
solid curve to the mean minimum-MSE estimator (with 2.5% and 97.5% percentiles in dashed),
and the dotted horizontal line to the truth. ε is reported on the x-axis, and the vertical lines indi-
cate εk, k ∈ {1, 2} (left column) and k ∈ {1, 2, 3} (middle and right columns). In the left column,
ε3 is too large to be included in the figure. n= 500.

Table 2. Monte Carlo simulation in the dynamic binary choice panel data model: comparison
between various estimators.

T = 5 10 20 5 10 20

Bias Root MSE

A. Average state dependence δβ0,π0

Random-effects −0.0585 −0.0252 −0.0140 0.0633 0.0311 0.0198
Empirical Bayes −0.0574 −0.0215 −0.0053 0.0622 0.0282 0.0141
Linear probability −0.2491 −0.0976 0.0012 0.2497 0.0990 0.0128
Minimum-MSE (ε1) −0.0227 −0.0057 −0.0029 0.0397 0.0232 0.0154
Minimum-MSE (ε2) −0.0194 −0.0048 −0.0028 0.0388 0.0233 0.0154
Minimum-MSE (ε3) −0.0196 −0.0049 −0.0027 0.0412 0.0235 0.0155

B. Autoregressive parameter β0

Maximum likelihood −0.1804 −0.0817 −0.0328 0.2003 0.1001 0.0506
Minimum-MSE (ε1) −0.0646 −0.0198 −0.0055 0.1288 0.0747 0.0479
Minimum-MSE (ε2) −0.0522 −0.0155 −0.0045 0.1258 0.0746 0.0481
Minimum-MSE (ε3) −0.0432 −0.0116 −0.0030 0.1282 0.0747 0.0486

Note: Performance of various estimators in the dynamic panel data binary choice model, for different values of T . n= 500,
results for 1000 simulations.
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all other estimators, for these εk values, when T = 5 and T = 10. In the bottom panel
of Table 2, we show the results for the random-effects MLE and minimum-MSE estima-
tors of β0. The results are similar to the case of average state dependence. In this DGP,
minimum-MSE estimators achieve bias reduction under misspecification, even when T
is quite small. Bias reduction comes with some increase in variance, yet the overall MSE
is lower for minimum-MSE estimators compared to the MLE. Lastly, in Tables S3 and S4
in the Appendix, we show additional information about the simulation results, for the
autoregressive parameter and the average state dependence parameter, respectively.

7. Conclusion

We propose a framework for estimation and inference in the presence of model mis-
specification. This allows researchers to perform sensitivity analysis for existing estima-
tors, and to construct improved estimators and confidence intervals that are less sen-
sitive to model assumptions. Our approach is based on a minimax mean squared error
rule, which consists of a one-step adjustment of the initial estimate. This adjustment is
motivated by both robustness and efficiency, and it remains valid when the identifica-
tion of the “large” model is irregular or point-identification fails. Hence, our approach
provides a complement to partial identification methods, when the researcher sees her
reference model as a plausible, albeit imperfect, approximation to reality. Given a para-
metric reference model, implementing our estimators and confidence intervals does
not require estimating a larger model. This is an attractive feature in complex models
such as dynamic structural models, for which sensitivity analysis methods are needed.
Lastly, while our theory applies quite generally, we have provided explicit expressions
and described implementation in two specific classes of problems: parametric models,
and semiparametric likelihood models with a mixture structure. Generalizing the appli-
cability of the approach to other semiparametric models is an important task for future
work.

Appendix: Main results

In this section of the Appendix, we provide the proofs for the main results of Section 2.
As in the rest of the paper, we always implicitly assume that all functions of y are mea-
surable, and that all expectations and integrals over y are well-defined.

A.1 Proof of Theorem 1

A.1.1 Notation and assumptions In all our applications, � is either a vector space or
an affine space. Let T and T be the tangent and cotangent spaces of� atπ(γ∗ ). Thus, for
π1, π2 ∈� we have (π1 −π2 ) ∈ T , and T is the set of linear maps u : T → R. For a scalar

under the parametric reference specification, and the random-effects estimator is efficient. However, the
two estimators are generally biased under misspecification. Bonhomme and Weidner (2021) show that the
empirical Bayes estimator has minimum local asymptotic worst-case specification error, albeit in neighbor-
hoods of the reference model where the probit conditional likelihood given individual effects and lagged
outcomes may be incorrectly specified.
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function q :� �→ R, we have ∇πqπ(γ∗ ) ∈ T ; that is, the typical element of T is a gradient.

Conversely, for a map to �, such as γ �→ π(γ), we have ∂π(γ∗ )
∂γk

∈ T .

For v ∈ T and u ∈ T , we use the bracket notation 〈v, u〉 ∈ R to denote the bilinear
mapping. Here, we are not assuming a Hilbert space structure, and we only use the
bracket notation to combine vectors v and covectors u into a scalar.

Our squared distance measure d(π0, π(γ∗ )) on � induces a norm on the tangent
space T , namely for v ∈ T ,

‖v‖2
ind,γ∗ = lim

ε→0

d
(
π(γ∗ ) + ε1/2v, π(γ∗ )

)
ε

.

Throughout, we assume that dimβ and dimγ are finite. For any finite-dimensional
vectors, we use the standard Euclidean norm ‖ · ‖, and for any finite-dimensional ma-
trices we use the spectral matrix norm, which we also denote by ‖ · ‖. Let Y denote the
support of Y .

Assumption A1. We assume that Yi ∼ i.i.d.fβ0,π0 . In addition, we impose the following
regularity conditions:

(i) We consider n→ ∞ and ε→ 0 such that εn→ c, for some constant c ∈ (0, ∞).

(ii) supπ0∈	ε(γ∗ ) ‖∇πδβ0,π0‖γ∗ =O(1), and supπ0∈	ε(γ∗ ) |δβ0,π0 −δβ0,π(γ∗ ) −〈π0 −π(γ∗ ),
∇πδβ0,π(γ∗ )〉| = o(ε1/2 ).

(iii) supπ0∈	ε(γ∗ ){
∫
Y[f 1/2

β0,π0
(y ) − f 1/2

β0,π(γ∗ )(y )]2 dy}1/2 =O(ε1/2 ),

supπ0∈	ε(γ∗ )

∫
Y ‖∇π log fβ0,π(γ∗ )(y )‖2

γ∗[f 1/2
β0,π0

(y ) − f 1/2
β0,π(γ∗ )(y )]2 dy = o(1),

supπ0∈	ε(γ∗ )

∫
Y[f 1/2

β0,π0
(y ) − f 1/2

β0,π(γ∗ )(y ) − 〈π0 −π(γ∗ ), ∇πf 1/2
β0,π(γ∗ )(y )〉]2 dy = o(ε).

(iv) supπ0∈	ε(γ∗ ) ε
−1/2‖π0 − π(γ∗ )‖ind,γ∗ = 1 + o(1). Furthermore, for uε ∈ T with

‖uε‖γ∗ =O(1) we have∣∣∣ sup
π0∈	ε(γ∗ )

ε−1/2〈π0 −π(γ∗ ), uε
〉 − ‖uε‖γ∗

∣∣∣ = o(1).

(v) For some ν > 0, we have supπ0∈	ε(γ∗ ) Eβ0,π0‖∇βγ log fβ0,π(γ∗ )(Y )‖2+ν = O(1), and
supπ0∈	ε(γ∗ ) Eβ0,π0‖∇π log fβ0,π(γ∗ )(Y )‖2+ν

γ∗ = O(1). Furthermore, we assume that

‖∇βγδβ0,π(γ∗ )‖ =O(1), and ‖H−1
βγ ‖ =O(1).

Part (i) of Assumption A1 describes our asymptotic framework, where the assump-
tion εn→ c is required to ensure that the squared worst-case bias (of order ε) and the
variance (of order 1/n) of the estimators for δβ0,π0 are asymptotically of the same order,
so that the MSE provides a meaningful balance between bias and variance asymptoti-
cally. Part (ii) requires δβ0,π0 to be sufficiently smooth in π0, so that a first-order Taylor
expansion provides a good local approximation to δβ0,π0 .

Part (iii) of Assumption A1 is a smoothness assumption on fβ0,π0 (y ) in π0. Those
conditions may not look intuitive, in particular when π0 is infinite-dimensional, so we
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want to discuss that assumption in some more detail here for the case of the semipara-
metric mixture models introduced in Section 3.4, wherefβ0,π0 (y ) = ∫

A gβ0 (y|a)π0(a)da.
In that case, we have∫

Y

[
f

1/2
β0,π0

(y ) − f 1/2
β0,π(γ∗ )(y )

]2
dy = 2H2(fβ0,π0 , fβ0,π(γ∗ ) )

≤ 2DKL
(
fβ0,π0 ||fβ0,π(γ∗ )

) ≤ 2DKL
(
π0||π(γ∗ )

)
,

where the first inequality is the general relation H2(fβ0,π0 , fβ0,π(γ∗ ) ) ≤
DKL(fβ0,π0||fβ0,π(γ∗ ) ) between the squared Hellinger distance H2 and the Kullback–
Leibler divergence DKL, and the second inequality is sometimes called the “chain
rule” for the Kullback–Leibler divergence, which can be derived by an application of
Jensen’s inequality. Since we defined our distance measure d(π0, π(γ∗ )) in the semi-
parametric mixture case to be twice the Kullback–Leibler divergence 2DKL(π0||π(γ∗ )) =
2Eπ0 log[π0(A)/π(A|γ∗ )] we find that

sup
π0∈	ε(γ∗ )

{∫
Y

[
f

1/2
β0,π0

(y ) − f 1/2
β0,π(γ∗ )(y )

]2
dy

}1/2

≤ sup
π0∈	ε(γ∗ )

{
d
(
π0, π(γ∗ )

)}1/2 = ε1/2.

Thus, the first condition in Assumption A1(iii) is satisfied for those semiparametric mix-
ture models.

The second condition in Assumption A1(iii) can be justified by imposing that

sup
y∈Y

∥∥∇π log fβ0,π(γ∗ )(y )
∥∥2
γ∗ =O(1),

which for the semiparametric mixture model can equivalently be written as

sup
y∈Y

Varπ(γ∗ )
[
gβ0 (y|A)

][
Eπ(γ∗ )gβ0 (y|A)

]2 =O(1). (A1)

For any standard discrete choice model (as those discussed in Section 6), we have that
supy∈Y Varπ(γ∗ )[gβ0 (y|A)] < ∞, and infy∈Y Eπ(γ∗ )gβ0 (y|A) > 0, implying that equation
(A1) is satisfied. We then have

sup
π0∈	ε(γ∗ )

∫
Y

∥∥∇π log fβ0,π(γ∗ )(y )
∥∥2
γ∗

[
f

1/2
β0,π0

(y ) − f 1/2
β0,π(γ∗ )(y )

]2
dy

≤
[
sup
y∈Y

∥∥∇π log fβ0,π(γ∗ )(y )
∥∥2
γ∗

]
︸ ︷︷ ︸

=O(1)

{
sup

π0∈	ε(γ∗ )

∫
Y

[
f

1/2
β0,π0

(y ) − f 1/2
β0,π(γ∗ )(y )

]2
dy

}
︸ ︷︷ ︸

≤ε=o(1)

= o(1).

Thus, one way to justify the second condition in Assumption A1(iii) is to argue that equa-
tion (A1) holds, which is the case for our illustrations in Section 6. The last condition
in Assumption A1(iii) could be broken down analogously for semiparametric mixture
models, but it is actually a standard condition of differentiability in quadratic mean that
is also regularly imposed whenπ is infinite-dimensional (see, e.g., equation (5.38) in Van
der Vaart (2007)).
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Part (iv) of Assumption A1 requires that our distance measure d(π0, π(γ∗ ))
converges to the associated norm for small values ε in a smooth fashion. Finally,
part (v) requires invertibility of Hβγ (but invertibility of Hπ or H̃π are not required),
uniform boundedness of various derivatives, and of the (2 + ν)-th moment of
∇π log fβ0,π(γ∗ )(Y )—which again can be justified by equation (A1), because we then have
supy∈Y ‖∇π log fβ0,π(γ∗ )(y )‖2

γ∗ =O(1).
For many of the proofs, we only need the regularity conditions in Assumption A1.

However, in order to describe the properties of our minimum-MSE estimator δ̂MMSE
ε =

δβ̂,π(γ̂) + 1
n

∑n
i=1 h

MMSE
ε (Yi, β̂, γ̂) we also need to account for the fact that β̂ and γ̂ them-

selves are estimated. It turns our that the leading-order asymptotic properties of δ̂MMSE
ε

are independent of whether β0 and γ∗ are known or estimated in the construction of
δ̂MMSE
ε (see, e.g., Lemma A3 below), but formally showing this requires some additional

assumptions, which we present next.

Assumption A2. For some χ> 2, we have:

(i) supπ0∈	ε(γ∗ )(Eβ0,π0‖
(β̂
γ̂

) − (β0
γ∗

)‖χ )
1
χ =O( 1√

n
).

(ii) supπ0∈	ε(γ∗ ) Eβ0,π0‖∇ηhMMSE
ε (Y , β0, γ∗ )‖ =O(1), where η= (β′, γ′ )′.

(iii) supπ0∈	ε(γ∗ ) Eβ0,π0 supβ∈B,γ∈G ‖ 1
n

∑n
i=1 ∇2

ηη′hMMSE
ε (Yi, β, γ)‖ = O(1), where η =

(β′, γ′ )′.

(iv) supπ0∈	ε(γ∗ ) Eβ0,π0[hMMSE
ε (Y , β0, γ∗ )]2+ν =O(1), for some ν > 0.

Part (i) of Assumption A2 requires β̂ and γ̂ to converge at
√
n rate. As discussed in

the main text, we assume that preliminary estimators have finite χ-moments where
χ > 2. Part (ii) of Assumption A2 requires a uniformly bounded second moment for
∇ηhMMSE

ε (y, β0, γ∗ ). Since equation (20) in the main text gives an explicit expression
for hMMSE

ε (y, β0, γ∗ ), we could replace Assumption A2(ii) by appropriate assumptions
on the model primitives fβ0,π0 (y ) and δβ0,π0 , but for the sake of brevity we state the as-
sumption in terms of hMMSE

ε (y, β0, γ∗ ). The same is true for part (iii) of Assumption A2.
Notice that this last part of the assumption involves a supremum over β and γ inside of
an expectation—in order to verify it, one either requires a uniform Lipschitz bound on
the dependence of hMMSE

ε (Yi, β, γ) on β and γ, or some empirical process method to
control the entropy of that function (e.g., a bracketing argument). But since β and γ are
finite-dimensional parameters these are all standard arguments.

We verified Assumption A2(iv) in the locally quadratic case of Section 3. Formally, we
have the following lemma.

Lemma A1. Let Assumption A1 hold, and assume that hMMSE
ε (·, β0, γ∗ ) is given by

Lemma 1 in the main text. Then Assumption A2(iv) holds with the constant ν specified
in Assumption A1.
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A.1.2 Proof of Theorem 1 For a function hε = hε(y, β0, γ∗ ), we define

δ̂(hε, β0, γ∗ ) := δβ0,π(γ∗ ) + 1
n

n∑
i=1

hε(Yi, β0, γ∗ ).

It is useful to establish some preliminary lemmas before showing the main result. The
proofs for those lemmas are provided in Section S1.1.

Lemma A2. Let Assumption A1 hold, and let hε(·, β0, γ∗ ) be a sequence of influence func-
tions that satisfy the unbiasedness constraint (2) as well as supπ0∈	ε(γ∗ ) Eβ0,π0 |hε(Y , β0,
γ∗ )|κ =O(1), for some κ > 2. Then

sup
π0∈	ε(γ∗ )

Eβ0,π0

[
δ̂(hε, β0, γ∗ ) − δβ0,π0

]2

= bε(hε, β0, γ∗ )2 + Varβ0,π(γ∗ )
(
hε(Y , β0, γ∗ )

)
n

+ o(ε).

Lemma A2 provides a formal justification for the worst-case MSE approximation in-
troduced in equation (9) of the main text.

Recall that δ̂MMSE
ε = δ̂(hMMSE

ε , β̂, γ̂). This differs from δ̂(hMMSE
ε , β0, γ∗ ), because β0

and γ∗ have to be estimated. The following lemma shows that the fact that β0 and γ∗
are estimated in the construction of δ̂MMSE

ε can be neglected to first order. Notice that
this result requires the additional regularity conditions in Assumption A2, which are not
required anywhere else in the proof of Theorem 1.

Lemma A3. Let Assumptions A1 and A2 hold. Then

sup
π0∈	ε(γ∗ )

Eβ0,π0

∣∣̂δMMSE
ε − δ̂(hMMSE

ε , β0, γ∗
)∣∣ =O

(
1
n

)
.

Thus, Lemma A3 guarantees that δ̂MMSE
ε = δ̂(hMMSE

ε , β0, γ∗ ) +OP0 (1/n). This may be
surprising given that the differences β̂ − β0 and γ̂ − γ∗ are themselves of order 1/

√
n.

However, recall that by construction hMMSE
ε satisfies the local robustness condition (3),

which is imposed through our constraints (2) and (4). Local robustness ensures that β̂−
β0 and γ̂− γ∗ have no leading-order effect on δ̂MMSE

ε − δ̂(hMMSE
ε , β0, γ∗ ).

For the next lemma, recall the decomposition of δ̂ε in Theorem 1 in the main text:

δ̂ε = δβ0,π(γ∗ ) + 1
n

n∑
i=1

hε(Yi, β0, γ∗ ) + n−1/2Rn

= δ̂(hε, β0, γ∗ ) + n−1/2Rn. (A2)

Here, δ̂(hε, β0, γ∗ ) is the well-behaved leading-order contribution to δ̂ε, whereas Rn is
an asymptotically vanishing remainder term that may, however, have heavy tails (it only
satisfies a trimmed second moment condition). The following lemma shows that the
worst-case trimmed MSE of δ̂ε is bounded from below by the MSE of the leading-order
term δ̂(hε, β0, γ∗ ).
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Lemma A4. Let Assumption A1 hold, and let hε(·, β0, γ∗ ) be a sequence of influence func-
tions that satisfy the unbiasedness constraint (2) as well as supπ0∈	ε(γ∗ ) Eβ0,π0 |hε(Y , β0,
γ∗ )|κ = O(1), for some κ > 2. Assume that (A2) holds, and let mn > 0 be a sequence such
thatmnn1/2[log(n)]−1 → ∞. Furthermore, assume that:

(i) supπ0∈	ε(γ∗ ) Pβ0,π0 (|Rn|> log(n)) = o(1),

(ii) supπ0∈	ε(γ∗ ) Eβ0,π0[R2
n1(|Rn| ≤ 2 log(n))] = o(1).

Then we have

sup
π0∈	ε(γ∗ )

Eβ0,π0

[(
δ̂(hε, β0, γ∗ ) − δβ0,π0

)2]
≤ sup
π0∈	ε(γ∗ )

Eβ0,π0

[
(δ̂ε − δβ0,π0 )21

(|̂δε − δβ0,π0 | ≤mn
)] + o(ε). (A3)

We now have all the preliminary results required to show the main theorem.

Proof of Theorem 1. Define

rε := δ̂MMSE
ε − δ̂(hMMSE

ε , β0, γ∗
)
.

We then have

Eβ0,π0

[(
δ̂MMSE
ε − δβ0,π0

)2
1
(∣∣̂δMMSE

ε − δβ0,π0

∣∣ ≤mn
)]

= Eβ0,π0

[(
δ̂
(
hMMSE
ε , β0, γ∗

) − δβ0,π0 + rε
)2

1
(∣∣̂δMMSE

ε − δβ0,π0

∣∣ ≤mn
)]

= Eβ0,π0

[(
δ̂
(
hMMSE
ε , β0, γ∗

) − δβ0,π0

)2
1
(∣∣̂δMMSE

ε − δβ0,π0

∣∣ ≤mn
)︸ ︷︷ ︸

≤1

]
+ 2Eβ0,π0

[
rε

(
δ̂
(
hMMSE
ε , β0, γ∗

) − δβ0,π0 + rε
)
1
(∣∣̂δMMSE

ε − δβ0,π0

∣∣ ≤mn
)]

−Eβ0,π0

[
r2
ε1

(∣∣̂δMMSE
ε − δβ0,π0

∣∣ ≤mn
)]︸ ︷︷ ︸

≤0

≤ Eβ0,π0

[(
δ̂
(
hMMSE
ε , β0, γ∗

) − δβ0,π0

)2]
+ 2Eβ0,π0

[
rε

(
δ̂MMSE
ε − δβ0,π0

)
1
(∣∣̂δMMSE

ε − δβ0,π0

∣∣ ≤mn
)︸ ︷︷ ︸

≤|rε|mn

]
≤ Eβ0,π0

[(
δ̂
(
hMMSE
ε , β0, γ∗

) − δβ0,π0

)2] + 2mnEβ0,π0 |rε|.
According to Lemma A3 we have supπ0∈	ε(γ∗ ) Eβ0,π0 |rε| = O(1/n) = O(ε), and the as-
sumptions of the theorem guarantee thatmn = o(1). We thus obtain

sup
π0∈	ε(γ∗ )

Eβ0,π0

[(
δ̂MMSE
ε − δβ0,π0

)2
1
(∣∣̂δMMSE

ε − δβ0,π0

∣∣ ≤mn
)]

≤ sup
π0∈	ε(γ∗ )

Eβ0,π0

[(
δ̂
(
hMMSE
ε , β0, γ∗

) − δβ0,π0

)2] + o(ε). (A4)
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By definition, hMMSE
ε also satisfies the unbiasedness constraint (2). Together with As-

sumption A2(iv) this implies that hMMSE
ε satisfies the conditions on hε in Lemma A2 with

κ= 2 + ν. Thus, we can apply Lemma A2 with hε = hMMSE
ε to find that

sup
π0∈	ε(γ∗ )

Eβ0,π0

[(
δ̂
(
hMMSE
ε , β0, γ∗

) − δβ0,π0

)2]
= bε

(
hMMSE
ε , β0, γ∗

)2 + Varβ0,π(γ∗ )
(
hMMSE
ε (Y , β0, γ∗ )

)
n

+ o(ε). (A5)

The function hMMSE
ε (·, β0, γ∗ ) is defined by the minimization problem (10) in the main

text. In other words, hMMSE
ε (·, β0, γ∗ ) minimizes the objective function bε(h, β0, γ∗ )2 +

n−1Varβ0,π(γ∗ )(h(Y , β0, γ∗ )), subject to the constraints (2) and (4). Theorem 1 assumes
that hε = hε(·, β0, γ∗ ) satisfies those constraints, and the definition of hMMSE

ε (·, β0, γ∗ )
therefore implies that

bε
(
hMMSE
ε , β0, γ∗

)2 + Varβ0,π(γ∗ )
(
hMMSE
ε (Y , β0, γ∗ )

)
n

≤ bε(hε, β0, γ∗ )2 + Varβ0,π(γ∗ )
(
hε(Y , β0, γ∗ )

)
n

. (A6)

Theorem 1 also imposes all the assumptions on hε in Lemma A2. By applying that
lemma, we thus have

bε(hε, β0, γ∗ )2 + Varβ0,π(γ∗ )
(
hε(Y , β0, γ∗ )

)
n

= sup
π0∈	ε(γ∗ )

Eβ0,π0

[(
δ̂(hε, β0, γ∗ ) − δβ0,π0

)2] + o(ε). (A7)

Finally, Theorem 1 also guarantees all the assumptions of Lemma A4, implying that the
inequality (A3) holds. Now, combining (A4), (A5), (A6), (A7), and (A3) gives

sup
π0∈	ε(γ∗ )

Eβ0,π0

[(
δ̂MMSE
ε − δβ0,π0

)2
1
(∣∣̂δMMSE

ε − δβ0,π0

∣∣ ≤mn
)]

≤ sup
π0∈	ε(γ∗ )

Eβ0,π0

[
(δ̂ε − δβ0,π0 )21

(|̂δε − δβ0,π0 | ≤mn
)] + o(ε), (A8)

which is what we wanted to show.

A.2 Proof of Theorem 2

Assumption A3.

(i) δ̂− δβ0,π(γ∗ ) − 1
n

∑n
i=1 h(Yi, β0, γ∗ ) = oPβ0,π0

(n− 1
2 ), uniformly in π0 ∈ 	ε(γ∗ ).

(ii) Let σ2
h(β0, π0, γ∗ ) = Varβ0,π0 h(Y , β0, γ∗ ). We assume that there exists a constant

c, independent of ε, such that infπ0∈	ε(γ∗ ) σh(β0, π0, γ∗ ) ≥ c > 0. Furthermore, for
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all sequences an = c1−α/2 + o(1) we have

inf
π0∈	ε(γ∗ )

Pr
β0,π0

[∣∣∣∣∣ 1√
n

n∑
i=1

h(Yi, β0, γ∗ ) −Eβ0,π0h(Y , β0, γ∗ )
σh(β0, π0, γ∗ )

∣∣∣∣∣ ≤ an
]

≥ 1 − α+ o(1).

(iii) supπ0∈	ε(γ∗ ) Eβ0,π0‖β̂ − β0‖2 = o(1), supπ0∈	ε(γ∗ ) Eβ0,π0‖γ̂ − γ∗‖2 = o(1),
supπ0∈	ε(γ∗ ) Eβ0,π0[σ̂h − σh(β0, π0, γ∗ )]2 = o(1).

(iv) ‖∇βγbε(h, β, γ)‖ =O(ε
1
2 ), uniformly in some neighborhood around β0, γ∗.

Part (i) is weaker than the local regularity of the estimator δ̂ that we assumed when
analyzing the minimum-MSE estimator; see equation (14). In turn, related to but dif-
ferently from the conditions we used for Theorem 1, part (ii) requires a form of local
asymptotic normality of the estimator.

Proof of Theorem 2. Let δ̂ be an estimator and h(y, β0, γ∗ ) be the corresponding
influence function such that part (i) in Assumption A3 holds. Define R̂β0,γ∗ := δ̂ −
δβ0,π(γ∗ ) − 1

n

∑n
i=1 h(Yi, β0, γ∗ ). We then have

δ̂− δβ0,π0 = 1
n

n∑
i=1

h(Yi, β0, γ∗ ) + δβ0,π(γ∗ ) − δβ0,π0 + R̂β0,γ∗

= 1
n

n∑
i=1

[
h(Yi, β0, γ∗ ) −Eβ0,π0h(Y , β0, γ∗ )

]
− [
δβ0,π0 − δβ0,π(γ∗ ) −Eβ0,π0h(Y , β0, γ∗ )

] + R̂β0,γ∗ ,

and, therefore,

|̂δ− δβ0,π0 | − bε(h, β̂, γ̂) − σ̂hc1−α/2/
√
n

σh(β0, π0, γ∗ )/
√
n︸ ︷︷ ︸

=lhs

≤
∣∣∣∣∣ 1√
n

n∑
i=1

h(Yi, β0, γ∗ ) −Eβ0,π0h(Y , β0, γ∗ )
σh(β0, π0, γ∗ )

∣∣∣∣∣ − c1−α/2 + r̂β0,π0,γ∗︸ ︷︷ ︸
=rhs

, (A9)

where

r̂β0,π0,γ∗

:= c1−α/2

+
∣∣δβ0,π0 − δβ0,π(γ∗ ) −Eβ0,π0h(Y , β0, γ∗ )

∣∣ + |R̂β0,γ∗ | − bε(h, β̂, γ̂) − σ̂hc1−α/2/
√
n

σh(β0, π0, γ∗ )/
√
n
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=
√
n

σh(β0, π0, γ∗ )

{∣∣δβ0,π0 − δβ0,π(γ∗ ) −Eβ0,π0h(Y , β0, γ∗ )
∣∣ + |R̂β0,γ∗ |

− bε(h, β̂, γ̂) − σ̂h − σh(β0, π0, γ∗ )√
n

c1−α/2

}
.

From (A9), we conclude that the event rhs ≤ 0 implies the event lhs ≤ 0 and, therefore,
Prβ0,π0 (lhs ≤ 0) ≥ Prβ0,π0 (rhs ≤ 0), which we can also write as

Pr
β0,π0

[
|̂δ− δβ0,π0 | ≤ bε(h, β̂, γ̂) + σ̂h√

n
c1−α/2

]

≥ Pr
β0,π0

[∣∣∣∣∣ 1√
n

n∑
i=1

h(Yi, β0, γ∗ ) −Eβ0,π0h(Y , β0, γ∗ )
σh(β0, π0, γ∗ )

∣∣∣∣∣ ≤ c1−α/2 − r̂β0,π0,γ∗

]
. (A10)

By part (iv) in Assumption A3 there exists a constant C > 0 such that ‖∇βγbε(h, β, γ)‖ ≤
Cε

1
2 , uniformly in a neighborhood of (β0, γ∗ ) and, therefore,

∣∣bε(h, β̂, γ̂) − bε(h, β0, γ∗ )
∣∣ ≤ Cε 1

2

∥∥∥∥∥
(
β̂−β0

γ̂− γ∗

)∥∥∥∥∥ .

Using this, we find that

|̂rβ0,π0,γ∗ | ≤
√
n

σh(β0, π0, γ∗ )

{
||δβ0,π0 − δβ0,π(γ∗ ) −Eβ0,π0h(Y , β0, γ∗ )

∣∣−bε(h, β0, γ∗ )
∣∣

+
∣∣σ̂h − σh(β0, π0, γ∗ )

∣∣
√
n

c1−α/2 +Cε 1
2

∥∥∥∥∥
(
β̂−β0

γ̂− γ∗

)∥∥∥∥∥ + |R̂β0,γ∗ |
}

.

Parts (i) and (ii) of Assumption A3 imply that, uniformly in π0 ∈ 	ε(γ∗ ), we have

√
n

σh(β0, π0, γ∗ )
R̂β0,γ∗ = oPβ0,π0

(1),

and analogously we find from the conditions in Assumption A3 that

σ̂h − σh(β0, π0, γ∗ )
σh(β0, π0, γ∗ )

= oPβ0,π0
(1),

√
n

σh(β0, π0, γ∗ )
ε

1
2

∥∥∥∥∥
(
β̂−β0

γ̂− γ∗

)∥∥∥∥∥ = oPβ0,π0
(1),

uniformly in π0 ∈ 	ε(γ∗ ). Finally, since we also impose Assumption A1 and
supπ0∈	ε Eβ0,π0h

2(Y , β0, γ∗ ) =O(1) we obtain, analogously to the proof of Lemma S1(iii)
in Section S1, that

sup
π0∈	ε(γ∗ )

√
n

σh(β0, π0, γ∗ )

∣∣∣∣δβ0,π0 − δβ0,π(γ∗ ) −Eβ0,π0h(Y , β0, γ∗ )
∣∣ − bε(h, β0, γ∗ )

∣∣ = o(1).

We thus conclude that r̂β0,π0,γ∗ = oPβ0,π0
(1), uniformly in π0 ∈ 	ε(γ∗ ). Together with

(A10) and part (ii) in Assumption A3 this implies (17), hence Theorem 2.
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