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Appendix A: Experimental instructions

Each instruction page was read out loud and subjects were instructed not to click ahead.
The full set of instructions appears below. After the first set of instructions, there was
a short series of training examples. Static versions of the training tasks appear in Fig-
ures 13(a)–14(b). After the training tasks, payments were explained using each subject’s
final training exercise. An example is depicted in Figure 15. Important points were em-
phasized as “things to remember.” Part I is for the convex choice tasks and part II is for
the repeated discrete choice tasks. After all tasks from part I were completed, a second
set of instructions was given for part II. Once the task that pays was determined, a sub-
ject could examine it to observe their choices from the task. An example of this page
appears in Figure 16.

[Instructions:] PLEASE READ CAREFULLY AND DO NOT PRESS NEXT UNTIL IN-
STRUCTED TO DO SO.

This is a study about your own preferences. There are no right or wrong answers. This study
has two parts. Part I has 79 tasks and Part II has 6 tasks. Once you have finished, we will pick a
task at random as the Decision-that-counts. Since all decisions are equally likely to be chosen,
you should approach each task as if it is the Decision-that-counts. Part II will be explained once
you complete Part I.

For Part I, your objective in each of the 79 tasks is to pick the Chance that you like the most.
Every task has a changing visual aid to assist with picking your preferred Chance.

In every task, you must choose among the different Chances of receiving three prizes. The
three prizes are $2, $10, and $30. Each Chance will assign different chances to the three prizes.
To determine your preferred chance, and all possibilities, you will have to move a slider. For all
tasks, picking 100 will always give you the largest chance of the middle prize of $10. As you move
the slider toward 0, the chance of both $30 and $2 will increase. The largest chance of $10 and
how the other two chances change, as you move the slider, will be different for different tasks.
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Figure 13.

Most Chances might involve some risk. For example, a Chance could be a 25 in 100 chance
of $30, a 50 in 100 chance of $10, and a 25 in 100 chance of $2 while another Chance could be a
100 in 100 chance, or a sure prize, of $10. To aid with your choice, there will be a changing display
for every possible Chance. Therefore, for any Chance you will always be able to see the chance
of receiving each of the prizes.

The next few pages contains 4 examples to familiarize you with “how this works.” The exam-
ples have prizes that are different from the main tasks. Take your time and make sure you under-
stand “how it works.” We will not begin until everybody completes these examples and payments
are explained. After the examples, there will be a detailed explanation of how payments will be
determined.

Important: You must move the slider around and then verify your answer next to it. If the
chosen Chance on the slider does not match the Verified Chance next to it, or if you do not move
the slider around, you will not be allowed to proceed to the next task. Once you have picked a
Chance for a given task and verified it, you will no longer be able to change it.

Very Important: For each task, the slider is a tool to help you decide the choice you like the
best. Therefore, it is in your best interest to move it around to help you determine which Chance
you like better.

[Examples 1–4]
See Figures 13–14.
[Earning Money]
See Figure 15.
[Things to Remember:]
PLEASE READ CAREFULLY AND DO NOT PRESS NEXT UNTIL INSTRUCTED TO DO SO.

• You will complete 79 tasks for Part I. Part II has 6 tasks and will be explained after Part I.

• Different Chances will determine a different chance for each prize. All you have to do is pick
the Chance you like the best.

• There is no right or wrong answer for any of these questions. We are interested in studying
your preferences.

• Once all of your decisions have been made, we will choose one task and one decision as the
decision-that-counts and will implement your preferred Chance.
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Figure 14.

• Every decision is equally likely to be the Decision-that-counts. So, it is in your interest to

treat each Chance as if it could be the one that determines your payoffs.

Figure 15. How to earn money.
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• For each task, you must move the slider and verify your preferred Chance. Failure to move
the slider or not match it will prevent you from moving to the next task.

• Once you have selected your preferred Chance and verified it, you will not be able to change
it.

• The slider is a tool to help you determine your preferred Chance. Therefore, it is in your best
interest to use it to evaluate all potential alternatives.

[Part I: Tasks 1–79] Occurs here
PLEASE READ CAREFULLY AND DO NOT PRESS NEXT UNTIL INSTRUCTED TO DO SO.
In this part of the study, you are asked again to choose your preferred Chance, just like you

did in Part I. The difference between this part and Part I is that in this part you will see the same
question three times, one after the other. That is, you will be asked one question; once you click
the Next button, you will be asked the same question again; and once you click the Next button,
the same question will appear for the third time. Once you click the Next button, then a new
question will appear, which will also be asked three times. There are a total of 2 questions, each
asked three times, for a total of 6 tasks.

Another difference is that you will only be able to choose between two Chances, 0 or 100.
Please remember that there is no right or wrong answer. Remember you must move the slider
around and then verify your answer next to it. If the chosen Chance on the slider does not match
the Verified Chance, or if you do not move the slider around, you will not be allowed to proceed
to the next task. Once you have picked a Chance for a given task and verified it, you will no longer
be able to change it.

[Part II: Tasks 80–85] Occurs here: see Figure 16.

Appendix B: Pay one decision incentives

We pay one decision following the intuition of Azrieli, Chambers, and Healy (2018, 2019) who
build on the work of Karni and Safra (1987) and Segal (1990). We discuss how our payment
scheme maps into these papers after describing how payment uncertainty is resolved. Uncer-
tainty is resolved using physical randomization devices. Each task could be chosen for payment
with equal probability. We reminded subjects of this during each task. Before starting the dis-
crete choice tasks, subjects were informed they would face the same binary choice three times in

Figure 16. Decision-that-counts.
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a row. They were also told there were two different binary choices for a total of six tasks. After the
decisions from the convex and discrete choice tasks were completed, a ten-sided dice was rolled
twice, once for the tens digit and another for the ones digit, to determine the task that counts.
Any number above 85 was rerolled. Subjects entered the chosen task into the computer terminal
and were reminded about their choice for that task and the resulting distribution over payoffs
from that choice.

To determine payoffs for the chosen task, four ten-sided dice were rolled. So a roll of 5, 6, 7,
and 9 would give 56.79%. The chosen distribution induced at most three intervals [0, x), [x, y ),
and [y, 1] for the low, middle, and high prize, respectively. When a binary task was chosen for
payment or the convex choice was at a corner, only two intervals applied to the relevant prizes.
The interval that contained the number determined which outcome was obtained. To induce
greater variation in outcomes, four sets of four dice were rolled. Each set of four dice applied to
at most six subjects.

Finally, we relate the resolution of lotteries from the experiment to the pay one scheme dis-
cussion in Azrieli, Chambers, and Healy (2018). Here, we assume the die roll to select a task that
pays induces a compound lottery over the objective lotteries used in the experiment. Thus, the
result of the die roll can be viewed as a state using the notation of Azrieli, Chambers, and Healy
(2018). We assume that the individual satisfies first-order stochastic dominance over the prizes
in this state space. Finally, we assume that the individual is able to internally randomize accord-
ing to their most preferred distribution following the interpretation of Machina (1985). Thus, we
assume each “choice” in the repeated discrete choice tasks is an independent draw from an in-
dividual’s most preferred distribution. This last assumption is implicit in Agranov and Ortoleva
(2017).

Appendix C: Revealed preference results

Here, we provide a revealed preference characterization for a utility model of risk preferences
that respects first-order stochastic dominance for lotteries with three monetary prizes. The re-
sults are similar to those of Varian (1982), Forges and Minelli (2009), Heufer (2013), and Cerreia-
Vioglio, Dillenberger, and Ortoleva (2018). We consider risk preferences over lotteries with three
monetary prizes that are ordered xL < xM < xH. The probability that the prizes xL, xM, and xH

occur are denoted pL, pM, and pH, respectively. Moreover, let � = {p ∈ R
3+ | pL + pM + pH = 1}

be the probability simplex for three prize lotteries.
We consider budget sets generated by convex combinations of a numeraire lottery pN and

extreme lotttery pE. Here, the budgets are given by

B
(
pN, pE) =

⎧⎨
⎩
p = (pL, pM, pH ) ∈R

3+ | pH − r
(
pN, pE)

pL ≤ pN
H − r

(
pN, pE)

pN
L

| pL +pM +pH = 1

⎫⎬
⎭ ,

where r(pN, pE ) = pE
H−pN

H
pE

L−pN
L

is the relative price of the numeraire lottery described in the main text.

Recall, we consider r(pN, pE ) ∈ R++ since we are only considering budget sets that do not have
lotteries ordered by FOSD.

Let {pt , B(pN,t , pE,t )}Tt=1 be a data set generated by an individual choosing the lottery pt

from the budget B(pN,t , pE,t ) where pN,t is the numeraire lottery from the tth task and pE,t is the
extreme lottery from the tth task. We will often abbreviate the price so that rt = r(pN,t , pE,t ). Our
main focus is to find conditions that determine when the choices an individual makes can be de-
scribed by a utility function that satisfies first-order stochastic dominance. Recall that the lottery
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p′ = (p′
L, p′

M, p′
H ) first-order stochastic dominates the lottery p = (pL, pM, pH ) when p′

H ≥ pH

and p′
H +p′

M ≥ pH +pM with at least one inequality strict.

Definition 1. The data set {pt , B(pN,t , pE,t )}Tt=1 is first-order stochastic dominance rational-
ized by a utility function when there exists a utility function V : �→ R such that:

1. For all t ∈ {1, � � � , T },

pt ∈ argmax
p∈B(pN,t ,pE,t )

V (p);

2. For all p′ that first-order stochastic dominate p,

V
(
p′)> V (p).

Now we define revealed preference relations for the lotteries above. We say that a lottery
pt is directly revealed preferred to the lottery ps , denoted pt R ps , if ps

H − rtps
L ≤ pN,t

H − rtpN,t
L .

We are able to use the terms for the numeraire lottery to define a revealed preference relation
when looking for a first-order stochastic dominance utility rationalization since the lottery cho-
sen from budget t must satisfy

pt
H − rtpt

L = pN,t
H − rtpN,t

L .

To see this, suppose by contradiction that

pt
H − rtpt

L <pN,t
H − rtpN,t

L .

In this case, one can find a lottery p′ that first-order stochastic dominates pt and is still feasible
in B(pN,t , pE,t ). For example, let p′

H >pt
H, p′

H +p′| = pt
H +pt| , and

p′
H − rtp′

L = pN,t
H − rtpN,t

L .

This lottery first-order stochastic dominates pt , which contradicts the data coming from a util-
ity function that satisfies first-order stochastic dominance. Next, we say a lottery pt is directly
strictly revealed preferred to the lottery ps , denoted pt P ps , if ps

H − rtps
L < pN,t

H − rtpN,t
L . We say

that lottery pt is revealed preferred to the lottery ps , denoted pt R∗ ps , is there exists a sequence
{m}Mm=1 with M ≥ 2 such that p1 = pt and pM = ps such that pm Rpm+1 for all m = 1, � � � , M − 1.
Similarly, we say that the lottery pt is strictly revealed preferred to the lottery ps , denoted pt P∗ps ,
is there exists a sequence {m}Mm=1 with M ≥ 2 such that p1 = pt and pM = ps such that pmRpm+1

for all m = 1, � � � , M − 1 where for some m ∈ {1, � � � , M − 1} there is a strict preference revelation
so that pm P pm+1.

The revealed preference relation generated from the data set is acyclic when

pt R∗ ps implies notps P pt .

We mention that notps P pt is the same as pt
H − rspt

L ≥ ps
H − rsps

L. Acyclicity of a revealed pref-
erence relation is similar to the generalized axiom of revealed preference from Varian (1983). In
particular, acyclicity requires that a researcher cannot find a cycle of lotteries such that a lottery
is strictly revealed preferred to itself. We say there is a cycle when there exists a sequence {tm}Mm=1
with M ≥ 2 where tm ∈ {1, � � � , T } such that ptm R ptm+1 for all m = 1, � � � , M − 1 and ptM P pt1 .

Proposition 1. The following are equivalent for the data set {pt , B(pN,t , pE,t )}Tt=1 when all
rt > 0:
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1. The data set is first-order stochastic dominance rationalized;

2. The revealed preference relations generated from R and P satisfy acyclicity;

3. For all t ∈ {1, � � � , T }, there exist numbers ut ∈R and λt ∈R++ such that for all s, t ∈ {1, � � � , T }

us ≤ ut + λt
(
ps

H −pN,t
H − rt

(
ps

L −pN,t
L

))
;

4. The data set is first-order stochastic dominance rationalized with a continuous and concave
utility function.

Proof. (1) =⇒ (2) Suppose by contradiction that the data set is FOSD rationalized and the
revealed preference relation has a cycle for observations {tm}Mm=1 where tm ∈ {1, � � � , T } so that

for m = 1 � � � , M − 1 ptm Rptm+1 and ptM P pt1 .

It follows that

V
(
pt1

) ≥ V
(
pt2

) ≥ · · · ≥ V
(
ptM

)
> V

(
pt1

)
,

where the strict inequality holds since ptM P p1. However, this contradicts the existence of a well-
defined utility function.

(2) =⇒ (3) This follows from the arguments in Fostel, Scarf, and Todd (2004), Forges and
Minelli (2009), or Chambers and Echenique (2016).

(3) =⇒ (4) We construct a utility function from the numbers ut and λt that rationalize the
data. In particular, consider the function

Ṽ (p) = min
t∈{1, ���,T }

{
ut + λt

(
pH −pN,t

H − rt
(
pL −pN,t

L

))}
.

It follows immediately that Ṽ : �2 → R is continuous and concave since it is the minimum of
finitely many affine functions. It remains to show the function satisfies first-order stochastic
dominance and satisfies the optimality properties.

First, we show that the function satisfies first-order stochastic dominance. To see this, note
that if p′ first-order stochastic dominates p, then p′

H ≥ pH and p′
H + p′

M ≥ pH + pM with one
inequality strict. Let t ′ ∈ {1, � � � , T } be chosen so

Ṽ
(
p′) = ut

′ + λt
′(
pH −pN,t′

H − rt
′(
pL −pN,t′

L

))
.

We now show that first-order stochastic dominance holds. It follows that

Ṽ
(
p′) = ut

′ + λt
′(
p′

H −pN,t′
H − rt

′(
p′

L −pN,t′
L

))

> ut
′ + λt

′(
pH −pN,t′

H − rt
′(
pL −pN,t′

L

))

≥ min
t∈{1, ���,T }

{
ut + λt

(
pH −pN,t

H − rt
(
pL −pN,t

L

))}

= Ṽ (p),

where the strict inequality follows since either p′
H >pH or p′

H +p′
M >pH +pM. When p′

H >pH,
the the strict inequality holds since λt

′
> 0, rt > 0, and 0 ≤ p′

L ≤ pL. When p′
H + p′

M > pH + pM,
this implies that p′

L <pL and the the strict inequality holds since λt
′
> 0, rt > 0, and 0 ≤ pH ≤ p′

H.
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Finally, we show that the lotteries ps are optimal for the given budgets. Note that for any
lottery p ∈ B(pN,s , pE,s ) that

Ṽ (p) = min
t∈{1, ���,T }

{
ut + λt

(
pH −pN,t

H − rt
(
pL −pN,t

L

))}

≤ us + λs
(
pH −pN,s

H − rs
(
pL −pN,s

L

))

≤ us

= Ṽ
(
ps

)
,

where the second inequality follows since pH − rspL ≤ pN,s
H − rspN,s

L and Ṽ (ps ) = us by the con-
struction of the inequalities in (2).

(4) =⇒ (1) is immediate.

This proof follows from standard arguments in revealed preference. This is also related to
work by Nishimura, Ok, and Quah (2017) who give conditions for when there is a preference
relation that preserves a partial order such as first-order stochastic dominance. Relative to the
more general revealed preference analysis from Nishimura, Ok, and Quah (2017), Heufer (2013),
and Cerreia-Vioglio, Dillenberger, and Ortoleva (2018), we are able to get a continuous and con-
cave utility representation because we focus on finite dimensional lotteries and the budget sets
we use here are convex.

In order to measure violations of a first-order stochastic dominance rationalization, we use
the Houtman–Maks index (HMI). The HMI is proposed in Houtman and Maks (1985) and sug-
gests using the largest number of choices that can be rationalized as a measure of closeness.
Here, we find the largest number of choices that admit a first-order stochastic dominance ratio-
nalization. We interpret a higher HMI to mean an individual is “closer” to a first-order stochastic
dominance rationalization since more data is consistent with this type of preference relation.
While finding the HMI is a difficult problem in general, Demuynck and Rehbeck (2021) shows
that a mixed integer linear programming can quickly find the largest number of choices that can
be rationalized for general budget sets. We present how to compute the HMI in the following
proposition.

Proposition 2. The HMI for the data set {pt , B(pN,t , pE,t )}Tt=1 is computed by solving

HMI = max
At∈{0,1}
Ut,v∈{0,1}
ut∈[0,1]

T∑
t=1

At ,

s.t. ut − uv ≤ −ε+ 2Ut,v ∀t, v ∈ {1, � � � , T },

Ut,v − 1 ≤ ut − uv ∀t, v ∈ {1, � � � , T },

−(
pv

H − rtpv
L −pN,t

H + rtpN,t
L

) ≤ −δ+β
(
Ut,v + (1 −At )

) ∀t, v ∈ {1, � � � , T },

β(Uv,t +At − 2) ≤ (
pv

H − rtpv
L −pN,t

H + rtpN,t
L

) ∀t, v ∈ {1, � � � , T },

where 0 < ε < 1
T , β > maxt,v∈{1, ���,T }{|pv

H − rtpv
L − pN,t

H + rtpN,t
L |} + α, and 0 < δ < α where α =

min{1, mint,v{pv
H −pN,t

H − rt(pv
L −pN,t

L ) | pv
H −pN,t

H − rt(pv
L −pN,t

L ) > 0}}.

This proposition follows from Demuynck and Rehbeck (2021, Corollary 7). We compute the
measure using the mixed integer linear solving from Optimization, LLC Gurobi (2021) through
Matlab. The HMI for each individual is given in Table 4.
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Table 4. Houtman–Maks index for all subjects.

(i)ndividual HMI i HMI i HMI i HMI i HMI

1 70 31 76 61 71 91 62 121 74
2 74 32 79 62 60 92 68 122 68
3 76 33 72 63 79 93 79 123 79
4 76 34 73 64 54 94 79 124 73
5 78 35 68 65 76 95 75 125 78
6 76 36 66 66 58 96 65 126 72
7 75 37 65 67 74 97 74 127 77
8 63 38 77 68 73 98 63 128 78
9 75 39 70 69 78 99 75 129 69

10 74 40 75 70 72 100 69 130 75
11 79 41 76 71 60 101 61 131 70
12 75 42 72 72 77 102 77 132 76
13 77 43 63 73 73 103 77 133 78
14 73 44 79 74 75 104 79 134 70
15 68 45 74 75 76 105 79 135 72
16 71 46 72 76 72 106 72 136 77
17 71 47 77 77 65 107 74 137 76
18 78 48 76 78 70 108 79 138 67
19 63 49 71 79 74 109 69 139 71
20 52 50 71 80 68 110 65 140 75
21 74 51 65 81 70 111 78 141 78
22 69 52 71 82 76 112 70 142 73
23 72 53 79 83 71 113 68 143 68
24 76 54 72 84 76 114 77 144 79
25 71 55 75 85 78 115 72
26 78 56 79 86 71 116 78
27 71 57 66 87 75 117 67
28 79 58 60 88 75 118 74
29 77 59 72 89 75 119 64
30 75 60 74 90 60 120 72

C.1 Benchmark behavior

Following the discussion in the main text, we compare the number of violations in the data from
subjects to benchmarks of alternative behavior following the suggestion of Bronars (1987). In
particular, we generate simulated choices pt from B(pN,t , pE,t ) by choosing an αt that generates
choices following equation (3.1). Following Andreoni, Feldman, and Sprenger (2017), we also
consider sampling over the distribution of choices in the population. Thus, let αi,t be the choice
of α by the ith individual in the tth task from the experiment. We generate simulated benchmarks
the following four ways:

1. Let αt be distributed U[45, 55].

2. Let αt be distributed U[0, 100].

3. Let αt be distributed uniformly over {αi,t }i,t .

4. Let αt be distributed uniformly over {αi,t }i.
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Figure 17. HMI probability density of subjects and benchmark behavior.

The first randomization scheme is our benchmark demand effects setting where an individ-
ual “trembles” around the initialized slide rule. The second randomization scheme is an imple-
mentation of a Bronars (1987) uniform random scheme and is our benchmark of noise. The third
and fourth benchmarks follow Andreoni, Feldman, and Sprenger (2017) who suggest comparing
behavior of individuals relative to randomness that is likely to be generated by individuals. We
call the third randomization scheme a bootstrap benchmark since it bootstraps from all choices.
Similarly, we call the fourth randomization scheme a conditional bootstrap benchmark since
it bootstraps from choices conditional on a budget. We plot the distribution of simulated HMI
along with the distribution of subject HMI for the third and fourth randomization schemes in
Figure 17.

We compare subject behavior to the bootstrap benchmark in Figure 17(a). We find that
137/144 (95.1%) subjects are “closer” to a well-defined preference than 95% of the simulated
bootstrap benchmark behavior according to the HMI. Moreover, we reject the null that the dis-
tribution of subject HMI and the bootstrap benchmark are the same according to the Wilcoxon
rank sum test (p < 0.0001) and according to the Kolmogorov–Smirnov test (p < 0.0001). Com-
paring subject behavior to the conditional bootstrap benchmark in Figure 17(b), we find that
103/144 (71.5%) subjects are “closer” to a well-defined preference than 95% of the simulated
conditional bootstrap benchmark behavior according to the HMI. Moreover, we reject the null
that the distribution of subject HMI and conditional bootstap benchmark are the same accord-
ing to the Wilcoxon rank sum test (p < 0.0001) and according to the Kolmogorov–Smirnov test
(p< 0.0001). In both cases, a majority of individuals outperform the benchmark. Thus, we con-
clude that the interface is able to elicit individual preference information.

Appendix D: Robustness of mixing behavior

We strengthen the definition of mixing to show that individuals are not making choices that are
close to the boundaries of the budget sets. In particular, we define 2-mixing when α ∈ {2, � � � , 98}
and 5-mixing when α ∈ {5, � � �95}. Our results remain qualitatively unchanged. Table 5 and Ta-
ble 6 replicate Table 2 in the main text for the stronger mixing definitions. The behavior is quali-
tatively similar to Table 2.
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Table 5. Percentage of choices at each numeraire lottery (2-mix).

N1 N2 N3 N4 N5 N6 N7 N8 Total

2-Mix 32% 44% 50% 50% 45% 42% 30% 18% 44%
Numeraire 52% 35% 28% 26% 26% 25% 30% 31% 32%
Extreme 16% 20% 21% 24% 29% 33% 40% 51% 24%

Obs 1296 2736 2304 1872 1440 1008 576 144 11,376

We also check whether individuals only mix close to some expected utility choices. In partic-
ular, let αt

EU be the choices of an expected utility maximizer in task t. We call someone an EU-1
maximizer when there exists an expected utility where |αt − αt

EU| ≤ 1 for all budgets that are not
indifferent. We call someone an EU-4 maximizer when there exists some value of expected utility
where |αt −αt

EU| ≤ 4 for all budgets that are not indifferent. Recall that we have only one individ-
ual who can be described by expected utility. We find this same individual is the only subject to
satisfy EU-1 or EU-4.

Appendix E: All comparative statics of mixing and log relative price

In this section, we present how mixing behavior changes with respect to the relative price of the
numeraire lottery for choices from budgets with numeraire lotteries N1, N3, N4, N5, N6, and N7.
These graphs are all displayed in Figure 18. The graphs all share the qualitatively similar fea-
ture of mixing increasing with the price of the numeraire up to some point and then decreasing.
We also find that demand for the numeraire decreases as the relative price of the numeraire in-
creases. Lastly, we find that demand for the extreme lottery increases as the relative price of the
numeraire increases.

Appendix F: Aggregate demands

This section presents the average demand curves for each numeraire lottery. In particular, Fig-
ure 19 gives the average demand curves for numeraire lotteries N1, N3, N4, N5, N6, and N7. We
see from these figures that regardless of which numeraire lottery we examine, average demand
has a hyperbolic shape. We also give regression results for the specification

α
Nj
i,t = βj +ηj log

(
rt

)
,

where α
Nj
i,t is the α chosen for task t from the Nj numeraire and log(rt ) is the log price at the tth

trial. Note we allow a separate intercept and slope of demand for each numeraire lottery. The

Table 6. Percentage of choices at each numeraire lottery (5-mix).

N1 N2 N3 N4 N5 N6 N7 N8 Total

5-Mix 31% 43% 49% 48% 43% 41% 29% 17% 42%
Numeraire 53% 37% 30% 28% 28% 26% 31% 32% 33%
Extreme 16% 21% 22% 24% 29% 33% 40% 51% 24%

Obs 1296 2736 2304 1872 1440 1008 576 144 11,376
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Figure 18. Log prices versus mixing behavior for remaining numeraire lotteries.

regression results are presented in Table 7. Here, we find that the aggregate demand as measured
by the intercept decreases as the numeraire lottery “increases” with respect to FOSD. Moreover,
we find that the slope on log relative prices is relatively consistent. One exception is for the nu-

Figure 19. Average demands.
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Table 7. Regression results of numeraire demand on log relative prices.

N1 N2 N3 N4 N5 N6 N7

Intercept 72.67 61.62 62.38 59.73 56.35 53.88 53.81
(0.94) (0.57) (0.67) (0.78) (0.97) (1.21) (1.92)

log(r ) −13.11 −17.48 −17.92 −17.58 −16.71 −17.94 −17.79
(0.72) (0.39) (0.50) (0.61) (0.80) (1.10) (2.04)

R2 0.20 0.43 0.36 0.31 0.23 0.21 0.12
Adjusted R2 0.20 0.43 0.36 0.31 0.23 0.21 0.12
Num Obs 1296 2736 2304 1872 1440 1008 576

Note: Regression results for all numeraire lottery demand for the linear-log specification, standard errors are in parentheses
beneath each coefficient estimate.

meraire lottery N1 where demand is high for low prices and the slope is much lower. This means
that individuals are less elastic with respect to choosing lotteries that have extreme outcomes
when the numeraire is low. This suggests that when individuals face a bad benchmark lottery
with respect to FOSD, they may be less willing to choose an extreme lottery even when an ex-
treme lottery has an attractive price (aka a low probability of getting the low prize). We note that
the coefficients are significant for standard p-values.

Figure 20. Example types of individual choice behavior for all endowments.
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Appendix G: Example types: All budget sets

In Figure 20, we present all choices made for the individuals we used as examples of heteroge-

neous behavior in Section 5.2. We also present the behavior of all individuals from all budgets in

Figure 21. In particular, each row in Figure 21 references a subject number at the start of the row

and proceeds in order.

Figure 21. All choices from all subjects.
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Figure 21. Continued.
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Figure 21. Continued.
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Figure 21. Continued.
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Figure 21. Continued.
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