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These Appendixes contain three sets of results. Appendix A proves Theorems 2.1 and
2.2 for the cross-sectional MRC estimator. Appendix B derives the asymptotic properties
of the MS estimators proposed in for the static and dynamic panel data models. Ap-
pendix C collects additional Monte Carlo results.

Appendix A: Cross-sectional estimator

Proof of Theorem 2.1. It suffices to show the identification of β0 based on (2.3) as
the same arguments can be applied to similar identification inequalities. Denote Ωim =
{xi2 = xm2}. By Assumptions CS1 and CS2, the monotonic relation (2.3) implies that β0

maximizes

G1(b)≡E{
E[yi1 − ym1|xi�xm�Ωim] · sgn

(
x′
im1b

)|Ωim}
for each pair of (i�m). To show that β0 attains a unique maximum, let b ∈ B such
that G1(b) = G1(β0). We assume β(1)0 = b(1) = 1 w.l.o.g. (the case β(1)0 = b(1) = −1 is

symmetric). We want to show that b̃ = β̃0 must hold. To see this, first note that if
P[(x̃′

im1β̃0 < −x(1)im1 < x̃
′
im1b̃) ∪ (x̃′

im1b̃ < −x(1)im1 < x̃
′
im1β̃0)|Ωim] > 0, β0 and b yield dif-

ferent values of the sgn(·) function in G1(·) with strictly positive probability, and thus
G1(b) < G1(β0). This implies that for all b satisfying G1(b) = G1(β0), P[(x̃′

im1β̃0 <

−x(1)im1 < x̃
′
im1b̃) ∪ (x̃′

im1b̃ < −x(1)im1 < x̃
′
im1β̃0)|Ωim] = 0 must hold, which is equivalent to

P(x̃′
im1β̃0 = x̃′

im1b̃|Ωim) = 1 under Assumption CS3(i). Then the desired result follows
from Assumption CS3(ii).
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We next derive the asymptotic properties of β̂ summarized in Theorem 2.2. We first
prove Lemmas A.1 and A.2 to establish the consistency of β̂. Then we show Lemmas A.3–
A.5 to establish the asymptotic normality of β̂. For ease of illustration, with a bit abuse
of notation, we work with objective function

GK1n(b)≡ 1
n(n− 1)hpn

∑
i �=m

Khn(xim2)qim(b)

and G1(b) ≡ f2(0)E[qim(b)|Ωim], where qim(b) ≡ yim1 · [sgn(x′
im1b) − sgn(x′

im1β0)].1 Ac-
cordingly, we will also subtract the term sgn(x′

im1β0) for Sim(b) and τi(b) in this Ap-
pendix.

Lemma A.1. If Assumptions CS1–CS6, CS8, and CS9 hold, supb∈B |GK1n(b) − G1(b)| =
op(1).

Proof of Lemma A.1. Note that Lemma A.1 follows from supb∈B |GK1n(b)−E[GK1n(b)]| =
op(1) and supb∈B |E[GK1n(b)] −G1(b)| = o(1).

Define Fn = {Khn(xim2)qim(b)|b ∈ B} with hn > 0 and hn → 0. Fn is a subclass of the
fixed class F ≡ {K(xim2/h)qim(b)|b ∈ B�h > 0} = FhFb, with Fh ≡ {K(xim2/h)|h > 0},
which is Euclidean for the constant envelope supv∈Rp |K(v)| by Lemma 22 in Nolan
and Pollard (1987) and Fb ≡ {qim(b)|b ∈ B}. Noticing that qim(b) is uniformly bounded
by 2, Example 2.11 and Lemma 2.15 in Pakes and Pollard (1989) then implies that Fb
is Euclidean for the constant envelope 2. Putting all these results together, we con-
clude using Lemma 2.14 in Pakes and Pollard (1989) that F is Euclidean for the con-
stant envelope 2 supv∈Rp |K(v)|. Applying Corollary 4 in Sherman (1994a), we obtain that
supb∈B |GK1n(b)−E[GK1n(b)]| =Op(n−1/h

p
n )= op(1) by Assumption CS9.

It remains to show that supb∈B |E[GK1n(b)] − G1(b)| = o(1). Letting ϕ(·) ≡ f2(·)×
E[qim(b)|xim2 = ·], we can write by Assumptions CS5, CS6, CS8, and CS9 that

sup
b∈B

∣∣E[
GK1n(b)

] −G1(b)
∣∣

= sup
b∈B

∣∣h−p
n E

[
K(xim2/hn)qim(b)

] −ϕ(0)∣∣
= sup
b∈B

∣∣∣∣
∫
h

−p
n K(v/hn)ϕ(v)dv−ϕ(0)

∣∣∣∣
= sup
b∈B

∣∣∣∣
∫
h

−p
n K(v/hn)

[
ϕ(0)+ v′∇1ϕ(v̄)

]
dv−ϕ(0)

∣∣∣∣
= sup
b∈B

∣∣∣∣
∫
K(u)

[
ϕ(0)+ hnu′∇1ϕ(ūn)

]
du−ϕ(0)

∣∣∣∣ = hn · sup
b∈B

∣∣∣∣
∫
K(u)u′∇1ϕ(ūn)du

∣∣∣∣
≤ hn ·

∫ ∣∣K(u)∣∣|u|1 sup
b∈B

∣∣∇1ϕ(ūn)
∣∣
1 du=O(hn)= o(1)�

1Here, we subtract the term yim1 ·sgn(x′
im1β0) from objective function (2.6), analogous to Sherman (1993).

Doing this does not affect the value of the estimator, and will facilitate the proofs that follow.
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where the third equality applies a mean-value expansion and the fourth equality uses a
change of variables u= v/hn. Combining all these results completes the proof.

Lemma A.2. If Assumptions CS1–CS6, CS8, and CS9 hold, β̂
p→ β0.

Proof of Lemma A.2. The proof proceeds by verifying the four sufficient conditions
for Theorem 2.1 in Newey and McFadden (1994): (C1) B is a compact set,
(C2) supb∈B |GK1n(b) −G1(b)| = op(1), (C3) G1(b) is continuous in b, and (C4) G1(b) is
uniquely maximized at β0.

Condition (C1) is satisfied by Assumption CS4. Lemma A.1 secures condition (C2).
The identification condition (C4) is essentially verified in the proof of Theorem 2.1, given
that f2(0) > 0 by Assumption CS5.

It remains to verify the continuity of G1(b) in b. Assuming b(1) = 1 w.l.o.g.,
E[qim(b)|Ωim] can be expressed as the sum of terms like

P
(
yim1 = d�x(1)im1 >−x̃′

im1b̃|Ωim
)

=
∫ ∫ ∞

−x̃′
im1b̃

P(yim1 = d|xim1�Ωim)fx(1)im1|x̃im1�Ωim
(x)dxdFx̃im1|Ωim

for some d ∈ {−1�0�1}. ThenG1(b) is continuous in b if f
x
(1)
im1|x̃im1�Ωim

(·) does not have any

mass points, which is guaranteed by Assumption CS3. This completes the proof.

With consistency proved, the next steps turn to establishing asymptotic normality
of β̂, in which the derivation can be within a shrinking neighborhood of β0, Bn ≡ {b ∈
B|‖b−β0‖ ≤ δn} with δn =O(n−δ) for some 0< δ≤ 1/2. Our goal is to apply Theorem 2 of
Sherman (1994a), of which a sufficient condition is that uniformly overOp(n−1/2) neigh-
borhoods of β0,

GK1n(b)= 1
2
(b−β0)

′V (b−β0)+ 1√
n
(b−β0)

′Wn + op
(
n−1)� (A.1)

where V is a negative definite matrix and Wn is asymptotically normal, with mean zero
and variance Λ. The verification of (A.1) has two logical steps. First, we show that

GK1n(b)= 1
2
(b−β0)

′V (b−β0)+ 1√
n
(b−β0)

′Wn + op
(‖b−β0‖2) +Op(εn) (A.2)

uniformly over Bn. Theorem 1 of Sherman (1994b) then implies that β̂−β0 =Op(√εn ∨
n−1/2). We then show that the Op(εn) term in (A.2) is of order op(n−1) uniformly over
Bn. Applying Theorem 1 of Sherman (1994b) once again gives β̂−β0 =Op(n−1/2), from
which expression (A.1) follows.

The remainder of this section is organized as follows. We first work with the U-
statistic decomposition forGK1n(b) (see, e.g., Sherman (1993) and Serfling (2009)),

GK1n(b)=E[
GK1n(b)

] +
(

2
n

∑
i

E
[
GK1n(b)|xi

] − 2E
[
GK1n(b)

]) + ρn(b)� (A.3)
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Lemmas A.3–A.5 establish asymptotic properties of the three terms in (A.3), respectively.
Combine results in these lemmas to get (A.1). Then we invoke Theorem 2 of Sherman
(1994a) to prove the asymptotic normality of β̂.

Lemma A.3. If Assumptions CS1–CS9 hold, then uniformly over Bn, we have

E
[
GK1n(b)

] = 1
2
(b−β0)

′V (b−β0)+ o(‖b−β0‖2)�
where V ≡E[∇2τi(β0)].
Proof of Lemma A.3. First, we express E[GK1n(b)] as the integral∫

h
−p
n Khn(xim2)B(xi1�xm1�xi2�xm2)Sim(b)dFx(xi1�xi2)dFx(xm1�xm2)

=
∫
K(uim)B(xi1�xm1�xm2 + uimhn�xm2)Sim(b)

× fx(xi1�xm2 + uimhn)dxi1 duim dFx(xm1�xm2)� (A.4)

where we apply a change of variables uim = xim2/hn to obtain the equality.
Take the κth-order Taylor expansion inside the integral around xm2 to obtain the lead

term∫
K(uim)B(xi1�xm1�xm2�xm2)Sim(b)fx(xi1�xm2)dxi1 duim dFx(xm1�xm2)

=
∫
B(xi1�xm1�xm2�xm2)Sim(b)fx(xi1�xm2)dxi1 dFx(xm1�xm2)=E[

τm(b)
]
� (A.5)

where the first equality follows by
∫
K(u)du= 1. All remaining terms are zero except the

last one which is of order O(hκnδn)= o(‖b−β0‖2) by Assumptions CS7–CS9.
Note that a second-order Taylor expansion around β0 gives

τm(b)− τm(β0)= (b−β0)
′∇1τm(β0)+ 1

2
(b−β0)

′∇2τm(b̄)(b−β0)

= (b−β0)
′∇1τm(β0)+ 1

2
(b−β0)

′∇2τm(β0)(b−β0)

+ 1
2
(b−β0)

′[∇2τm(b̄)− ∇2τm(β0)
]
(b−β0)�

and hence by τm(β0)= 0 and Assumption CS7,

E
[
τm(b)

] = (b−β0)
′E

[∇1τm(β0)
]

+ 1
2
(b−β0)

′E
[∇2τm(β0)

]
(b−β0)+ o(‖b−β0‖2)

= 1
2
(b−β0)

′V (b−β0)+ o(‖b−β0‖2)� (A.6)

where the second equality uses the fact that E[∇1τm(β0)] = 0 as E[τm(b)] is maximized
at β0. Then, applying (A.4), (A.5), and (A.6) proves the lemma.
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Lemma A.4. If Assumptions CS1– CS9, then uniformly over Bn, we have

2
n

∑
i

E
[
GK1n(b)|xi

] − 2E
[
GK1n(b)

] = 1√
n
(b−β0)

′Wn + op
(‖b−β0‖2)�

whereWn ≡ n−1/2 ∑
i 2∇1τi(β0).

Proof of Lemma A.4. We establish a representation for E[GK1n(b)|xm] using the same
arguments as in the proof of Lemma A.3, but no longer integrating over xm. Specifically,
a change of variables uim = xim2/hn gives

E
[
GK1n(b)|xm

]
=

∫
h

−p
n Khn(xim2)B(xi1�xm1�xi2�xm2)Sim(b)dFx(xi1�xi2)

=
∫
K(uim)B(xi1�xm1�xm2 + uimhn�xm2)Sim(b)fx(xi1�xm2 + uimhn)dxi1 duim�

The lead term of the κth-order Taylor expansion inside the integral around xm2 is∫
K(uim)B(xi1�xm1�xm2�xm2)Sim(b)fx(xi1�xm2)dxi1 duim

=
∫
B(xi1�xm1�xm2�xm2)Sim(b)fx(xi1�xm2)dxi1 = τm(b)

and the sample average of the bias term is of order op(‖b−β0‖2).
Then, applying Lemma A.3 and Assumption CS7, we write

2
n

∑
m

E
[
GK1n(b)|zm

] − 2E
[
GK1n(b)

]

= 2
n

∑
m

τm(b)− (b−β0)
′V (b−β0)+ op

(‖b−β0‖2)

= 2
n

∑
m

(b−β0)
′∇1τm(β0)+ 1

n

∑
m

(b−β0)
′(∇2τm(β0)− V )

(b−β0)+ op
(‖b−β0‖2)�

Then the desired result follows as n−1 ∑
m∇2τm(β0)− V = op(1) by the SLLN.

Lemma A.5. If Assumptions CS1–CS9 hold, then ρn(b)=Op(n−1h
−p
n ) uniformly over Bn.

Proof of Lemma A.5. By construction, we can write

ρn(b)= 1
n(n− 1)

∑
i �=m

ρim(b)�

where

ρim(b)≡
(
Khn(xim)qim(b)− 2n−1

∑
i

E
[
Khn(xim)qim(b)|xi

] +E[
Khn(xim)qim(b)

])/
h
p
n �
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Note that ρim(β0)= 0 and |ρim(b)| is bounded by a multiple of M/hpn , where M is a
positive constant. Define F∗

n = {ρ∗
im(b)|b ∈ B} with ρ∗

im(b) ≡ h
p
nρim(b)/M . Then the Eu-

clidean properties of the (P-degenerate) class of functions F∗
n are deduced using similar

arguments for proving Lemma A.1 in combination with Corollaries 17 and 21 in Nolan
and Pollard (1987). As supb∈Bn E[ρ∗

im(b)
2] = O(1) by Assumption CS8, applying Theo-

rem 3 of Sherman (1994a) gives

1
n(n− 1)

∑
i �=m

ρ∗
im(b)=Op

(
n−1)�

and hence ρn(b)=Op(n−1h
−p
n ).

Proof of Theorem 2.2. We have shown part (i) of Theorem 2.2 (consistency of β̂) in
Lemma A.2. Here, we move on to prove part (ii). Putting results in Lemmas A.3–A.5 to-
gether, we write

GK1n(b)= 1
2
(b−β0)

′V (b−β0)+ 1√
n
(b−β0)

′Wn + op
(‖b−β0‖2) +Op(εn)� (A.7)

where εn = n−1h
−p
n . Theorem 1 of Sherman (1994b) then implies that β̂−β0 =Op(√εn).

Next, take δn = O(
√
εn) and Bn = {b ∈ B|‖b − β0‖ ≤ δn}. We repeat the proof for

Lemma A.5 and deduce from a Taylor expansion around β0 that E[supb∈Bn ρ
∗
im(b)

2] =
O(δ2

nh
p
n ). Apply Theorem 3 of Sherman (1994b) to see that uniformly over Bn, ρn(b) =

Op(n
−1h

(α/2−1)p
n δαn) for 0<α< 1. Then we have

ρn(b)=Op
(
n−1h

(α/2−1)p
n δαn

) =Op
(
n−1)Op(

n−α/2h−p
n

) = op
(
n−1)

by invoking Assumption CS9 and choosing α sufficiently close to 1. This result in turn
implies that the Op(εn) term in (A.7) is of order op(n−1), and hence β̂−β0 =Op(n

−1/2)

by applying Theorem 1 of Sherman (1994b) once again.
Now (A.7) can be expressed as

GK1n(b)= 1
2
(b−β0)

′V (b−β0)+ 1√
n
(b−β0)

′Wn + op
(
n−1)�

DenoteΔi = 2∇1τi(β0). Note thatE[Δi] = 0 asE[∇1τi(β0)] = 0. We deduce from Assump-

tion CS7 and Lindeberg–Lévy CLT thatWn
d→N(0�Λ)whereΛ=E[ΔiΔ′

i]. The asymptotic

normality of β̂ then follows from Theorem 2 of Sherman (1994a), i.e.,
√
n(β̂ − β0)

d→
N(0� V −1ΛV −1).

Appendix B: Static and dynamic panel data estimators

B.1 Static panel data estimator

Throughout this section, we assume w.l.o.g. β(1)0 > 0. The case β(1)0 < 0 is symmetric. To
lighten the notation, we suppress the subscript i whenever it is clear from the context
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that all variables are for each individual. With a bit abuse of notation, we define sample
objective function

GSP�K
n (b)= 1

nh
p
n

∑
i

Khn(zi1)zi2 · sgn
(
z′
i3b

)

and population objective functionGSP(b)= fz1(0)E[ρ(b)|z1 = 0].
LetΩ≡ {z1 = 0}. The following lemma establishes the identification of β0.

Lemma B.1. If Assumptions SP1–SP6,GSP(β0) >G
SP(b) for all b ∈ B \ {β0}.

Proof of Lemma B.1. Denote Zb = {z3 : sgn(z′
3b) �= sgn(z′

3β0)} for all b ∈ B \ {β0}. We
write

GSP(β0)−GSP(b)

= fz1(0)E
[
z2

(
sgn

(
z′

3β0
) − sgn

(
z′

3b
))|Ω] = 2fz1(0)

∫
Zb

sgn
(
z′

3β0
)
E[z2|z3�Ω]dFz3|Ω

= 2fz1(0)
∫
Zb

sgn
(
z′

3β0
)
E

[
E[z2|x�α�Ω]|z3�Ω

]
dFz3|Ω

= 2fz1(0)
∫
Zb
E

[
sgn

(
z′

3β0
)(
P(y11 = 1|x�α�Ω)− P(y12 = 1|x�α�Ω))|z3�Ω

]
dFz3|Ω�

Under Assumption SP6, fz1(0) > 0. Furthermore, by definition,

P(y11 = 1|x�α�Ω)= P(
x′

11β0 + α1 − ε11 >max
{
0�x′

21β0 + α2 − ε21
}|x�α�Ω)

and

P(y12 = 1|x�α�Ω)= P(
x′

12β0 + α1 − ε12 >max
{
0�x′

22β0 + α2 − ε22
}|x�α�Ω)

�

Then Assumption SP3 implies that

sgn
(
P(y11 = 1|x�α�Ω)− P(y12 = 1|x�α�Ω)) = sgn(z′

3β0)�

Thus, P(y11 = 1|x�α�Ω) = P(y12 = 1|x�α�Ω) if and only if z′
3β0 = 0, which is an event

having zero probability measure under Assumption SP4. Then

E
[
sgn

(
z′

3β0
)(
P(y11 = 1|x�α�Ω)− P(y12 = 1|x�α�Ω))|z3�Ω

]
=E[∣∣sgn

(
z′

3β0
)(
P(y11 = 1|x�α�Ω)− P(y12 = 1|x�α�Ω))∣∣|z3�Ω

]
=E[∣∣P(y11 = 1|x�α�Ω)− P(y12 = 1|x�α�Ω)∣∣|z3�Ω

]
> 0�

Therefore,GSP(β0)−GSP(b) > 0 if and only if P(Zb|Ω) > 0.
By definition,

P(Zb|Ω)= P(
x(1)1(12)b

(1) + x̃′
1(12)b̃ > 0> x(1)1(12)β

(1)
0 + x̃′

1(12)β̃0
)

+ P(
x(1)1(12)β

(1)
0 + x̃′

1(12)β̃0 > 0> x(1)1(12)b
(1) + x̃′

1(12)b̃
)
�
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It follows by Assumption SP4 that P(Zb|Ω) > 0 for all b(1) < 0. For the case b(1) > 0, we
write

P(Zb|Ω)= P(
x(1)1(12) ∈ I|x̃′

1(12)b̃/b
(1) �= x̃′

1(12)β̃0/β
(1)
0 �Ω

)
P

(
x̃′

1(12)b̃/b
(1) �= x̃′

1(12)β̃0/β
(1)
0 |Ω)

�

where

I = {−x̃′
1(12)b̃/b

(1) < x
(1)
1(12) <−x̃′

1(12)β̃0/β
(1)
0

} ∪ {−x̃′
1(12)β̃0/β

(1)
0 < x

(1)
1(12) <−x̃′

1(12)b̃/b
(1)}�

It follows by Assumption SP4 that P(Zb|Ω) > 0 if and only if

P
(
x̃′

1(12)b̃/b
(1) �= x̃′

1(12)β̃0/β
(1)
0 |Ω)

> 0�

Note that b̃/b(1) �= β̃0/β
(1)
0 must hold, for otherwise we have β(1)0 b= b(1)β0, which in

turn implies b = β0 (as ‖b‖ = ‖β0‖ implies b(1) = β(1)0 ). This completes the proof as by

Assumption SP5, P(z̃′
3b̃/b

(1) = z̃′
3β̃0/β

(1)
0 |Ω) < 1 holds true whenever b̃/b(1) �= β̃0/β

(1)
0 .

Proof of Theorem 3.1. The proof proceeds by verifying the four sufficient conditions
for applying Theorem 2.1 in Newey and McFadden (1994): (C1) B is a compact set,
(C2) supb∈B |GSP�K

n (b)−GSP(b)| = op(1), (C3)GSP(b) is continuous in b, and (C4)GSP(b)

is uniquely maximized at β0.
The compactness of B is satisfied by construction. Lemma B.1 above has shown that

the identification condition in (C4) holds. Next, the continuity of GSP(b) is a result from
Assumption SP4. To see this, first note thatGSP(b) can be expressed as the sum of func-
tions with respect to b of the following form: For some d ∈ {−1�0�1},

P
(
y11 − y12 = d�x(1)1(12)b

(1) + x̃′
1(12)b̃ > 0|Ω)

=
∫ ∫ ∞

−x̃′
1(12)b̃/b

(1)
P(y11 − y12 = d|x1(12)�Ω)fx(1)1(12)|x̃1(12)�Ω

(x)dxdFx̃1(12)|Ω�

Then GSP(b) is continuous if f
x
(1)
1(12)|x̃1(12)�Ω

(·) does not have any mass points, which is

guaranteed by Assumption SP4.
The remaining task is to verify the uniform convergence condition (C3), i.e.,

supb∈B |GSP�K
n (b)−GSP(b)| = op(1). It suffices to show supFn |GSP�K

n (b)−E[GSP�K
n (b)]| =

op(1) and supb∈B |GSP(b)−E[GSP�K
n (b)]| = o(1), where Fn denotes the class of functions

as Fn = {K(z1/hn)ρ(b) : b ∈ B}.
First, note that Fn ⊂ F = {K(z1/h)ρ(b) : h > 0� b ∈ B} = Fh × Fb where Fh =

{K(z1/h) : h> 0} and Fb = {ρ(b) : b ∈ B}. By Assumption SP8 and Lemma 22(ii) in Nolan
and Pollard (1987), Fh is Euclidean for the constant envelope supv∈Rp |K(v)|<∞. Then,
as Fb is Euclidean for the constant envelope 1 (see Example 2.11 in Pakes and Pollard
(1989)), F is Euclidean for the constant envelope supv∈Rp |K(v)|<∞. Next, note that by
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Assumptions SP6 and SP8,

sup
Fn
E

∣∣K(z1/hn)ρ(b)
∣∣ = sup

Fn

∫
E

[∣∣K(z1/hn)ρ(b)
∣∣|z1

]
fz1(z1)dz1

= sup
Fn
h
p
n

∫ ∣∣K(v)∣∣E[∣∣ρ(b)∣∣|z1 = vhn
]
fz1(vhn)dv

≤ sup
Fn
h
p
n

∫ ∣∣K(v)∣∣fz1(vhn)dv=O(
h
p
n

)
�

Then, under Assumption SP9, applying Lemma 5 in Honoré and Kyriazidou (2000) yields

sup
Fn
h
p
n

∣∣GSP�K
n (b)−E[

GSP�K
n (b)

]∣∣ =Op
(√

h
p
n logn
n

)
= op

(
h
p
n

)
�

As a final step, we show that supb∈B |GSP(b) − E[GSP�K
n (b)]| = o(1). Let ϕ(·) ≡

fz1(·)E[ρ(b)|z1 = ·] and ∇1ϕ(z) denote the gradient of ϕ(·) evaluated at z. Note that by
Assumptions SP7–SP9,

sup
b∈B

∣∣GSP(b)−E[
GSP�K
n (b)

]∣∣
= sup
b∈B

∣∣∣∣ϕ(0)− h−p
n

∫
K(z1/hn)ϕ(z1)dz1

∣∣∣∣
= sup
b∈B

∣∣∣∣ϕ(0)− h−p
n

∫
K(z1/hn)

[
ϕ(0)+ ∇1ϕ(ζ)

′z1
]
dz1

∣∣∣∣
= sup
b∈B

∣∣∣∣ϕ(0)−
∫
K(v)

[
ϕ(0)+ ∇1ϕ(vn)

′vhn
]
dv

∣∣∣∣ = sup
b∈B

∣∣∣∣hn
∫
K(v)∇1ϕ(vn)

′vdv
∣∣∣∣

≤ hn sup
b∈B

∫ ∣∣K(v)∣∣∣∣∇1ϕ(vn)
∣∣
1|v|1 dv=O(hn)= o(1)�

where the second equality applies a mean-value expansion and the third equality uses a
change of variables. Therefore,

sup
b∈B

∣∣GSP�K
n (b)−GSP(b)

∣∣ ≤ sup
Fn

∣∣GSP�K
n (b)−E[

GSP�K
n (b)

]∣∣ + sup
b∈B

∣∣GSP(b)−E[
GSP�K
n (b)

]∣∣
= op(1)�

which completes the proof.

Proof of Theorem 3.2. The proof of the rate of convergence proceeds by verifying the
sufficient conditions (Assumptions M (i)–(iii) and D) for applying Lemma 1 of Seo and
Otsu (2018). We work with the sample objective function

GSP�K
n (b)= 1

nh
(J−1)p
n

∑
i

Khn(zi1)zi2 · [sgn
(
z′
i3b

) − sgn
(
z′
i3β0

)]
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for the general model with J + 1 alternatives. Subtracting the term sgn(z′
i3β0) is only for

the ease of exposition and does not affect the value of the estimator.
First, note that sgn(z′

i3b) − sgn(z′
i3β0) = 2(1[z′

i3b ≥ 0] − 1[z′
i3β0 ≥ 0]). Denote zi =

(z′
i1� zi2� z

′
i3)’, en(zi)= 2h−(J−1)p

n Khn(zi1)zi2, and

gin(b)= en(zi)
(
1
[
z′
i3b≥ 0

] − 1
[
z′
i3β0 ≥ 0

])
�

Then GSP�K
n (b) can be expressed as n−1 ∑

i gin(b). Let N0 denote a neighborhood {β ∈
B : ‖β − β0‖ ≤ C0} of β0 for some constant C0 > 0. As the consistency of β̂ has been
established in Theorem 3.1, β̂ ∈ N0 holds true with probability approaching 1. In what
follows, we will suppress the subscript i to simplify the notation as long as this does not
cause confusion.

By definition and change of variables, we obtain

E
[
en(z)

2|z3
] = 4h−2(J−1)p

n E
[
K(z1/hn)

2|z2 �= 0� z3
]
P(z2 �= 0|z3)

= 4h−2(J−1)p
n

∫
K(ζ/hn)

2fz1|z2 �=0�z3(ζ)dζ · P(z2 �= 0|z3)

= 4h−(J−1)p
n

∫
K(v)2fz1|z2 �=0�z3(vhn)dv · P(z2 �= 0|z3) (B.1)

almost surely for all n, and thus by Assumptions SP3, SP6’, and SP8’, c1 < h
(J−1)p
n ×

E[en(z)2|z3]< c2 almost surely for some constants c1� c2 > 0.
Let ‖ · ‖2 denote the L2(P)-norm. We have for all b1� b2 ∈ N0,

h
(J−1)p/2
n

∥∥gn(b1)− gn(b2)
∥∥

2 =E[
h
(J−1)p
n en(z)

2(1
[
z′

3b1 ≥ 0
] − 1

[
z′

3b2 ≥ 0
])2]1/2

=E[
h
(J−1)p
n E

[
en(z)

2|z3
](

1
[
z′

3b1 ≥ 0
] − 1

[
z′

3b2 ≥ 0
])2]1/2

≥ c1/2
1 E

[∣∣1[
z′

3b1 ≥ 0
] − 1

[
z′

3b2 ≥ 0
]∣∣] ≥ C1‖b1 − b2‖

for some constant C1 > 0, where the last inequality uses the fact that E[|1[z′
3b1 >

0] − 1[z′
3b2 > 0]|] is proportion to the probability for a pair of multidimensional wedge

shaped regions ({z′
3b1 ≥ 0 ≥ z′

3b2} ∪ {z′
3b2 ≥ 0 ≥ z′

3b1}) with an angle of order ‖b1 − b2‖
(see the discussion in Kim and Pollard (1990, p. 214)). This verifies Assumption M(ii) in
Seo and Otsu (2018).

We use similar arguments to obtain that for some β ∈ N0 and small ε > 0,

h
(J−1)p
n E

[
sup

b∈B:‖b−β‖<ε

∣∣gn(b)− gn(β)
∣∣2

]

=E[h(J−1)p
n E

[
en(z)

2|z3
]

sup
b∈B:‖b−β‖<ε

∣∣1[
z′

3b≥ 0
] − 1

[
z′

3β≥ 0)
∣∣]

≤ c2E
[

sup
b∈B:‖b−β‖<ε

∣∣1[
z′

3b≥ 0
] − 1

[
z′

3β≥ 0
]∣∣] ≤ C2ε (B.2)

for some C2 > 0 and n large enough. This verifies Assumption M(iii) in Seo and Otsu
(2018).
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Next, note that under Assumptions SP7’–SP9’, a change of variables yields

E
[
gn(b)

] = h−(J−1)p
n

∫
K(ζ/hn)E

[
z2

(
sgn

(
z′

3b
) − sgn

(
z′

3β0
))|z1 = ζ]fz1(ζ)dζ

=
∫
K(v)E

[
z2

(
sgn

(
z′

3b
) − sgn

(
z′

3β0
))|z1 = vhn

]
fz1(vhn)dv

= fz1(0)E
[
z2

(
sgn

(
z′

3b
) − sgn

(
z′

3β0
))|z1 = 0

]
+ h2

n

∫
K(v)v′ ∂

2fz1(τ)E
[
z2

(
sgn

(
z′

3b
) − sgn

(
z′

3β0
))|z1 = τ]

∂τ ∂τ′

∣∣∣∣
τ=v̄
v dv� (B.3)

where v̄ is a point on the line joining 0 and vhn, and the third equality follows from∫
vK(v)dv = 0, the dominated convergence theorem, and the mean value theorem. As-

sumptions SP7’ and SP9’ imply that the last term in (B.3) is o((nh(J−1)p
n )−2/3). Then we

write

E
[
gn(b)

] = fz1(0)E
[
z2

(
sgn

(
z′

3b
) − sgn

(
z′

3β0
))|z1 = 0

] + o((nh(J−1)p
n

)−2/3)
= fz1(0)

(
(b−β0)

′ ∂
∂b
E

[
z2

(
sgn

(
z′

3b
))|z1 = 0

]∣∣∣∣
b=β0

+ 1
2
(b−β0)

′ ∂
2E

[
z2

(
sgn

(
z′

3b
))|z1 = 0

]
∂b∂b′

∣∣∣∣
b=β0

(b−β0)

)

+ op
(‖b−β0‖2) + o((nh(J−1)p

n

)−2/3
� (B.4)

As deduced in Lemma B.1, we have

−E[
z2

(
sgn

(
z′

3b
) − sgn

(
z′

3β0
))|z1 = 0

] = 2
∫
Zb

sgn
(
z′

3β0
)
E[z2|z3� z1 = 0]dFz3|z1=0

= 2
∫
Zb

∣∣E[z2|z3� z1 = 0]∣∣dFz3|z1=0 > 0

holds true for all b ∈ B \ {β0}. Then, applying the same argument as Kim and Pollard
(1990, pp. 214–215) yields

∂

∂b
E

[
z2

(
sgn

(
z′

3b
))|z1 = 0

]∣∣∣∣
b=β0

= 0 (B.5)

and

∂2E
[
z2

(
sgn

(
z′

3b
))|z1 = 0

]
∂b∂b′

∣∣∣∣
b=β0

= −
∫

1
[
z′

3β0 = 0
]( ∂

∂z3
E[z2|z3� z1 = 0]

)′
β0z3z

′
3fz3|z1=0(z3)dμβ0� (B.6)

where μβ0 is the surface measure on the boundary of {z3 : z′
3β0 ≥ 0}.
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Combine (B.4), (B.5), and (B.6) to write

E
[
gn(b)

] = 1
2
(b−β0)

′V (b−β0)+ op
(‖b−β0‖2) + o((nh(J−1)p

n

)−2/3)
� (B.7)

where the matrix

V = −fz1(0)
∫

1
[
z′

3β0 = 0
]( ∂

∂z3
E[z2|z3� z1 = 0]

)′
β0z3z

′
3fz3|z1=0(z3)dμβ0 (B.8)

is negative definite. This verifies Assumption M(i) in Seo and Otsu (2018).
Notice that h

(J−1)p
n gn(b) is uniformly bounded by Assumption SP8’ and

limn→∞E[gn(b)] is uniquely maximized at β0 by Lemma B.1. Besides, Assumption D
in Seo and Otsu (2018) is satisfied trivially under Assumption SP1. Then, by Lemma 1
of Seo and Otsu (2018), we conclude that there exists some positive constant C for each
ε > 0 such that∣∣∣∣ 1

n

∑
i

gin(b)−E[
gn(b)

]∣∣∣∣ ≤ ε‖b−β0‖2 +Op
((
nh

(J−1)p
n

)−2/3)
(B.9)

for all b ∈ {β ∈ B : (nh(J−1)p
n )−1/3 ≤ ‖β − β0‖ ≤ C}. Then, assuming ‖β̂ − β0‖ ≥

(nh
(J−1)p
n )−1/3, we have, by (B.7) and (B.9),

1
n

∑
i

gin(β̂)≤E[
gn(β̂)

] + ε‖β̂−β0‖2 +Op
((
nh

(J−1)p
n

)−2/3)

≤ (ε−CV )‖β̂−β0‖2 + o(‖β̂−β0‖2) +Op
((
nh

(J−1)p
n

)−2/3)
(B.10)

for each ε > 0 and a positive constant CV (determined by V ). By the definitions of β̂ and
gin(·),

1
n

∑
i

gin(β̂)≥ sup
b∈B

1
n

∑
i

gin(b)− op
((
nh

(J−1)p
n

)−2/3)

≥ 1
n

∑
i

gin(β0)− op
((
nh

(J−1)p
n

)−2/3)

= op
((
nh

(J−1)p
n

)−2/3)
� (B.11)

Combine (B.10) and (B.11) to deduce

op
((
nh

(J−1)p
n

)−2/3) ≤ (ε−CV )‖β̂−β0‖2 + o(‖β̂−β0‖2) +Op
((
nh

(J−1)p
n

)−2/3)
�

Then β̂− β0 =Op((nh
(J−1)p
n )−1/3) follows from taking ε sufficiently small such that ε−

CV < 0.
Given the rate result, the final step is to establish the limiting distribution of β̂. We

do this by applying Theorem 1 of Seo and Otsu (2018), which extends Theorem 2.7 of
Kim and Pollard (1990) (a continuous mapping theorem of an argmax element) to the
case where the objective function can vary with the sample size. To this end, it suffices
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to verify the sufficient conditions of Theorem 2.3 of Kim and Pollard (1990) to establish
the weak convergence of the following (normalized empirical process)

Zn(s)= n1/6h
2(J−1)p/3
n Gn

(
gn

(
β0 + s

(
nh

(J−1)p
n

)−1/3) − gn(β0)
)

for s ∈ R
p with ‖s‖<∞, where Gng(b)≡ √

n(n−1 ∑
i gin(b)−E[gn(b)]) for all b ∈ B. This

involves checking the the finite-dimensional convergence and stochastic asymptotic
equicontinuity ofZn. DenoteΨn�s(z3)= 1[z′

3(β0 +s(nh(J−1)p
n )−1/3)≥ 0]−1[z′

3β0 ≥ 0] and

gn�s = n1/6h
2(J−1)p/3
n [gn(β0 + s(nh(J−1)p

n )−1/3)− gn(β0)] = n1/6h
2(J−1)p/3
n en(z)Ψn�s(z3).

We use the central limit theorem in Lemma C of Seo and Otsu (2018) to establish the
finite-dimensional convergence of Zn. Given all the results at hand, this reduces to veri-
fying a sufficient Lindeberg-type condition therein. Note that for some positive constant
M and bounded set M in R

(J−1)p,

P
(|gn�s| ≥M) = P(

2n1/6h
−(J−1)p/3
n

∣∣Khn(z1)z2
∣∣ ≥M|∣∣Ψn�s(z3)

∣∣ = 1
)
P

(∣∣Ψn�s(z3)
∣∣ = 1

)
≤ P(∣∣Khn(z1)

∣∣ ≥Mn−1/6h
(J−1)p/3
n /2|∣∣Ψn�s(z3)

∣∣ = 1
)
P

(∣∣Ψn�s(z3)
∣∣ = 1

)
≤ P(

z1/hn ∈ M|∣∣Ψn�s(z3)
∣∣ = 1

)
P

(∣∣Ψn�s(z3)
∣∣ = 1

) =O((
nh

−2(J−1)p
n

)−1/3)
�

where the first equality uses the fact that |Ψn�s(z3)| takes only 0 or 1, the first inequality is
due to |z2| ≤ 1, the second inequality follows from the bounded support ofK(·), and the
last equality is the result of P(z1/hn ∈ M||Ψn�s(z3)| = 1)= O(h

(J−1)p
n ) (by the bounded-

ness of the density of z1) and P(|Ψn�s(z3)| = 1)= O((nh
(J−1)p
n )−1/3). By Lemma 2 of Seo

and Otsu (2018), this result is sufficient for the Lindeberg-type condition, and hence for
applying Lemma C of Seo and Otsu (2018) to conclude the finite-dimensional conver-
gence of Zn.

Finally, by definition,

‖gn�s‖2 = n1/6h
2(J−1)p/3
n

√
E

[
E

[
en(z)2|z3

]
Ψn�s(z3)2

] ≤ n1/6h
(J−1)p/6
n E

[∣∣Ψn�s(z3)
∣∣]

=O((
nh

(J−1)p
n

)−1/6)
� (B.12)

where the first inequality follows from (B.1) and the last equality uses the fact that
E[|Ψn�s(z3)|] =O((nh(J−1)p

n )−1/3). Then (B.2) and (B.12) together are sufficient for invok-
ing Lemma M’ of Seo and Otsu (2018) to establish the stochastic asymptotic equiconti-
nuity of Zn.

Collecting all these results, we conclude, by Theorem 1 of Seo and Otsu (2018), that
the limiting distribution of β̂ is of the form as in Theorem 3.2. The matrix V is given in
(B.8). The covariance kernel H can be obtained in the same way as in Kim and Pollard
(1990) (p. 215). That is, decompose z3 into ξ′β0 + z⊥

3 with z⊥
3 orthogonal to β0. Then we

write

H(s1� s2)= 1
2
(
L(s1)+L(s2)−L(s1 − s2)

)
� (B.13)

where L(s) = fz1(0)
∫ |z⊥′

3 s|p(0� z⊥
3 |z1 = 0)dz⊥

3 with p(·� ·|z1 = 0) being joint density of
(ξ� z⊥

3 ) conditional on z1 = 0.
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B.2 Dynamic panel data estimator

Lemmas B.2–B.4 establish the identification of θ0 in the dynamic model, based on which
we show the consistency of θ̂ in Lemma B.5. The proofs of the rate of convergence and
asymptotic distribution of θ̂ are omitted as the derivation invokes essentially the same
arguments used for proving Theorem 3.2.

Throughout this section, we work with sample objective function

GDP�K
n (θ)≡ 1

nh
3p
n

∑
i

Khn(z1i)z2i · sgn
(
z′

3iθ
)

and population objective function GDP(θ)≡ fz1(0)E[ψ(θ)|z1 = 0]. As in Section B.1, we

assume β(1)0 > 0 w.l.o.g. as the case β(1)0 < 0 is symmetric. Besides, we define events Ω=
{z1 = 0}, A= {y10 = d0� y11 = 1� y12 = 0� y13 = d3}, and B = {y10 = d0� y11 = 0� y12 = 1� y13 =
d3}, where (d0� d3) ∈ {0�1}2.

Lemma B.2. If Assumptions DP1–DP3 holds, sgn(P(A|x�α�Ω) − P(B|x�α�Ω)) =
sgn(z′

3θ0).

Proof of Lemma B.2. By Assumption DP3, we write

P(A|x�α�Ω)= P(y10 = 1|x�α�Ω)d0
(
1 − P(y10 = 1|x�α�Ω))1−d0

× P(
x′

11β0 + γ0d0 + α1 − ε11 >max
{
x′

21β0 + α2 − ε21�0
}|x�α�Ω)

× (
1 − P(

x′
12β0 + γ0 + α1 − ε12 >max

{
x′

21β0 + α2 − ε22�0
}|x�α�Ω))

× P(
x′

12β0 + α1 − ε13 >max
{
x′

21β0 + α2 − ε23�0
}|x�α�Ω)d3

× (
1 − P(

x′
12β0 + α1 − ε13 >max

{
x′

21β0 + α2 − ε23�0
}|x�α�Ω))1−d3�

and similarly,

P(B|x�α�Ω)= P(y10 = 1|x�α�Ω)d0
(
1 − P(y10 = 1|x�α�Ω))1−d0

× (
1 − P(

x′
11β0 + γ0d0 + α1 − ε11 >max

{
x′

21β0 + α2 − ε21�0
}|x�α�Ω))

× P(
x′

12β0 + α1 − ε12 >max
{
x′

21β0 + α2 − ε22�0
}|x�α�Ω)

× P(
x′

12β0 + γ0 + α1 − ε13 >max
{
x′

21β0 + α2 − ε23�0
}|x�α�Ω)d3

× (
1 − P(

x′
12β0 + γ0 + α1 − ε13 >max

{
x′

21β0 + α2 − ε23�0
}|x�α�Ω))1−d3 �

It is not hard to verify that

P(A|x�α�Ω)
P(B|x�α�Ω) ≥ 1 ⇔ x′

11β0 + γ0d0 ≥ x′
12β0 + γ0d3�

for each of the 4 cases corresponding to the values of d0 and d3. Then the desired result
follows.
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Lemma B.3. If Assumptions DP1–DP5 hold, P(sgn(z′
3θ) �= sgn(z′

3θ0)|Ω) > 0 for all θ ∈Θ \
{θ0}.

Proof of Lemma B.3. The statement in the lemma is equivalent to

P
(
x1(12)b

(1) + z̃′
3θ̃ > 0> x1(12)β

(1)
0 + z̃′

3θ̃0|Ω
)

+ P(
x1(12)β

(1)
0 + z̃′

3θ̃0 > 0> x1(12)b
(1) + z̃′

3θ̃|Ω
)
> 0�

Note that by Assumption DP4, this statement holds true whenever b(1) < 0, and hence
we focus on the case b(1) > 0 in what follows.

To prove the statement above, it suffices to show that for all θ ∈ Θ \ {θ0}, (i) P(z̃′
3θ̃/

b(1) �= z̃′
3θ̃0/β

(1)
0 |Ω) > 0, and (ii) P(x(1)1(12) ∈ I|x̃1(12)� y10 = d0� y13 = d3�Ω) > 0 for all

(d0� d3) ∈ {0�1}2 and for any proper interval I on the real line.
We start from proving statement (i). Note that if r/b(1) = γ0/β

(1)
0 , P(z̃′

3θ̃/b
(1) =

z̃′
3θ̃0/β

(1)
0 |Ω)= P(x̃′

1(12)(b̃/b
(1)− β̃0/β

(1)
0 )= 0|Ω). In this case, b̃/b(1) �= β̃0/β

(1)
0 must hold,

for otherwise θ = θ0 holds true. To see this, note that b̃/b(1) = β̃0/β
(1)
0 , together with

r/b(1) = γ0/β
(1)
0 , implies β(1)0 θ= b(1)θ0, which further implies b(1) = β(1)0 as ‖θ‖ = ‖θ0‖ is

assumed. Then statement (i) follows by Assumption DP5.
For the case with r/b(1) �= γ0/β

(1)
0 , we write

P
(
z̃′

3θ̃/b
(1) = z̃′

3θ̃0/β
(1)
0 |Ω)

=
∑

d0∈{0�1}

∫
P

(
y13 = d0 + x̃′

1(12)
(
b̃/b(1) − β̃0/β

(1)
0

)
/
(
r/b(1) − γ0/β

(1)
0

)|y10 = d0� x̃1(12)�Ω
)

× P(y10 = d0|x̃1(12)�Ω)dFx̃1(12)|Ω�

whereP(y13 = d0 + x̃′
1(12)(b̃/b

(1)−β̃0/β
(1)
0 )/(r/b(1)−γ0/β

(1)
0 )|y10 = d0� x̃1(12)�Ω) < 1 holds

true for all d0 ∈ {0�1} by Assumption DP3. This implies P(z̃′
3θ̃/b

(1) �= z̃′
3θ̃0/β

(1)
0 |Ω)> 0.

We now move on to the proof of statement (ii). We write, by Bayes rule,

P
(
x(1)1(12) ∈ I|x̃1(12)� y10 = d0� y13 = d3�Ω

)

= P
(
y10 = d0� y13 = d3|x̃1(12)� x

(1)
1(12) ∈ I�Ω

)
P

(
x(1)1(12) ∈ N |x̃1(12)�Ω

)
P(y10 = d0� y13 = d3|x̃1(12)�Ω)

�

Assumption DP4 secures that P(x(1)1(12) ∈ I|x̃1(12)�Ω) > 0. Furthermore, note that

P
(
y10 = d0� y13 = d3|x̃1(12)� x

(1)
1(12) ∈ I�Ω

)
=

∫
P(y13 = d3|x�α� y10 = d0�Ω)P(y10 = d0|x�α�Ω)dFx�α|x̃1(12)�x

(1)
1(12)∈I�Ω

=
∑

(d1�d2)∈{0�1}2

∫
P(y13 = d3|x�α� y10 = d0� y11 = d1� y12 = d2�Ω)
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× P(y12 = d2|x�α� y10 = d0� y11 = d1�Ω)P(y11 = d1|x�α� y10 = d0�Ω)

× P(y10 = d0|x�α�Ω)dFx�α|x̃1(12)�x
(1)
1(12)∈I�Ω

�

Therefore, P(y10 = d0� y13 = d3|x̃1(12)� x
(1)
1(12) ∈ I�Ω) > 0 by Assumption DP3, and thus

P(x
(1)
1(12) ∈ I|x̃1(12)� y10 = d0� y13 = d3�Ω) > 0, which completes the proof.

Lemma B.4. If Assumptions DP1–DP6 hold,GDP(θ0) >G
DP(θ) for all θ ∈Θ \ {θ0}.

Proof of Lemma B.4. Recall that ψ(θ) = z2 · sgn(z′
3θ) for all θ ∈ Θ. Let Zθ ≡ {z3 :

sgn(z′
3θ) �= sgn(z′

3θ0)}. Lemma B.3 shows that P(Zθ|Ω) > 0 holds true for all θ ∈Θ \ {θ0}.
Then, by definition,

GDP(θ0)−GDP(θ)

= fz1(0)E
[
z2 · (sgn

(
z′

3θ0
) − sgn

(
z′

3θ
))|Ω] = 2fz1(0)

∫
Zθ

sgn
(
z′

3θ0
)
E[z2|z3�Ω]dFz3|Ω

= 2fz1(0)
∫
Zθ

sgn
(
z′

3θ0
)
E

[
E[y1(12)|x�α� y10 = d0� y13 = d3�Ω]|z3�Ω

]
dFz3|Ω

= 2fz1(0)
∫
Zθ

sgn
(
z′

3θ0
)
E

[
E

[
1[y11 = 1� y12 = 0]|x�α� y10 = d0� y13 = d3�Ω

]
−E[

1[y11 = 0� y12 = 1]|x�α� y10 = d0� y13 = d3�Ω
]|z3�Ω

]
dFz3|Ω

= 2fz1(0)
∫
Zθ

sgn
(
z′

3θ0
)
E

[
P(y11 = 1� y12 = 0|x�α� y10 = d0� y13 = d3�Ω)

− P(y11 = 0� y12 = 1|x�α� y10 = d0� y13 = d3�Ω)|z3�Ω
]
dFz3|Ω

= 2fz1(0)
∫
Zθ
E

[
sgn

(
z′

3θ0
)(P(A|x�α�Ω)− P(B|x�α�Ω)
P(y10 = d0� y13 = d3|x�α�Ω)

)∣∣∣z3�Ω

]
dFz3|Ω�

It follows from Lemma B.2 that

sgn
(
z′

3θ0
)(P(A|x�α�Ω)− P(B|x�α�Ω)
P(y10 = d0� y13 = d3|x�α�Ω)

)
≥ 0�

and hence

E

[
sgn

(
z′

3θ0
)(P(A|x�α�Ω)− P(B|x�α�Ω)
P(y10 = d0� y13 = d3|x�α�Ω)

)∣∣∣z3�Ω

]

=E
[∣∣∣∣P(A|x�α�Ω)− P(B|x�α�Ω)
P(y10 = d0� y13 = d3|x�α�Ω)

∣∣∣∣∣∣∣z3�Ω

]
�

The expectation above is strictly positive with probability 1 as P(A|x�α�Ω) −
P(B|x�α�Ω) = 0 if and only if sgn(z′

3θ0) = 0 which is an event having zero probability
measure under Assumption DP4. Then the desired result follows from Lemma B.3 and
Assumption DP6.

Lemma B.5. If Assumptions DP1–DP9 hold, θ̂
p→ θ0.
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Proof of Lemma B.5. The proof is standard, which proceeds by verifying the four suf-
ficient conditions for applying Theorem 2.1 in Newey and McFadden (1994): (C1) Θ is a
compact set, (C2) supθ∈Θ |GDP�K

n (θ)−GDP(θ)| = op(1), (C3) GDP(θ) is continuous in θ,
and (C4)GDP(θ) is uniquely maximized at θ0.

The compactness of Θ is satisfied by Assumption DP2. The identification condition
(C4) is established by Lemma B.4. The verification of the uniform convergence condition
(C2) is omitted as it follows from identical arguments to those used for proving Theo-
rem 3.1. The remaining task is to check the continuity condition (C3). Note that we can
expressGDP(θ) as the sum of functions (with respect to θ) of the following form:

P
(
y11 − y12 = d�x(1)1(12)b

(1) + x̃′
1(12)b̃+ g(y10 − y13) > 0|Ω)

=
∑

(d0�d3)∈{0�1}2

∫ [∫ ∞

−(x̃′
1(12)b̃+r(d0−d3))/b(1)

P(y11 − y12 = d|x1(12)� y10 = d0� y13 = d3�Ω)

× f
x
(1)
1(12)|x̃1(12)�y10=d0�y13=d3�Ω

(x)dx

]
dFx̃1(12)|y10=d0�y13=d3�Ω × P(y10 = d0� y13 = d3|Ω)

for some d ∈ {−1�0�1}. Note that to secure continuity of the function of this form with
respect to θ it is sufficient that f

x
(1)
1(12)|x̃1(12)�y10=d0�y13=d3�Ω

(·) does not have any mass points,

which is implied by Assumptions DP3–DP4 and Bayes rule.

Appendix C: Additional simulation results

This Appendix contains the results of additional simulations. The five designs (Designs
1C–5C) we examine here are counterparts of Designs 1–5 in Section 4, respectively, but
using all continuous regressors. Specifically, we consider

– Design 1C: (x(1)ij )i=1�����n;j=1�2 are i.i.d.N(0�1) random variables, and all other x(l)ij for
i= 1� � � � � n; j = 1�2; l= 2�3 are i.i.d.uniform random variables in [−1�1].

– Design 2C: (x(1)ij )i=1�����n;j=1�2 are i.i.d.N(0�1) random variables, and all other x(l)ij for
i= 1� � � � � n; j = 1�2; l= 2�3�4�5 are i.i.d. uniform random variables in [−1�1].

– Design 3C: (x(1)ij )i=1�����n;j=1�2�3�4 are i.i.d.N(0�1) random variables, and all other x(l)ij
for i= 1� � � � � n; j = 1�2�3�4; l= 2�3 are i.i.d. uniform random variables in [−1�1].

– Design 4C: (x(1)ijt )i=1�����n;j=1�2;t=1�2 are i.i.d.N(0�1) random variables, all other x(l)ijt for
i = 1� � � � � n; j = 1�2; t = 1�2; l = 2�3 are i.i.d. uniform random variables in [−1�1],
and αij = (x(1)ij1 + x(1)ij2 )/4 for j = 1�2.

– Design 5C: (x(1)ijt )i=1�����n;j=1�2;t=0�1�2�3 are i.i.d.N(0�1) random variables, all other x(l)ijt
for i = 1� � � � � n; j = 1�2; t = 0�1�2�3; l = 2�3 are i.i.d. uniform random variables in
[−1�1], and αij = (x(1)ij0 + x(1)ij1 + x(1)ij2 + x(1)ij3 )/8 for j = 1�2.

The results for Designs 1C–5C are reported below in Tables C.1–C.7 corresponding to
Tables 1–7 in Section 4, respectively.
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Table C.1. (Design 1C) Cross-sectional design with J = 2 and p= 3.

β1 β2

MEAN RMSE MED MAE MEAN RMSE MED MAE

n= 250 0�0180 0�2067 0�0062 0�1420 0�0204 0�2128 0�0162 0�1413
n= 500 0�0052 0�1427 0�0029 0�0987 0�0017 0�1490 −0�0105 0�0983
n= 1000 0�0069 0�0998 0�0040 0�0675 0�0083 0�1058 0�0046 0�0705

Table C.2. (Design 2C) Cross-sectional design with J = 2 and p= 5.

β1 β2

MEAN RMSE MED MAE MEAN RMSE MED MAE

n= 250 0�0355 0�2302 0�0199 0�1505 0�0226 0�2324 0�0113 0�1459
n= 500 0�0089 0�1589 −0�0023 0�1057 0�0120 0�1559 0�0069 0�1059
n= 1000 0�0073 0�1146 0�0057 0�0762 0�0076 0�1120 0�0061 0�0742

Table C.3. (Design 3C) Cross-sectional design with J = 4 and p= 3.

β1 β2

MEAN RMSE MED MAE MEAN RMSE MED MAE

n= 250 0�0223 0�2519 0�0094 0�1600 0�0150 0�2577 −0�0069 0�1640
n= 500 0�0155 0�1762 0�0102 0�1126 0�0172 0�1757 0�0086 0�1168
n= 1000 0�0107 0�1251 0�0062 0�0878 0�0094 0�1340 0�0088 0�0903

Table C.4. (Design 4C) Static panel design with J = 2, p= 3, and t ∈ {1�2}.

β1 β2

MEAN RMSE MED MAE MEAN RMSE MED MAE

n= 500 0�0256 0�3180 0�0053 0�2219 0�0227 0�3152 0�0070 0�2092
n= 1000 0�0268 0�2655 0�0230 0�1703 0�0257 0�2568 0�0153 0�1624
n= 2000 0�0186 0�2166 0�0087 0�1448 0�0250 0�2185 0�0174 0�1485
n= 5000 0�0106 0�1734 0�0078 0�1158 0�0108 0�1761 0�0002 0�1168
n= 10,000 0�0064 0�1421 −0�0016 0�0956 0�0150 0�1468 0�0096 0�0983

Table C.5. (Design 4C, Two-step) Static panel design with J = 2, p= 3, and t ∈ {1�2}.

β1 β2

MEAN RMSE MED MAE MEAN RMSE MED MAE

n= 500 0�0126 0�3188 −0�0152 0�2077 0�0189 0�3164 −0�0030 0�2112
n= 1000 0�0199 0�2551 0�0012 0�1729 0�0225 0�2615 0�0028 0�1659
n= 2000 0�0191 0�2084 0�0052 0�1344 0�0130 0�2145 −0�0012 0�1446
n= 5000 0�0018 0�1506 −0�0024 0�0944 0�0067 0�1623 −0�0014 0�1081
n= 10,000 0�0073 0�1247 0�0010 0�0898 0�0101 0�1266 0�0063 0�0917



Supplementary Material Semiparametric multinomial response models 19

Table C.6. (Design 5C) Dynamic panel design with J = 2, p= 3, and t ∈ {0�1�2�3}.

β γ

MEAN RMSE MED MAE MEAN RMSE MED MAE

n= 500 0�0483 0�3911 0�0066 0�2607 −0�0352 0�2966 −0�0384 0�2549
n= 1000 0�0560 0�3466 0�0263 0�2279 −0�0120 0�2863 −0�0157 0�2363
n= 2000 0�0430 0�2957 0�0130 0�1814 −0�0265 0�2822 −0�0285 0�2313
n= 5000 0�0179 0�2509 −0�0128 0�1601 −0�0056 0�2590 −0�0101 0�1999
n= 10,000 0�0242 0�2191 0�0117 0�1472 −0�0024 0�2460 0�0045 0�1858

Table C.7. (Design 5C, Two-step) Dynamic panel design with J = 2, p= 3, and t ∈ {0�1�2�3}.

β γ

MEAN RMSE MED MAE MEAN RMSE MED MAE

n= 500 0�0492 0�3292 0�0100 0�2061 −0�0430 0�2915 −0�0531 0�2385
n= 1000 0�0405 0�2804 −0�0020 0�1805 −0�0001 0�2816 0�0103 0�2268
n= 2000 0�0254 0�2236 −0�0051 0�1408 −0�0136 0�2716 −0�0048 0�2198
n= 5000 0�0105 0�1743 −0�0026 0�1149 −0�0067 0�2456 −0�0065 0�1894
n= 10,000 0�0107 0�1446 −0�0007 0�0974 −0�0168 0�2290 −0�0130 0�1595
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