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A generalized approach to indeterminacy in linear rational
expectations models
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We propose a novel approach to deal with the problem of indeterminacy in lin-
ear rational expectations models. The method consists of augmenting the orig-
inal state space with a set of auxiliary exogenous equations to provide the ade-
quate number of explosive roots in presence of indeterminacy. The solution in
this expanded state space, if it exists, is always determinate, and is identical to
the indeterminate solution of the original model. The proposed approach ac-
commodates determinacy and any degree of indeterminacy, and it can be imple-
mented even when the boundaries of the determinacy region are unknown. Thus,
the researcher can estimate the model using standard software packages with-
out restricting the estimates to the determinacy region. We combine our solution
method with a novel hybrid Metropolis–Hastings algorithm to estimate the New–
Keynesian model with rational bubbles by Galí (2021) over the period 1982:Q4–
2007:Q3. We find that the data support the presence of two degrees of indeter-
minacy, implying that the central bank was not reacting strongly enough to the
bubble component.
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1. Introduction

Sunspot shocks and multiple equilibria have been at the center of economic thinking
at least since the seminal work of Cass and Shell (1983), Farmer and Guo (1994), and
Farmer and Guo (1995). The zero lower bound has brought renovated interest to the
problem of indeterminacy (Aruoba, Cuba-Borda, and Schorfheide (2018)). Furthermore,
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in many of the Linear Rational Expectation (LRE) models used to study the properties
of the macroeconomy the possibility of multiple equilibria arises for some parameter
values, but not for others. This paper proposes a novel approach to solve LRE models
that easily accommodates both the case of determinacy and indeterminacy. As a result,
the proposed methodology can be used to easily solve and estimate a LRE model that
could potentially be characterized by multiplicity of equilibria. Our approach is imple-
mentable even when the analytic conditions for determinacy or the degrees of indeter-
minacy are unknown. Importantly, the proposed method can be easily implemented to
study indeterminacy in standard software packages, such as Dynare (Adjemian et al.,
2020) and Sims’ (2001) code Gensys.

To understand how our approach works, it is useful to recall the conditions for de-
terminacy as stated by Blanchard and Kahn (1980). Indeterminacy arises when the pa-
rameter values are such that the number of explosive roots is smaller than the number
of non-predetermined variables. The key idea of our method is to augment the original
model by appending additional autoregressive processes that can be used to provide
the missing explosive roots. The innovations of these exogenous processes are assumed
to be linear combinations of a subset of the forecast errors associated with the expec-
tational variables of the model and a newly defined vector of sunspot shocks. When
the Blanchard–Kahn condition for determinacy is satisfied, all the roots of the auxil-
iary autoregressive processes are assumed to be within the unit circle and the auxiliary
process is irrelevant for the dynamics of the model. In this case, the law of motion for
the endogenous variables is equivalent to the solution obtained using standard solu-
tion algorithms (King and Watson (1998); Klein (2000); Sims (2001)). When the model
is indeterminate, the appropriate number of appended autoregressive processes is as-
sumed to be explosive. For example, if there are two degrees of indeterminacy, two of
the auxiliary processes are assumed to be explosive. The solution that we obtain for the
endogenous variables is equivalent to the one obtained with the methodology of Lubik
and Schorfheide (2003) or Farmer, Khramov, and Nicolò (2015).

Our methodology simplifies the common approach used to deal with indeterminacy.
The common procedure requires the researcher to solve the model differently depend-
ing on the area of the parameter space that is being studied. Under indeterminacy, ex-
isting methods require to either construct the solution ex post following the seminal
contribution of Lubik and Schorfheide (2003) or rewrite the model based on the exist-
ing degree of indeterminacy (Farmer, Khramov, and Nicolò (2015)). In itself, this is not
an insurmountable task, but it implies that the researcher cannot simply use standard
solution methods or software packages. What is more, if the researcher is interested in
a structural estimation of the model, she would need to write the estimation codes and
not just the solution codes. Our proposed method only requires the researcher to aug-
ment the original system of equations to reflect the maximum degree of indeterminacy
and can therefore be used with standard solution approaches and estimation packages
such as Dynare.

Our method can also be combined with sophisticated Bayesian techniques to fa-
cilitate the transition between the determinacy and indeterminacy regions of the pa-
rameter space. One possibility would be to adopt the sequential Monte Carlo algorithm
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of Herbst and Schorfheide (2015b) as in Hirose, Kurozumi, and Zandweghe (2020) and
Ettmeier and Kriwoluzky (2020). In this paper, we instead propose an hybrid Metropolis–
Hastings algorithm that builds on a specific example developed in An and Schorfheide
(2007) following Giordani, Kohn, and Strid (2010). The algorithm combines the standard
Metropolis–Hastings random walk algorithm with a Markov Chain Monte Carlo (MCMC)
algorithm in which the proposal distribution is based on a mixture of normals cen-
tered on the different posterior modes. This algorithm guarantees that the chain quickly
moves to the region of the parameter space with the highest posterior and allows to visit
local peaks with more frequency.

We combine our solution method with the proposed hybrid Metropolis–Hastings
algorithm to estimate the small-scale New–Keynesian (NK) model of Galí (2021) using
Bayesian techniques on U.S. data over the period 1982:Q4 until 2007:Q3. Galí’s model
extends a conventional NK model to allow for the existence of rational bubbles. An in-
teresting aspect of the model is that it displays up to two degrees of indeterminacy for
realistic parameter values. We find that the data support the version of the model with
two degrees of indeterminacy, implying that the central bank was not reacting strongly
enough to the bubble component. Importantly, we show that the combination of our
method with the hybrid algorithm ensures a significantly faster transition to the region
of the parameter space with the best model fit relative to a standard Metropolis–Hastings
random walk algorithm. Furthermore, in Section 6, we reconsider the NK model of Lu-
bik and Schorfheide (2004) to show that the proposed algorithm also ensures a more
efficient exploration of the parameter space when regions of the parameters charac-
terized by different degrees of indeterminacy present a more similar fit by increasing
significantly the frequency with which the different regions are visited.

Our work is related to the vast literature that studies the role of indeterminacy in
explaining the evolution of the macroeconomy. Prominent examples in the monetary
policy literature include the work of Clarida, Galí, and Gertler (2000) and Kerr and King
(1996) that study the possibility of multiple equilibria as a result of violations of the Tay-
lor Principle in NK models. Applying the methods developed in Lubik and Schorfheide
(2003) to the canonical NK model, Lubik and Schorfheide (2004) test for indetermi-
nacy in U.S. monetary policy. Using a calibrated small-scale model, Coibon and Gorod-
nichenko (2011) find that the reduction of the target inflation rate in the United States
also played a key role in explaining the Great Moderation, and Arias et al. (2020) sup-
port this finding in the context of a medium-scale model à la Christiano, Eichenbaum,
and Evans (2005). More recently, Aruoba, Cuba-Borda, and Schorfheide (2018) studied
inflation dynamics at the Zero Lower Bound (ZLB) and during an exit from the ZLB.

The paper closest to our is Farmer, Khramov, and Nicolò (2015). The main difference
between the two approaches is that our method accommodates the case of both deter-
minacy and indeterminacy while considering the same augmented system of equations.
Instead, the method proposed by Farmer, Khramov, and Nicolò (2015) requires rewriting
the model based on the existing degree of indeterminacy.

With respect to Lubik and Schorfheide (2003), our theoretical results show the char-
acterization of the full set of indeterminate equilibria is equivalent between the two
methods. Our novel approach provides a unified methodology to study determinacy
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and indeterminacy of different degrees.1  Lubik and Schorfheide (2004) proposed a base-
line solution that minimizes the distance between the impulse responses of the model
under indeterminacy and determinacy evaluated at the boundary of the region of de-
terminacy. Given the equivalence between our methods, their baseline solution can be
mapped into our representation. However, as explained in Section 2.2, our method nat-
urally suggests a baseline solution that sets the correlations of the fundamental distur-
bances with the sunspot shocks to zero. Such identification can be equivalently thought
as an assumption that fundamental shocks do not have a contemporaneous impact on
the variables whose sunspot shocks are considered as drivers of the economy. This iden-
tification strategy is reminiscent of the zero restrictions often used in the Structural VAR
(SVAR) literature. Importantly, the baseline solution is just meant to provide an intuitive
and simple-to-implement benchmark and does not impose a constraint on a researcher
who wants to consider alternative solutions.

The remainder of the paper is organized as follows. Section 2 builds the intuition
by using a univariate example in the spirit of Lubik and Schorfheide (2004) and dis-
cusses how to construct the baseline solution in our method. In Section 3, we present
the methodology and show that the augmented representation of the LRE model deliv-
ers solutions, which under determinacy are equivalent to those obtained using standard
solution algorithms, and under indeterminacy to those obtained using the methodol-
ogy provided by Lubik and Schorfheide (2003, 2004) and Farmer, Khramov, and Nicolò
(2015). In Section 4, we describe the hybrid algorithm proposed to facilitate the esti-
mation of models with different degrees of indeterminacy. In Section 5, we apply our
method and the proposed hybrid algorithm to estimate the NK model with rational bub-
bles of Galí (2021). Section 6 discusses the advantages of using the proposed hybrid al-
gorithm when estimating models, such as Lubik and Schorfheide (2004), in which the
fit across regions of determinacy is similar. We present our conclusions in Section 7. Ap-
pendices A–D can be found in the Online Supplementary Material, (Bianchi and Nicolò
(2021)).

2. Building the intuition

In this section, we consider a univariate example in the spirit of Lubik and Schorfheide
(2004) to provide the intuition behind our solution method and to explain how to con-
struct the associated baseline solution.

2.1 A useful example

Consider a classical monetary model characterized by the Fisher equation, it =
Et(πt+1)+rt , and the simple Taylor rule, it =φππt , where it denotes the nominal interest
rate, πt represents the inflation rate, and φπ > 0 is a parameter controlling the response
of the nominal interest to inflation. We assume that the real interest rate, rt , is given and

1Ascari, Bonomolo, and Lopes (2019) allowed for temporarily unstable paths, while we require all solu-
tions to be stationary, in line with previous contributions in the literature.
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described by a mean-zero Gaussian i.i.d. shock.2 To properly specify the model, we also
define the one-step ahead forecast error associated with the expectational variable, πt ,
as ηt ≡ πt −Et−1(πt).

Combining the Fisher equation and the simple Taylor rule, we obtain the univariate
model

Et(πt+1)=φππt − rt � (1)

Any solution to (1) satisfies

πt =φππt−1 − rt−1 +ηt� (2)

First, we consider the case φπ > 1. Solving (2) forward and recalling the assumptions on
rt , it is clear that this case is associated with the determinate solution{

πt = 1
φπ

rt�ηt = 1
φπ

rt

}
� (3)

The strong response of the monetary authority to changes in inflation (φπ > 1) guar-
antees that inflation is pinned down as a function of the exogenous real interest rate rt .
From a technical perspective, when φπ > 1 the Blanchard–Kahn condition for unique-
ness of a solution is satisfied: The number of explosive roots matches the number of
expectational variables, that in this univariate case is one.

The second case corresponds to φπ ≤ 1. The solution corresponds to any process
that takes the form in (2). Such solution also holds under determinacy, but in that case
the central bank’s behavior induces restrictions on the expectation error ηt as a function
of the exogenous shock, rt . Instead, when the monetary authority does not respond ag-
gressively enough to changes in inflation (φπ ≤ 1), there are multiple solutions for the
inflation rate, πt , each indexed by the expectations that the representative agent holds
about future inflation, ηt . Equivalently, the solution to the univariate model is indeter-
minate: The Blanchard–Kahn solution is not satisfied as there is no explosive root to
match the number of expectational variables.3 Finally, the fundamental shock rt has a
contemporaneous effect on inflation only to the extent that it affects the expectational
error ηt .

The simple model considered here can be solved with pencil and paper. However,
when considering richer models with multiple endogenous variables, indeterminacy
represents a challenge from a methodological and computational perspective. Stan-
dard software packages such as Dynare do not allow for indeterminacy. Of course, a re-
searcher could in principle code an estimation algorithm herself, following the methods
outlined in Lubik and Schorfheide (2004). However, this approach requires a substantial
amount of time and technical skills. The researcher would need to write a code that not
only finds the solution, but also implements the estimation algorithm. Hence, the result

2In the classical monetary model, the real interest rate results from the equilibrium in labor and goods
market, and it depends on the technology shocks. We are considering an exogenous process for the tech-
nology shocks and, therefore, we take the process for the real interest rate as given.

3To ensure boundedness, the indeterminate solution requires the forecast error,ηt , to be any covariance-
stationary martingale difference process.
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Table 1. Blanchard–Kahn condition in the augmented representation.

Unstable
Roots

B-K Condition in
Augmented Model (4)

Solution

Determinacyφπ > 1 in original model (1)

1
α < 1 1 Satisfied

{
πt = 1

φπ
rt � ηt = 1

φπ
rt

ωt = αωt−1 − νt +ηt
1
α > 1 2 Not satisfied –

Indeterminacyφπ ≤ 1 in original model (1)
1
α < 1 0 Not satisfied –

1
α > 1 1 Satisfied

{
πt =φππt−1 − rt−1 + νt
ηt = νt � ωt = 0

Note: The table reports the regions of the parameter space for which the Blanchard–Kahn condition in the augmented
representation is satisfied, even when the original model is indeterminate.

is that in practice most of the papers simply rule out the possibility of indeterminacy,
even if the model at hand could in principle allow for such a feature.

To alleviate these issues, our methodology consists of augmenting the original state
space of the model by appending an auxiliary process, which could be either stable or
unstable ⎧⎪⎨⎪⎩

Et(πt+1)=φππt − rt�
ωt =

(
1
α

)
ωt−1 − νt +ηt�

(4)

where ωt is an independent autoregressive process, α ∈ [0�2] and νt is a newly defined
mean-zero sunspot shock with standard deviation σν and correlation ρνr .

Table 1 summarizes the intuition behind our approach.4 When the original LRE
model in (1) is determinate (φπ > 1), the auxiliary process must be stationary (1/α < 1),
so that the augmented representation in (4) satisfies the Blanchard–Kahn condition.5

In this case, the method of Sims (2001) delivers the same solution for the endogenous
variable πt as in equation (3). Importantly, ωt represents a separate block and does not
impact the endogenous variable πt .

Considering the case of indeterminacy (φπ ≤ 1), the original model has one expec-
tational variable, but no unstable root, thus violating the Blanchard–Kahn condition.
By appending an explosive autoregressive process (1/α > 1), the solution in this ex-
panded state space is determinate as the Blanchard–Kahn condition is satisfied for the
augmented system, even if not for the original model. In particular, the solution for the
endogenous variable πt corresponds to the one in (2) resulting from the methodology of
Lubik and Schorfheide (2003) or Farmer, Khramov, and Nicolò (2015). Moreover, stability
imposes conditions such that ωt is always equal to zero at any time t, thus requiring to

4We refer the reader to Appendix D for detailed suggestions on the practical implementation of our
method.

5The choice of parametrizing the auxiliary process with 1/α instead of α induces a positive correlation
between φπ and α that facilitates the implementation of our method when estimating a model.
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imposeω0 equal to zero and ηt = νt . Importantly, even in this case (φπ ≤ 1), the solution
for the endogenous variable does not depend on the appended autoregressive process.
Under this scenario, shocks to the real interest rate have a contemporaneous effect on
inflation only through their effect on the sunspot shock, as we explain in more detail
below.

Finally, in both cases, the auxiliary process ωt constitutes a separate block that is
not mapped into an observable variable. The processωt only serves the purpose of pro-
viding the necessary explosive roots under indeterminacy and creating a mapping from
the sunspot shock to the expectational error. Therefore, the law of motion of the en-
dogenous variables is invariant with respect to the adoption of our method to solve the
model.

2.2 Baseline solution

Our augmented representation parametrizes the continuum of equilibria under inde-
terminacy by introducing the standard deviation of the sunspot shock included in the
auxiliary processes, σν , and its correlation, ρνr , with the fundamental shock. In this sec-
tion, we propose a baseline solution that arises naturally in the context of our solution
method.

Lubik and Schorfheide (2004) proposed a baseline solution that minimizes the dis-
tance between the impulse response functions of the model under indeterminacy and
determinacy evaluated at the boundary of the region of determinacy. In Section 3, our
theoretical results show the equivalence between our methods and, therefore, the pos-
sibility of mapping their baseline solution into our representation. However, it is not al-
ways immediate to construct the baseline solution proposed by Lubik and Schorfheide
(2004), given that the boundaries of the determinacy region are often unknown.

In our approach, the baseline solution restricts to zero the correlation ρνr , implying
no contemporaneous impact of the fundamental shock, rt , on inflation, πt . In Table 1,
the indeterminate solution is such that the expectational variable, πt , is predetermined
and its contemporaneous deviations from its steady state are only due to the sunspot
shock, νt . In other words, the fundamental shock rt can affect πt only if it affects the
sunspot shock νt . Thus, it seems natural to choose as baseline solution the one associ-
ated with no correlation between the sunspot shock and the fundamental shock, rt . Such
identification strategy equivalently implies that the fundamental shock does not have a
contemporaneous impact on the inflation rate and is therefore reminiscent of the zero
restrictions often used in the SVAR literature. The baseline solution represents a useful
benchmark, but it is not restrictive: All alternative solutions can be obtained by allowing
the correlation between the fundamental and sunspot shock to be different from zero.

3. Methodology

We now present the main contribution of the paper generalizing the intuition pro-
vided above to a multivariate model with potentially multiple degrees of indeterminacy.
Given the general class of LRE models described in Sims (2001), this paper proposes an
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augmented representation, which embeds the solution for the model under both de-
terminacy and indeterminacy. In particular, the augmented representation of the LRE
model delivers solutions which under determinacy are equivalent to those obtained us-
ing standard solution algorithms, and under indeterminacy to those obtained using the
methodology provided by Lubik and Schorfheide (2003, 2004) or Farmer, Khramov, and
Nicolò (2015).

Consider the following LRE model:

�0(θ)Xt = �1(θ)Xt−1 +Ψ(θ)εt +Π(θ)ηt� (5)

where Xt ∈ Rk is a vector of endogenous variables, εt ∈ R� is a vector of exogenous
shocks, ηt ∈Rp collects the p one-step ahead forecast errors for the expectational vari-
ables of the system and θ≡ vec(�0��1�Ψ�Ωεε)

′ ∈Θ is a vector of structural parameters of
the model as well as the covariance matrix of the exogenous shocks. The matrices �0 and
�1 are of dimension k×k, possibly singular, and the matricesΨ andΠ are of dimension
k × � and k × p, respectively. Also, we assume Et−1(εt) = Et−1(ηt) = 0. We also define
the � × � matrix Ωεε ≡ Et−1(εtε

′
t ) to represent the covariance matrix of the exogenous

shocks.
Consider a model whose maximum degree of indeterminacy is denoted by m.6 The

proposed methodology appends to the original LRE model in (5) the following system of
m equations:

ωt =�ωt−1 + νt −ηf�t� �≡
⎡⎢⎣α

−1
1 0

� � �

0 α−1
m

⎤⎥⎦ � (6)

where the vector ηf�t is a subset of the endogenous shocks and the vectors {ωt� νt�ηf�t}
are of dimension m× 1. The equations in (6) are autoregressive processes whose inno-
vations are linear combinations of a vector of newly defined sunspot shocks, νt , and a
subset of forecast errors, ηf�t , where Et−1(νt) = Et−1(ηf�t) = 0. As we will show below,
the choice of which expectational errors to include in (6) does not affect the solution.

The intuition behind the proposed methodology works as in the example consid-
ered in the previous section. Let m∗(θ) denote the actual degree of indeterminacy as-
sociated with the parameter vector θ. Under indeterminacy the Blanchard–Kahn con-
dition for the original LRE model in (5) is not satisfied. Given that the system is char-
acterized by m∗(θ) degrees of indeterminacy, it is necessary to introduce m∗(θ) explo-
sive roots to solve the model using standard solution algorithms. In this case, m∗(θ) of
the diagonal elements of the matrix � are assumed to be outside the unit circle (in ab-
solute value), and the augmented representation is therefore determinate because the
Blanchard–Kahn condition is now satisfied. On the other hand, under determinacy the

6Denoting by n the minimum number of unstable roots of a LRE model and p the number of one-step
ahead forecast errors, the maximum degrees of indeterminacy are defined as m ≡ p − n. When the min-
imum number of unstable roots of a model is unknown, then m coincides with number of expectational
variables p. This represents the maximum degree of indeterminacy in any model with p expectational vari-
ables.
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(absolute value of the) diagonal elements of the matrix � are assumed to be all inside
the unit circle, as the number of explosive roots of the original LRE model in (5) already
equals the number of expectational variables in the model (m∗(θ)= 0). Also, in this case
the augmented representation is determinate due to the stability of the appended auxil-
iary processes. Importantly, as shown for the univariate example in Section 2, the block
structure of the proposed methodology guarantees that the autoregressive process, ωt ,
never affects the solution for the endogenous variables,Xt .

Denoting the newly defined vector of endogenous variables X̂t ≡ (Xt�ωt)
′ and the

newly defined vector of exogenous shocks ε̂t ≡ (εt� νt)
′, the system in (5) and (6) can be

written as

�̂0X̂t = �̂1X̂t−1 + Ψ̂ ε̂t + Π̂ηt� (7)

where

�̂0 ≡
[
�0(θ) 0

0 I

]
� �̂1 ≡

[
�1(θ) 0

0 �

]
�

Ψ̂ ≡
[
Ψ(θ) 0

0 I

]
� Π̂ ≡

[
Πn(θ) Πf (θ)

0 −I

]
�

and it is without loss of generality that we partition the matrix Π in (5) as Π = [Πn Πf ],
where the matrices Πn and Πf are respectively of dimension k× (p−m) and k×m.7

Indeed, a unique mapping exists between the alternative representations that can be
considered using our augmented representation. In the additional online Appendix, lo-
cated in the replication file, (Bianchi and Nicolò (2021)), we use an analytic example to
show that the alternative representations are equivalent up to a transformation of the
correlations between the exogenous shocks and the forecast error included in the auxil-
iary process.

We now show that the augmented representation of the LRE model delivers solu-
tions, which in the determinate region of the parameter space, ΘD, are equivalent to
those obtained using standard solution algorithms, and in the indeterminate region,
ΘI , to those obtained using the methodology provided by Lubik and Schorfheide (2003,
2004) and Farmer, Khramov, and Nicolò (2015).8 This theoretical result is crucial for the
application of our methodology to the New–Keynesian (NK) model with rational bub-
bles of Galí (2021) in Section 5.

3.1 Determinate equilibrium and equivalent characterizations

The characterization of a determinate equilibrium of the original system in (5) is a vec-
tor θD ∈ΘD. The characterization of the solution under determinacy using the proposed

7Suppose that Π
k×3

≡ [
Π1
k×1

Π2
k×1

Π3
k×1

]
. The proposed augmented representation would therefore allow for the

following three possible alternatives: Π̂1 ≡
[
Π1 Π2 Π3
0 0 −1

]
, Π̂2 ≡

[
Π1 Π2 Π3
0 −1 0

]
, and Π̂3 ≡

[
Π1 Π2 Π3
−1 0 0

]
.

8In order to simplify the exposition, when analyzing the case of indeterminacy we assume, without loss
of generality, m∗(θ)=m. As it will become clear, the case of m∗(θ) < m is a special case of what we present
below.
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augmented representation is parametrized by the set of parameters θBN that combines
the vector θD ∈ ΘD with the set of additional parameters θ1 ∈ Θ1, where the vector
θ1 ≡ vec(Ωνν�Ωνε)′ collects the elements of the covariance matrix of the sunspot shocks,
Ωνν , and the parameters of the covariances, Ωνε, between the sunspot shock νt and the
exogenous shocks εt .

Theorem 1. Let θD and θBN be two parametrizations of a determinate equilibrium of
the model

�0Xt = �1Xt−1 +Ψεt +Πηt�
For the BN equilibrium parametrized by θBN, the solution for the endogenous variables,
Xt , is equivalent to the solution parameterized by θD and is independent of the additional
parameters θ1.

Proof. See Appendix A.

The intuition for this theorem can be understood by considering the determinate
solution to the univariate example reported in Table 1. First, the endogenous variable,
πt , is only a function of the exogenous shock rt , and not of the newly defined sunspot
shock, νt . Similarly, the endogenous variables,Xt , of the original LRE model in (5) do not
respond to sunspot shocks either as expected under determinacy. Second, the univariate
example shows that under determinacy the appended system of equations constitutes a
separate block, which does not affect the dynamics of the endogenous variable, πt . Sim-
ilarly, the solution for the endogenous variables,Xt , constitutes a separate block relative
to the auxiliary variables, ωt , and is therefore independent of the additional parame-
ters θ1.

3.2 Indeterminate equilibria and equivalent characterizations

The indeterminate equilibria found using the methodology of Lubik and Schorfheide
(2003) are parametrized by two sets of parameters. The first set is defined by θI ∈ΘI . In
addition, given that the system is indeterminate, Lubik and Schorfheide (2003) append
additionalm equations,

M̃
m×� εt�×1

+ Mζ
m×m

ζt
m×1

= V ′
2

m×p
ηt
p×1

� (8)

Given the normalization Mζ = I chosen by Lubik and Schorfheide (2004), the second
set corresponds to θ2 ∈Θ2, where θ2 ≡ vec(Ωζζ� M̃)′. Equation (8) introduces m× (m+
1)/2 parameters associated with the covariance matrix of the sunspot shocks, Ωζζ , and
additional m× � parameters of the matrix M̃ that is related to the covariances between
ηt and εt . The characterization of a Lubik–Schorfheide equilibrium is a vector θLS ∈ΘLS,
whereΘLS is defined as

ΘLS ≡ {
ΘI�Θ2

}
�



Quantitative Economics 12 (2021) A generalized approach to indeterminacy 853

Similarly, the full characterization of the solutions under indeterminacy using the pro-
posed augmented representation is parametrized by the set of parameters θI ∈ΘI com-
mon between the two methodologies, and the set of additional parameters θ1 ∈Θ1. Us-
ing our approach, we also introduce m× (m+ 1)/2 parameters associated with the co-
variance matrix of the sunspot shocks, Ωνν , and m × � parameters of the covariances,
Ωνε, between the sunspot shocks νt and the exogenous shocks εt . A Bianchi–Nicolò equi-
librium is characterized by a parameter vector θBN ∈ΘBN, whereΘBN is defined as

ΘBN ≡ {
ΘI�Θ1

}
�

The following theorem establishes the equivalence between the characterizations of
indeterminate equilibria obtained by using the methodology in Lubik and Schorfheide
(2003) and the proposed augmented representation.

Theorem 2. Let θLS and θBN be two alternative parametrizations of an indeterminate
equilibrium of the model

�0Xt = �1Xt−1 +Ψεt +Πηt�
For every BN equilibrium, parametrized by θBN, there exists a unique matrix M̃ and a
unique matrix Ωζζ such that θ2 = vec(Ωζζ� M̃)′, and {θ1� θ2} ∈ ΘLS defines an equiva-
lent LS equilibrium. Conversely, for every LS equilibrium, parametrized by θLS, there is
a unique matrix Ωνν and a unique covariance matrix Ωνε such that θ3 = vec(Ωνν�Ωνε)′,
and {θ1� θ3} ∈ΘBN defines an equivalent BN equilibrium.

Proof. See Appendix A.

In the paper of Farmer, Khramov, and Nicolò (2015), the authors also show that
their characterization of indeterminate equilibria is equivalent to Lubik and Schorfheide
(2003). Therefore, the following corollary holds.

Corollary 1. Given a parametrization θBN of a BN indeterminate equilibrium, there
exists a unique mapping into the parametrization of an indeterminate equilibrium for
Farmer et al. (2015), and vice versa.

In a multivariate model, the construction of the baseline solution relies on the key
insight of the univariate model in Section 2.2. Under indeterminacy, the expectational
variables whose forecast error is included in the explosive auxiliary processes always be-
come predetermined and their contemporaneous deviations from their steady state are
only a function of their respective sunspot shock. Therefore, our method naturally sug-
gests a baseline solution that sets the correlations of the sunspot shocks with fundamen-
tal disturbances,Ωνε, to zero. Such identification assumption implies that fundamental
shocks do not have a contemporaneous impact on those expectational variables, in line
with the zero restrictions often used in the SVAR literature. At the same time, the identi-
fying assumption implies that sunspot shocks are not in any way related to fundamen-
tal disturbances, a natural starting point for an economic analysis. Finally, under such
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baseline solution, the choice of which forecast errors, ηf�t , to include in the auxiliary
processes delivers different economic assumptions.9 However, the choice of the order-
ing of the forecast errors within the vector, ηf�t , is irrelevant to determine the impact of
fundamental shocks on the expectational variables.

4. Inference

To facilitate inference in a model that allows for different degrees of indeterminacy, sev-
eral papers, such as Hirose, Kurozumi, and Zandweghe (2020) and Ettmeier and Kri-
woluzky (2020), adopted the sequential Monte Carlo algorithm of Herbst and Schorf-
heide (2015b). Such algorithm could be combined with our method to estimate models
characterized by indeterminacy. In this section, we propose an alternative approach that
pairs our method with an Hybrid Metropolis–Hastings algorithm.

As discussed by Lubik and Schorfheide (2004), a researcher that estimates a model
with different degrees of indeterminacy often faces the challenging situation in which
the posterior can present jumps along the boundaries of the determinacy and indeter-
minacy regions. Furthermore, these models often present local peaks in the posterior
distribution with the result that a Metropolis–Hastings random walk algorithm might
end up gravitating around one of these local peaks. To alleviate these problems, we
propose an hybrid algorithm that combines the standard Metropolis–Hastings random
walk algorithm with a MCMC algorithm in which the proposal distribution is based on
a mixture of normals centered on the different posterior modes. The idea of using an
hybrid algorithm to improve the efficiency of the standard Metropolis–Hastings random
walk algorithm is extensively discussed in Herbst and Schorfheide (2015a) and Giordani,
Kohn, and Strid (2010). The algorithm proposed here builds on one specific example dis-
cussed in An and Schorfheide (2007). In what follows, we describe the key steps:

1. Using different starting values, apply a numerical optimization procedure to search
for modes θ̃(j), j = 1� � � � � J of the posterior density. When the model allows for dif-
ferent degrees of indeterminacy, the search can be conditioned on determinacy or
indeterminacy. This guarantees that each of the regions has a, possibly local, pos-
terior mode.

2. For each mode, compute the inverse of the Hessian, denoted by Σ̃(j), j = 1� � � � � J.

3. Let qj(θ) be the density of a multivariate distribution obtained mixing two normals,
both with mean θ̃(j), but different covariance matrices csj Σ̃(j) and cljΣ̃(j), with csj <

clj . Let zl be the probability of drawing from the normal with large variance:

qj(θ)= zlN(
θ̃(j)� c

l
jΣ̃(j)

) + (
1 − zl)N(

θ̃(j)� c
s
j Σ̃(j)

)
�

9Appendix D provides a more detailed and practical discussion on the choice of the prior distributions
for the correlations between the sunspot shocks and fundamental disturbances.
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4. Let πj , j = 1� � � � � J be a set of probabilities and define q(θ) as

q(θ)=
J∑
j=1

πjqj(θ)�

5. Choose a starting value θ(0) for instance by generating a draw from q(θ).

6. For s = 1� � � � �nsim, follow these steps:

(a) Make a draw ϑ from the following proposal distribution:

q̃
(
ϑ|θ(s−1)) = wRW N

(
θ(s−1)� cRW Σ̃(j)

) + (
1 −wRW )

q(θ)

= wRW N
(
θ(s−1)� cRW Σ̃(j)

)
+ (

1 −wRW )[
zlN

(
θ̃(j)� c

l
jΣ̃(j)

) + (
1 − zl)N(

θ̃(j)� c
s
j Σ̃(j)

)]
�

where wRW is a number between 0 and 1 denoting the probability of using the
standard random walk proposal distribution.

(b) Accept the jump from θ(s−1) to ϑ (θ(s) = ϑ) with probability min{1� rj(θ(s−1)�

ϑ|Y)}, otherwise reject the proposed draw and set θ(s) = θ(s−1), where

rj
(
θ(s−1)�ϑ|Y ) = L(ϑ|Y)p(ϑ)/q̃(ϑ|θ(s−1))

L
(
θ(s−1)|Y )

p
(
θ(s−1))/q̃(θ(s−1)|ϑ) �

Note that point 6 collapses to a standard Metropolis–Hastings algorithm if wRW =
1, while it becomes similar to the hybrid MCMC algorithm proposed by An and
Schorfheide (2007) to deal with a multimodal posterior if wRW = 0. The use of the mix-
ture of normals facilitates the jump between areas of the parameter space that gravitate
around different peaks of the posterior. The advantage of allowing for the standard ran-
dom walk proposal distribution is to allow the algorithm to explore the parameter space
around these peaks in an efficient way. In other words, the standard random walk algo-
rithm has generally a higher acceptance rate and does not face the risk of getting stuck
on a value for which the ratio between the posterior and the proposal distribution is
particularly high.

Convergence. A researcher should appropriately conduct convergence diagnostics
by verifying the occurrence of either of the following two circumstances. First, a mul-
timodal distribution could arise because the log-likelihood is highly discontinuous be-
tween the various regions. In this case, the algorithm could jump towards the region
where the peak of the posterior lies, without having spent a significant time there.
In other words, convergence has not occurred yet. We therefore recommend the re-
searcher to analyze the draws of the parameter(s) αi, which have been accepted dur-
ing the MCMC algorithm. By inspecting the behavior of the auxiliary parameter(s) αi,
a researcher can detect if the algorithm reached convergence or not. If the convergence
has not occurred yet, the researcher should repeat the estimation exercise increasing the
number of draws and making sure that the parameter(s) αi stabilizes on one region of



856 Bianchi and Nicolò Quantitative Economics 12 (2021)

the parameter space. Our main application in Section 5 is an example of this case and
we show that the hybrid algorithm guarantees a faster convergence than the standard
Metropolis–Hastings to the region of the parameter space with the best fit to the data.

Second, a multimodal distribution could arise because the fit of the model at the
global peak is only marginally better than that at the local peak in a different region of
indeterminacy. In this case, the parameter(s) αi would repeatedly transition between the
two areas of the parameter space and could be used to infer the probability attached to
determinacy. An example of this second case is considered in Section 6 when we esti-
mate the model in Lubik and Schorfheide (2004). In such instance, we show that the
advantage of the hybrid algorithm is to visit the different peaks of the posterior in the
different regions with a substantially higher frequency relative to a random walk algo-
rithm, allowing for a more efficient exploration of the parameter space and a faster con-
vergence of the MCMC algorithm.

5. Monetary policy and asset bubbles

In this section, we implement the proposed methodology to estimate the small-scale NK
model of Galí (2021) using Bayesian techniques. The model extends a conventional NK
model to allow for the existence of rational expectations equilibria with asset price bub-
bles. Interestingly, the model displays up to two degrees of indeterminacy for realistic
parameter values.

We estimate the model using U.S. data over the period 1982:Q4–2007:Q3, and we
consider the case that the U.S. monetary policy aimed at stabilizing the inflation rate
and leaning against the bubble. We find that the strength of such responses was not
enough to guarantee a stabilization of the U.S. economy and to avoid that unexpected
changes in expectations could drive U.S. business cycles. In particular, we show that the
model specification that provides the best fit to the data is characterized by two degrees
of indeterminacy.

5.1 Model

Galí (2021) extends a standard version of the NK model to allow, under certain condi-
tions, the emergence of fluctuations driven by asset price bubbles in equilibrium. The
model introduces overlapping generations of finitely-lived consumers to ensure that the
transversality condition of any individual consumer is satisfied in equilibrium, even in
the presence of a bubble that grows at the rate of interest. The model also assumes
stochastic transitions to “retirement,” generating an equilibrium interest rate not ex-
ceeding the economy’s trend growth rate that is a necessary condition for the size of the
bubble to remain bounded relative to the size of the economy.

The equations that describe the model are the following. First, equation (9) repre-
sents a dynamic IS curve

yt =�Et(yt+1)−Ψ [
it −Et(πt+1)

] +Θqt� (9)

where the variables are expressed in deviations from a balanced growth path (hence-
forth BGP), and the parameters {��Ψ�Θ} are function of the structural parameters of
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the model.10 The term qt denotes the size of an aggregate bubble in the economy (nor-
malized by trend output) relative to its value along the BGP.

The aggregate bubble plays the role of demand shifter and is defined as

qt = bt + uqt � (10)

where bt denotes the aggregate value in period t of bubble assets that were already avail-
able for trade in period t − 1, and uqt is the value of a new bubble at time t. We assume
that uqt follows an exogenous autoregressive process of the form u

q
t = ρquqt−1 +εqt , where

ε
q
t

iid∼ N(0�σ2
q). Equation (11) defines the evolution of the value of the asset bubble qt as

qt =Λ�Et(bt+1)− q(it −Et(πt+1)
)
� (11)

where q≡ γ(β−Λ�v)
(1−βγ)(1−Λ�vγ) represents the steady state bubble-to-output ratio, Λ≡ 1/(1 +

r) is the steady state stochastic discount factor for one-period ahead payoffs derived
from a portfolio of securities and � ≡ (1 + g) is the gross rate of productivity growth.
Equation (11) shows how “optimistic” expectations about the future value of the bubble
lead to a higher price for the assets today. As shown in Galí (2021), the existence of a
BGP with positive asset bubbles requires that Λ�v < β. In addition, to guarantee that
newly created bubbles are nonnegative along the BGP, the model requires that Λ� ≥ 1.
Equivalently, these two conditions imply that there exists a continuum of bubbly BGPs
indexed by a real interest rate in the range �v/β− 1< r ≤ g.

The model features a NK Phillips curve

πt =Λ�vγEt(πt+1)+ κyt + ust � (12)

where ust = ρsu
s
t−1 + εst and εst

iid∼ N(0�σ2
s ).

11 Note that both the dynamic IS curve in (9)
and the NK Phillips curve in (12) nest the standard NK model when the probability of
death and retirement approach zero (i.e., {v�γ} → 1), given thatΛ�= β along a balanced
growth path under the assumption of an infinitely-lived representative consumer with
log utility.

Finally, the conduct of monetary policy follows an interest rate rule that features
some inertia and aims not only at stabilizing inflation, but also at leaning against the
bubble:

it = ρiit−1 + (1 − ρi)(φππt +φqqt)+ εit� (13)

10The dynamic IS curve in (9) combines equations (30)∼(34) in Galí (2021) such that the parameters�≡
Λ�v
β ∈ (0�1], Ψ ≡ Υ�(1 + vγ(1−�)

�(1−βγ) ), Υ ≡ 1−βγ
1−Λ�vγ ∈ (0�1], and Θ ≡ (1−βγ)(1−vγ)

βγ are function of the following
structural parameters: (i) γ, the constant probability of each individual in the OLG model to survive to the
next period; (ii) v, the probability of each individual to be employed in the next period; (iii) β, the discount
factor of each individual; (iv)Λ≡ 1/(1 + r), the steady state stochastic discount factor for one-period ahead
payoffs derived from a portfolio of securities; (v) �≡ (1 + g), the gross rate of productivity growth.

11In particular, k ≡ (1−θ)(1−Λ�vγθ)
θ ρ, where θ represents the Calvo probability that a firm keeps its price

unchanged in any given period and ρ is the elasticity of hours worked.
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where εit
iid∼ N(0�σ2

i ). Note that, because of the absence of a trade-off between stabiliza-
tion of inflation and output gap, the “divine coincidence” still holds in this modified ver-
sion of the standard NKmodel, and the macroeconomic impact of bubble fluctuations
mainly work through aggregate demand.

Equations (9)∼(13) describe the equilibrium dynamics of the model economy
around a given BGP. We define the vector of variables Xt ≡ (yt�πt� bt� it � qt�Et(yt+1)�

Et(πt+1)�Et(bt+1)�u
q
t �u

s
t )

′, the vector of fundamental shocks, εt ≡ (ε
q
t � ε

s
t � ε

i
t)

′, and the
vector of nonfundamental errors, ηt ≡ (ηy�t�ηπ�t�ηb�t)

′, where the rational expectation
forecast errors are defined as ηx�t ≡ xt −Et−1[xt] and x= {y�π�b}.

As shown in Section 5.3 below, the model of Galí (2021) is characterized by up to two
degrees of indeterminacy. Therefore, the proposed methodology augments the model
by appending two autoregressive processes

ωj�t = α−1
j ωj�t−1 + νj�t −ηj�t� j = {1�2}� (14)

where {η1�t �η2�t} could be any combination consisting of two of the three forecast errors
defined by the vectorηt ≡ (ηy�t�ηπ�t�ηb�t)′. Hence, defining a new vector of endogenous
variables X̂t ≡ (Xt�ω1�t �ω2�t)

′ and a newly defined vector of exogenous shocks as ε̂t ≡
(εt� ν1�t � ν2�t)

′, the system can then be written in canonical form.

5.2 Data and priors

We estimate the model to match U.S. data over the period 1982:Q4 until 2007:Q3. We
consider three of the macroeconomic quarterly time series used in Smets and Wouters
(2007): the growth rate in real GDP, measured as the log change in real GDP, inflation,
measured by the log change in the GDP deflator, and the Federal Funds rate. The mea-
surement equations that relate the macroeconomic data to the endogenous variables
are defined as ⎡⎢⎣� log(GDPt)

� log(Pt)
FFRt

⎤⎥⎦ =
⎡⎢⎣ g

π∗
r +π∗

⎤⎥⎦ +
⎡⎢⎣yt − yt−1

πt
it

⎤⎥⎦ �
Table 2 reports the prior distributions for the parameters. We calibrate three parame-
ters to guarantee identification. Following Galí (2021), we calibrate the discount factor
of each individual, β, to 0�998 and the probability of surviving to the next period, γ, to
0�996. As mentioned when studying equation (11) describing the evolution of the value
of the asset bubble qt , the model requires that the real interest rate, r, and the growth rate
of output, g, satisfy r ≤ g to ensure that newly created bubbles along the BGP are non-
negative. To ensure that this inequality holds for each draw of the Metropolis–Hastings
algorithm, we express the real interest rate, r, as r = λug, where λu ∈ (0�1] defines the
ratio between the real interest rate and its upper bound, the rate of output growth. We
then calibrate λu to 0.925 and set the prior for the quarterly growth rate of output, g, as
a gamma distribution centered at 0�45. These assumptions imply an annualized growth
rate of output of 1�8% and real interest rate of approximately 1�65% over the considered
period.
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Table 2. Prior and posterior distributions of model parameters.

Posteriors Priors

Mean 90% prob. int. Density Mean Std. Dev.

100(λ−1
l − 1) 0�028 [0�019�0�038] Gamma 0�04 0�01

κ 0�03 [0�030�0�047] Gamma 0�04 0�005
g 0�48 [0�43�0�53] Gamma 0�45 0�04
π∗ 0�91 [0�47�1�48] Gamma 0�9 0�30

φπ 0�37 [0�18�0�65] Gamma 1 0�40
φq 0�04 [0�02�0�09] Gamma 0�05 0�02
ρi 0�49 [0�23�0�76] Beta 0�50 0�20

σq 1�19 [0�58�2�19] Inv. Gam. 1�00 0�50
σs 0�11 [0�09�0�14] Inv. Gam. 0�30 0�15
σi 0�12 [0�10�0�15] Inv. Gam. 0�30 0�15
ρq 0�76 [0�56�0�91] Beta 0�70 0�10
ρs 0�87 [0�77�0�93] Beta 0�70 0�10

σνπ 0�29 [0�25�0�34] U[0�10] 5 2�89
σνy 0�70 [0�62�0�81] U[0�10] 5 2�89

ϕνπ�i −0�60 [−0�77�−0�34] U[−1�1] 0 0�57
ϕνπ�q 0�23 [−0�25�0�60] U[−1�1] 0 0�57
ϕνπ�s 0�53 [0�34�0�67] U[−1�1] 0 0�57
ϕνy �i −0�40 [−0�69�−0�07] U[−1�1] 0 0�57
ϕνy �q 0�05 [−0�43�0�54] U[−1�1] 0 0�57
ϕνy �s −0�54 [−0�70�−0�34] U[−1�1] 0 0�57
ϕνπ�νy 0�22 [0�04�0�40] U[−1�1] 0 0�57

Note: The table reports the prior and posterior distributions under two degrees of indeterminacy {νπ� νy }.

As previously discussed, the existence of a BGP with positive asset bubbles requires
that v < β/Λ�, where v is the probability that an individual remains “active” by sup-
plying labor and managing the firm, as opposed to “retiring” with probability (1 − v).
Hence, we express such probability as v = λlβ/Λ�, where λl ∈ (0�1). We then center
the gamma prior distribution for the term 100(λ−1

l − 1) such that the probability of re-
maining “active,” v, is 0�9973, therefore coinciding with the calibration in Galí (2021).
The resulting range of admissible BGPs is indexed by an (annualized) real interest rate
r ∈ (�v/β− 1� g] = (1�5%�1�8%].

The prior for the slope of the NK Phillips Curve, κ, is set at 0�04, a value consistent
with an average duration of individual prices of 4 quarters in this model. The parameter
describing the response of the monetary authority to changes in inflation, φπ , follows
a gamma distribution with mean 1 and standard error 0�4. The response to deviations
of the bubble relative to its value along the BGP, φq, follows a gamma distribution with
mean 0�05 and standard error 0�02, corresponding to a region of the parameter space
with up to two degrees of indeterminacy. Finally, the autoregressive parameter of the
interest rate rule, ρi, follows a beta distribution with mean 0�5 and standard error 0�2.

The prior distribution of the supply and monetary policy shocks are inverse gamma
centered at 0�3 with a standard deviation of 0�15. The inverse gamma prior for the shock
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associated with the creation of a new bubble, εqt , is more agnostic and centered at 1 with
standard deviation 0�5. Finally, when we estimate the model under indeterminacy, we
specify uniform prior distributions for the standard deviations of the nonfundamental
shocks {σνl } where l= {π�y�b}, and their correlations with both the exogenous shocks of
the model {ϕνl�j} where j = {i� q� s} and between them {ϕνl1 �νl2 } where {l1� l2} = {π�y�b}.
Importantly, to ensure that the covariance matrix is always positive definite, the joint
prior for the covariance matrix is effectively truncated by rejecting the parameter draws
that violate this condition.

5.3 Results

The hybrid algorithm and the best-fitting model specification We estimate the model
using the hybrid algorithm described in Section 4. Using different starting values and
applying a numerical optimization procedure, we find the conditional posterior mode
in each region of the parameter space: Determinacy, one degree of indeterminacy, and
two degrees of indeterminacy. We then use those posterior modes to construct the pro-
posal distribution as in step 6 of the hybrid algorithm. In what follows, we consider the
specification in which the two auxiliary processes in (14) include the nonfundamen-
tal errors associated with inflation and output, {η1�t �η2�t} = {ηπ�t�ηy�t}. When the algo-
rithm draws a vector of structural parameters θ such that the model is indeterminate of
degree 1, we set only α1 to a value within the unit circle in a way that only the nonfunda-
mental shock ηπ�t is redefined as fundamental. When the algorithm draws θ such that
the model is indeterminate of degree 2, we set both α1 and α2 to a value within the unit
circle such that both nonfundamental shocks {ηπ�t�ηy�t} are redefined as fundamental.
In Appendix B, we show that the estimation delivers the same posterior distributions of
the model parameters regardless of which forecast errors we include in our representa-
tion.12

Starting the algorithm at values in each region of the parameter space, we find that
the data favor the specification of the model with two degrees of indeterminacy. The
algorithm quickly moves to that region of the parameter space and never leaves. This
can be explained inspecting the log-posterior mode of the different regions of the pa-
rameters space: −30�93 with two degrees of indeterminacy, −44�94 with one degree of
indeterminacy, and −119�66 with determinacy. These large differences could in princi-
ple represent a problem for traditional MCMC algorithms. In fact, the adoption of the
hybrid algorithm (“Mixture”) proposed in Section 4 considerably speeds up the transi-
tion to the region with two degrees of indeterminacy relative to a standard Metropolis–
Hasting random walk algorithm (“Random walk”).

To illustrate how the Mixture algorithm helps to ensure a more efficient convergence
to the region of the parameter space with the highest posterior, we estimate the model
using both algorithms. We simulate 2000 chains by making an initial draw around the
posterior mode of either the region of determinacy or indeterminacy of degree 1. For

12As explained in Section 3, the posterior distributions of the model parameters are equivalent up to a
transformation of the correlations between the exogenous shocks and the sunspot disturbances considered
in each specification.
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Figure 1. Distribution of number of draws necessary to cross to the indeterminacy-2 region.

each iteration, we count the number of draws necessary for the parameters to cross the
two-degree indeterminacy threshold for the first time. If the transition has not occurred
after 100,000 iterations, we stop and record this upper bound. Using both the Mixture
and the Random walk algorithms, Figure 1 reports the histogram of the number of draws
necessary to jump to the region of two degrees of indeterminacy when starting from the
region of determinacy (left panel) or indeterminacy of degree 1 (right panel). Table 3
reports the corresponding summary statistics of the plotted distributions.

Both algorithms eventually move to the region of the parameter space that contains
the global peak. Once they reach such region, the chains do not jump back to explore the
other regions where the fit of the model at the local peaks is substantially worse. How-
ever, the Mixture algorithm ensures a considerably faster switch to the region of the pa-
rameter space with the global peak.13 For starting values in the region of one-degree in-
determinacy, the median number of draws necessary for the Mixture algorithm is nearly
15 times smaller than the corresponding statistic for the Random walk algorithm. More-
over, when we experimented with alternative versions of the model that imposed re-
strictions on some model parameters, we found that, for the traditional algorithm, the
parameters had not crossed the two-degree indeterminacy threshold even after 100,000
iterations.

The convergence to one region of the parameter space can be easily checked track-
ing the behavior of the auxiliary parameters {α1�α2}. Both auxiliary parameters are out-
side the unit circle when the algorithms converge to the region with two degrees of in-
determinacy. Across all simulations, when starting from one of the alternative regions,
the auxiliary parameters {α1�α2} eventually jump and after that they never take values
within the unit circle again. In Section 6, we use the model of Lubik and Schorfheide
(2004) to show that when the determinate and indeterminate regions of the parameter
space present a more similar fit, the hybrid algorithm facilitates the transition between
them. We show that when using the hybrid algorithm, the auxiliary parameter frequently

13In Appendix B, Table SII reports the Raftery–Lewis diagnostics for each parameter chain in Galí (2021).
Using the hybrid algorithm, all the model parameters quickly converge.
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Table 3. Summary statistics for the distribution of number of draws necessary to cross to the
indeterminacy-2 region.

Starting value Algorithm Mean Median 5% 95%

Determinacy
Mixture 89 17 2 165
Random walk 118 72 6 390

Indeterminacy-1
Mixture 90 21 2 201
Random walk 1294 874 48 3822

Note: The table reports summary statistics for the distribution of the number of draws necessary to cross to the region with
two degrees of indeterminacy for different starting values and using both the hybrid algorithm (“Mixture”) and the standard
Metropolis–Hastings random walk algorithm (“Random walk”).

jumps between values within and outside of the unit circle, carrying valuable informa-
tion about the probability attached to determinacy and ensuring a faster convergence
with respect to the traditional random walk algorithm.

Parameter estimates and impulse responses Table 2 also reports the mean and 90%
probability interval of the posterior distribution of the estimated structural parameters.
The posterior mean of the slope of the NK Phillips curve is 0�038, which in this model
is consistent with a probability of roughly 25% that a firm keeps its price unchanged in
any given period. The steady-state quarterly growth rate of output, g, is about 0�48% and
the resulting real interest rate, r, is 0�44%. The posterior mean for the inflation rate, π∗,
is about 3�6% on an annual basis. The strength of the responses of U.S. monetary policy
to inflation and the bubble was not enough to guarantee a stabilization of the U.S. econ-
omy and to avoid that unexpected changes in expectations could drive U.S. business
cycles. The posterior mean of the term λl is 0�9997 such that probability of remaining
“active” is v= λlβ/Λ�= 0�997.

The mean of the standard error of the bubble component is 1�19, and larger than
that of the supply and monetary policy shocks estimated to be 0�11 and 0�12, respec-
tively. The data also provide evidence that the bubble shock is nearly as persistent as the
supply shock. The posterior estimate of the standard error related to forecast errors for
the output gap is roughly twice as large as that of the sunspot shock associated with the
inflation rate. As discussed next, the estimates of the correlations between the sunspot
and exogenous shocks of the model and those between the two sunspot shocks are cru-
cial to interpret the contemporaneous impact of each shock and the associated impulse
responses.

Figure 2 plots the impulse response functions of output, inflation, the FFR, and
the Real FFR to a one-standard-deviation fundamental and sunspot shocks.14 The solid
lines represent the posterior median, while the dark and light shaded areas correspond
to the 68% and 90% probability intervals, respectively. In line with the estimated corre-
lations reported in Table 2, we observe that a shock due to the creation of a new bubble
generates a positive contemporaneous and persistent effect on inflation. Moreover, the

14The real FFR corresponds to the difference between the FFR and the one-period ahead inflation ex-
pectation.
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Figure 2. Bayesian impulse response functions.

value of asset bubbles is higher over time due to its increasing expected value. The mon-
etary authority responds to these deviations by increasing the nominal FFR, causing a
slight slowdown in economic activity over the period shown. The estimated correlations
of the supply shock with the sunspot shocks induce both an inflationary and contrac-
tionary effects on impact. The persistence of the shock on output is then associated to
deflationary effects to which the monetary authority responds by decreasing the FFR.

As indicated in Table 2, a monetary policy shock is negatively correlated with both
sunspot shocks, implying a negative contemporaneous impact on both inflation and
output. The contemporaneous effect of the shock on the FFR combines the downward
impact on both inflation and the bubble component with the upward effect of the mone-
tary policy shock itself. The initial positive monetary policy shock is almost perfectly off-
set by the endogenous component, with the result that the nominal FFR remains close
to zero despite the initial shock. However, the Real FFR still increases in response to the
positive monetary policy shock, as illustrated in the last column of Figure 2. Thus, a pos-
itive monetary policy shock is still contractionary despite the equilibrium behavior of
the nominal FFR. The rise in the Real FFR combined with the decrease in expectations
about the future value of the bubble generates a downward contemporaneous impact on
the value of the asset today (equation (11) in the model). The persistence of these effects
on the real economy and the inflation rate requires the monetary authority to adopt an
accommodative stance. The behavior of the nominal FFR is reminiscent of an example
presented in Galí (2008) in the context of a prototypical purely forward-looking three-
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equation NK model. Galí (2008) showed that if a monetary policy shock has very large
effects on the macroeconomy, the monetary policy interest rate can decline in equilib-
rium, despite the monetary policy shock being positive.

The last two panels show the impulse responses to the sunspot shocks, that we as-
sume to be correlated with each other. A positive shock to inflation expectations, νπ ,
generates a contemporaneous rise in inflation. The Real FFR decreases due to an in-
crease of inflation expectations that more than compensates for the rise in the FFR. The
drop in the Real FFR and higher expectations about the future value of the bubble ex-
plain the rise in economic activity and a higher current value of the bubble, consistent
with a more restrictive monetary policy stance. Finally, a positive sunspot shock to out-
put expectations leads to a rise in economic activity. Such increase is consistent with
higher aggregate fundamental wealth in the economy and a lower current and expected
value of the bubble.15 Given that the Cholesky decomposition assumes that the output
sunspot shock, νy , is orthogonal to the inflation sunspot shock, νπ , a one-standard de-
viation shock to νy has no contemporaneous effect on inflation, while it generates mild
deflationary effects in the medium term due to a decrease in inflation expectations. On
impact, monetary policy responds to the decrease in the current value of the asset bub-
ble and subsequently adopts a more accommodative stance also induced by the defla-
tionary pressure.

6. Advantages of the hybrid algorithm

In this section, we discuss the advantages of using the hybrid estimation algorithm for
the case in which the fit of the model at the global peak is only marginally better than
that at a local peak belonging to a different region of indeterminacy. To provide an ex-
ample of this case, we estimate the three-equation NK model in Lubik and Schorfheide
(2004) over the “post-1982” period using our solution method and hybrid algorithm.16

The parameter space is characterized by a region of determinacy and a region of indeter-
minacy of degree 1. To solve the model under indeterminacy, we augment it by append-
ing only one auxiliary process. The global peak in the determinate region marginally
outperforms the local peak in the region of one-degree indeterminacy. Based on the
marginal data density under determinacy (−236�81) and indeterminacy (−236�84), the
resulting posterior probability of determinacy is 50�5% based on the modified harmonic
mean estimator of Geweke (1999).

When estimating the model in Lubik and Schorfheide (2004) using the Mixture algo-
rithm, Figure 3 plots the resulting bimodal distribution of the parameterψπ that governs
the response of the monetary authority to deviations of the inflation rate from its target.

To cautiously verify the converge of the model parameters, we assign a value of 1
to a dummy variable for each draw of structural parameters in the determinate region
(α > 1) and a value of 0 for draws in the indeterminate region (α ≤ 1). Figure 4 reports

15The model in Galí (2021) includes the equation yt = (1 − βν)(qt + xt), where xt denotes aggregate
fundamental wealth (i.e., discounted sum of current and future income expected to accrue to currently
alive consumers) normalized by trend output.

16We refer the reader to Lubik and Schorfheide (2004) for a detailed description of the standard model.
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Figure 3. Posterior distribution of ψπ in Lubik and Schorfheide (2004).

values of the dummy equal to 1 (dark areas) and evidently shows that, while both al-
gorithms visit the two regions, the Mixture algorithm jumps between them much more
frequently ensuring an efficient exploration of the parameter space. In particular, using
the hybrid algorithm, the parameter α is greater than 1 in 51�45% of the accepted draws,
therefore containing relevant information related to the probability of determinacy. Fi-
nally, in Appendix C, Table SIII reports the Raftery–Lewis diagnostics for each parameter
using the two algorithms: The Mixture algorithm cuts the number of draws required for
convergence in half.17

7. Conclusions

In this paper, we propose a generalized approach to solve and estimate LRE models over
the entire parameter space. Our approach accommodates both cases of determinacy
and indeterminacy and it does not require the researcher to know the analytic condi-
tions describing the region of determinacy or the degrees of indeterminacy.

Figure 4. Jumps between determinacy and indeterminacy in Lubik and Schorfheide (2004).

17We target the 5% quantile, with 1% precision, and 90% probability.
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When a LRE model is characterized bym degrees of indeterminacy, our approach ap-
pends m autoregressive processes whose innovations are linear combinations of a sub-
set of endogenous shocks and a vector of newly defined sunspot shocks. We show that
the solution for the resulting augmented representation embeds both the solution ob-
tained under determinacy using standard solution methods and that delivered by solv-
ing the model under indeterminacy using the approach of Lubik and Schorfheide (2003)
and equivalently Farmer, Khramov, and Nicolò (2015).

We pair our solution method with an hybrid MCMC algorithm to estimate the small-
scale NK model of Galí (2021). Galí’s model extends a conventional NK model by allow-
ing for the existence of rational bubbles and is characterized by up to two degrees of in-
determinacy for realistic parameter values. We estimate the model using U.S. data over
the period 1982:Q4–2007:Q3. We find that the data support the version of the model with
two degrees of indeterminacy, implying that the central bank was not reacting strongly
enough to the bubble component. Finally, we show that our MCMC hybrid algorithm
facilitates the transition to the correct area of the posterior and repeated jumps between
local peaks of the posterior when these are close in value. Relative to the standard ran-
dom walk Metropolis–Hastings algorithm, the hybrid algorithm minimizes the possi-
bility of remaining stuck in an area of the posterior characterized by a local peak and
substantially improves the speed of convergence.
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