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We model network formation and interactions under a unified framework by con-
sidering that individuals anticipate the effect of network structure on the utility of
network interactions when choosing links. There are two advantages of this mod-
eling approach: first, we can evaluate whether network interactions drive friend-
ship formation or not. Second, we can control for the friendship selection bias
on estimated interaction effects. We provide microfoundations of this statistical
model based on the subgame perfect equilibrium of a two-stage game and pro-
pose a Bayesian MCMC approach for estimating the model. We apply the model
to study American high school students’ friendship networks using the Add Health
dataset. From two interaction variables, GPA and smoking frequency, we find that
the utility of interactions in academic learning is important for friendship forma-
tion, whereas the utility of interactions in smoking is not. However, both GPA and
smoking frequency are subject to significant peer effects.
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1. Introduction

Economic research on social networks and interactions has grown rapidly over the past
two decades. In many economic contexts, social networks have been found to be an
important channel to disseminate information or facilitate activities.1 Due to the im-
portance of social networks for a wide range of applications, both academic researchers
and practitioners have been and are still interested in understanding how network links
are formed. Indeed, the question is not only interesting in its own right, but it is also
important for understanding the role of network structures on economic outcomes.

For example, in the context of social interactions, we would like to understand how
individuals choose their friends to benefit from peer effects on economic outcomes. In
particular, friendship networks may be formed to produce favorable economic conse-
quences; for example, students may prefer choosing high achieving friends who can
help them study. Then, if one is interested in measuring peer effects on academic
achievement, they need to correct for possible endogeneity bias due to friendship se-
lection, as itself might also be based on academic achievement.

Moreover, endogenous friendship formation may amplify observed peer interac-
tions due to unobserved factors that affect both friendship selection and economic out-
comes (Weinberg (2007)). For example, Goldsmith-Pinkham and Imbens (2013), Hsieh
and Lee (2016), Johnsson and Moon (forthcoming), and Auerbach (2019) study unob-
served driving factors and use them to link network formation and network interactions
to economic activities.

In this paper, we propose an unified modeling approach for individuals who form
a friendship network inside a group and have their economic behaviors influenced by
their friends’ behaviors once the network is formed. In particular, we focus on a static
model and present a novel approach for examining whether utilities of interactions in
certain economic activities (e.g., peer influence on tobacco consumption) play any role
in the formation of friendship networks for high school students.2 Specifically, we allow

1For example, job finding and labor force participation (Calvo-Armengol and Jackson (2004, 2007), Bayer,
Ross, and Topa (2008)); social learning and knowledge diffusion (Conley and Udry (2001), Conley and Udry
(2010)); risk sharing and insurance (Fafchamps and Gubert (2007a, 2007b)); obesity transmission (Chris-
takis and Fowler (2007), Fowler and Christakis (2008)); peer effects on students’ academic achievement
(Calvó-Armengol, Patacchini, and Zenou (2009)); sport and club participation (Bramoullé, Djebbari, and
Fortin (2009), Liu, Patacchini, and Zenou (2014)); and juvenile delinquencies or criminal activities (Pat-
acchini and Zenou (2008), Bayer, Hjalmarsson, and Pozen (2009), Ballester, Zenou, and Calvó-Armengol
(2010), Patacchini and Zenou (2012)).

2A static network refers to a cross-sectional case in which only one observation of a network is available.
We focus on a static setting because most widely used social network data are cross-sectional, for example,
Add Health data (Udry (2003)) and Indian rural village data (Banerjee, Chandrasekhar, Duflo, and Jackson
(2013)). Limited network data with a panel structure can be found in the literature dealing with stochastic
actor-based dynamic network modeling; for example, see Snijders (2001) and Snijders, Van De Bunt, and
Steglich (2010).
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for economic choices that are subject to peer effects, for example, smoking decisions, to
impact individuals’ utilities of forming network links.

Formally, we present a two-stage game. A network is formed in the first stage, and
then in the second stage, individuals choose the intensity of their involvement in some
economic activities (e.g., tobacco consumption). We focus on a “subgame perfect” equi-
librium; we consider individuals who anticipate the second stage of the game when
choosing network links in the first stage.

The formation of the network, that is, the first stage, follows the literature regard-
ing the stability and efficiency of social networks (Jackson and Wolinsky (1996), Dutta
and Jackson (2000), Jackson (2005), Caulier, Mauleon, and Vannetelbosch (2015)). Ac-
cordingly, we adopt a transferable utility framework that allows individuals to make side
payments. Indeed, we present a model in which individuals may have preferences over
global network features (e.g., popularity, transitive triads, etc.). As such, individuals have
a strong incentive to make side payments.

Once a network is formed, individuals choose the intensity of their activities in the
second stage. We therefore follow the literature dealing with games on networks (e.g.,
Ballester, Calvó-Armengol, and Zenou (2006), Calvó-Armengol, Patacchini, and Zenou
(2009), Bramoullé, Kranton, and D’amours (2014), Boucher (2016)) and focus on the
Nash equilibrium. Specifically, individuals choose the intensity of each activity non-
cooperatively, taking the network and the other individuals’ choices as given.

The advantages of modeling both network formation and network interactions us-
ing an unified framework are twofold: first, we can evaluate the importance of individual
incentives on forming friendship that stem from utilities of interactions in activity out-
comes. That is, assessing how much individuals anticipate that they will be influenced
once a network is formed. Second, the use of a jointly coherent model permits control-
ling for possible friendship selection biases on estimating peer effects on each activity.

A simple empirical approach to model network formation is to assume pairwise in-
dependence: the probability of forming each link is independent of other links, con-
ditional on observables.3 For example, Fafchamps and Gubert (2007a, 2007b) and Co-
mola (2007) assume pairwise independence and focus on individual and dyad-specific
variables to explain the formation of a network. Other examples include latent position
models (Hoff, Raftery, and Handcock (2002), Handcock, Raftery, and Tantrum (2007),
McCormick and Zheng (2015)) and models with unobserved (network) degree hetero-
geneity (Graham (2017), Jochmans (2018)). In these models, individuals are assumed to
have unobserved positions (or fixed effects) in the network that reflect heterogeneity of
their social or economic status. Those unobserved positions also allow researchers to
control the homophily effect in terms of unobserved individual characteristics.

However, as noted by Bramoullé and Fortin (2009), pairwise independence is a
strong assumption since it implies that individuals’ utility functions are additively sep-
arable across links. Therefore, even if such models are flexible enough to replicate
many network statistics observed in real data, their microeconomic foundations involve
strong assumptions.

3Under pairwise independence, the likelihood of the entire network conditional on unobservables is the
product of likelihoods from all pairs of agents.
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In this paper, we go beyond pairwise independence specification and consider the
exponential probability distribution to model network data. The idea is to treat an ob-
served network as one of many possible configurations for links (represented by one or
zero) among a population ofm individuals. This idea matches the Exponential Random
Graph model (ERGM) proposed by Frank and Strauss (1986) or, more generally, the p∗
model of Wasserman and Pattison (1996) in the statistical literature.

In either an ERGM or a p∗ model, several selected network statistics, such as the
number of reciprocal links, the number of k-stars, k≥ 2, and the number of triangles, are
specified using an exponential probability distribution as a way to measure how likely
those network structures would appear in a network.4 However, the coefficients of those
network statistics in ERGMs and p∗ models do not allow for causal interpretations.

Contrary to the standard literature on ERGMs, we motivate our model specifica-
tion using a formal economic model where the probability of the observed network is
given by the shape of the unique equilibrium of the game. Meanwhile, we show that
previous methods used for controlling unobserved individual heterogeneity through la-
tent variables (Hsieh and Lee (2016)) can still be used in our context. As a result, our
proposed network formation model handles three distinguished features: observed and
unobserved individual heterogeneity, global network dependence, and utilities of in-
teractions from endogenous economic activities as incentives in link decisions. To our
knowledge, this is the first paper to do so.

The drawback of using a very general and flexible specification is that it complicates
the estimation. Indeed, the likelihood function of an ERGM involves an intractable nor-
malizing term in the denominator, which requires the evaluation of the network statis-
tics for all possible network realizations. To handle the intractable normalizing term dur-
ing the estimation, many suggestions have been proposed; they include, for example,
using simulations in a classical estimation setting (Geyer and Thompson (1992), Sni-
jders (2002)) or in a Bayesian setting with auxiliary Markov chain Monte Carlo (MCMC)
(Liang (2010), Murray, Ghahramani, and MacKay (2006), Mele (2017b)).

Due to its numerical efficiency, in this paper we adopt a Bayesian method based on a
double Metropolis–Hastings (M–H) algorithm (Liang (2010)) to deal with the intractable
normalizing term. We also implement the modification of the double M–H proposed by
Mele (2017b) to improve convergence of the algorithm. We conduct an extensive sim-
ulation study to show that the proposed Bayesian MCMC sampler can successfully re-
cover true model parameters from artificially generated network data. We also examine
model misspecification issues in the simulation and provide new evidence of network
endogeneity biases within network interaction studies.

We apply our model to the study of American high school students’ friendship net-
works using the Add Health data. We focus on two activity variables: students’ GPA and
smoking habits. We find a significant impact of a student’s GPA on the formation of the
network, but we observe no effect from their smoking habits. However, we find peer ef-
fects for both activities. This suggests that the interaction in academic learning is a factor
for building friendships, whereas the interaction in smoking is not.

4See Wasserman and Pattison (1996), Snijders (2002), and Snijders, Pattison, Robins, and Handcock
(2006) for more complete lists of network statistics used in ERGMs.
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Our results also reveal significant homophily effects from both the observed and un-
observed characteristics in network formation. Unobserved characteristics in network
formation have significant influence on activity outcomes. That is, peer effects on GPA
and smoking are subject to selection biases due to unobserved characteristics linked to
the formation of friendship relations.

This paper contributes mainly to two strands of the literature. First, it contributes
to the empirical literature on network formation. Graham (2017), Jochmans (2018), and
Dzemski (2019) introduced node specific parameters to capture degree heterogeneity
in a pairwise independent link formation model; however, they ignore any possible
network externality effect. We capture the network externality effects in our empirical
model by allowing for global network effects such as popularity, transitive triads, etc.

Sheng (2014), Miyauchi (2016), and De Paula, Richards-Shubik, and Tamer (2018)
specified strategic network formation models and characterize equilibria of their mod-
els by the pairwise stability condition (Jackson and Wolinsky (1996)). Instead of impos-
ing equilibrium selection assumptions, they specify incomplete models and utilize a
partial identification approach. We show that our model is complete as it corresponds to
the unique equilibrium of our two-stage game. Importantly, the structure of the model
gives us more flexibility in including relevant observed and unobserved individual char-
acteristics, and network features.

Christakis, Fowler, Imbens, and Kalyanaraman (2010) and Mele (2017b) modeled
network formation as a sequential process where in each period a single, randomly se-
lected pair of agents has the opportunity to meet and decide to form or sever a link. This
sequential process is equivalent to an equilibrium selection mechanism in the corre-
sponding static model (Jackson and Watts (2002)). In contrast, our equilibrium concept,
which allows for side payments, leads to a static random utility model.

More specifically, we contribute to the empirical literature on ERGMs of network
formation (e.g., Chandrasekhar and Jackson (2014), Boucher and Mourifié (2017), Mele
(2017b), Mele and Zhu (2017) Mele (2017c)). With an exception of Mele (2017c), the lit-
erature assumes that econometricians observe all of the payoff relevant variables. We
contribute to the literature by allowing for unobserved heterogeneity using latent vari-
ables, following the strategy used in Hsieh and Lee (2016) and Hsieh and Van Kippersluis
(2018). Also, our transferable utility setting allows us to study a wider range of prefer-
ences. In particular, we do not require the existence of a potential function.

Second, this paper contributes to the literature on peer effects in endogeneous net-
works (e.g., Goldsmith-Pinkham and Imbens (2013), Hsieh and Lee (2016)). In particular,
this paper contributes to the emerging empirical literature studying the impact of eco-
nomic actions on the formation of a network.5 To our knowledge, the only five existing
papers that deal with this aspect are Badev (2013), Boucher (2016), Lewis-Faupel (2016),
Battaglini, Patacchini, and Rainone (2019), and Hsieh, König, and Liu (2019).

Badev (2013) focused on a setup where individuals take a single binary action (af-
fecting the preferences on the network structure). He presents a random utility model

5There is a consequent theoretical literature. We refer the interested reader to Boucher (2016) for a dis-
cussion and additional references.



1354 Hsieh, Lee, and Boucher Quantitative Economics 11 (2020)

and an original equilibrium concept—based on stability constraints—that nests a pair-
wise stable and pairwise Nash network. The equilibrium also follows an ERGM in which
all payoff relevant variables are assumed to be observed and where existence is only
guaranteed for potential games. Lewis-Faupel (2016) also focused on a setup where in-
dividuals take a single binary action, but this binary action is anticipated in the network
formation stage, where individuals form heuristic expectations.

Boucher (2016) presented a model of conformism with respect to a single continu-
ous action. Since the model features many equilibria, he assumes that the data is gener-
ated by the equilibrium that maximizes the potential function. Solving for such an equi-
librium is not feasible, thus the estimation is performed using the maximum of first- and
second-order approximations of the potential function. Hsieh, König, and Liu (2019)
used a similar framework to Badev (2013) while considering a continuous action under
the context of firm R&D collaboration network and R&D expenditure. The microfoun-
dation of their model is based on the stochastic best response dynamics (Blume (1993))
and the equilibrium is also only guaranteed for potential games.

Battaglini, Patacchini, and Rainone (2019) studied the interaction between the in-
tensity of a legislator’s social connections and their legislative effectiveness. In particu-
lar, they allow for varying connections’ strengths and present a novel equilibrium notion.
They show that social connection are an important driver of legislators’ effectiveness.

In contrast to this literature, the model presented in this paper simultaneously stud-
ies multiple activities. We also control for a wide range of unobserved heterogeneity and
allow for a large class of preferences. In particular, characterization of our model equi-
librium does not require the existence of a potential function.

The remainder of this paper is structured as follows. Section 2 presents a unified
modeling approach for both network formation and network interactions on economic
activities. A Bayesian estimation method for the proposed model is discussed in Sec-
tion 3. Section 4 provides an application of the model to high school students’ friendship
networks and activities with the Add Health data. Section 5 concludes the paper. Ap-
pendix A provides a proof of the main proposition in this paper. Some technical details
of estimation, a Monte Carlo simulation, and additional empirical results are relegated
to the Online Supplementary Appendix (Hsieh, Lee, and Boucher (2020)).

2. Economic model of peer effects in an endogenous network

2.1 Description of the economy

Let W be an m ×m matrix representing the friendship network of m individuals.6 The
(i� j)th entry of W , denoted as wij , equals one if individual i has a link to individual j
and zero otherwise. The notation wi stands for the ith row of W and W−i stands for W
excluding wi. We assume that the links are directed, so it is possible that i has a link to
j, while j is not linked to i (i.e., W is not symmetric).7 We normalize diagonal elements

6It is called spatial weights matrix, adjacency matrix, or sociomatrix in the literature.
7This nonreciprocity is motivated by our empirical application. In fact, 54�36% of friendship links in

our dataset (Add Health) are nonreciprocal. This assumption is also present in Hsieh and Lee (2016), Mele
(2017b), Jochmans (2018), and others.
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so that wii = 0 for all i ∈ (1� � � � �m). Importantly, we assume that individuals can form at
most n̄ friendship relations. This assumption may reflect, for example, time constraint
(e.g., Boucher (2015) and De Paula, Richards-Shubik, and Tamer (2018)).

Let X be the m× k matrix of individual characteristics and xi be the ith row of X .
Individuals choose the intensity of their involvement in economic activities. For each
activity d ∈ (1� � � � � d̄), let yi�d denote the intensity of individual i in activity d. Let also
Yd = (y1�d� � � � � ym�d)

′ be the m-dimensional column vector of intensities for activity d
andY−i�d be them−1 dimensional vector with yi�d removed fromYd . We assume that yi�d
is continuous, or continuous on strictly positive values, but we allow for left censoring
at zero. Formally, we consider either yi�d ∈ R or yi�d ∈ R+.8 The impact of left censoring
on equilibrium activity intensity is formally described in Proposition 1 in Section 2.3.

2.2 Preferences

As discussed above, we focus on a transferable utility framework in which individuals
are allowed to make side payments. How those side payments are implemented is de-
scribed in Section 2.3. In this section, we describe the individuals’ preferences before
side payments are allowed. The preference of any given individual i is represented by
the utility function:

Ui(W �Y1� � � � �Yd̄)= vi(W )+
d̄∑
d=1

δdui�d(yi�d�Y−i�d�W )� (1)

where vi(W ) represents an explicit preference over the structure of network W , while
ui�d(yi�d�Y−i�d�W ) is the utility derived from activity d when individuals are choosing
Yd = (yi�d�Y−i�d) and the network structure is given byW . The coefficient δd ≥ 0 captures
the relative importance (or weight) of the utility of activity d with respect to the utility of
the network vi(W ). We call this the incentive effect of activity d on network formation.9

It is worth noting that, conditional on W , the utility in equation (1) is separable
across activities, so we assume no complementarity across activities. This assumption
is quite common in the literature, with the notable exception of Cohen-Cole, Liu, and
Zenou (2018).10 That being said, since the network structure is endogenously deter-
mined in our context, the optimal choice for each activity will, at equilibrium, be a
function not only of the individual’s preference for this particular activity but also of
preferences for the other activities, and their explicit network preferences.11 Indeed, the
equilibrium value for (W �Y1� � � � �Yd̄) is the result of a complex interplay between in-
dividuals’ preference over the network structure and their preferences regarding each

8We abstract from the activity outcome of discrete choices in this paper as it generally involves multiple
equilibria (Krauth (2006), Soetevent and Kooreman (2007)). This is left for future research.

9Since this is a two-stage game (see Section 2.3), the coefficient δd can also be interpreted as an activity
specific discount factor.

10While our model could be extended to such a setting, it would raise nontrivial identification issues
(Cohen-Cole, Liu, and Zenou (2018)), which are left for future research.

11We also assume that the unobserved part (for the econometrician) of the utility functions for each
activity may be correlated. See details in Section 4.
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type of activity. This has important consequences for estimation, as will be discussed in
Section 4.

For tractability, we follow the literature (e.g., Ballester, Calvó-Armengol, and Zenou
(2006), Calvó-Armengol, Patacchini, and Zenou (2009), Bramoullé, Kranton, and
D’amours (2014), Boucher (2016)) and assume a linear quadratic specification for the
utility of activity conditional on network structure:

ui�d(yi�d�Y−i�d�W )= μi�dyi�d − 1
2
y2
i�d + λdyi�d

m∑
j=1

wijyj�d� (2)

where μi�d captures individual exogenous heterogeneity. The first and second terms of
equation (2) represent the private benefit and cost of increasing the intensity of the ac-
tivity yi�d . The third term reflects an additional social benefit (or cost) of increasing the
intensity of the activity for the individual, that is, a complementary (or competitive) ef-
fect from peers’ activity intensities whenever λd ≥ 0 (λd < 0).

We assume that individual i’s (explicit) preference for the network structure is given
by

vi(W )=
m∑
j=1

wijψij︸ ︷︷ ︸
local network effects

+ �i(wi�W−i)η︸ ︷︷ ︸
global network effects

+τi�W � (3)

where τi�W is an idiosyncratic shock on the value of the network W for individual i. In
equation (3), the local network effects captured by ψij give the intrinsic bilateral value
(for individual i) of a link between i and j. This value is assumed to be independent
from the position of the individual in the network. However, as argued by Bramoullé and
Fortin (2009), individuals may also have preferences over the entire network structure.
These preferences are captured by the global network effects�i(wi�W−i)η and allow for
preferences regarding many features of the networks (e.g., popularity, clustering, etc.).
Specifically, �i(wi�W−i) is an h̄-dimensional row vector of network statistics that are
relevant to individual i’s utility, and η is the corresponding vector of coefficients. Note
that by considering these global network effects, our network model differs substan-
tially from the pairwise independent network link case (Bramoullé and Fortin (2009))
and connects to ERGMs in the statistical literature. The empirical specification of global
network effects used in this paper is discussed in Section 2.4. We now discuss our equi-
librium concepts for (W �Y1� � � � �Yd̄) and the timing of the game.

2.3 Game

The game occurs in two stages. In the first stage, network links are determined. In the
second stage, individuals play a noncooperative game for the choice of the activity in-
tensities (Y1� � � � �Yd̄), conditional on the network structure.

Our equilibrium (stability) concept for the first stage of the game is based on the
literature focused on the stability and efficiency of network formation games (e.g., Jack-
son and Wolinsky (1996), Dutta and Jackson (2000), Jackson (2005), Caulier, Mauleon,
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Figure 1. Example of a simple global network effect.

and Vannetelbosch (2015)). In this transferable utility setting, individuals are allowed to
make side payments. For example, individuals may be willing to spend time or resources
so that other individuals want to be linked to them. Although these side payments are
not observed, they play an important role in the efficiency of the equilibrium network.

The focus on a transferable utility framework in this paper contrasts with the existing
economic literature based on ERGMs (i.e., as in equation (6) below). Indeed, the usual
microeconomic foundation is based on Christakis et al. (2010), Badev (2013), and Mele
(2017b) where individuals are assumed to have the opportunity periodically to meet an-
other and revise their friendship status (in a nontransferable utility framework). Impor-
tantly, it is assumed that the revision of that friendship relation is done myopically, tak-
ing the rest of the network structure as given. The meeting process runs through time,
and it is assumed that the observed network is drawn from its steady state distribution.

In contrast, we focus on a static random utility model and do not assume any specific
meeting process.12 This implicitly allows for a richer variety of meeting processes. Un-
der the assumptions of Section 2.2, individuals’ preferences not only depend on which
friends they have, but also on the the global network effects (see equation (3)). Conse-
quently, we might expect individuals to be willing to spend resources to promote certain
friendship relations.

To clarify the intuition, consider a very simple example of a population composed of
only three individuals (i, j, and k). Assume that the global network effect for i is given by
�i(wi�W−i)η = wijwkjη > 0 so that for i the value of a link with j is greater when there
exists a link between k and j, as Figure 1 illustrates.

Individual i would therefore be willing to spend resources to compensate individual
k for creating a link with j (provided they would not do so otherwise). Of course, this
is just a simple example, but the general intuition is the same: global network effects
introduce strong incentives for side payments, irrespective of the specification used.

Then, following the literature (see above), we focus on the set of networks that
are both efficient and individually stable (or rational)—allowing for side payments—
where efficiency is defined with respect to the network value denoted by T(W ). Al-
though this quantity can be defined in many ways, we assume (as in Dutta and Jack-
son (2000)) that the network value is given by the sum of the individuals’ utilities, that
is, T(W ) = ∑

i Ui(W ).
13 This definition allows to see side payments as being made in

“utility units.” We focus on strongly efficient networks (Dutta and Jackson (2000)), that
is, networksW ∗ such that T(W ∗)≥ T(W ) for allW .

Whether or not strongly efficient networks are individually stable depends on how
the network value is shared among individuals, that is, how side payments are made.

12The randomness is due to the preference shocks τi�W , which would be unobservable to an econome-
trician.

13The dependence of Ui on Y is omitted on purpose. The formal definition is presented in Definition 1
below.
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This is formally described by the allocation rule {Λi(W �T)|∑i Λi(W �T)= T(W )}, which
is the utility received after the side payments have been paid.14 If no side payments are
allowed, the allocation rule is simply given by the individuals’ utility:Λi(W �T)=Ui(W ).
If there are side payments, the value of the side payments received by i is simply given by
the difference between the allocation rule and the utility: sidepaymentsi = Λi(W �T)−
Ui(W ). For example, if the value of the network is shared equally among individuals,
we get:Λi(W �T)= T(W )/m. Note that the balance requirement of

∑
i Λi(W �T)= T(W )

imposes that no outside resources are used in making side payments. Indeed, using our
definition for the network value, we obtain

∑
i Λi(W �T)= ∑

i Ui(W ).
LetΩn̄ be the set of networks structures such that individuals have at most n̄ friends.

We say that a network W ∈ Ωn̄ is individually stable, relative to {Λi}mi=1 and T , if for all
i, Λi(W �T) ≥ Λi(W̃ �T) for all networks W̃ ∈ Ωn̄ such that w̃jk = wjk for all k and all
j �= i.15 In essence, the network is individually stable if no individual wants to create or
remove links, given the side payments. In what follows, we do not make any assumptions
regarding the specific allocation rule used. We merely assume that the allocation rule
is selected among the (nonempty) set of allocation rules compatible with both strong
efficiency and individual stability.

Once the network is formed, individuals are free to select intensities of activities in
which they are involved, conditional on network structure. We follow the extensive liter-
ature for games on networks (e.g., Ballester, Calvó-Armengol, and Zenou (2006), Calvó-
Armengol, Patacchini, and Zenou (2009), Bramoullé, Kranton, and D’amours (2014),
Boucher (2016)) and assume that activity intensity choices are part of a Nash equilib-
rium.16 Formally, our equilibrium concept for the two-stage game is defined as follows.

Definition 1. An (subgame perfect) equilibrium of the two-stage game is a collection
(W �Y1� � � � �Yd̄) such that:

1. (Y1� � � � �Yd̄) is in a Nash equilibrium, conditional on W ∈ Ωn̄. We denote such an
equilibrium by (Y ∗

1 (W )� � � � �Y
∗̄
d
(W )).

2. The network value

TY ∗(W )=
∑
i

Ui
(
W�Y ∗

1 (W )� � � � �Y
∗̄
d
(W )

)
is strongly efficient and individually stable for networks in Ωn̄ under some alloca-
tion rules.

Note that the definition of the value of the network in the first stage of the game
(i.e., TY ∗(W )) is given by the sum of the individuals’ utilities, anticipating that individ-
uals will play the Nash equilibrium Y ∗

d (W ) in the second stage. In this sense, therefore,
the equilibrium is subgame perfect since it is solved by backward induction. The next
proposition follows.

14This definition assumes implicitly that the allocation rule is balanced, as in Dutta and Jackson (2000).
15This is equivalent to saying that W is individually stable if W is a Nash equilibrium of the game where

individuals’ payoffs are given by the allocation rule, under the network value T(W ).
16That is, (Y ∗

1 � � � � �Y
∗̄
d
) such that y∗

i�d ∈ arg maxyi�d Ui(W �Y
∗
1 � � � � � yi�d�Y

∗
−i�d� � � � �Y

∗̄
d
) for all i and d.
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Proposition 1. Assume that |λd|< 1/n̄ for all d = 1� � � � � d̄ and that τW ≡ ∑
i τi�W is dis-

tributed according to a Type I extreme value distribution. Then there exists a (generically)
unique equilibrium of the two-stage game. Moreover,

(i) for all d, such that yi�d ∈R, we have

Y ∗
d (W )= (Im − λdW )−1μd� (4)

where Im is an m ×m identity matrix and μd = (μ1�d� � � � �μm�d)
′. While for all d

such that yi�d ∈R+, the unique equilibrium is determined as

y∗
i�d(W )= max

{
0�μi�d + λd

m∑
j=1

wijy
∗
j�d(W )

}
� (5)

(ii) The equilibrium value is given by TY ∗(W )= V (W )+ τW , where

V (W )=
m∑
i=1

m∑
j=1

wijψij +
m∑
i=1

�i(wi�W−i)η

+
d̄∑
d=1

δd

[
μ′
dY

∗
d (W )− 1

2
Y ∗′
d (W )Y

∗
d (W )+ λdY ∗′

d (W )W Y
∗
d (W )

]
�

Therefore, the probability ofW at equilibrium is given by

P(W )= exp
{
V (W )

}∑
W̃ ∈Ωn̄

exp
{
V (W̃ )

} � (6)

The uniqueness of the Nash equilibrium uses standard arguments (e.g., Ballester,
Calvó-Armengol, and Zenou (2006)). Whenever |λd|< 1/n̄ for all d ∈ (1� � � � � d̄), the best
response functions are contraction mappings, leading to a unique fixed point.17 Note
that the contracting property also has the important numerical advantage of provid-
ing an iterative procedure to solve for the equilibrium when yi�d ∈ R+. See the proof of
Proposition 1 in Appendix A.

Also, since the Nash equilibrium in the second stage is unique, the value of the net-
work is also uniquely determined, that is, TY ∗(W ) = T(W ). Since τW ≡ ∑

i τi�W is dis-
tributed according to a Type I extreme value distribution, standard arguments show that
the distribution of the maximum of T(W ) follows a logistic form. Brock and Durlauf
(2001) used the same assumption when specifying the social welfare function. Indeed,
while one might prefer to assume that each τi�W follow a Type I extreme value distri-
bution, this would make the model intractable since the sum of Type I extreme value
distributions is not Type I extreme value distributed. Assuming that τW is distributed
according to a Type I extreme value distribution guarantees that the unique strongly ef-
ficient network is given by (ii) of Proposition 1.

17See the proof of Proposition 1 for a discussion of the strength of this assumption.
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An example of an allocation rule for which the strongly efficient network is also in-
dividually stable is Λi(W �T)= T/m. Of course, this is not the only admissible allocation
rule. In particular, any allocation rule that can be written as a nondecreasing function of
the network value is individually stable. More generally, it is also possible to impose ad-
ditional normative properties on the admissible allocation rules. We refer the interested
reader to Dutta and Jackson (2000) for further discussions and results. Jackson (2005)
also presented an extensive discussion of the type of allocation rules compatible with
both strong efficiency and individual stability.

It is worth noting that the expression μ′
dY

∗
d (W ) − 1

2Y
∗′
d (W )Y

∗
d (W ) + λdY

∗′
d (W ) ×

W Y ∗
d (W ) in the equilibrium value for V (W ) reduces to 1

2Y
∗′
d (W )Y

∗
d (W )when activity d’s

intensity is uncensored since we can exploit the closed-form solution in equation (4).
In that case, the incentive effect of activities is always non-negative (recall that δd ≥ 0
in equation (1)). Indeed, as noted by Ballester, Calvó-Armengol, and Zenou (2006), this
property holds whenever the choice of activities features complementarities.18 As such,
without explicit network preferences, that is, vi(W ), individuals would want to have as
many links as possible, leading to a regular network in which all individuals have n̄ links.
In Section 2.4, we discuss the specific parametric assumptions of vi(W ) and how they
prevent the model from generically producing degenerated network structures.

2.4 Parametric specification

We specify individual exogenous heterogeneity in equation (2) via μi�d = xiβ1d +∑m
j=1wijxjβ2d + αd + εi�d , where αd is a constant term, and εi�d is the unobserved het-

erogeneity of i’s preference regarding activity d. Following Proposition 1, the equilibrium
for uncensored activities is given by

Y ∗
d (W )= (Im − λdW )−1(Xβ1d +WXβ2d + lmαd + εd)� (7)

where lm is the m-dimensional vector of ones, and εd = (ε1�d� � � � � εm�d)
′. Equation (7)

matches the reduced form of a spatial autoregressive (SAR) model (Bramoullé, Djebbari,
and Fortin (2009), Lee, Liu, and Lin (2010), Lin (2010)) for studying social interactions.
The coefficient λd in equation (7) represents the endogenous (peer) effect, which has
been the focus of recent literature due to its policy implications (Glaeser, Sacerdote, and
Scheinkman (2003)). The vector of coefficients βd = (β′

1d�β
′
2d)

′ captures the own and
contextual effects of individuals’ and friends’ exogenous characteristics on Yd .

However, a notable departure of our model from the literature is that the network
structure W in equation (7) is explicitly endogenous. To understand the source of this
endogeneity, recall that from Proposition 1, we have

P(W )= exp
{
V (W )

}∑
W̃ ∈Ωn̄

exp
{
V (W̃ )

} �
18Boucher (2016) studied a model of conformism having an endogenous network. He shows that con-

formism has non-monotonic effects on the value of network links.
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For the sake of the discussion, assume for the moment that yi�d ∈R, so that we have

V (W )=
m∑
i=1

m∑
j=1

wijψij +
m∑
i=1

�i(wi�W−i)η+ 1
2

d̄∑
d=1

δdY
∗′
d (W )Y

∗
d (W )�

We see immediately that V (W ) is also a function of εd . Then this implies that any shock
εd has three conceptually distinct effects. First, it directly affects Y ∗

d , conditional on W .
Second, through its effect on Y ∗

d , it indirectly affects network structure W through its
effect on V (W ). Third, through its indirect effect on W , it also affects Y ∗̃

d
for the other

activities d̃ �= d.
This endogeneity is exacerbated if there exist unobserved variables that are directly

affecting the network formation as well as intensities of activities (e.g., Goldsmith-
Pinkham and Imbens (2013), Hsieh and Lee (2016)). We also allow for such unobserved
variables to affect individuals’ preferences over links in our model. Specifically, we fol-
low Hsieh and Lee (2016) to introduce the multidimensional individual latent variables
zi = (zi1� � � � � zi�̄)

′ in the network formation process through the local network effect as
follows:

ψij = γ0 + ciγ1 + cjγ2 + cijγ3 +
�̄∑
�=1

γ4�|zi� − zj�|� (8)

The variables ci and cj in equation (8) are observed s̄-dimensional row vectors of individ-
ual specific characteristics, and the variable cij is an observed q̄-dimensional row vector
of dyad-specific characteristics, such as whether i and j have the same age, sex, or race.19

In particular, the individual and dyadic characteristics C = {(ci� cj� cij) : i= 1� � � � �m� j =
1� � � � �m� i �= j} control for observed homophily in the network formation process (see,
e.g., Fafchamps and Gubert (2007a, 2007b) in the context of risk sharing network forma-
tion). The variables |zi� − zj�| for � = 1� � � � � �̄ in equation (8) are meant to capture the
homophily on unobserved characteristics. We expect the coefficients γ′

4s to be negative,
reflecting the fact that larger differences between individual unobserved characteristics
reduce the likelihood that two individuals become friends. For exposition purposes, we
denote γ = (γ0�γ

′
1�γ

′
2�γ

′
3�γ

′
4)

′.
The latent variables also affect intensities of activities through the unobserved het-

erogeneity: εd = Zρ1d +WZρ2d + ξd , where Z = (z′
1� � � � � z

′
m)

′ is a m× �̄ matrix of unob-
served (latent) variables. Note that Z is not specific to any activity d. Correspondingly,
the activity intensity of equation (7) can be rewritten as

Y ∗
d (W )= (Im − λdW )−1(Xβ1d +WXβ2d +Zρ1d +WZρ2d + lmαd + ξd)� (9)

where we assume that ξd ∼ Nm(0�σ2
ξd
Im). Given the role played by the latent variablesZ

in equation (8) for network formation,Z andWZ that appear in equation (9) can also be

19It is possible to specify cij = |ci − cj | if ci is continuous. For binary ci, however, we prefer the use of
dummy variables cij taking a value of 1 if i and j have the same value. Of course, this is fully equivalent to
taking the distance, which would take a value of 1 if i and j have different values, and 0 otherwise.
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interpreted as control functions for solving endogeneity due to individual and contex-
tual unobserved correlated effects (Arcidiacono, Foster, Goodpaster, and Kinsler (2012),
Fruehwirth (2014), Hsieh and Van Kippersluis (2018)).20 Note that latent variables Z are
treated as random effects and, therefore, they should be independent of X in equation
(9). Besides, although bothWZ and αd capture the correlated effects due to unobserve-
ables, they are differentiated by the fact thatWZ reflect individual variations while αd is
a constant for all group members.

In our empirical application, we consider the following specification of global net-
work effects (see equation (3)):

�i(wi�W−i)η=
m∑
j=1

wij

{
η1wji︸ ︷︷ ︸

reciprocity effect

+η2

m∑
k�=j

wik +η3

(
m∑
k�=j

wik

)2

︸ ︷︷ ︸
congestion effect

+ η4

m∑
k�=i

wkj︸ ︷︷ ︸
popularity effect

+
m∑
k

(η51wikwkj +η52wkiwkj +η53wikwjk)︸ ︷︷ ︸
transitive triads effects

+ η6

m∑
k

wjkwki︸ ︷︷ ︸
three−cycle effect

}
� (10)

We discuss the interpretation of each term in equation (10) in turn and provide a visual-
ization of each effect in Figure 2.21

The reciprocity effect implies that (provided that η1 > 0) i enjoys more utility from a
link with j if j also has a link with i. The congestion effect (provided that either η2 < 0 or
η3 < 0) implies that the value for i of a link with j decreases with the number of links that
i has. This may represent the fact that i has limited resources, for example, limited time,
energy, or money (Boucher (2015)). Note that we capture this effect by individual i’s out-
degree and out-degree square to allow this cost to be concave or convex. The popularity
effect captures the fact that i may enjoy more utility (if η4 > 0) from their link with j if j
is popular, that is, receives many links.

The transitive triads effects include preferences for cliques, that is, explicit prefer-
ences for the transitivity of the network. When i is considering a link to j, he may take
into account that he has a link to k, and k has a link to j. Therefore, the creation of a
link between i and j would close the triad between i, j, and k. There are, of course, other
types of transitive triads effects, displayed at the bottom left of Figure 2.

A similar intuition holds for the three-cycle effect, although as noted by Snijders, Van
De Bunt, and Steglich (2010), the emergence of more three cycles in a network implies
fewer hierarchical relationships among individuals. Indeed, note that the three cycle ef-
fect differs from the transitive triads effects by having a circular links between i, j, and

20Fruehwirth (2014) argued that the rationale of including peer activity outcome into the social interac-
tions model is to proxy for the unobserved peer inputs or characteristics. Therefore, even if the model is
identified, the estimated effects of peer characteristics from the social interactions model with the endoge-
nous effect is hard to interpret and used for policy suggestion. Thus, an intuitive way to alleviate such a
concern is to distinguish the effect of unobserved peer characteristics from the endogenous effect of peer
activity outcome by directly specifyingWZ in the model.

21We also provide additional discussion in the Online Supplementary Appendix B.
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Figure 2. Global network effects.

k, see the bottom right of Figure 2. As such, the three cycle is less hierarchical since all
individuals have one inward link and one outward link. As discussed by Davis (1970),
social networks usually feature local hierarchy, that is, fewer three cycles. We therefore
expect η6 to be negative.22

Given the parametric assumption in equation (10), we can write

m∑
i=1

�i(wi�W−i)η

= η1tr
(
W 2) +η2

(
l′mW ′W lm − l′mW lm

)
+η3

(
l′mW ′Diag(W lm)W lm − 2l′mW ′W lm + l′mW lm

)
+η4

(
l′mW W ′lm − l′mW lm

) + (η51 +η52 +η53) tr
(
W 2W ′) +η6tr

(
W 3)� (11)

where in general for anm× 1 vectorA, Diag(A) is anm×m diagonal matrix with its di-
agonal elements formed by the entries of the vectorA. One can see that parameters η51,
η52, and η53 are not identified separately from equation (11) via the (first stage) game.
Hence, we will use η5 = η51 +η52 +η53 hereafter. We further denote η= (η1� � � � �η6)

′ for
the purposes of exposition.

It is important to note that by including the possible cost captured by the congestion
effect, some of the global network effects are expected to produce sufficiently large neg-
ative externalities on link formation so that not all individuals will form n̄ links (resulting
in a regular graph). Moreover, as discussed by Snijders et al. (2006), Bhamidi et al. (2011),
Chatterjee, Diaconis et al. (2013), and Mele (2017b), we need negative externalities in

22This is indeed what we find in our empirical study; see Table 2.
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ERGMs to produce sparser graphs so that they can be distinguished from Erdös–Rény
random graphs when the number of individuals increases. In our case, η2 (or η3) and η6

are expected to create such negative externalities, and we confirm that these parameter
estimates are significantly negative in our empirical study in Section 4. Lastly, in order to
summarize our empirical model and provide an intuitive illustration, we use Figure 3 to
present the model with two activities in which variables and interactions between them
are displayed.

3. Model estimation

3.1 Group heterogeneity

Prior to this section, we assumed that individuals belong to one, potentially large pop-
ulation. However in many contexts—such as the high school students in our empirical
application—the population can be partitioned into groups, such that individuals can
only form links within each group. In this context, it is important to capture the hetero-
geneity across these groups. We therefore expand the model assuming that the popu-
lation is partitioned into G groups, and we use the subscript g ∈ {1� � � � �G} to indicate
explicit group heterogeneity.

3.2 Likelihood function of the model

To clarify the intuition of the estimation procedure—and for the purposes of
exposition—we assume that d̄ = 1 and that yi�d = yi is uncensored. Accordingly, we drop
the subscript d for clarity.23 Although our preferred specification for the empirical ap-
plication is for two activities (one censored and one uncensored), its formal description
involves additional notations and steps but not any new conceptual issue. We refer the
interested reader to Online Supplementary Appendix D for details.

Since both Yg and Wg are endogenous variables, we focus on the joint likelihood,
that is,24

P(Wg�Yg|θg�αg�Zg)= P(Yg|Wg�θg�αg�Zg) · P(Wg|θg�αg�Zg)�

where θg = (γ′�η′� δ�λ�β′�ρ′�σ2
ξg
). Note that to describe group heterogeneity on activ-

ity outcomes at both the mean and variance levels, we use αg and σ2
ξg

to capture re-

spectively the group fixed effect and group heteroskedasticity in equation (9). To adhere
to the principle of model parsimony, the other coefficients are assumed to be common
across groups. Using the parametric forms assumed in Section 2.4, we can write the joint
mixed density function ofWg and Yg conditional on the latent variable Zg as

P(Wg�Yg|θg�αg�Zg)
23In the Online Supplementary Appendix C, we present the model likelihood function for the censored

activity outcome case.
24Of course, assuming independence across groups, the joint likelihood (over all groups) can be written

as
∏G
g=1 P(Wg�Yg|θg�αg�Zg).
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= P(Yg|Wg�θg�αg�Zg) · P(Wg|θg�αg�Zg)
= ∣∣Sg(Wg)∣∣ · f (ξg|Wg�θg�αg�Zg) · P(Wg|θg�αg�Zg)
= ∣∣Sg(Wg)∣∣ · f (ξg�Wg|θg�αg�Zg)
= ∣∣Sg(Wg)∣∣ · f (ξg|θg�αg�Zg) · P(Wg|ξg�θg�αg�Zg)

= ∣∣Sg(Wg)∣∣ · f (ξg|θg�αg�Zg) · exp
(
V(Wg�ξg�θg�αg�Zg)

)∑
W̃g∈Ωn̄�g

exp
(
V(W̃g�ξg�θg�αg�Zg)

) � (12)

where Sg(Wg)= Img − λWg, ξg = Sg(Wg)Yg −Xgβ1 −WgXgβ2 −Zgρ1 −WgZgρ2 − lmgαg,
and

f (ξg|θg�αg�Zg)= (2π)−mg
2

(
σ2
ξg

)−mg
2 exp

(
− 1

2σ2
ξg

ξ′
gξg

)
�

The probability of Wg in equation (12) is the logit probability from Proposition 1. As
Zg consists of latent variables, the joint density of the observed (Wg�Yg) would be
P(Wg�Yg|θg�αg) = ∫

Zg
P(Wg�Yg|θg�αg�Zg)dF(Zg), where F(·) is the joint distribution

of Zg.
Before discussing the estimation strategy, we would like to briefly comment on the

identification of the model. As discussed below, most of these formal identification re-
sults follow the literature. The intuition is also discussed in Figure 3.

First, as seen from the likelihood function of equation (12), the vast majority of pa-
rameters in our model are identified from P(Wg|θg�αg�Zg), which is an ERGM. Intu-
itively, our model is identified under the many networks asymptotics (Mele (2017b)),
which assumes that the number of groups grows with the sample size. In such a case,
the identification of the parameters is standard and follows the theory for exponential
families under the usual regularity conditions as in Lehmann and Casella (2006).

The additional identification issue beyond ERGM is linked to the latent variables Z
in equations (8) and (9). We follow Hsieh and Lee (2016) and Hsieh and Van Kippersluis
(2018) to impose some assumptions on zi��: (1) the variance of zi�� is normalized to one;
(2) zi� is independent across i and �; (3) zi�� follows a known distribution, in our case
a normal distribution; (4) to distinguish different dimension of zi��, we further restrict
|γ41| ≥ |γ42| ≥ · · · ≥ |γ4�̄| in equation (8).25

Also note that while the individual specific variables ci in the local network effect of
equation (8) can overlap with xi in equation (7), the dyad-specific variables cij used in
equation (8) are naturally excluded from equation (7) because of mismatched dimen-
sions. Thus, the model satisfies the exclusion restriction condition in identifying the ef-
fects of Z andWZ in equation (9).

The main challenge in estimating this model is to compute the denominator of a
network probability in equation (12). As it sums all possible network structures, its di-
rect evaluation is impossible, even for small sized networks. For example, in a network

25The justification of these identification restrictions can be found in the Online Supplementary Ap-
pendix of Hsieh and Van Kippersluis (2018).
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with only five individuals in which individuals can form up to five friends, the number
of possible network structures is 25(5−1) = 220. Hence, any estimation method involv-
ing a direct likelihood evaluation is not feasible. This problem applies to all ERGMs for
networks (e.g., Badev (2013), Chandrasekhar and Jackson (2014), Mele (2017b), Boucher
and Mourifié (2017)), and that can be traced back to the spatial analysis in Besag (1974).

In this paper, we implement a Bayesian estimation approach using an effective
MCMC technique developed to handle the intractable normalizing term in the poste-
rior density function (e.g., Mele (2017b)).26 We start by reviewing the intuition behind
the general technique.

3.3 General intuition: Double M–H algorithm

To clarify the intuition, we will (abusively) use the following simplifying notation: for any
variable Ag, we use the notation {Ag} to represent the collection of variables Ag across
G groups, that is, {Ag} := (A1� � � � �AG). Let y = ({Yg}� {Wg}) and ϑ = ({θg}� {αg}� {Zg}).
From Section 3.2, the likelihood function of y, givenϑ, has the following form: P(y|ϑ)=
f (y;ϑ)/D(ϑ), whereD(ϑ) is an intractable normalizing term.

The standard M–H algorithm to simulate random draws of ϑ operates as follows:
given an old draw ϑold, one proposes a new draw ϑnew from a proposal distribution
q(·|ϑold), and then updates the old draw to the new draw with an acceptance ratio
αMH(ϑnew�ϑold) given by

αMH(ϑnew�ϑold)= min
{

1�
P(ϑnew|y)q(ϑold|ϑnew)

P(ϑold|y)q(ϑnew|ϑold)

}
= min

{
1�
π(ϑnew)f (y;ϑnew)q(ϑold|ϑnew)

π(ϑold)f (y;ϑold)q(ϑnew|ϑold)
· D(ϑold)

D(ϑnew)

}
� (13)

where π(ϑ) is the prior distribution of ϑ. One can see that in equation (13), the nor-
malizing terms D(ϑold) and D(ϑnew) do not cancel out; thus the evaluation of the
acceptance-rejection criterion in equation (13) is intractable.

To solve this problem, Murray, Ghahramani, and MacKay (2006) consider including
auxiliary variables ỹ into the acceptance probability, that is, the acceptance probability
can be written as

αMH(̃y�ϑnew�ϑold)

= min
{

1�
π(ϑnew)P(y|ϑnew)q(ϑold|ϑnew)

π(ϑold)P(y|ϑold)q(ϑnew|ϑold)
· P(̃y|ϑold)

P(̃y|ϑnew)

}
= min

{
1�
π(ϑnew)f (y;ϑnew)q(ϑold|ϑnew)

π(ϑold)f (y;ϑold)q(ϑnew|ϑold)
· f (̃y;ϑold)

f (̃y;ϑnew)

}
� (14)

where ỹ are simulated from the likelihood function P(̃y|ϑnew) = f (̃y;ϑnew)/D(ϑnew)

with the exact sampling (Propp and Wilson (1996)).

26Alternative estimation approaches include the maximum pseudo likelihood approach (Besag (1974),
Strauss and Ikeda (1990), Boucher and Mourifié (2017)) and Monte Carlo maximum likelihood (Geyer and
Thompson (1992)).
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In the conditional acceptance probability of equation (14), all normalizing terms
cancel out, and the remaining terms are computable. This algorithm is called the “ex-
change algorithm” because a swapping operation between (ϑold� y) and (ϑnew� ỹ) is in-
volved (Geyer (1991)). The exchange algorithm differs from the conventional M–H al-
gorithm by adding a randomization component into the proposal density; this changes
q(ϑnew|ϑold) into q(ϑnew|ϑold)P(̃y|ϑnew).

The exchange algorithm defines a valid Markov chain for simulating from P(ϑ|y)
(Murray, Ghahramani, and MacKay (2006), Liang (2010), Liang, Jin, Song, and Liu
(2016)). However, implementing the exchange algorithm is time consuming because it
requires the exact sampling of ỹ from P(̃y|ϑnew). To save computation time, Liang (2010)
proposed a “double M–H algorithm” that utilizes the reversibility condition and shows
that when ỹ is simulated by the M–H algorithm—starting from y with R iterations—the
conditional acceptance probability in equation (14) can be obtained regardless of the
value of R. This gives the double M–H algorithm an advantage as a small value of R can
be used, thereby removing the need for exact sampling.

Also note that Mele (2017b) suggests similarly the use of the double M–H algorithm
in estimating ERGMs; however, he improves the convergence of the double M–H algo-
rithm further by mixing the conventional random walk proposal with other proposals,
such as random block techniques (Chib and Ramamurthy (2010)), to improve the mixing
and convergence of the network simulation.27 With this mixed proposal, Mele (2017b)
showed that simulation of the network can escape from the local maxima in the “low
temperature regime” of the ERGM (Bhamidi et al. (2011)) where the mixing is problem-
atic. Given this greater computational efficiency compared to exact sampling, we adopt
the double M–H algorithm, combined with Mele (2017b)’s improvement for network
simulation.

We also provide a technical contribution for the computation of the double M–H
algorithm for our model. Using the double M–H algorithm to update ϑ from P(ϑ|y)
requires simulating the auxiliary variable ỹ. In our context, however, the auxiliary activity
variables {Ỹg} in ỹ are redundant during simulation as they can be replaced by either a
closed-form function (as in equation (4)) or a contraction mapping (as in equation (5))
of auxiliary networks and estimated individual heterogeneity. Thus, we can simplify ỹ to
w̃= {W̃g} and modify the conditional acceptance probability in equation (14) to

αMH(w̃�ϑnew�ϑold)

= min
{

1�
π(ϑnew)P(y|ϑnew)q(ϑold|ϑnew)

π(ϑold)P(y|ϑold)q(ϑnew|ϑold)
· P(w̃|ϑold)

P(w̃|ϑnew)

}
= min

{
1�
π(ϑnew)f (y;ϑnew)q(ϑold|ϑnew)

π(ϑold)f (y;ϑold)q(ϑnew|ϑold)
· f (w̃;ϑold)

f (w̃;ϑnew)

}
� (15)

To evaluate α(w̃�ϑnew�ϑold) in equation (15), we need only to simulate the auxiliary
networks w̃ from their probability density function P(w̃|ϑnew) = f (w̃;ϑnew)/D(ϑnew)

that shares the same normalizing term, that is,D(ϑnew) in P(̃y|ϑnew).

27Mele (2017b) used the term “approximate exchange algorithm” instead of double M–H algorithm in
his paper. He also provides the formal statement of the convergence of the algorithm in Appendix B of his
paper.
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3.4 Posterior distributions and the MCMC

We now present the MCMC procedure. As we regard unobserved latent variables {Zg} as
individual random effects, we follow Zeger and Karim (1991), Hoff, Raftery, and Hand-
cock (2002), and Handcock, Raftery, and Tantrum (2007) to basically treat {Zg} as pa-
rameters to be estimated. By Bayes’ theorem, the joint posterior distribution of the pa-
rameters and unobservables in the model based on the likelihood function of equation
(12) can be written as

P
({θg}� {αg}� {Zg}|{Yg}� {Wg})
∝ π({θg}� {αg}� {Zg}) ·

G∏
g=1

P(Yg�Wg|θg�αg�Zg)� (16)

where π(·) represents the density function of the prior distribution, and as earlier we
suppress the dependence of the likelihood function on {Xg} and {Cg} for notational clar-
ity. We discuss the choice of prior distributions in the Online Supplementary Appendix
D.2.

Obtaining draws directly from the joint posterior distribution of equation (16) is
challenging. Thus, we block the unknown parameters and latent variables into sub-
groups and proceed with the Gibbs sampling. We provide the list of conditional posterior
distributions used by the Gibbs sampler in the Online Supplementary Appendix D.3. A
subset of the parameters admit closed-form conditional posterior distributions; there-
fore, they can be drawn directly to improve convergence. However, this is not true for
remaining parameters, and therefore we use the double M–H algorithm in Section 3.3 to
draw from those relevant conditional posterior distributions. Tierney (1994) and Chib
and Greenberg (1996) have shown that the combination of Markov chains (Metropolis-
within-Gibbs) remains a Markov chain with the invariant distribution being the correct
objective distribution.

To understand the general approach and to compare our algorithm with the liter-
ature, we first present a pseudo MCMC algorithm, highlighting the main double M–H
steps of our formal and full MCMC algorithm. The presentation of the pseudo MCMC
allows us to present the main steps of the formal algorithm without introducing heavy
notation and computational details. The formal and full MCMC algorithm—with one
left-censored and one uncensored activities—is presented in the Online Supplementary
Appendix D.4.

Algorithm 1 (Pseudo MCMC). In each iteration t, given ϑ(t−1) = {{θg}(t−1)� {αg}(t−1)�

{Zg}(t−1)} from the previous iteration, perform the following double M–H steps sequen-
tially for each group g= 1� � � � �G and for any variableΞg ∈ϑ:

(a) Propose Ξ̃g from q(Ξg|Ξ(t−1)
g ).

(b) Compute the residuals ξ̃g from the activity intensity equation conditional on the
proposed Ξ̃g and the value of the other unknown parameters and variables at iter-
ation t − 1, that is, (ϑ \Ξg)(t−1).
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(c) Simulate auxiliary network W̃g. Set the initial auxiliary network (W̃ (0)
g ) equal to the

observed network Wg. Conditional on ξ̃g, Ξ̃g, and (ϑ \ Ξg)(t−1), looping over all

entries (except the diagonal ones) of W̃ (0)
g and for each entry performing either a

local or a global update (with probability Pinv) described below:

(i) local update: for entry wij , where j �= i, propose w̃(r)ij�g = 1 − w̃(r−1)
ij�g . Accept w̃(r)ij�g

with the probability

αMH�local
(
w̃(r)ij�g� w̃

(r−1)
ij�g

) = min
{

1�
P

(
w̃(r)ij�g� W̃

(r−1)
−ij�g |̃ξg� Ξ̃g� (ϑ \Ξg)(t−1))

P
(
w̃
(r−1)
ij�g � W̃

(r−1)
−ij�g |̃ξg� Ξ̃g� (ϑ \Ξg)(t−1))

}
�

otherwise, set w̃(r)ij�g = w̃(r−1)
ij�g .

(ii) global update: propose W̃ (r)
g which inverts the entire adjacency matrix, that is,

W̃ (r)
g = lmg l′mg − Img − W̃ (r−1)

g . Accept W̃ (r)
g with the probability

αMH�global
(
W̃ (r)
g � W̃ (r−1)

g

) = min
{

1�
P

(
W̃ (r)
g |̃ξg� Ξ̃g� (ϑ \Ξg)(t−1))

P
(
W̃ (r−1)
g |̃ξg� Ξ̃g� (ϑ \Ξg)(t−1))

}
�

otherwise, set W̃ (r)
g = W̃ (r−1)

g .

Repeat the described updating procedureR times and obtain the realization of W̃ (R)
g

as the simulation result.28 If the obtained auxiliary network does not belong toΩn̄�g,
reject it and rerun the simulation.

(d) SetΞ(t)
g equal to Ξ̃g with the probability

αMH�Ξg

(
w̃� Ξ̃g�Ξ

(t−1)
g

)
= min

{
1�

π(Ξ̃g)P
(
y|Ξ̃g� (ϑ \Ξg)(t−1))q(Ξ(t−1)

g |Ξ̃g
)

π
(
Ξ(t−1)
g

)
P

(
y|Ξ(t−1)

g � (ϑ \Ξg)(t−1))q(Ξ̃g|Ξ(t−1)
g

)
× P

(
w̃|Ξ(t−1)

g � (ϑ \Ξg)(t−1))
P

(
w̃|Ξ̃g� (ϑ \Ξg)(t−1))

}
�

otherwise, setΞ(t)
g =Ξ(t−1)

g .

Note that Step (c) of Algorithm 1 represents the simulation of the auxiliary variable
w̃ = {W̃g} discussed in Section 3.3. It is worth noting that some authors have used sim-
ilar estimation strategies. For example, Mele (2017b) used a special case of Algorithm
1 where ϑ = {θg} and Step (b) is left out. Note also that Algorithm 1 can be adapted to

28Similar local and global updates are suggested in Snijders (2002) and Mele (2017b) to improve the con-
vergence of graph sampling, particularly when the graph distribution exhibits a bimodal shape, one mode
having low and the other high graph densities. In practice, we setR= 2 and the probability of global update
Pinv = 0�01 in the following simulation and empirical studies.
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the case where yi�d is left-censored. To do so, one only has to incorporate the additional
latent variable Ÿg to the list inΞg.

To examine the finite sample performance of the Bayesian MCMC sampler, we carry
out a Monte Carlo simulation experiment to demonstrate that the MCMC sampler can
successfully recover the true parameters from the artificially generated network data.
We also use this simulation to show the issue of model misspecification and the associ-
ated estimation biases. More details of this simulation study can be found in the Online
Supplementary Appendix E.

4. Empirical applications: Friendship networks, academic outcomes, and

smoking behaviors

We present an empirical application of our model on American high school students’
friendship networks within the Add Health data, a national survey based on 132 schools,
covering grades 7 through 12 (Udry (2003)). Five waves of the survey were conducted be-
tween 1994 and 2018. In the wave I in-school survey, a total of 90,182 students were in-
terviewed. Respondents answered questions regarding their demographic backgrounds,
academic performances, and health related behaviors. Most uniquely, students were
asked to nominate up to five male and five female friends. This provides detailed in-
formation related to their friendship networks.

The different waves’ of in-home surveys of the Add Health project ask a greater
amount of information about students’ families and neighborhoods; however, this in-
formation is only recorded for a subset of individuals. To include most of the students’
nominated friends and to mitigate as much as possible sampling biases (e.g., Chan-
drasekhar and Lewis (2011), Liu (2013)), we use the wave I in-school survey.

We consider two types of activities that may be subject to social interactions and
that are relevant for friendship formation.29 The first is the student’s academic perfor-
mance (measured by GPA), which is represented by a continuous (uncensored) variable.
The second is the student’s smoking habit, or more precisely, how frequently a student
smokes in a typical week. The latter variable is represented by a censored variable as we
observe a significant fraction of nonsmokers.

In the context of social interactions, students’ academic performance and smok-
ing behavior are studied extensively as they have important long term consequences
on students’ future lives and health. Studies of peer effects on students’ academic per-
formance, for example, Hoxby (2000), Sacerdote (2001), Hanushek, Kain, Markman, and
Rivkin (2003), and Zimmerman (2003) used the linear-in-means model; whereas Calvó-
Armengol, Patacchini, and Zenou (2009), Lin (2010), Boucher, Bramoullé, Djebbari, and
Fortin (2014), and Liu, Patacchini, and Zenou (2014) use the network interactions model.
For studies of peer effects on students’ smoking behaviors, evidence of peer effects

29Discussions about how academic performance and smoking affect friendship selections can be found
in, for example, Kiuru, Burk, Laursen, Salmela-Aro, and Nurmi (2010), Lomi, Snijders, Steglich, and Torló
(2011), Flashman (2012), Schaefer, Haas et al. (2013). Other activities may also affect friendship choices. We
focus on academic performance and smoking because they are the key subjects of interest discussed in the
literature of social interactions.
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can be found in Gaviria and Raphael (2001), Powell, Tauras, and Ross (2005), Lundborg
(2006), Clark and Lohéac (2007), Fletcher (2010), and Hsieh and Van Kippersluis (2018).

When studying interaction (peer) effects, researchers face a difficulty in identify-
ing correlated effects from group-level unobservables and endogenous selection into
groups, as well as separating the endogenous interaction effect from contextual effects
in a linear model (the reflection problem of Manski (1993)). Using various approaches
(e.g., randomization, fixed effects, etc.) to avoid these difficulties, researchers generally
produce evidence for the existence of peer effects.

Hsieh and Lee (2016) considered further the problem of endogenous friendship se-
lection of peer effects on economic activities by modeling unobservables in both net-
work interactions and network formation processes. They find that the endogenous ef-
fect on academic performance obtained from a SAR model without controlling for the
endogeneity of the spatial weight matrix can be upward biased.

In this paper, we follow Hsieh and Lee (2016) in controlling individual unobserv-
ables in the formation of friendship networks and activity outcomes. Furthermore, we
investigate the incentive effects of activities in network formation and find that the ben-
efit of interactions from academic learning is an important factor for students to form
friendships in a school environment.

4.1 Data summary

We use the Add Health wave I in-school survey dataset in which all students in the sam-
pled schools were expected to participate. We let each school be a group, and we ignore
friendship relations between schools. Although there could still be network measure-
ment errors due to students’ absences, refusal to cooperate, etc., when compared to the
strategies relying on in-home surveys or defining network groups at the grade level, the
issue of missing links in our study is minimized. However, to ease the computation bur-
den, we restrict our sample to small schools having student sizes less than 120.

This school-level sample is particularly well adapted to our study since it is very
likely that students know each other. As discussed in Section 2, we assume that friend-
ships are formed conditional on side payments. Students must therefore be sufficiently
aware of one another as to be able to pay those transfers.

The final sample comprises a total of 1036 respondents from 15 schools (groups).30

The school networks have an average size of 69�29, an average density of 0�076, an aver-
age out-degree of 3�752, and an average clustering coefficient of 0�095. Since the average
out-degree is far below its top-coded value (at 10), the threat of missing links due to the
fixed survey design (Kossinets (2006)) could be ignored.

To capture the local network effects in equation (8), we include an individual spe-
cific variable denoting how many years a student has spent in his or her school as well
as three dummy variables: whether a pair of students are of the same age, sex, or race.

30To clarify, we do not use the Add Health saturation sample (Udry (2003)) which consists of 16 schools.
In this saturation sample, all enrolled students in the schools were selected for in-home interviews; thus, it
is an ideal sample if information from in-home interviews is needed. However, since we do not use variables
from the in-home survey, we do not use the saturation sample.
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Table 1. Summary statistics.

Variable Min Max Mean SD

GPA 1 4 3�059 0�742
Smoking 0 (73�26%) 7 0�543 1�715
Age 11 18 13�788 1�641
Male 0 1 0�457 0�498
Female 0 1 0�543 0�498
White 0 1 0�741 0�438
Black 0 1 0�128 0�335
Asian 0 1 0�017 0�131
Hispanic 0 1 0�050 0�218
Other race 0 1 0�063 0�243
Both parents 0 1 0�821 0�383
Less HS 0 1 0�069 0�254
HS 0 1 0�326 0�469
More HS 0 1 0�460 0�499
Edu missing 0 1 0�094 0�291
Professional 0 1 0�273 0�446
Staying home 0 1 0�230 0�421
Other jobs 0 1 0�375 0�484
Job missing 0 1 0�069 0�254
Welfare 0 1 0�002 0�044
Num. of other students at home 0 6 0�591 0�850

Network size 29 101 69�29 23�96
Network density 0�016 0�136 0�076 0�062
Out-degree 0�000 10�000 3�752 2�688
Clustering coefficient 0�025 0�186 0�095 0�048

Sample size 1036
Num. of networks 15

Note: “Both parents” means living with both parents. “Less HS” means mother’s education is lower than a high-school
level, “HS” means mother’s education level is high school. “More HS” means mother’s education is above a high-school level.
“Edu missing” means mother’s education level is missing. “Professional” means mother’s employment is as either a scientist,
teacher, executive, director, and the like. “Other jobs” means mother’s occupation is not among Professional or Staying home
categories. “Job missing” means the mother’s occupation information is missing. “Welfare” means the mother participates in
social welfare programs. “Num. of other students at home” means the number of other students from grades 7 to 12 living in
the same household with the student. The variables in italics are the omitted categories during the estimation.

For the variables used in the activity intensity equation of equation (9), the continuous

(uncensored) activity outcome, GPA, is calculated using the average of a respondent’s

reported grades from several subjects, including language, social science, mathemat-

ics, and science (each of which each has a value between 1 and 4). The average GPA in

the sample is 3�059. The censored activity variable, smoking, is obtained from the stu-

dent’s response to the survey question, “During the past twelve months, how often did

you smoke cigarettes?”; the response has a value between 0 and 7. The average smoking

frequency is 0�543 with 73�26% of observations censored at zero. We follow Lin (2010),

Lee, Liu, and Lin (2010), and Hsieh and Lee (2016) to choose independent variables. A

complete list of variables and their summary statistics are in Table 1.
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4.2 Estimation results

In this empirical study, we specify our full model with the incentive effects from both ac-
tivity outcomes—GPA and smoking. As discussed in Section 2.2, despite our assumption
of conditional separability, omitting a relevant activity would likely bias the estimation.
We therefore proceed to estimate the multiple-activity model. Separate estimations for
the two single-activity models are provided in Supplementary Appendix Tables F.3 and
F.4.31 In addition, modeling multiple activity outcomes allows us to explicitly control the
correlation of error terms between activities.

Similar to the simulation study in the Online Supplementary Appendix E, we com-
pare the estimation results of the full model with those of several possibly misspeci-
fied models in order to see how each model misspecification affects estimates of the full
model, particularly for the estimate of endogenous peer effect (λ) on activity outcomes
in equation (9). We present the estimation results in Table 2. From the first to the fifth
columns, they are respectively the results of the full model, the model without the la-
tent variables, the model without the global network effects, the model with only latent
variables, and lastly the activity intensity equation alone like equation (7) assuming ex-
ogenous network links.32

4.2.1 Network Formation The results on local network effects in the full model are
as follows. Staying in a same school for a longer time has a significant negative effect
on sending out (γ1) but a positive effect (γ2) on receiving friendship nominations. The
exogenous dyad-specific effects are all positive and significant, where the effect of the
same age (γ31) is strongest, followed by the effect of the same sex (γ32), and then the ef-
fect of the same race (γ33). We find that the distances of latent variables (γ41 to γ43) have
significant negative effects on network formation, confirming the existence of homphily
with respect to unobservables (Hoff, Raftery, and Handcock (2002), Goldsmith-Pinkham
and Imbens (2013), Hsieh and Lee (2016)).33

31Comparing the results of the multiple-activity model in Table 2 with those of the single-activity models
in the Online Supplementary Appendix Tables F.3 and F.4, we find that the latent variables in the local net-
work effects in single-activity models have smaller estimated coefficients. Also, the estimated incentive ef-
fect from smoking is higher, and the estimated endogenous effect on smoking is lower in the single-activity
model compared to those in Table 2. These differences illustrate the potential concern of omitted-variable
biases when activity outcomes are modeled separately.

32In Table 2, the mean and the standard deviation (in parentheses) of the MCMC posterior draws are
reported as point estimates for each parameter. We set the hyperparameters in the prior distributions to be
identical to those used in the simulation study presented in the Online Supplementary Appendix E.

33Because the exact likelihood value for the full model in equation (12) is unavailable due to the in-
tractable denominator, we cannot directly apply the likelihood-based model selection criteria to choose the
number of latent dimensions in the full model. Alternatively, we determine the latent dimensions based on
the model in which the global network effects and the incentive effects are taken away. When there are no
global network effects or incentive effects in the network formation model, each link becomes conditionally
independent given the latent variables. In that case, the likelihood value can be computed, and we can ap-
ply the Akaike’s information criterion–Monte Carlo (AICM) as proposed by Raftery, Newton, Satagopan, and
Krivitsky (2007) to choose the latent dimension (Hsieh and Lee (2016)). We report the estimation results for
that model having one to four latent variable dimensions and the corresponding AICM values in the Online
Supplementary Appendix Table F.5. Dimension three is chosen due to it having the smallest AICM value.
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For the global network effects, we find a positive and strong reciprocity effect (η1),
which is consistent with findings in the literature (Snijders, Van De Bunt, and Steglich
(2010), Badev (2013), Mele (2017a)). This reflects the fact that mutual friendship nomi-
nations among students are still common (45�64% of friendship links) in our sample. The
congestion effect is concave on individual’s out-degree. Indeed, the linear effect (η2) is
positive, while the quadratic effect (η3) is negative. This result confirms our conjecture
that limited resources, for example, time, energy, and money, may constrain students
from making too many friends. The popularity effect (η4) is small and insignificant.

The positive and strong transitive-triads effect (η5) shows that students value tran-
sitive relationships. As expected, the three-cycles effect (η6) is negative. As discussed in
Snijders, Van De Bunt, and Steglich (2010), this reveals a certain degree of local hierar-
chy among students. Our estimated results of those global network effects confirm that
there are nontrivial negative externalities on link formation that distinguish our model
from the Erdös–Rény random graph model.

The incentive effect from GPA (δ1) is strong and significant. Therefore, for high
school students in our sample, the utility of interactions in academic achievement in-
fluences their friendship decisions. In contrast, the incentive effect from smoking (δ2)
is small and insignificant. Hence, it implies that students in our sample barely consider
the utility of interactions in smoking as a factor in their friendship decisions.

4.2.2 Network Interactions on GPA Our main finding for network interactions on aca-
demic performance is that, by controlling network endogeneity through latent variables
and the incentive effect (δ1), the estimated endogenous effect (λ) on GPA drops from
0�0330 in the activity intensity equation alone (fifth column) to 0�0177 in the full model
(first column). This highlights the effectiveness of our joint modeling approach for cor-
recting the selection bias inherited in the activity intensity equation. Our estimate of en-
dogenous effect coefficient on GPA is close but smaller than the estimate (0�019) found
in Hsieh and Lee (2016), which is probably due to that they do not incorporate the utility
of interactions in their network formation model. We interpret this estimated endoge-
nous peer effect as follows. Through interactions, an individual could raise his/her GPA
by 0�0177 units when any friend improves the GPA by one unit. Also note that the overall
effect grows with the number of friends. The more friends that an individual has, the
stronger the overall effect he/she receives. On average, one standard deviation increase
in peers’ GPA will increase an individual’s GPA by 0�1530 points. This estimate also im-
plies that the social multiplier effects, as measured by elements of (Img − λWg)−1lmg be-
tween individuals and groups, have an average of 1�0683 and a standard deviation of
0�0546.

Results from the second to the fourth columns in Table 2 show that correction of
bias comes from both the incentive effect (δ1) and the unobserved latent characteristic
variables (ρ11 to ρ13). When the model only contains the latent variables (results in the
fourth column), only 59�48% of the observed bias is corrected.34 When the model only
controls for the incentive effect (results in the second column), we correct for 92�16% of

34This percentage is obtained by dividing the difference of estimated λ’s between the fourth and the fifth
columns with the difference of estimated λ’s between the first and the fifth columns.
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the observed bias. These empirical results confirm the findings of the simulation study
in the Online Supplementary Appendix E that omitting the global network effects from
the network formation model can result in an upward bias on the estimated incentive
effect (results in the third column), and thus indirectly cause pressure on biasing the
estimated endogenous peer effect (λ) downwards.

For the contribution of individual characteristics, we observe that students who are
older, male, Hispanic, of other races, having a mother’s education level as missing or
lower than a high-school level, having a mother’s occupation as missing or as a profes-
sional, or having a mother that participates in social welfare programs tend to have lower
GPA scores. On the contrary, students who live with both parents or have a mother hav-
ing an education level higher than high school, tend to have a higher GPA. We also see
that one latent variable shows a significant positive effect on GPA. The estimates of the
contextual effects for students that are either Black, Asian, other race, living with both
parents, have a mother with less than a high-school level of education, or have received
welfare are found to be positively significant. The estimates of the contextual effects for
mothers having greater than a high-school level of education or missing education levels
are found to be positively significant in the full model.

4.2.3 Network Interactions on Smoking For the smoking outcome, we observe that the
estimated endogenous (peer) effect (λ) drops from 0�1125 in the activity intensity equa-
tion alone (fifth column) to 0�1052 in the full model (first column). The smaller selection
bias for smoking (as opposed to GPA) is likely due to the small incentive effect (δ2) for
smoking.

We nonetheless see that the correction of bias is largely due to the inclusion of latent
variables (comparing the fourth column with the fifth column) rather than the inclu-
sion of the incentive effect (comparing the second column with the fifth column). On
average, one standard deviation increase in peers’ smoking frequencies will increase an
individual’s smoking frequency by 0�4092 times. Our estimate also implies that the so-
cial multipliers have respectively an average and a standard deviation equal to 1�9692
and 1�2002.

The effects of individual characteristics show that students who are either Black,
Asian, have a mother’s education level higher than high school, or have more school-age
children at their home tend to smoke less than their school counterparts. On the con-
trary, students who are either older, Hispanic, having mothers that have less than a high-
school level education, having mothers that participate in welfare programs, or having
mothers that have professional jobs or missing job information tend to smoke more
than others. For contextual effects, a student may smoke more if they are surrounded by
more friends who are Black, Asian, or other races. A student may smoke less if they have
friends whose mothers participate in welfare programs. For the estimated covariances
of disturbances in the outcome equations of GPA and smoking, we find the values are
generally negative with an average of −0�2522 and standard deviation of 0�2708.

Finally, as an additional robustness check, we estimate the model with correlated
random group effects in activity intensity equations, as discussed in the Online Supple-
mentary Appendix D.2. The estimation results are available in the Online Supplemen-
tary Appendix Table F.6. We find the estimates of the local, global network, and incentive
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effects in network formation, and the endogenous peer effects in the activity intensity
equations remain similar to those in Table 2. Since all of the group averages on Xg and
Zg used in capturing the mean of correlated random effects are insignificant, there are
no significant changes of the estimated own and contextual effects. As a result, our esti-
mation results are robust between the fixed and random group effect settings.

5. Conclusion

Researchers are interested in network structures to analyze possible impacts of those
structures on activity outcomes. As mentioned in Jackson (2010, Section 5), if networks
only serve as conduits for diffusion, for example, diseases or ideas, their impacts on out-
comes are somewhat mechanical, and one need not worry about any feedback effects
from outcomes. However, for studying the impact of a friendship network on outcomes,
both the network structure and strategic interactions between the network and out-
comes should be considered. This extra consideration should be reflected in a dynamic
or static equilibrium model.

In this paper, we propose a static equilibrium model that accounts for those fea-
tures. We present a complete information game in which students respond to incentives
stemming from their interactions with friends that in turn affect their friendship deci-
sions. We also allow for unobserved individual characteristics in network formation and
activity outcome equations.

Our empirical results show that American high school students regard the utility
of interactions in academic learning as a significant incentive for forming friendships,
whereas the utility of interactions in smoking is not. Another novelty of our approach to
the social interaction literature is to present a model that allows correcting for possible
friendship selection biases in activity outcomes that can be attributed to the specifica-
tion of incentive effects, latent characteristic variables, or both.

Some issues that are not emphasized in this paper remain important for future ex-
tensions. First, we focus on a complete information setup. If this assumption were ap-
propriate for a school setting, it may be questionable in other economic contexts. Sec-
ond, we abstract from network games with multiple outcome equilibria. In the paper,
we circumvent this issue by focusing on continuous outcome variables. In a multiple
equilibria setting with discrete choice outcomes, one could either provide an equilib-
rium selection rule or characterize the estimation problem with moment inequalities.
Finally, an interesting way forward would be to apply our model to the study of other
types of networks, for example, criminal networks, physician referral networks, or aca-
demic coauthor networks.

Appendix A: Proof of Proposition 1

The existence and uniqueness of the Nash equilibrium for a fixed network structure
follows directly from the literature (e.g., Ballester, Calvó-Armengol, and Zenou (2006),
Calvó-Armengol, Patacchini, and Zenou (2009)). We nonetheless include a short proof
for completeness.
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We start with the case where yi�d is uncensored. Taking the first-order conditions of
Ui(W �Y1� � � � �Yd̄) with respect to yi�d leads to

μi�d − yi�d + λd
m∑
j=1

wijyj�d = 0�

or, rearranging and writing in a matrix form:

Bu(Yd)≡ Yd = μd + λdW Yd� (A.1)

where Bu(Yd) denotes the best response function.
For any Yd� Ỹd , we have ‖Bu(Yd) − Bu(Ỹd)‖∞ = |λd|‖W (Yd − Ỹd)‖∞ ≤ |λd| ×

‖W ‖∞‖Yd − Ỹd‖∞. Then Bu(Yd) is a contraction mapping whenever |λd| < 1/‖W ‖∞ =
1/n̄. By the Banach fixed-point theorem, this implies that there exists a unique Nash
equilibrium of Yd such that Bu(Yd)= Yd . It also implies that the linear system (A.1) has
a unique solution so that Y ∗

d = [Im − λdW ]−1μd , where the inverse is well-defined.
The case where yi�d is left censored, that is, yi�d ≥ 0 is similar. Indeed, since

Ui(W �Y1� � � � �Yd̄) is concave in yi�d , the optimal solution y∗
i�d = arg maxyi�d≥0Ui(W �Y1� � � � �

Yd̄) is given by 0 or by the first order conditions. Formally,

y∗
i�d = max

{
0�μi�d + λd

m∑
j=1

wijyj�d

}
(A.2)

Then, similar to the case where yi�d is uncensored, we can write the vector-valued best
response function Bc(Yd) = [y∗

1�d� � � � � y
∗
m�d]′. Now, for a fixed value of Yd , note that we

necessarily have: ‖Bc(Yd)−Bc(Ỹd)‖∞ ≤ ‖Bu(Yd)−Bu(Ỹd)‖∞. This implies that ifBu(Yd)
is a contraction mapping, then so is Bc(Yd). Using the same argument as before, there
exists a unique Nash equilibrium of the game for left-censored activities.

We now turn to the first stage of the game. Since there exists a unique Nash equi-
librium (Y ∗

1 (W )� � � � �Y
∗̄
d
(W )), the value of the network T(W ) is uniquely defined. Also,

since τW is drawn from a Type I extreme value distribution, the probability of having
more than one network structure maximizing T(W ) is zero. There is, therefore, a generi-
cally unique strongly efficient network, and the probability thatW maximizes T is given
by

P(W )= exp
{
V (W )

}∑
W̃ ∈Ωn̄

exp
{
V (W̃ )

} �
Existence is guaranteed by letting the allocation rule Λi(W �T) = T(W )/m for all i,

which implies that strongly efficient networks are individually stable. This completes
the proof.
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A.1 Comment on the contraction mapping assumption

The argument in Appendix A depends on the best response functions being contraction
mappings. This is important for uniqueness and for the solution of equation (A.2) to be
found iteratively.

First, note that a contraction mapping is only a sufficient condition and in no way
necessary. Also, the use of the infinity norm ‖ · ‖∞ is stronger than what is needed. In-
deed, the argument works as long as there exists a (submultiplicative) matrix norm for
which the condition holds.

In particular, one could use the norm given by the spectral radius ofW . We focus on
the infinity norm since it is more intuitive. Indeed, otherwise, we would have to require
individuals to choose their friends such that W has a bounded spectral radius, which
carries much less economic intuition than requiring them to choose at most n̄ friends.
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