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Appendix A: Turnpike theorem with Markov terminal condition

In this section, we introduce notation, provide several relevant definitions about ran-
dom processes, and elaborate the proof of Theorem 2 (turnpike theorem) formulated
in Section 2. The turnpike literature normally assumes a zero terminal capital for the
finite-horizon economy, which is a convenient assumption for showing asymptotic con-
vergence results. However, in applications, it is more effective to choose a terminal con-
dition which is as close as possible to the infinite-horizon solution at T . This choice will
make the finite-horizon approximation closer to the infinite-horizon solution. (In fact, if
we guess the “exact” terminal condition on the infinite-horizon path, then the infinite-
and finite-horizon trajectories would coincide.) Hence, we show our own version of the
turnpike theorem for the growth model which holds for an arbitrary Markov terminal
condition of the type kT+1 = KT(kT � zT ), which extends the turnpike literature that fo-
cuses on a zero terminal condition kT+1 = 0.

Appendices A.1 and A.2 contain notations, definitions, and preliminaries. The proof
of Theorem 2 relies on three lemmas presented in Appendices A.3–A.5. In Appendix A.3,
we construct a limit program of a finite-horizon economy with a terminal condition
kT+1 = 0; this construction is standard in the turnpike analysis (see Majumdar and
Zilcha (1987), Mitra and Nyarko (1991), Joshi (1997)), and it is shown for the sake of
completeness. In Appendix A.4, we prove a new result about convergence of the op-
timal program of the T -period stationary economy with an arbitrary terminal capital
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stock kT+1 = KT(kT � zT ) to the limiting program of the finite-horizon economy with a
zero terminal condition kT+1 = 0. In Appendix A.5, we show that the limit program of
the finite-horizon economy with a zero terminal condition kT+1 = 0 is also an optimal
program for the infinite-horizon nonstationary economy; in the proof, we also follow
the previous turnpike literature. Finally, in Appendix A.6, we combine the results of Ap-
pendices A.3–A.5 to establish the claim of Theorem 2. Thus, our main theoretical contri-
bution is contained in Appendix A.4.

A.1 Notation and definitions

Our exposition relies on standard measure theory notation; see, for example, Stokey,
Lucas, and Prescott (1989), Santos (1999), and Stachurski (2009). Time is discrete and
infinite, t = 0�1� � � �. Let (Ω�F�P) be a probability space:

(a) Ω = ∏∞
t=0 Ωt is a space of sequences ε ≡ (ε0� ε1���) such that εt ∈ Ωt for all t, where

Ωt is a compact metric space endowed with the Borel σ-field Et . Here, Ωt is the set
of all possible states of the environment at t and εt ∈Ωt is the state of the environ-
ment at t.

(b) F is the σ-algebra on Ω generated by cylinder sets of the form
∏∞

τ=0 Aτ , where
Aτ ∈ Eτ for all τ and Aτ = Ωτ for all but finitely many τ.

(c) P is the probability measure on (Ω�F).

We denote by {Ft} a filtration on Ω, where Ft is a sub σ-field of F induced by a partial
history of environment ht = (ε0� � � � � εt) ∈ ∏t

τ=0 Ωτ up to period t, that is, Ft is generated
by cylinder sets of the form

∏t
τ=0 Aτ , where Aτ ∈ Eτ for all τ ≤ t and Aτ =Ωτ for τ > t. In

particular, we have that F0 is the coarse σ-field {0�Ω}, and that F∞ = F . Furthermore, if
Ω consists of either finite or countable states, ε is called a discrete state process or chain;
otherwise, it is called a continuous state process. Our analysis focuses on continuous
state processes; however, it can be generalized to chains with minor modifications.

We provide some definitions that will be useful for characterizing random processes;
these definitions are standard and closely follow Stokey, Lucas, and Prescott (1989,
Chapter 8.2).

Definition A1 (Stochastic process). A stochastic process on (Ω�F�P) is an increasing
sequence of σ-algebras F1 ⊆ F2 ⊆ · · · ⊆ F ; a measurable space (Z�Z); and a sequence
of functions zt :Ω →Z for t ≥ 0 such that each zt is Ft measurable.

Stationarity or time-homogeneity is an assumption that is commonly used in eco-
nomic literature.

Definition A2 (Stationary process). A stochastic process z on (Ω�F�P) is called sta-
tionary if the unconditional probability measure, given by

Pt+1�����t+n(C) = P
({
ε ∈ Ω : [zt+1(ε)� � � � � zt+n(ε)

] ∈ C
})
� (S1)

is independent of t for all C ∈ Zn, t ≥ 0, and n≥ 1.
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A related notion is stationary (time-homogeneous) transition probabilities. Let
us denote by Pt+1�����t+n(C|zt = zt� � � � � z0 = z0) the probability of the event {ε ∈ Ω :
[zt+1(ε)� � � � � zt+n(ε)] ∈ C}, given that the event {ε ∈Ω : zt = zt(ε)� � � � � z0 = z0(ε)} occurs.

Definition A3 (Stationary transition probabilities). A stochastic process z on (Ω�F�P)

is said to have stationary transition probabilities if the conditional probabilities

Pt+1�����t+n(C|zt = zt� � � � � z0 = z0) (S2)

are independent of t for all C ∈Zn, ε ∈ Ω, t ≥ 0, and n ≥ 1.

The assumption of stationary transition probabilities (S2) implies stationarity (S1) if
the corresponding unconditional probability measures exist. However, a process can be
nonstationary even if transition probabilities are stationary; for example, a unit root pro-
cess or explosive process is nonstationary; see Stokey, Lucas, and Prescott (1989, Chap-
ter 8.2) for a related discussion.

In general, Pt+1�����t+n(C) and Pt+1�����t+n(C|·) depend on the entire history of the
events up to t (i.e., the stochastic process zt is measurable with respect to the sub σ-
field Ft ). However, history-dependent processes are difficult to analyze. The literature
distinguishes some special cases in which the dependence on history has relatively sim-
ple and tractable form. A well-known case is a class of Markov processes.

Definition A4 (Time-inhomogeneous Markov process). A stochastic process z on
(Ω�F�P) is (first-order) Markov if

Pt+1�����t+n(C|zt = zt� � � � � z0 = z0) = Pt+1�����t+n(C|zt = zt)� (S3)

for all C ∈ Zn, t ≥ 0, and n≥ 1.

The key property of a Markov process is that it is memoryless, namely, all past history
(zt� � � � � z0) is irrelevant for determining the future realizations except of the most recent
past zt . Note that the above definition does not require the Markov process to be time-
homogeneous: it allows the functions Pt+1�����t+n(·) to depend on time, as required by
our analysis. Finally, if transition probabilities Pt+1�����t+n(C|zt = zt) are independent of t
for any n ≥ 1, then the Markov process is time-homogeneous. If, in addition, there is an
unconditional probability measure (S1), the resulting Markov process is stationary.

Definition A5 (Stationary Markov process). A stochastic process z on (Ω�F�P) is
called stationary Markov if the unconditional probability measure, given by

Pt+1�����t+n(C) = P
({
ε ∈Ω : zt+1(ε) ∈ C

})
� (S4)

is independent of t for all C ∈ Zn, t ≥ 0, and n ≥ 1.

Thus, time-homogeneous Markov process is stationary if it has time-homogeneous
unconditional probability distribution.
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A.2 Infinite-horizon economy

We consider an infinite-horizon nonstationary stochastic growth model in which pref-
erences, technology, and laws of motion for exogenous variables change over time. The
representative agent solves

max
{ct �kt+1}∞t=0

E0

[ ∞∑
t=0

βtut(ct)

]
(S5)

s.t. ct + kt+1 = (1 − δ)kt + ft(kt� zt)� (S6)

zt+1 = ϕt(zt� εt+1)� (S7)

where ct ≥ 0 and kt ≥ 0 denote consumption and capital, respectively; initial condi-
tion (k0� z0) is given; ut : R+ → R and ft : R2+ → R+ and ϕt : R2 → R are possibly time-
dependent utility function, production functions, and law of motion for exogenous vari-
able zt , respectively; the sequence of ut , ft , and ϕt for t ≥ 0 is known to the agent in pe-
riod t = 0; εt+1 is i.i.d; β ∈ (0�1) is the discount factor; δ ∈ [0�1] is the depreciation rate;
and Et[·] is an operator of expectation, conditional on a t-period information set.

We make standard assumptions about the utility and production functions that en-
sure the existence, uniqueness, and interiority of a solution. Concerning the utility func-
tion ut , we assume that for each t ≥ 0, the following holds:

Assumption 1 (Utility function). (a) ut is twice continuously differentiable on R+;
(b) u′

t > 0, that is, ut is strictly increasing on R+, where u′
t ≡ ∂ut

∂c ; (c) u′′
t < 0, that is,

ut is strictly concave on R+, where u′′
t ≡ ∂2ut

∂c2 ; and (d) ut satisfies the Inada conditions
limc→0 u

′
t (c) = +∞ and limc→∞ u′

t (c) = 0.

Concerning the production function ft , we assume that for each t ≥ 0, the following
holds:

Assumption 2 (Production function). (a) ft is twice continuously differentiable on R
2+;

(b) f ′
t (k� z) > 0 for all k ∈R+ and z ∈R+, where f ′

t ≡ ∂ft
∂k ; (c) f ′′

t (k� z) ≤ 0 for all k ∈R+ and

z ∈ R+, where f ′′
t ≡ ∂2ft

∂k2 ; and (d) ft satisfies the Inada conditions limk→0 f
′
t (k� z) = +∞

and limk→∞ f ′
t (k� z)= 0 for all z ∈ R+.

We need one more assumption. Let us define a pure capital accumulation process
{kmax

t+1 }∞t=0 by assuming ct = 0 for all t in (S6) which, for each history ht = (z0� � � � � zt), leads
to

kmax
t+1 = ft

(
kmax
t � zt

)
� (S8)

where kmax
0 ≡ k0. We impose an additional joint boundedness restriction on preferences

and technology by using the constructed process (S8):

Assumption 3 (Objective function). E0[∑∞
t=0 β

tut(k
max
t+1 )] <∞.
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This assumption ensures that the objective function (S5) is bounded so that its max-
imum exists. In particular, Assumption 3 holds either (i) when ut is bounded from above
for all t, that is, ut(c) <∞ for any c ≥ 0 or (ii) when ft is bounded from above for all t, that
is, ft(k� zt) <∞ for any k ≥ 0 and zt ∈Zt . However, it also holds for economies with non-
vanishing growth and unbounded utility and production functions as long as ut(k

max
t+1 )

does not grow too fast so that the product βtut(k
max
t+1 ) still declines at a sufficiently high

rate and the objective function (S5) converges to a finite limit.

Definition A6 (Feasible program). A feasible program for the economy (S5)–(S7) is a
pair of adapted (t-measurable) processes {ct�kt+1}∞t=0 such that, given initial condition
k0, they satisfy ct ≥ 0, kt+1 ≥ 0, and (S6) for each possible history h∞ = (ε0� ε1� � � �).

We denote by 
∞ a set of all feasible programs from given initial capital k0. We next
introduce the concept of solution to the model.

Definition A7 (Optimal program). A feasible program {c∞
t � k∞

t+1}∞t=0 ∈ 
∞ is called op-
timal if

E0

[ ∞∑
t=0

βt
{
ut

(
c∞
t

) − ut(ct)
}] ≥ 0 (S9)

for every feasible process {ct�kt+1}∞t=0 ∈ 
∞.

Stochastic models with time-dependent fundamentals are studied in Majumdar and
Zilcha (1987), Mitra and Nyarko (1991), and Joshi (1997), among others. The existence
results for this class of models have been established in the literature for a general mea-
surable stochastic environment without imposing the restriction of Markov process (S7).
In particular, this literature shows that, under Assumptions 1–3, there exists an optimal
program {c∞

t � k∞
t+1}∞t=0 ∈ 
∞ in the economy (S5)–(S7), and it is both interior and unique;

see Theorem 4.1 in Mitra and Nyarko (1991) and see Theorem 7 in Majumdar and Zilcha
(1987). The results of this literature apply to us as well.

A.3 Limit program of finite-horizon economy with a zero terminal capital

In this section, we consider a finite-horizon version of the economy (S5)–(S7) with a
given terminal condition for capital kT+1 = κ. Specifically, we assume that the agent
solves

max
{ct �kt+1}Tt=0

E0

[
T∑
t=0

βtut(ct)

]
(S10)

s.t. (S6), (S7), (S11)

where initial condition (k0� z0) and terminal condition kT+1 = κ are given. We first de-
fine feasible programs for the finite-horizon economy.
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Definition A8 (Feasible programs in the finite-horizon economy). A feasible program
in the finite-horizon economy is a pair of adapted (i.e., Ft-measurable for all t) processes
{ct�kt+1}Tt=0 such that, given initial condition k0 and any partial history hT = (ε0� � � � � εT ),
they reach a given terminal condition kT+1 = κ at T , satisfy ct ≥ 0, kt+1 ≥ 0, and (S6), (S7)
for all t = 1� � � � T .

In this section, we focus on a finite-horizon economy that reaches a zero terminal
condition, kT+1 = 0, at T . We denote by 
T�0 a set of all finite-horizon feasible pro-
grams from given initial capital k0 and any partial history hT ≡ (ε0� � � � � εT ) that attain
given kT+1 = 0 at T . We next introduce the concept of solution for the finite-horizon
model.

Definition A9 (Optimal program in the finite-horizon model). A feasible finite-
horizon program {cT�0t � kT�0

t+1}Tt=0 ∈ 
T�0 is called optimal if

E0

[
T∑
t=0

βt
{
ut

(
cT�0t

) − ut(ct)
}] ≥ 0 (S12)

for every feasible process {ct�kt+1}Tt=0 ∈ 
T�0.

The existence result for the finite-horizon version of the economy (S10), (S11) with
a zero terminal condition is established in the literature. Namely, under Assumptions
A1–A3, there exists an optimal program {cT�0t � kT�0

t+1}Tt=0 ∈ 
T�0 and it is both interior and
unique. The existence of the optimal program can be shown by using either a Bellman
equation approach (see Mitra and Nyarko (1991, Theorem 3.1)) or a Euler equation ap-
proach (see Majumdar and Zilcha (1987, Theorems 1 and 2)).

We next show that under terminal condition k
T�0
T+1 = kT+1 = 0, the optimal program

in the finite-horizon economy (S10), (S11) has a well-defined limit.

Lemma 1. A finite-horizon optimal program {cT�0t � kT�0
t+1}Tt=0 ∈ 
T�0 with a zero terminal

condition kT�0
T+1 = 0 converges to a limit program {clim

t � klim
t+1}∞t=0when T → ∞, that is,

klim
t+1 ≡ lim

T→∞
kT�0
t+1 and clim

t ≡ lim
T→∞

cT�0t � for t = 0�1� � � � � (S13)

Proof. The existence of the limit program follows by three arguments (for any history):
(i) Extending time horizon from T to T + 1 increases T -period capital of the finite-

horizon optimal program, that is, kT+1�0
T+1 > kT�0

T+1. To see this, note that the model with

time horizon T has zero (terminal) capital kT�0
T+1 = 0 at T . When time horizon is ex-

tended from T to T + 1, the model has zero (terminal) capital kT+1�0
T+2 = 0 at T + 1 but

it has strictly positive capital kT+1�0
T+1 > 0 at T ; this follows by the Inada conditions—

Assumption 1(d).
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(ii) The optimal program for the finite-horizon economy has the following property
of monotonicity with respect to the terminal condition: if {c′

t � k
′
t+1}Tt=0 and {c′′

t � k
′′
t+1}Tt=0

are two optimal programs for the finite-horizon economy with terminal conditions
κ′ < κ′′, then the respective optimal capital choices have the same ranking in each
period, that is, k′

t ≤ k′′
t for all t = 1� � � � �T . This monotonicity result follows by ei-

ther Bellman equation programming techniques (see Mitra and Nyarko (1991, Theo-
rem 3.2 and Corollary 3.3)) or Euler equation programming techniques (see Majum-
dar and Zilcha (1987, Theorem 3)) or lattice programming techniques (see Hopen-
hayn and Prescott (1992)); see also Joshi (1997, Theorem 1) for generalizations of these
results to non-convex economies. Hence, the stochastic process {kT�0

t+1}Tt=0 shifts up

(weakly) in a pointwise manner when T increases to T + 1, that is, kT+1�0
t+1 ≥ kT�0

t+1 for
t ≥ 0.

(iii) By construction, the capital program from the optimal program {cT�0t+1�k
T�0
t+1}Tt=0

is bounded from above by the capital accumulation process {0�kmax
t+1 }Tt=0 defined in (S8),

that is, kT�0
t+1 ≤ kmax

t+1 < ∞ for t ≥ 0. A sequence that is bounded and monotone is known
to have a well-defined limit.

A.4 Limit program of the T -period stationary economy

We now show that the optimal program of the T -period stationary economy, introduced
in Section 4, converges to the same limit program (S13) as the optimal program of the
finite-horizon economy (S10), (S11) with a zero terminal condition. We denote by 
T�κ

a set of all feasible finite-horizon programs that attain a terminal condition κ �= 0 of the
T -period stationary economy. (We assume the same initial capital (k0� z0) and the same
partial history hT ≡ (ε0� � � � � εT ) as those fixed for the finite-horizon economy (S10),
(S11).)

Lemma 2. The optimal program of the T -period stationary economy {cT�κt �kT�κ
t+1}Tt=0 ∈


T�κ converges to a unique limit program {clim
t � klim

t+1}∞t=0 ∈ 
∞ defined in (S13) as T →
∞that is, for all t ≥ 0,

klim
t+1 ≡ lim

T→∞
k
T�κ
t+1 and clim

t ≡ lim
T→∞

c
T�κ
t � (S14)

Proof. The proof of the lemma follows by six arguments (for any history).
(i) Observe that, by Assumptions 1 and 2, the optimal program of the T -period sta-

tionary economy has a positive capital stock kT�κ
t+1 > 0 at T (since the terminal capital is

generated by the capital decision function of a stationary version of the model), while
for the optimal program {cT�0t � kT�0

t+1}Tt=0 ∈ 
T�0 of the finite-horizon economy, it is zero by

definition, kT�0
T+1 = 0.

(ii) The property of monotonicity with respect to terminal condition implies that if
k
T�κ
T+1 > k

T�0
T+1, then k

T�κ
t+1 ≥ k

T�0
t+1 for all t = 1� � � � �T ; see our discussion in (ii) of the proof

to Lemma 1.
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(iii) Let us fix some τ ∈ {1� � � � �T }. We show that up to period τ, the optimal program
{cT�κt �k

T�κ
t+1}τt=0 does not give higher expected utility than {cT�0t � k

T�0
t+1}τt=0, that is,

E0

[
τ∑

t=0

βt
{
ut

(
c
T�κ
t

) − ut
(
c
T�0
t

)}] ≤ 0� (S15)

Toward contradiction, assume that it does, that is,

E0

[
τ∑

t=0

βt
{
ut

(
cT�κt

) − ut
(
cT�0t

)}]
> 0� (S16)

Then, consider a new process {c′
t � k

′
t+1}τt=0 that follows {cT�κt �kT�κ

t+1}Tt=0 ∈ 
T�κ up to pe-

riod τ − 1 and that drops down at τ to match kT�0
τ+1 of the finite-horizon program

{cT�κt �kT�κ
t+1}Tt=0 ∈ 
T�0, that is, {c′

t � k
′
t+1}τt=0 ≡ {cT�κt �kT�κ

t+1}τ−1
t=0 ∪ {cTτ + kT

τ+1 − kT�0
τ+1�k

T�0
τ+1}. By

monotonicity (ii), we have kT
τ+1 − kT�0

τ+1 ≥ 0, so that

E0

[
τ∑

t=0

βt
{
ut

(
c′
t

) − ut
(
cT�κt

)}]

=E0
[
βτ

{
ut

(
cTτ + kT

τ+1 − k
T�0
τ+1

) − ut
(
cTτ

)}] ≥ 0� (S17)

where the last inequality follows by Assumption 1(b) of strictly increasing ut .
(iv) By construction, {c′

t � k
′
t+1}τt=0 and {cT�0t � k

T�0
t+1}τt=0 reach the same capital kT�0

τ+1 at τ.
Let us extend the program {c′

t � k
′
t+1}τt=0 to T by assuming that it follows the process

{cT�0t � kT�0
t+1}Tt=0 from the period τ + 1 up to T , that is, {c′

t � k
′
t+1}Tt=τ+1 ≡ {cT�0t � kT�0

t+1}Tt=τ+1.
Then, we have

E0

[
T∑
t=0

βt
{
ut

(
c′
t

) − ut
(
cT�0t

)}] = E0

[
τ∑

t=0

βt
{
ut

(
c′
t

) − ut
(
cT�0t

)}]

≥E0

[
τ∑

t=0

βt
{
ut

(
cT�κt

) − ut
(
cT�0t

)}]
> 0� (S18)

where the last two inequalities follow by Result (S17) and Assumption (S16), respectively.
Thus, we obtain a contradiction: The constructed program {c′

t � k
′
t+1}Tt=0 ∈ 
T�0 is feasi-

ble in the finite-horizon economy with a zero terminal condition, k′
T+1 = 0, and it gives

strictly higher expected utility than the optimal program {cT�0t � kT�0
t+1}Tt=0 ∈ 
T�0 in that

economy.
(v) Holding τ fixed, we compute the limit of (S15) by letting T go to infinity:

lim
T→∞

E0

[
τ∑

t=0

βt
{
ut

(
cT�κt

) − ut
(
cT�0t

)}]

= lim
T→∞

E0

[
τ∑

t=0

βtut
(
cT�κt

)] −E0

[
τ∑

t=0

βtut
(
clim
t

)] ≤ 0� (S19)



Supplementary Material A framework for analyzing nonstationary models 9

(vi) The last inequality implies that for any τ ≥ 1, the limit program {clim
t � klim

t+1}∞t=0 ∈

∞ of the finite-horizon economy {cT�0t � kT�0

t+1}Tt=0 ∈ 
T�0 with a zero terminal con-

dition kT�0
T = 0 gives at least as high expected utility as the optimal limit program

{cT�κt �kT�κ
t+1}Tt=0 ∈ 
T�κ of the T -period stationary economy. Since Assumptions 1 and 2

imply that the optimal program is unique, we conclude that {clim
t � klim

t+1}∞t=0 ∈ 
∞ defined

in (S13) is a unique limit of the optimal program {cT�κt �kT�κ
t+1}Tt=0 ∈ 
T�κ of the T -period

stationary economy.

A.5 Convergence of the finite-horizon economy to the infinite-horizon economy

We now show a connection between the optimal programs of the finite-horizon and
infinite-horizon economies. Namely, we show that the finite-horizon economy (S10),
(S11) with a zero terminal condition k

T�0
T+1 = 0 converges to the nonstationary infinite-

horizon economy (S5)–(S7) as T → ∞ provided that we fix the same initial condition k0

and partial history hT = (ε0� � � � � εT ) for both economies.

Lemma 3. The limit program {clim
t � klim

t+1}∞t=0 is a unique optimal program {c∞
t � k∞

t+1}∞t=0 ∈

∞ in the infinite-horizon nonstationary economy (S5)–(S7).

Proof. We prove this lemma by contradiction. We use the arguments that are similar
to those used in the proof of Lemma 2.

(i) Toward contradiction, assume that {clim
t � klim

t+1}∞t=0 is not an optimal program of
the infinite-horizon economy {c∞

t � k∞
t+1}∞t=0 ∈ 
∞. By definition of limit, there exists a

real number ε > 0 and a subsequence of natural numbers {T1�T2� � � �} ⊆ {0�1� � � �} such
that {c∞

t � k∞
t+1}∞t=0 ∈ 
∞ gives strictly higher expected utility than the limit program of

the finite-horizon economy {clim
t � klim

t+1}∞t=0, that is,

E0

[
Tn∑
t=0

βt
{
ut

(
c∞
t

) − ut
(
clim
t

)}]
> ε for all Tn ∈ {T1�T2� � � �}� (S20)

(ii) Let us fix some Tn ∈ {T1�T2� � � �} and consider any finite T ≥ Tn. Assumptions 1
and 2 imply that k∞

T+1 > 0, while kT�0
T+1 = 0 by definition of the finite-horizon economy

with a zero terminal condition. The monotonicity of the optimal program with respect
to a terminal condition implies that if k∞

T+1 > k
T�0
T+1, then k∞

t+1 ≥ k
T�0
t+1 for all t = 1� � � � �T ;

see our discussion in (ii) of the proof of Lemma 1.
(iii) Following the arguments in (iii) of the proof of Lemma 2, we can show that up to

period Tn, the optimal program {c∞
t � k∞

t+1}Tnt=0 does not give higher expected utility than

{cT�0t � k
T�0
t+1}Tnt=0, that is,

E0

[
Tn∑
t=0

βt
{
ut

(
c∞
t

) − ut
(
cT�0t

)}] ≤ 0 for all Tn� (S21)
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(iv) Holding Tn fixed, we compute the limit of (S21) by letting T go to infinity:

lim
T→∞

E0

[
Tn∑
t=0

βt
{
ut

(
c∞
t

) − ut
(
cT�0t

)}]

= E0

[
Tn∑
t=0

βtut
(
c∞
t

) −βtut
(
clim
t

)] ≤ 0 for all Tn� (S22)

However, result (S22) contradicts our assumption in (S20).
(v) We conclude that for any subsequence {T1�T2� � � �} ⊆ {0�1� � � �}, we have

E0

[
Tn∑
t=0

βt
{
ut

(
c∞
t

) − ut
(
clim
t

)}] ≤ 0 for all Tn� (S23)

However, under Assumptions 1 and 2, the optimal program {c∞
t � k∞

t+1}∞t=0 ∈ 
∞ is unique,
and hence, it must be that {c∞

t � k∞
t+1}∞t=0 coincides with {clim

t � klim
t+1}∞t=0 for all t ≥ 0.

A.6 Proof of the turnpike theorem

We now combine the results of Lemmas 1–3 together into a turnpike-style theorem to
show the convergence of the optimal program of the T -period stationary economy to
that of the infinite-horizon nonstationary economy. To be specific, Lemma 1 shows
that the optimal program of the finite-horizon economy with a zero terminal condi-
tion {cT�0t � k

T�0
t+1}Tt=0 ∈ 
T�0 converges to the limit program {clim

t � klim
t+1}∞t=0. Lemma 2 shows

that the optimal program of the T -period stationary economy {cT�κt �kT�κ
t+1}Tt=0 also con-

verges to the same limit program {clim
t � klim

t+1}∞t=0. Finally, Lemma 3 shows that the limit
program of the finite-horizon economies {clim

t � klim
t+1}∞t=0 is optimal in the nonstationary

infinite-horizon economy. Then, it must be the case that the limit optimal program of
the T -period stationary economy {cT�κt �kT�κ

t+1}Tt=0 is optimal in the infinite-horizon non-
stationary economy. This argument is formalized below.

Proof of Theorem 2 ( Turnpike theorem). The proof follows by definition of limit
and Lemmas 1–3. Let us fix a real number ε > 0 and a natural number τ such that 1 ≤
τ <∞ and consider a possible partial history hT = (ε0� � � � � εT ).

(i) Lemma 1 shows that {cT�0t � kT�0
t+1}Tt=0 ∈ 
T�0 converges to a limit program {clim

t �

klim
t+1}∞t=0 as T → ∞. Then, definition of limit implies that there exists T1(hT ) > 0 such

that |kT�0
t+1 − klim

t+1|< ε
3 for t = 0� � � � � τ.

(ii) Lemma 2 implies that the finite-horizon problem of the T -period stationary
economy {cT�κt �kT�κ

t+1}Tt=0 also converges to limit program {clim
t � klim

t+1}∞t=0 as T → ∞. Then,

there exists T2(hT ) > 0 such that |klim
t+1 − kT�κ

t+1| < ε
3 for t = 0� � � � � τ.

(iii) Lemma 3 implies the program {cT�0t � kT�0
t+1}Tt=0 ∈ 
T�0 converges to the infinite-

horizon optimal program {c∞
t � k∞

t+1}∞t=0 as T → ∞. Then, there exists T3(hT ) > 0 such

that |kT�0
t+1 − k∞

t+1|< ε
3 for t = 0� � � � � τ.
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(iv) Then, the triangular inequality implies∣∣kT�κ
t+1 − k∞

t+1

∣∣ = ∣∣kT�κ
t+1 − klim

t+1 + klim
t+1 − k

T�0
t+1 + k

T�0
t+1 − k∞

t+1

∣∣
≤ ∣∣kT�κ

t+1 − klim
t+1

∣∣ + ∣∣klim
t+1 − kT�0

t+1

∣∣ + ∣∣kT�0
t+1 − k∞

t+1

∣∣< ε

3
+ ε

3
+ ε

3
= ε�

for T(hT ) ≥ max{T1(hT )�T2(hT )�T3(hT )}.
(v) Finally, consider all possible partial histories {hT } and define T ∗(ε� τ�xTT ) ≡

max{hT } T(hT ). By construction, for any T > T ∗(ε� τ�xTT ), the result of the theorem
holds.

Remark A1. Our proof of the turnpike theorem addresses a technical issue that does
not arise in the literature that focuses on finite-horizon economies with a zero termi-
nal condition; see, for example, Majumdar and Zilcha (1987), Mitra and Nyarko (1991),
and Joshi (1997). Their construction relies on the fact that the optimal program of the
finite-horizon economy is always pointwise below the optimal program of the infinite-
horizon economy, that is, kT�κ

t+1 ≤ k∞
t+1, for t = 1� � � � � τ, and it gives strictly higher expected

utility up to T than does the infinite-horizon optimal program (because excess capital
can be consumed at terminal period T ). This argument does not directly apply to our
T -period stationary economy: our finite-horizon program can be either below or above
the infinite-horizon program depending on a specific T -period terminal condition. Our
proof addresses this issue by constructing in Lemma 2 a separate limit program for the
T -period stationary economy.

Appendix B: Implementation of EFP for growth model

In this section, we describe the implementation of the EFP method used to produce the
numerical results in the main text.

Algorithm 1a ((Implementation): Extended function path (EFP) for the growth model).

The goal of EFP.
EFP is aimed at approximating a solution of a nonstationary model during the

first τ periods, that is, it finds approximating functions (K̂0� � � � � K̂τ) such that K̂t ≈
Kt for t = 1� � � � τ, where Kt and K̂t are a t-period true capital function and its para-
metric approximation, respectively.

Step 0. Initialization.

a. Choose time horizon T � τ for constructing T -period stationary economy.

b. Construct a deterministic path {z∗
t }Tt=0 for exogenous state variable {zt}Tt=0 sat-

isfying z∗
t+1 = ϕt(z

∗
t �Et[εt+1]) for t = 0� � � � �T .

c. Construct a deterministic path {k∗
t }Tt=0 for endogenous state variable {kt}Tt=0

satisfying
u′
t (c

∗
t )= βu′

t (c
∗
t+1)(1 − δ+ f ′

t+1(k
∗
t+1� z

∗
t+1)).

c∗
t + k∗

t+1 = (1 − δ)k∗
t + ft(k

∗
t � z

∗
t ) for t = 0� � � � �T .
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d. For t = 0� � � � �T :
Construct a grid {(km�t� zm�t)}Mm=1 centered at (k∗

t � z
∗
t ).

Choose integration nodes, εj�t , and weights, ωj�t , for j = 1� � � � � J.
Construct future shocks z′

m�j�t = ϕt(zm�t� εj�t).

e. Write a t-period discretized system of the optimality conditions:

(i) u′
t (cm�t) = β

∑J
j=1 ωj�t[u′

t (c
′
m�j�t){1 − δ+ ft+1(k

′
m�t� z

′
m�j�t)}].

(ii) cm�t + k′
m�t = (1 − δ)km�t + ft(km�t� zm�t).

(iii) c′
m�j�t + k′′

m�j�t = (1 − δ)k′
m�t + ft+1(k

′
m�t� z

′
m�j�t).

(iv) k′
m�t = K̂t(km�t� zm�t) and k′′

m�j�t = K̂t+1(k
′
m�t� z

′
m�j�t).

d. Assume that the model becomes stationary at T .

Step 1: Terminal condition.
Find K̂T = K̂T+1 that approximately solves the system (i)–(iv) on the grid for the

T -period stationary economy fT+1 = fT , uT+1 = uT , ϕT+1 = ϕT .

Step 2: Backward induction.
Construct the function path (K̂0� � � � � K̂T−1� K̂T ) that approximately solves the

system (i)–(iv) for each t = 0� � � � �T and that matches the given terminal function
K̂T constructed in Step 1.

Step 3: Turnpike property.
Simulate the process K̂0 and use a subset of simulated points as initial condi-

tions (k0� z0). For each initial condition, draw a history hτ = (ε0� � � � � ετ). Use the
decision functions (K̂0� � � � � K̂τ) to simulate the economy’s trajectories (kT

0 � � � � k
T
τ ).

Check that the trajectories converge to a unique limit limT→∞(kT
0 � � � � k

T
τ ) = (k∗

0� � � �

k∗
τ) by constructing (K0� � � � �KT ) under different T and KT .

The EFP solution:
Use (K̂0� � � � � K̂τ) as an approximation to (K0� � � � �Kτ) and discard the remaining

T − τ functions.

The EFP method is more expensive than conventional solution methods for station-
ary models because decision functions must be constructed not just once but for T peri-
ods. We implement EFP in the way that keeps its cost relatively low: First, to approximate
decision functions, we use a version of the Smolyak (sparse) grid technique. Specifically,
we use a version of the Smolyak method that combines a Smolyak grid with ordinary
polynomials for approximating functions off the grid. This method was described in
Judd, Maliar, Maliar, and Valero (2014) who found it to be sufficiently accurate in the
context of a similar growth model, namely, unit-free residuals in the model’s equations
do not exceed 0�01% on a stochastic simulation of 10,000 observations. For this version
of the Smolyak method, the polynomial coefficients are overdetermined; for example,
in a two-dimensional case, we have 13 points in a second-level Smolyak grid, and we
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have only six coefficients in second-degree ordinary polynomial. Hence, we identify the
coefficients using a least-squares regression; we use an SVD decomposition, to enhance
numerical stability; see Judd et al. (2014) for a discussion of this and other numerically
stable approximation methods. We do not construct the Smolyak grid within a hyper-
cube normalized to [−1�1]2, as do Smolyak methods that rely on Chebyshev polynomi-
als used in, for example, Krueger and Kubler (2004), Malin, Krueger, and Kubler (2011),
and Judd et al. (2014). Instead, we construct a sequence of Smolyak grids around actual
steady state and thus, the hypercube, in which the Smolyak grid is constructed, grows
over time as shown in Figures 1 and 8.

Second, to approximate expectation functions, we use Gauss–Hermite quadrature
rule with 10 integration nodes. However, a comparison analysis in Judd et al. (2014)
shows that for models with smooth decision functions like ours, the number of inte-
gration nodes plays only a minor role in the properties of the solution; for example,
the results will be the same up to six digits of precision if, instead of ten integration
nodes, we use just two nodes or a simple linear monomial rule (a two-node Gauss–
Hermite quadrature rule is equivalent to a linear monomial integration rule for the two-
dimensional case). However, simulation-based Monte Carlo-style integration methods
produce very inaccurate approximations for integrals and are not considered in this pa-
per; see Judd et al. (2014) for discussion.

Third, to solve for the coefficients of decision functions, we use a simple derivative-
free fixed-point iteration method in line with Gauss–Jacobi iteration. Let us rewrite
the Euler equation (i) constructed in the initialization step of the algorithm by pre-
multiplying both sides by t-period capital:

k̂′
m�t = β

J∑
j=1

εj�t

[
u′
t

(
c′
m�j�t

)
u′
t (cm�t)

{
1 − δ+ ft+1

(
k′
m�tk

∗
t+1� z

′
m�j�tz

∗
t+1

)}]
k′
m�t � (S24)

We use different notation, k′
m�t and k̂′

m�t , for t-period capital in the left- and right-hand
side of (S24), respectively, in order to describe our fixed-point iteration method. Namely,
we substitute k′

m�t in the right-hand side of (S24) and in the constraints (ii) and (iii) in
the initialization step to compute cm�t and c′

m�j�t , respectively, and we obtain a new set of

values of the capital function on the grid k̂′
m�t in the left-hand side. We iterate on these

steps until convergence.
Our approximation functions K̂t are ordinary polynomial functions characterized

by a time-dependent vector of parameters bt , that is, K̂t = K̂(·;bt). So, operationally, the
iteration is performed not on the grid values k′

m�t and k̂′
m�t but on the coefficients of the

approximation functions. The iteration procedure differs in Steps 1 and 2.
In Step 1, we construct a solution to T -period stationary economy. For iteration i,

we fix some initial vector of coefficients b, compute k′
m�T+1 = K̂(km�T � zm�T ;b), find cm�T

and c′
m�j�T to satisfy constraints (ii) and (iii), respectively, and find k̂′

m�T+1 from the Euler

equation (i). We run a regression of k̂′
m�T+1 on K̂(km�T � zm�T ; ·) in order to re-estimate

the coefficients b̂ and we compute the coefficients for iteration i+ 1 as a weighted aver-
age, that is, b(i+1) = (1 −ξ)b(i) +ξb̂(i), where ξ ∈ (0�1) is a damping parameter (typically,
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ξ = 0�05). We use partial updating instead of full updating ξ = 1 because fixed-point iter-
ation can be numerically unstable and using partial updating enhances numerical sta-
bility; see Maliar et al. (2011). These kinds of fixed-point iterations are used by numer-
ical methods that solve for equilibrium in conventional stationary Markov economies;
see for example, Judd, Maliar, and Maliar (2011) and Judd et al. (2014).

In Step 2, we iterate on the path for the polynomial coefficients using Gauss–Jacobi-
style iterations in line with Fair and Taylor (1983). Specifically, on iteration j, we take a
path for the coefficients vectors {b(j)1 � � � � � b

(j)
T }, compute the corresponding path for cap-

ital quantities using k′
m�t = K̂t(km�t� zm�t;b(j)t ), and find a path for consumption quanti-

ties cm�t and c′
m�j�t from constraints (ii) and (iii), respectively, for t = 0� � � � �T . Substitute

these quantities in the right-hand side of a sequence of Euler equations for t = 0� � � � �T
to obtain a new path for capital quantities in the left-hand side of the Euler equa-
tion k̂′

m�t for t = 0� � � � �T − 1. Run T − 1 regressions of k̂′
m�t on polynomial functional

forms K̂t(km�t� zm�t;bt) for t = 0� � � � �T − 1 to construct a new path for the coefficients

{b̂(j)0 � � � � � b̂
(j)
T−1}. Compute the path of the coefficients for iteration j+ 1 as a weighted av-

erage, that is, b(j+1)
t = (1 − ξ)b

(j)
t + ξb̂

(j)
t , t = 0� � � � �T − 1, where ξ ∈ (0�1) is a damping

parameter which we again typically set at ξ = 0�05. (Observe that this iteration proce-
dure changes all the coefficients on the path except of the last one b

(j)
T ≡ b, which is

a given terminal condition that we computed in Step 1 from the T -period stationary
economy.)

In fact, the problem of constructing a path for function coefficients is similar to the
problem of constructing a path for variables: in both cases, we need to solve a large sys-
tem of nonlinear equations. The difference is that under EFP, the arguments of this sys-
tem are not variables but parameters of the approximating functions. Instead of Gauss–
Jacobi-style iteration on path, we can use Gauss–Siedel fixed-point iteration (shooting),
Newton-style solvers, or any other technique that can solve a system of nonlinear equa-
tions; see Lipton, Poterba, Sachs, and Summers (1980), Atolia and Buffie (2009a, 2009b),
Heer and Maußner (2010), and Grüne, Semmler, and Stieler (2015) for examples of such
techniques.

Let us now finally provide an additional illustration to the solution shown in Sec-
tion 3.4. Specifically, in Figure 2, we plot a two-dimensional sequence of capital de-
cision functions under fixed productivity level z = 1, while here we provide a three-
dimensional plot of the same decision function for adding the productivity level. We
again illustrate the capital functions for periods 1, 20, and 40 (i.e., k2 = K1(k1� z1), k21 =
K20(k20� z20), and k41 = K40(k40� z40)) which we approximate using Smolyak (sparse)
grids. In Step 1 of the algorithm, we construct the capital function K40 by assuming
that the economy becomes stationary in period T = 40; and in Step 2, we construct
a path of the capital functions that (K1� � � � �K39) that matches the corresponding ter-
minal function K40. The Smolyak grids are shown by stars in the horizontal kt × zt
plane. The domain for capital (on which Smolyak grids are constructed) and the range
of the constructed capital function grow at the rate of labor-augmenting technological
progress.
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Figure S1. Function path, produced by EFP, for a growth model with technological progress.

Appendix C: Path-solving methods for nonstationary models

We first describe the shooting method of Lipton et al. (1980) for a nonstationary de-
terministic economy, and we then elaborate the extended path (EP) of Fair and Taylor
(1983) for a nonstationary economy with uncertainty.

Shooting methods To illustrate the class of shooting methods, let us substitute ct and
ct+1 from (S6) into the Euler equation of (S5)–(S7) to obtain a second-order difference
equation,

u′
t

(
(1 − δ)kt + ft(kt� zt)− kt+1

)
= βEt

[
u′
t+1

(
(1 − δ)kt+1 + ft+1(kt+1� zt+1)− kt+2

)(
1 − δ+ f ′

t+1(kt+1� zt+1)
)]
� (S25)

Initial condition (k0� z0) is given. Let us abstract from uncertainty by assuming that
zt = 1 for all t, choose a sufficiently large T , and fix some terminal condition kT+1 (typ-
ically, the literature assumes that the economy arrives in the steady state kT+1 = k∗).1

To approximate the optimal path, we must solve numerically a system of T nonlinear
equations (S25) with respect to T unknowns {k1� � � � �kT }. It is possible to solve the sys-
tem (S25) by using a Newton-style or any other numerical solver. However, a more effi-
cient alternative could be numerical methods that exploit the recursive structure of the
system (S25) such as shooting methods (Gauss–Siedel iteration). There are two types
of shooting methods: a forward shooting and a backward shooting. A typical forward
shooting method expresses kt+2 in terms of kt and kt+1 using (S25) and constructs a
forward path (k1� � � � �kT+1); it iterates on k1 until the path reaches a given terminal
condition kT+1 = k∗. In turn, a typical reverse shooting method expresses kt in terms
of kt+1 and kt+2 and constructs a backward path {kT � � � � �k0}; it iterates on kT until the

1The turnpike theorem implies that in initial τ periods, the optimal path is insensitive to a specific ter-
minal condition used if τ � T .
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path reaches a given initial condition k0. A shortcoming of shooting methods is that
they tend to produce explosive paths, in particular, forward shooting methods; see Atolia
and Buffie (2009a, 2009b) for a careful discussion and possible treatments of this prob-
lem.

Fair and Taylor (1983) method The EP method of Fair and Taylor (1983) allows us to
solve nonstationary economic models with uncertainty by approximating expectation
functions under the assumption of certainty equivalence. To see how this method works,
consider the system (S25) with uncertainty and as an example, assume that zt+1 follows a
possibly nonstationary Markov process ln(zt+1)= ρt ln(zt)+σtεt+1, where the sequences
(ρ0�ρ1� � � �) and (σ0�σ1� � � �) are deterministically given at t = 0 and εt+1 ∼ N (0�1). Again,
let us choose a sufficiently large T and fix some terminal condition such as kT+1 = k∗,
so that the turnpike argument applies. Fair and Taylor (1983) proposed to construct a
solution path to (S25) by setting all future innovations to their expected values, ε1 = ε2 =
· · · = 0. This produces a path on which technology evolves as ln(zt+1) = ρt ln(zt) grad-
ually converging to z∗ = 1 and the model’s variables gradually converge to the steady
state. Note that only the first entry k1 of the constructed path (k1� � � � �kT ) is meaning-
ful; the remaining entries (k2� � � � �kT ) are obtained under a supplementary assumption
of zero future innovations and they are only needed to accurately construct k1. Thus, k1

is stored and the rest of the sequence is discarded. By applying the same procedure to
next state (k1� z1), we produce k2, and so on until the path of desired length τ is con-
structed.

However, certainty equivalence approximation of Fair and Taylor (1983) has its limi-
tations. It is exact for linear and linearized models, and it can be sufficiently accurate for
models that are close to linear; see Gagnon and Taylor (1990) and Love (2010). However,
it becomes highly inaccurate when either volatility and/or the degrees of nonlinearity
increase; see our accuracy evaluations in the main text.

Another novelty of the EP method relative to shooting methods is that it iterates on
the economy’s path at once using Gauss–Jacobi iteration. This type of iteration is more
stable than Gauss–Siedel and allows us to avoid explosive behavior. To be specific, it
guesses the economy’s path (k1� � � � �kT+1), substitutes the quantities for t = 1� � � � �T + 1
in the right-hand side of T Euler equations (S25), respectively, and obtains a new path
(k0� � � � �kT ) in the left-hand side of (S25); and it iterates on the path until the con-
vergence is achieved. Finally, Fair and Taylor (1983) proposed a simple procedure for
determining T that ensures that a specific terminal condition used does not affect
the quality of approximation, namely, they suggested to increase T (i.e., extend the
path) until the solution in the initial period(s) becomes insensitive to further increases
in T .

We now elaborate the description of the version of Fair and Taylor’s (1983) method
used to produce the results in the main text. We use a slightly different representation
of the optimality conditions of the model (S5)–(S7) (we assume δ = 1 and u(c) = ln(c)
for expository convenience). The Euler equation and budget constraint, respectively,



Supplementary Material A framework for analyzing nonstationary models 17

are

1
ct

= βEt

[
1

ct+1

(
1 − δ+ zt+1f

′(kt+1)
)]
�

ct + kt+1 = (1 − δ)kt + ztf (kt)�

We combine the above two conditions to get

kt+1 = ztf (kt)−
[
Et

( βzt+1f
′(kt+1)

)
zt+1f (kt+1)− kt+2

)

]−1

≈ ztf (kt)− zet+1f (kt+1)− kt+2

βzet+1f
′(kt+1))

� (S26)

where the path for zet+1 is constructed under the certainty equivalence assumption that
εt+1 = 0 for all t ≥ 0. Under the conventional AR(1) process for productivity levels, this
means that lnzet+1 = ρ lnzet for all t ≥ 0, or equivalently zet+1 = (zet )

ρ, where ze0 = z0. To
solve for the path of variables, we use derivative-free iteration in line with Gauss–Jacobi
method as in Fair and Taylor (1983):

Algorithm 2 (Extended path (EP) framework by Fair and Taylor (1983)).

The goal of EP framework of Fair and Taylor (1983)
EFP is aimed at approximating a path for variables satisfying the model’s equa-

tions during the first τ periods, that is, it finds k̂0� � � � � k̂τ such that ‖kt − k̂t‖ < ε for
t = 1� � � � � τ, where ε > 0 is target accuracy, ‖ · ‖ is an absolute value, and kt and k̂t

are the t-period true capital stocks and their approximation, respectively.

Step 0: Initialization.

a. Fix t = 0 period state (k0� z0).

b. Choose time horizon T � τ and terminal condition k̂T+1.

c. Construct and fix {zet+1}t=0�����T such that zet+1 = (zet )
ρ for all t, where ze0 = z0.

d. Guess an equilibrium path {k̂(1)
t }t=1�����T ′ for iteration j = 1.

e. Write a t-period system of the optimality conditions in the form: k̂t+1 =
zet f (k̂t)− zet+1f (k̂t+1)−k̂t+2

βzet+1f
′(k̂t+1))

, where k̂0 = k0.

Step 1: Solving for a path using Gauss–Jacobi method.

a. Substitute a path {k̂(j)
t }t=1�����T ′ into the right-hand side of (S26) to find k̂

(j+1)
t+1 =

zet f (k̂
(j)
t )− zet+1f (k̂

(j)
t+1)−k̂

(j)
t+2

βzet+1f
′(k̂(j)t+1))

, t = 1� � � � �T .
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b. End iteration if the convergence is achieved |k̂(j+1)
t+1 − k̂

(j)
t+1| < tolerance level.

Otherwise, increase j by 1 and repeat Step 1.

The EP solution:
Use the first entry k̂1 of the constructed path k̂1� � � � � k̂T as an approximation to

the true solution k1 in period t = 0 and discard the remaining k2� � � � �kT values.

In terms of our notations, Fair and Taylor (1983) used τ = 1, that is, they kept only
the first element k̂1 from the constructed path (k̂1� � � � � k̂T ) and disregarded the rest of
the path; then, they drew a next period shock z1 and solved for a new path (k̂1� � � � � k̂T+1)

starting from k̂1 and ending in a given k̂T+1 and stored k̂2, again disregarding the rest of
the path; and they advanced forward until the path of the given length τ is constructed.
T is chosen so that its further extensions do not affect the solution in the initial period
of the path. For instance, to find a solution k̂1, Fair and Taylor (1983) solved the model
several times under T + 1�T + 2�T + 3� � � � and checked that k̂1 remains the same (up to
a given degree of precision).

As is typical for fixed-point-iteration style methods, Gauss–Jacobi iteration may fail
to converge. To deal with this issue, Fair and Taylor (1983) used damping, namely, they
updated the path over iteration only by a small amount k(j+1)

t+1 = ξk
(j+1)
t+1 + (1 − ξ)k

(j)
t+1

where ξ ∈ (0�1) is a small number close to zero (e.g., 0.01).
Steps 1a and 1b of Fair and Taylor’s (1983) method are called Type I and Type II itera-

tions and are analogous to Step 2 of the EFP method when the sequence of the decision
functions is constructed. The extension of path is called Type III iteration and gives the
name to Fair and Taylor (1983) method.

In our examples, we implement Fair and Taylor’s (1983) method using a conventional
Newton-style numerical solver instead of Gauss–Jacobi iteration; a similar implementa-
tion was used in Heer and Maußner (2010). The cost of Fair and Taylor’s (1983) method
can depend considerably on a specific solver used and can be very high (as we need
to solve a system of equations with hundreds of unknowns numerically). In our simple
examples, a Newton-style solver was sufficiently fast and reliable. In more complicated
models, we are typically unable to derive closed-form laws of motion for the state vari-
ables, and derivative-free fixed-point iteration advocated in Fair and Taylor (1983) can
be a better alternative.

Appendix D: Solving the test model using the associated stationary model

We first convert the nonstationary model (S5)–(S7) with labor-augmenting technological
progress into a stationary model using the standard change of variables ĉt = ct/At and
k̂t = kt/At . This leads us to the following model:

max
{k̂t+1 �̂ct }t=0�����∞

E0

∞∑
t=0

(
β∗)t ĉ1−η

t

1 −η
(S27)

s.t. ĉt + γAk̂t+1 = (1 − δ)k̂t + ztk̂
α
t � (S28)

lnzt+1 = ρt lnzt + σtεt+1� εt+1 ∼ N (0�1)� (S29)
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where β∗ ≡ βγ
1−η
A . We solve this stationary model by using the same version of the

Smolyak method that is used within EFP to find a solution to T -period stationary econ-

omy.

After a solution to the stationary model (S27)–(S29) is constructed, a solution for

nonstationary variables can be recovered by using an inverse transformation ct = ĉtAt

and kt = k̂tAt .

For the sake of our comparison, we also need to recover the path of nonstationary

decision functions in terms of their parameters. Let us show how this can be done un-

der polynomial approximation of decision functions. Let us assume that a capital policy

function of the stationary model is approximated by complete polynomial of degree L,

namely, k̂t+1 = ∑L
l=0

∑l
m=0 bm+ (l−1)(l+2)

2 +1k̂
m
t z

l−m
t , where bi is a polynomial coefficient,

i = 0� � � �, L + (L−1)(L+2)
2 + 1. Given that the stationary and nonstationary solutions are

related by k̂t+1 = kt+1/(A0γ
t+1
A ), we have

kt+1 =A0γ
t+1
A k̂t+1 = A0γ

t+1
A

L∑
l=0

l∑
m=0

b
m+ (l−1)(l+2)

2 +1k̂
m
t z

l−m
t

=A0

L∑
l=0

l∑
m=0

γA
1−(m−1)tb

m+ (l−1)(l+2)
2 +1k

m
t z

l−m
t � (S30)

For example, for first-degree polynomial L = 1, we construct the coefficients vector

of the nonstationary model by premultiplying the coefficient vector b ≡ (b0� b1� b2)

of the stationary model by a vector (A0γ
t+1
A �A0γA�A0γ

t+1
A )�, which yields bt+1 ≡

(b0A0γ
t+1
A �b1A0γA�b2A0γ

t+1
A ), t = 0� � � � �T , where T is time horizon (length of simu-

lation in the solution procedure). Note that a similar relation will hold even if the growth

rate γA is time variable.

Appendix E: Sensitivity results for the model with labor-augmenting

technological progress

In this appendix, we provide sensitivity results for the model with labor-augmenting

technological progress. Table 2 contains the results on accuracy and cost of the version

of the EFP method studied in Section 5. We use τ = 200 and T = 400 and consider several

alternative parameterizations for {η�σε�γA}.

Figure S2 plots a maximum unit-free absolute difference between the exact solu-

tion for capital and the solution delivered by the EFP at τ = 100. The difference between

the solutions is computed across 1000 simulations. We use T = {200�300�400�500}, η =
{1/3�1�3}, and decision rules produced by the T -period stationary economy and zero

capital assumption as terminal conditions.
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Table 2. Sensitivity analysis for the EFP method.

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Models 6 Model 7

η 5 5 5 5 0�1 1 10
σε 0�03 0�03 0�03 0�01 0�01 0�01 0�01
γA 1�01 1�00 1�05 1�01 1�01 1�01 1�01

Mean errors across t periods in log10 units
t ∈ [0�50] −7�01 −6�67 −7�34 −7�03 −7�03 −6�61 −7�30
t ∈ [0�100] −6�82 −6�44 −7�25 −6�84 6�92 −6�48 −7�08
t ∈ [0�150] −6�73 −6�33 −7�22 −6�76 −6�89 −6�43 −6�98
t ∈ [0�175] −6�70 −6�29 −7�22 −6�74 −6�87 −6�41 −6�95
t ∈ [0�200] −6�68 −6�26 −7�21 −6�72 −6�87 −6�37 −6�93

Maximum errors across t periods in log10 units
t ∈ [0�50] −6�42 −6�31 −7�13 −6�66 −6�08 −6�24 −6�81
t ∈ [0�100] −5�99 −6�12 −7�05 −6�54 −5�97 −6�18 −6�36
t ∈ [0�150] −5�98 −6�04 −7�05 −6�52 −5�97 −6�18 −6�35
t ∈ [0�175] −5�98 −6�01 −7�05 −6�52 −5�97 −6�13 −6�33
t ∈ [0�200] −5�92 −5�99 −7�05 −6�51 −5�96 −5�88 −6�24

Running time, in seconds
Solution 225�9 150�0 193�0 216�98 836�5 300�7 245�9
Simulation 5�6 5�7 5�8 5�66 5�6 5�6 5�7
Total 231�6 155�7 198�8 222�64 842�1 306�3 251�6

Note: “Mean errors” and “Maximum errors” are, respectively, mean and maximum unit-free absolute difference between
the exact solution for capital and the solution delivered by EFP under the parameterization in the column. The difference be-
tween the solutions is computed across 100 simulations. The time horizon is T = 400, and the terminal condition is constructed
by using the T -period stationary economy in all experiments.

Figure S2. Sensitivity analysis for the EFP method.
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