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Quantile treatment effects and bootstrap inference under
covariate-adaptive randomization

Yichong Zhang
School of Economics, Singapore Management University

Xin Zheng
School of Economics, Singapore Management University

In this paper, we study the estimation and inference of the quantile treatment ef-
fect under covariate-adaptive randomization. We propose two estimation meth-
ods: (1) the simple quantile regression and (2) the inverse propensity score
weighted quantile regression. For the two estimators, we derive their asymptotic
distributions uniformly over a compact set of quantile indexes, and show that,
when the treatment assignment rule does not achieve strong balance, the inverse
propensity score weighted estimator has a smaller asymptotic variance than the
simple quantile regression estimator. For the inference of method (1), we show
that the Wald test using a weighted bootstrap standard error underrejects. But
for method (2), its asymptotic size equals the nominal level. We also show that,
for both methods, the asymptotic size of the Wald test using a covariate-adaptive
bootstrap standard error equals the nominal level. We illustrate the finite sample
performance of the new estimation and inference methods using both simulated
and real datasets.
Keywords. Bootstrap inference, quantile treatment effect.

JEL classification. C14, C21.

1. Introduction

The randomized control trial (RCT), as pointed out by Angrist and Pischke (2008), is
one of the five most common methods (along with instrumental variable regressions,
matching estimations, differences-in-differences, and regression discontinuity designs)
for causal inference. Researchers can use the RCT to estimate not only average treatment
effects (ATEs) but also quantile treatment effects (QTEs), which capture the heterogene-
ity of the sign and magnitude of treatment effects, varying depending on their place
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in the overall distribution of outcomes. For example, Muralidharan and Sundararaman
(2011) estimated the QTE of teacher performance pay program on student learning
via the difference of empirical quantiles of test scores between treatment and control
groups. Duflo, Greenstone, Pande, and Ryan (2013) and Banerjee, Duflo, Glennerster,
Kinnan (2015) estimated the QTEs of audits on endline pollution and a group-lending
microcredit program on informal borrowing, respectively, via linear quantile regressions
(QRs). Crépon, Devoto, Duflo, and Parienté (2015) estimated the QTE of microcredit on
various household outcomes via a minimum distance method. Byrne, Nauze, and Mar-
tin (2018) estimated the QTE of being informed on energy use via the inverse propen-
sity score weighted (IPW) QR. With the exception of Crépon et al. (2015), the other
four papers all use the bootstrap to construct confidence intervals for their QTE esti-
mates. However, RCTs have also been routinely implemented with covariate-adaptive
randomization. Individuals are first stratified based on some baseline covariates, and
then, within each stratum, the treatment status is assigned (independent of covariates)
to achieve some balance between the sizes of treatment and control groups; as exam-
ples, see Imbens and Rubin (2015, Chapter 9) for a textbook treatment of the topic, and
Duflo, Glennerster, and Kremer (2007) and Bruhn and McKenzie (2009) for two excellent
surveys on implementing RCTs in development economics. To achieve such balance,
treatment status for different individuals usually exhibits a (negative) cross-sectional de-
pendence. The standard inference procedures that rely on cross-sectional independence
are usually conservative and lacking power. How do we consistently estimate QTEs un-
der covariate-adaptive randomization? What are the asymptotic distributions for the
QTE estimators, and how do we conduct proper bootstrap inference? These questions
are as yet unaddressed.

We propose two ways to estimate QTEs: (1) the simple quantile regression (SQR) and
(2) the IPW QR. We establish the weak limits for both estimators uniformly over a com-
pact set of quantile indexes and show that the IPW estimator has a smaller asymptotic
variance than the SQR estimator when the treatment assignment rule does not achieve
strong balance.1 If strong balance is achieved, then the two estimators are asymptot-
ically first-order equivalent. For inference, we show that the Wald test combined with
weighted bootstrap based critical values can lead to underrejection for method (1), but
its asymptotic size equals the nominal level for method (2). We also study the covariate-
adaptive bootstrap which respects the cross-sectional dependence when generating the
bootstrap sample. The estimator based on the covariate-adaptive bootstrap sample can
mimic that of the original sample in terms of the standard error. Thus, using proper
covariate-adaptive bootstrap based critical values, the asymptotic size of the Wald test
equals the nominal level for both estimators.

As originally proposed by Doksum (1974), the QTE, for a fixed quantile index, corre-
sponds to the horizontal difference between the marginal distributions of the potential
outcomes for treatment and control groups. Firpo (2007) studied the identification and
estimation of QTE under unconfoundedness. Our estimators (1) and (2) directly follow
those in Doksum (1974) and Firpo (2007), respectively.

1We will define “strong balance” in Section 2.



Quantitative Economics 11 (2020) Quantile treatment effects and bootstrap inference 959

Shao, Yu, and Zhong (2010) first pointed out that, under covariate-adaptive random-
ization, the usual two-sample t-test for the ATE is conservative. They then proposed a
covariate-adaptive bootstrap which can produce the correct standard error. Shao and
Yu (2013) extended the results to generalized linear models. However, both groups of
researchers parametrized the (transformed) conditional mean equation by a specific
linear model and focused on a specific randomization scheme (covariate-adaptive bi-
ased coin method). Ma, Qin, Li, and Hu (2018) derived the theoretical properties of ATE
estimators based on general covariate-adaptive randomization under the linear model
framework. Bugni, Canay, and Shaikh (2018) substantially generalized the framework to
a fully nonparametric setting with a general class of randomization schemes. However,
they mainly focused on the ATE and showed that the standard two-sample t-test and
the t-test based on the linear regression with strata fixed effects are conservative. They
then obtained analytical estimators for the correct standard errors and studied the va-
lidity of permutation tests. Hahn, Hirano, and Karlan (2011) studied the IPW estimator
for the ATE under adaptive randomization. However, they assumed the treatment status
is assigned completely independently across individuals. More recently, Bugni, Canay,
and Shaikh (2019) studied the estimation of ATE with multiple treatments and proposed
a fully saturated estimator. Tabord-Meehan (2018) studied the estimation of ATE under
an adaptive randomization procedure.

Our paper complements the above papers in four aspects. First, we consider the es-
timation and inference of the QTE, which is a function of quantile index τ. We rely on the
empirical processes theories developed by van der Vaart and Wellner (1996) and Cher-
nozhukov, Chetverikov, and Kato (2014) to obtain uniformly weak convergence of our es-
timators over a compact set of τ. Based on the uniform convergence, we can construct
not only point-wise but also uniform confidence bands. Second, we study the asymp-
totic properties of the IPW estimator under covariate-adaptive randomization. When
the treatment assignment rule does not achieve strong balance, the IPW estimator is
more efficient than the SQR estimator. Third, we investigate the weighted bootstrap ap-
proximation to the asymptotic distributions of the SQR and IPW estimators. We show
that the weighted bootstrap ignores the (negative) cross-sectional dependence due to
the covariate-adaptive randomization and overestimates the asymptotic variance for
the SQR estimator. However, the asymptotic variance for the IPW estimator does not rely
on the randomization scheme implemented. Thus, the asymptotic size of the Wald test
using the IPW estimator paired with the weighted bootstrap based critical values equals
the nominal level. Fourth, we investigate the covariate-adaptive bootstrap approxima-
tion to the asymptotic distributions of the SQR and IPW estimators. We establish that,
using either estimator paired with its corresponding covariate-adaptive bootstrap based
critical values, the asymptotic size of the Wald test equals the nominal level. Shao, Yu,
and Zhong (2010) first proposed the covariate-adaptive bootstrap and establish its valid-
ity for the ATE in a linear regression model under the null hypothesis that the treatment
effect is not only zero but also homogeneous.2 We modify the covariate-adaptive boot-
strap and establish its validity for the QTE in the nonparametric setting proposed by

2We say the average treatment effect is homogeneous if the conditional average treatment effect given
covariates is the same as the unconditional one.
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Bugni, Canay, and Shaikh (2018). In addition, our results do not rely on the homogeneity
of the treatment effect. Compared with the analytical inference, the two bootstrap in-
ferences for QTEs we study in this paper avoid estimating the infinite-dimensional nui-
sance parameters such as the densities of the potential outcomes, and thus, the choices
of tuning parameters. In addition, unlike the permutation tests studied in Bugni, Canay,
and Shaikh (2018), the validity of bootstrap inferences does not require either strong
balance condition or studentization. In particular, such studentization is cumbersome
in the QTE context.

As the asymptotic variance for the IPW estimator does not depend on the treatment
assignment rule implemented in RCTs, this estimator (and equivalently, the fully sat-
urated estimator for the ATE) is suitable for settings where the knowledge of the exact
treatment assignment rule is not available. Such scenario occurs when researchers are
using an experiment that was run in the past and the randomization procedure may not
have been fully described. It also occurs in subsample analysis, where subgroups are
defined using variables that may have not been used to form the strata and the treat-
ment assignment rule for each subgroup becomes unknown. We illustrate this fact in
the subsample analysis of the empirical application in Section 8.

The rest of the paper is organized as follows. In Section 2, we describe the model
setup and notation. In Sections 3.1 and 3.2, we discuss the asymptotic properties of es-
timators (1) and (2), respectively. In Sections 4 and 5, we investigate the weighted and
covariate-adaptive bootstrap approximations to the asymptotic distributions of estima-
tors (1) and (2), respectively. In Section 6, we examine the finite-sample performance of
the estimation and inference methods. In Section 7, we provide recommendations for
practitioners. In Section 8, we apply the new methods to estimate and infer the average
and quantile treatment effects of iron efficiency on educational attainment. In Section 9,
we conclude. We provide proofs for all results in an Appendix in the Online Supplemen-
tal Material (Zhang and Zheng (2020)). We study the strata fixed effects quantile regres-
sion estimator and provide additional simulation results in the second online supple-
ment located in the replication file.

2. Setup and notation

First, denote the potential outcomes for treated and control groups as Y(1) and Y(0),
respectively. The treatment status is denoted as A, where A= 1 means treated and A= 0
means untreated. The researcher can only observe {Yi�Zi�Ai}ni=1 where Yi = Yi(1)Ai +
Yi(0)(1 −Ai), and Zi is a collection of baseline covariates. Strata are constructed from Z

using a function S : Supp(Z) �→ S , where S is a finite set. For 1 ≤ i ≤ n, let Si = S(Zi) and
p(s) = P(Si = s). Throughout the paper, we maintain the assumption that p(s) is fixed
w.r.t. n and is positive for every s ∈ S .3 We make the following assumption for the data
generating process (DGP) and the treatment assignment rule.

3We can also allow for the DGP to depend on n so that pn(s) = Pn(Si = s) and p(s) = limpn(s). All the
results in this paper still hold as long as n(s) → ∞ a.s. Interested readers can refer to the previous version of
this paper on arXiv for more details.
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Assumption 1. (i) {Yi(1)�Yi(0)� Si}ni=1 is i.i.d.

(ii) {Yi(1)�Yi(0)}ni=1 ⊥⊥ {Ai}ni=1|{Si}ni=1.

(iii) {{Dn(s)√
n

}s∈S |{Si}ni=1} �N(0�ΣD) a.s., where

Dn(s) =
n∑

i=1

(Ai −π)1{Si = s} and ΣD = diag
{
p(s)γ(s) : s ∈ S

}

with 0 ≤ γ(s) ≤ π(1 −π).

(iv) Dn(s)
n(s) = op(1) for s ∈ S , where n(s) = ∑n

i=1 1{Si = s}.

Several remarks are in order. First, Assumptions 1(i)–1(iii) are exactly the same as
Bugni, Canay, and Shaikh (2018, Assumption 2.2). We refer interested readers to Bugni,
Canay, and Shaikh (2018) for more discussion of these assumptions. Second, note that in
Assumption 1(iii) the parameter π is the target proportion of treatment for each stratum
and Dn(s) measures the imbalance. Bugni, Canay, and Shaikh (2019) studied the more
general case that π can take distinct values for different strata. Third, we follow the ter-
minology in Bugni, Canay, and Shaikh (2018), which follows that of Efron (1971) and Hu
and Hu (2012), saying a treatment assignment rule achieves strong balance if γ(s) = 0.
Fourth, we do not require that the treatment status is assigned independently. Instead,
we only require Assumption 1(iii) or Assumption 1(iv), which condition is satisfied by
several treatment assignment rules such as simple random sampling (SRS), biased-coin
design (BCD), adaptive biased-coin design (WEI), and stratified block randomization
(SBR). Bugni, Canay, and Shaikh (2018, Section 3) provided an excellent summary of
these four examples. For completeness, we briefly repeat their descriptions below. Note
that both BCD and SBR assignment rules achieve strong balance. Last, as p(s) > 0, As-
sumption 1(iii) implies Assumption 1(iv).

Example 1 (SRS). Let {Ai}ni=1 be drawn independently across i and of {Si}ni=1 as
Bernoulli random variables with success rate π, that is, for k= 1� � � � � n,

P
(
Ak = 1|{Si}ni=1� {Aj}k−1

j=1

) = P(Ak = 1)= π�

Then Assumption 1(iii) holds with γ(s) = π(1 −π).

Example 2 (WEI). The design is first proposed by Wei (1978). Let nk−1(Sk) =∑k−1
i=1 1{Si = Sk}, Dk−1(s) = ∑k−1

i=1 (Ai − 1
2)1{Si = s}, and

P
(
Ak = 1|{Si}ki=1� {Ai}k−1

i=1

) = φ

(
Dk−1(Sk)

nk−1(Sk)

)
�

where φ(·) : [−1�1] �→ [0�1] is a prespecified nonincreasing function satisfying φ(−x) =
1 − φ(x). Here, D0(S1)

0 is understood to be zero. Then Bugni, Canay, and Shaikh (2018)
showed that Assumption 1(iii) holds with π = 1

2 and γ(s) = 1
4(1 − 4φ′(0))−1.
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Example 3 (BCD). The treatment status is determined sequentially for 1 ≤ k≤ n as

P
(
Ak = 1|{Si}ki=1� {Ai}k−1

i=1

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

if Dk−1(Sk) = 0�

λ if Dk−1(Sk) < 0�

1 − λ if Dk−1(Sk) > 0�

where Dk−1(s) is defined as above and 1
2 < λ ≤ 1. Then Bugni, Canay, and Shaikh (2018)

showed that Assumption 1(iii) holds with π = 1
2 and γ(s) = 0.

Example 4 (SBR). For each stratum, 
πn(s)� units are assigned to treatment and the
rest is assigned to control. Bugni, Canay, and Shaikh (2018) then showed that Assump-
tion 1(iii) holds with γ(s) = 0.

Our parameter of interest is the τth QTE defined as

q(τ) = q1(τ)− q0(τ)�

where τ ∈ (0�1) is a quantile index and qj(τ) is the τth quantile of random variable Y(j)

for j = 0�1. For inference, although we mainly focus on the Wald test for the null hy-
pothesis that q(τ) equals some particular value, our method can also be used to test
hypotheses involving multiple or even a continuum of quantile indexes. The following
regularity conditions are common in the literature of quantile estimations.

Assumption 2. For j = 0�1, denote fj(·) and fj(·|s) as the PDFs of Yi(j) and Yi(j)|Si = s,
respectively.

(i) fj(qj(τ)) and fj(qj(τ)|s) are bounded and bounded away from zero uniformly over
τ ∈ Υ and s ∈ S , where Υ is a compact subset of (0�1).

(ii) fj(·) and fj(·|s) are Lipschitz over {qj(τ) : τ ∈ Υ }.

3. Estimation

3.1 Simple quantile regression

In this section, we propose to estimate q(τ) by a QR of Yi on Ai. Denote β(τ) =
(β0(τ)�β1(τ))

′, β0(τ) = q0(τ), and β1(τ)= q(τ). We estimate β(τ) by β̂(τ), where

β̂(τ)= arg min
b=(b0�b1)′∈�2

n∑
i=1

ρτ
(
Yi − Ȧ′

ib
)
�

Ȧi = (1�Ai)
′, and ρτ(u) = u(τ − 1{u ≤ 0}) is the standard check function. We refer to

β̂1(τ), the second element of β̂(τ), as our SQR estimator for the τth QTE. As Ai is a
dummy variable, β̂1(τ) is numerically the same as the difference between the τth em-
pirical quantiles of Y in the treatment and control groups.
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Theorem 3.1. If Assumptions 1(i)–1(iii) and 2 hold, then uniformly over τ ∈ Υ ,

√
n
(
β̂1(τ)− q(τ)

)
� Bsqr(τ)� as n→ ∞�

where Bsqr(·) is a Gaussian process with covariance kernel Σsqr(·� ·). The expression for
Σsqr(·� ·) can be found in the Appendix.

The asymptotic variance for
√
n(β̂1(τ)−β1(τ)) is ζ2

Y (π�τ)+ ζ2
A(π�τ)+ ζ2

S(τ), where

ζ2
Y (π�τ) = τ(1 − τ)−Em2

1(S� τ)

πf 2
1
(
q1(τ)

) + τ(1 − τ)−Em2
0(S� τ)

(1 −π)f 2
0
(
q0(τ)

) �

ζ2
A(π�τ) = Eγ(S)

(
m1(S� τ)

πf1
(
q1(τ)

) + m0(S� τ)

(1 −π)f0
(
q0(τ)

)
)2

�

ζ2
S(τ) = E

(
m1(S� τ)

f1
(
q1(τ)

) − m0(S� τ)

f0
(
q0(τ)

)
)2

�

and mj(s� τ) = E(τ − 1{Y(j) ≤ qj(τ)}|S = s). Note that, if the treatment assignment rule
achieves strong balance or the stratification is irrelevant4 then ζ2

A(π�τ)= 0.

3.2 Inverse propensity score weighted quantile regression

Denote π̂(s) = n1(s)/n(s), n1(s) = ∑n
i=1 Ai1{Si = s}, and n(s) = ∑n

i=1 1{Si = s}. Note π̂(Si)

is an estimator for the propensity score, that is, π. In addition, Assumption 1(ii) implies
that the unconfoundedness condition holds. Thus, following the lead of Firpo (2007), we
can estimate qj(τ) by the IPW QR. Let

q̂1(τ)= arg min
q

1
n

n∑
i=1

Ai

π̂(Si)
ρτ(Yi − q) and q̂0(τ) = arg min

q

1
n

n∑
i=1

1 −Ai

1 − π̂(Si)
ρτ(Yi − q)�

We then estimate q(τ) by q̂(τ) = q̂1(τ)− q̂0(τ).

Theorem 3.2. If Assumptions 1(i), 1(ii), 1(iv), and 2 hold, then uniformly over τ ∈ Υ ,

√
n
(
q̂(τ)− q(τ)

)
� Bipw(τ)� as n → ∞�

where Bipw(·) is a scalar Gaussian process with covariance kernel Σipw(·� ·). The expression
for Σipw(·� ·) can be found in the Appendix.

Two remarks are in order. First, the asymptotic variance for q̂(τ) is

ζ2
Y (π�τ)+ ζ2

S(τ)�

4It means P(Y(j)≤ qj(τ)|S = s) = τ for s ∈ S� j = 0�1.
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When strong balance is not achieved and the stratification is relevant, we have ζ2
A(π�τ) >

0. Thus, q̂(τ) is more efficient than β̂1(τ) in the sense that

Σipw(τ� τ) < Σsqr(τ� τ)�

When strong balance is achieved (γ(s) = 0), we have ζ2
A(π�τ) = 0. Thus, the two esti-

mators are asymptotically first-order equivalent. Based on the same argument, one can
potentially prove that, when strong balance is not achieved and the stratification is rele-
vant, the IPW estimator for ATE has strictly smaller asymptotic variance than the simple
two-sample difference and strata fixed effects estimators studied by Bugni, Canay, and
Shaikh (2018), and is asymptotically equivalent to the fully saturated linear regression
estimator proposed by Bugni, Canay, and Shaikh (2019). Second, since the amount of
“balance” of the treatment assignment rule does not play a role in the limiting distribu-
tion of the IPW estimator, Assumption 1(iii) is replaced by Assumption 1(iv).

4. Weighted bootstrap

In this section, we approximate the asymptotic distributions of the SQR and IPW estima-
tors via the weighted bootstrap. Let {ξi}ni=1 be a sequence of bootstrap weights which will
be specified later. Further denote nw1 (s) = ∑n

i=1 ξiAi1{Si = s}, nw(s) = ∑n
i=1 ξi1{Si = s},

and π̂w(s) = nw1 (s)/n
w(s). The weighted bootstrap counterparts for the two estimators

we study in this paper can then be written respectively as

β̂w(τ) = arg min
b

n∑
i=1

ξiρτ
(
Yi − Ȧ′

ib
)

and

q̂w(τ)= q̂w1 (τ)− q̂w0 (τ)�

where

q̂w1 (τ) = arg min
q

n∑
i=1

ξiAi

π̂w(Si)
ρτ(Yi − q) and q̂w0 (τ)= arg min

q

n∑
i=1

ξi(1 −Ai)

1 − π̂w(Si)
ρτ(Yi − q)�

The second element β̂w
1 (τ) of β̂w(τ) and q̂w(τ) are the SQR and IPW bootstrap estimators

for the τth QTE, respectively. Next, we specify the bootstrap weights.

Assumption 3. Suppose {ξi}ni=1 is a sequence of nonnegative i.i.d. random variables with
unit expectation and variance and a subexponential upper tail.

The nonnegativity is required to maintain the convexity of the quantile regression
objective function. The other conditions in Assumption 3 are common for the weighted
bootstrap approximation. In practice, we generate {ξi}ni=1 by the standard exponential
distribution. The corresponding weighted bootstrap is also known as the Bayesian boot-
strap.
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Theorem 4.1. If Assumptions 1(i)–1(iii), 2, and 3 hold, then uniformly over τ ∈ Υ and
conditionally on data,

√
n
(
β̂w

1 (τ)− β̂1(τ)
)
� B̃sqr(τ)� as n → ∞�

where B̃sqr(τ) is a Gaussian process. In addition, B̃sqr(τ) shares the same covariance kernel
with Bsqr(τ) defined in Theorems 3.1 with γ(s) there replaced by π(1 −π).

If Assumptions 1(i), 1(ii), 1(iv), 2, and 3 hold, then uniformly over τ ∈ Υ and condi-
tionally on data,

√
n
(
q̂w(τ)− q̂(τ)

)
� Bipw(τ)� as n → ∞�

where Bipw(τ) is the same Gaussian process defined in Theorem 3.2.

Four remarks are in order. First, the weighted bootstrap sample does not preserve
the negative cross-sectional dependence in the original sample. Asymptotic variances
of the weighted bootstrap estimators equal those of their original sample counterparts
as if SRS is applied. In fact, the asymptotic variance for β̂w

1 (τ) is

ζ2
Y (π�τ)+ ζ̃2

A(π�τ)+ ζ2
S(τ)�

where

ζ̃2
A(π�τ) = Eπ(1 −π)

(
m1(S� τ)

πf1
(
q1(τ)

) + m0(S� τ)

(1 −π)f0
(
q0(τ)

)
)2

�

This asymptotic variance is intuitive as the weight ξi is independent with each other,
which implies that, conditionally on data, the bootstrap sample observations are inde-
pendent. As γ(s) ≤ π(1 −π), we have

ζ2
A(π�τ)≤ ζ̃2

A(π�τ)�

If the inequality is strict, then the weighted bootstrap overestimates the asymptotic vari-
ance of the SQR estimator, and thus, the Wald test constructed using the SQR estimator
and its weighted bootstrap standard error is conservative.

Second, the asymptotic distribution of the weighted bootstrap IPW estimator coin-
cides with that of the original estimator. The asymptotic size of the Wald test constructed
using the IPW estimator and its weighted bootstrap standard error then equals the nom-
inal level. Theorem 3.2 shows that the asymptotic variance for q̂(τ) is invariant in the
treatment assignment rule applied. Thus, even though the weighted bootstrap sample
ignores the cross-sectional dependence and behaves as if the treatment status is gener-
ated randomly, the asymptotic variance for q̂w(τ) is still

ζ2
Y (π�τ)+ ζ2

S(τ)�

Third, the validity of weighted bootstrap for the IPW estimator only requires As-
sumption 1(iv) instead of 1(iii), for the same reason mentioned after Theorem 3.2.
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Fourth, it is possible to consider the conventional nonparametric bootstrap which
generates the bootstrap sample from the empirical distribution of the data. If the ob-
servations are i.i.d., van der Vaart and Wellner (1996, Section 3.6) showed that the con-
ventional bootstrap is first-order equivalent to a weighted bootstrap with Poisson(1)
weights. However, in the current setting, {Ai}i≥1 is dependent. It is technically challeng-
ing to rigorously show that the above equivalence still holds. We leave it as an interesting
topic for future research.

5. Covariate-adaptive bootstrap

In this section, we consider the covariate-adaptive bootstrap procedure as follows:

(i) Draw {S∗
i }ni=1 from the empirical distribution of {Si}ni=1 with replacement.

(ii) Generate {A∗
i }ni=1 based on {S∗

i }ni=1 and the treatment assignment rule.

(iii) For A∗
i = a and S∗

i = s, draw Y ∗
i from the empirical distribution of Yi given Ai = a

and Si = s with replacement.

First, Step (i) is the conventional nonparametric bootstrap. The bootstrap sample {S∗
i }ni=1

is obtained by drawing from the empirical distribution of {Si}ni=1 with replacement n

times. Second, Step (ii) follows the treatment assignment rule, and thus preserves the
cross-sectional dependence structure in the bootstrap sample, even after conditioning
on data. The weighted bootstrap sample, by contrast, is cross-sectionally independent
given data. Third, Step (iii) applies the conventional bootstrap procedure to the out-
come Yi in the cell (Si�Ai) = (s�a) ∈ S ×{0�1}. Given that the original data contain na(s)

observations in this cell, in this step, the bootstrap sample {Y ∗
i }i:A∗

i =a�S∗
i =s is obtained by

drawing from the empirical distribution of these na(s) outcomes with replacement n∗
a(s)

times, where n∗
a(s) = ∑n

i=1 1{A∗
i = a�S∗

i = s}. Unlike the conventional bootstrap, here
both na(s) and n∗

a(s) are random and are not necessarily the same. Last, to implement
the covariate-adaptive bootstrap, researchers need to know the treatment assignment
rule for the original sample. Unlike observational studies, such information is usually
available for RCTs. If one only knows that the treatment assignment rule achieves strong
balance, then Theorem 5.1 below still holds, provided that the bootstrap sample is gen-
erated from any treatment assignment rule that achieves strong balance. Even worse, if
no information on the treatment assignment rule is available, then one cannot imple-
ment the covariate-adaptive bootstrap inference. In this case, the weighted bootstrap
for the IPW estimator can still provide a nonconservative Wald test, as shown in Theo-
rem 4.1.

Using the bootstrap sample {Y ∗
i �A

∗
i � S

∗
i }ni=1, we can estimate QTE by the two meth-

ods considered in the paper. Let n∗
1(s) = ∑n

i=1 A
∗
i 1{S∗

i = s}, n∗(s) = ∑n
i=1 1{S∗

i = s},

π̂∗(s) = n∗
1(s)

n∗(s) , and Ȧ∗
i = (1�A∗

i )
′. Then the two bootstrap estimators can be written re-

spectively as

β̂∗(τ) = arg min
b

n∑
i=1

ρτ
(
Y ∗
i − Ȧ∗

i b
)
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and

q̂∗(τ) = q̂∗
1(τ)− q̂∗

0(τ)�

where

q̂∗
1 = arg min

q

n∑
i=1

A∗
i

π̂∗(S∗
i

)ρτ(Y ∗
i − q

)
and q̂∗

0 = arg min
q

n∑
i=1

1 −A∗
i

1 − π̂∗(S∗
i

)ρτ(Y ∗
i − q

)
�

The second element β̂∗
1(τ) of β̂∗(τ) and q̂∗(τ) are the SQR and IPW bootstrap estimators

for the τth QTE, respectively. Parallel to Assumption 1, we make the following assump-
tion for the bootstrap sample.

Assumption 4. Let D∗
n(s) = ∑n

i=1(A
∗
i −π)1{S∗

i = s}.

(i) {{D∗
n(s)√
n

}s∈S |{S∗
i }ni=1} � N(0�ΣD) a.s., where ΣD = diag{p(s)γ(s) : s ∈ S}.

(ii) sups∈S
|D∗

n(s)|√
n∗(s) = Op(1), sups∈S

|Dn(s)|√
n(s)

=Op(1).

Assumption 4(i) is a high-level assumption. Obviously, it holds for SRS. For WEI, this
condition holds by the same argument in Bugni, Canay, and Shaikh (2018, Lemma B.12)

with the fact that n∗(s)
n(s)

p−→ 1. For BCD, as shown in Bugni, Canay, and Shaikh (2018,
Lemma B.11),

D∗
n(s)|

{
S∗
i

}n
i=1 =Op(1)�

Therefore, D∗
n(s)/

√
n∗(s) p−→ 0 and Assumption 4(i) holds with γ(s) = 0. For SBR, it is

clear that |D∗
n(s)| ≤ 1. Thus, Assumption 4(i) holds with γ(s) = 0 as well. In addition,

as p(s) > 0, based on the standard bootstrap results, we have n∗(s)/n p−→ p(s) and

n(s)/n
p−→ p(s). Therefore, Assumption 4(i) is sufficient for Assumption 4(ii). Last, note

that Assumption 4(ii) implies Assumption 1(iv).

Theorem 5.1. Suppose Assumptions 1(i), 1(ii), 2, and 4(ii) hold. Then, uniformly over
τ ∈ Υ and conditionally on data,

√
n
(
q̂∗(τ)− q̂(τ)

)
� Bipw(τ)� as n → ∞�

If, in addition, Assumptions 1(iii) and 4(i) hold, then

√
n
(
β̂∗

1(τ)− q̂(τ)
)
� Bsqr(τ)� as n → ∞�

Here, Bsqr(τ) and Bipw(τ) are two Gaussian processes defined in Theorems 3.1 and 3.2,
respectively.

Several remarks are in order. First, unlike the usual bootstrap estimator, the
covariate-adaptive bootstrap SQR estimator is not centered around its corresponding
counterpart from the original sample, but rather q̂(τ). The reason is that the treatment
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status A∗
i is not generated by bootstrap. In the linear expansion for the bootstrap esti-

mator β̂∗
1(τ), the part of the influence function that accounts for the variation generated

by A∗
i need not be centered. We also know from the proof of Theorem 3.2 that q̂(τ) do

not have an influence function that represents the variation generated by Ai. Thus, q̂(τ)
can be used to center β̂∗

1(τ).
Second, the choice of q̂(τ) as the center is somehow ad-hoc. In fact, any estimator

q̃(τ) that is first-order equivalent to q̂(τ) in the sense that

sup
τ∈Υ

∣∣q̃(τ)− q̂(τ)
∣∣ = op(1/

√
n)

can serve as the center for the bootstrap estimators q̂∗(τ) and β̂∗
1(τ).

Third, when the treatment assignment rule achieves strong balance, β̂1(τ) and q̂(τ)

are first-order equivalent. In this case, β̂1(τ) can serve as the center for β̂∗
1(τ) and various

bootstrap inference methods are valid. On the other hand, when the treatment assign-
ment rule does not achieve strong balance, β̂1(τ) and q̂(τ) are not first-order equivalent.
In this case, the asymptotic size of the percentile bootstrap for the SQR estimator using
the quantiles of β̂∗

1(τ) does not equal the nominal level. In the next section, we propose
a way to compute the bootstrap standard error which does not depend on the choice of
the center. Based on the bootstrap standard error, researchers can construct t-statistics
and use standard normal critical values for inference.

Fourth, for ATE, we can use the same bootstrap sample to compute the standard
errors for the simple and strata fixed effects estimators proposed in Bugni, Canay, and
Shaikh (2018) as well as the IPW estimator. We expect that all the results in this paper
hold for the ATE as well.

6. Simulation

We can summarize four bootstrap scenarios from the analysis in Sections 4 and 5: (i)
the SQR estimator with the weighted bootstrap, (ii) the IPW estimator with either the
weighted or covariate-adaptive bootstrap, (iii) the SQR estimator with the covariate-
adaptive bootstrap when the assignment rule achieves strong balance, and (iv) the SQR
estimator with the covariate-adaptive bootstrap when the assignment rule does not
achieve strong balance. The results of Sections 4 and 5 imply that the bootstrap in sce-
nario (i) produces conservative Wald-tests when the treatment assignment rule is not
SRS. For scenarios (ii) and (iii), various bootstrap based inference methods are valid.
However, for scenario (iv), researchers should be careful about the centering issue. In
particular, the percentile bootstrap inference using the quantiles of β̂∗

1 is invalid. In the
following, we propose one single bootstrap inference method that works for scenarios
(ii)–(iv). In addition, the proposed method does not require the knowledge of the cen-
tering.

We take the IPW estimator as an example. We can repeat the bootstrap estimation5

B times and obtain B bootstrap IPW estimates, denoted as {q̂∗
b(τ)}Bb=1. Further denote

5For the IPW estimator, we can use either the weighted or covariate-adaptive bootstrap. For the SQR
estimator, we can only use the covariate-adaptive bootstrap.
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Q̂(α) as the α-th empirical quantile of {q̂∗
b(τ)}Bb=1. We can test the null hypothesis that

q(τ)= q0(τ) via 1{| q̂(τ)−q0(τ)
σ̂∗
n

| > z1−α/2}, where q̂(τ), z1−α/2, and σ̂∗
n are the IPW estimator,

the (1 − α/2)-th quantile of the standard normal distribution, and

σ̂∗
n = Q̂(0�975)− Q̂(0�025)

z0�975 − z0�025
�

respectively. In scenarios (ii)–(iv), the asymptotic size of such test equals the nominal
level α. In scenarios (ii) and (iii), we recommend the t-statistic and confidence interval
using this particular bootstrap standard error (i.e., σ̂∗

n ) over other bootstrap inference
methods (e.g., bootstrap confidence interval, percentile bootstrap confidence interval,
etc.) because based on unreported simulations, they have better finite sample perfor-
mance.

6.1 Data generating processes

We consider two DGPs with parameters γ = 4, σ = 2, and μ which will be specified later.

(i) Let Z be standardized Beta(2�2) distributed, Si = ∑4
j=1 1{Zi ≤ gj}, and (g1� � � � �

g4) = (−0�25
√

20�0�0�25
√

20�0�5
√

20). The outcome equation is

Yi = Aiμ+ γZi +ηi�

where ηi = σAiεi�1 + (1 −Ai)εi�2 and (εi�1� εi�2) are jointly standard normal.

(ii) Let Z be uniformly distributed on [−2�2], Si = ∑4
j=1 1{Zi ≤ gj}, and (g1� � � � � g4) =

(−1�0�1�2). The outcome equation is

Yi = Aiμ+Aiνi�1 + (1 −Ai)νi�0 +ηi�

where νi�0 = γZ2
i 1{|Zi| ≥ 1}+ γ

4 (2−Z2
i )1{|Zi| < 1}, νi�1 = −νi�0, ηi = σ(1+Z2

i )Aiεi�1 +(1+
Z2
i )(1 −Ai)εi�2, and (εi�1� εi�2) are mutually independent T(3)/3 distributed.

When π = 1
2 , for each DGP, we consider four randomization schemes:

(i) SRS: Treatment assignment is generated as in Example 1.

(ii) WEI: Treatment assignment is generated as in Example 2 with φ(x) = (1 − x)/2.

(iii) BCD: Treatment assignment is generated as in Example 3 with λ = 0�75.

(iv) SBR: Treatment assignment is generated as in Example 4.

When π �= 0�5, BCD is not defined while WEI is not defined in the original paper (Wei
(1978)). Recently, Hu (2016) generalized the adaptive biased-coin design (i.e., WEI) to
multiple treatment values and unequal target treatment ratios. Here, for π �= 0�5, we only
consider SRS and SBR as in Bugni, Canay, and Shaikh (2018). We conduct the simula-
tions with sample sizes n = 200 and 400. The numbers of simulation replications and
bootstrap samples are 1000. Under the null, μ = 0 and we compute the true parameters
of interest using simulations with 106 sample size and 104 replications. Under the alter-
native, we perturb the true values by μ = 1 and μ= 0�75 for n = 200 and 400, respectively.
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We report the results for the median QTE. The second online supplement contains ad-
ditional simulation results for ATE and QTEs with τ = 0�25 and 0�75. All the observations
made in this section still apply.

6.2 QTE, π = 0�5

We consider the Wald test with six t-statistics and 95% nominal rate. We construct the
t-statistics using one of our two point estimates and some estimate of the standard
error. We will reject the null hypothesis when the absolute value of the t-statistic is
greater than 1�96. The details about the point estimates and standard errors are as fol-
lows:

(i) “s/naive”: the point estimator is computed by the SQR and its standard error
σ̂naive(τ) is computed as

σ̂2
naive(τ)=

τ(1 − τ)− 1
n

n∑
i=1

m̂2
1(Si� τ)

πf̂ 2
1
(
q̂1(τ)

) +
τ(1 − τ)− 1

n

n∑
i=1

m̂2
0(Si� τ)

(1 −π)f̂ 2
0
(
q̂0(τ)

)

+ 1
n

n∑
i=1

π(1 −π)

(
m̂1(Si� τ)

πf̂1
(
q̂1(τ)

) + m̂0(Si� τ)

(1 −π)f̂0
(
q̂0(τ)

)
)2

+ 1
n

n∑
i=1

(
m̂1(Si� τ)

f̂1
(
q̂1(τ)

) − m̂0(Si� τ)

f̂0
(
q̂0(τ)

)
)2

� (6.1)

where q̂j(τ) is the τth empirical quantile of Yi|Ai = j,

m̂i�1(s� τ) =

n∑
i=1

Ai1{Si = s}(τ − 1
{
Yi ≤ q̂1(τ)

})

n1(s)
�

m̂i�0(s� τ) =

n∑
i=1

(1 −Ai)1{Si = s}(τ − 1
{
Yi ≤ q̂0(τ)

})

n(s)− n1(s)
�

For j = 0�1, f̂j(·) is computed by the kernel density estimation using the observations Yi

provided that Ai = j, bandwidth hj = 1�06σ̂jn
−1/5
j , Gaussian kernel function, standard

deviation σ̂j of the observations Yi provided that Ai = j, and nj = ∑n
i=1 1{Ai = j}.

(ii) “s/adj”: exactly the same as the “s/naive” method with one difference: replacing
π(1 −π) in (6.1) by γ(Si).

(iii) “s/W”: the point estimator is computed by the SQR and its standard error σ̂W (τ) is
computed by the weighted bootstrap procedure. The bootstrap weights {ξi}ni=1 are gen-
erated from the standard exponential distribution. Denote {β̂w

1�b}Bb=1 as the collection of
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B weighted bootstrap SQR estimates. Then

σ̂W (τ) = Q̂(0�975)− Q̂(0�025)
z0�975 − z0�025

�

where Q̂(α) is the αth empirical quantile of {β̂w
1�b(τ)}Bb=1.

(iv) “ipw/W”: the same as above with one difference: the estimation method for both
the original and bootstrap samples is the IPW QR.

(v) “s/CA”: the point estimator is computed by the SQR and its standard error σ̂CA(τ)

is computed by the covariate-adaptive bootstrap procedure. Denote {β̂∗
1�b}Bb=1 as the col-

lection of B estimates obtained by the SQR applied to the samples generated by the
covariate-adaptive bootstrap procedure. Then

σ̂CA(τ) = Q̂(0�975)− Q̂(0�025)
z0�975 − z0�025

�

where Q̂(α) is the αth empirical quantile of {β̂∗
1�b(τ)}Bb=1.

(vi) “ipw/CA”: the same as above with one difference: the estimation method for both
the original and bootstrap samples is the IPW QR.

Tables 1 and 2 present the rejection probabilities (multiplied by 100) for the six t-tests
under both the null hypothesis and the alternative hypothesis, with sample sizes n = 200
and 400, respectively. In these two tables, columns M and A represent DGPs and treat-
ment assignment rules, respectively. From the rejection probabilities under the null, we
can make five observations. First, the naive t-test (“s/naive”) is conservative for WEI,
BCD, and SBR, which is consistent with the findings for ATE estimators by Shao, Yu,
and Zhong (2010) and Bugni, Canay, and Shaikh (2018). Second, although the asymp-
totic size of the adjusted t-test (“s/adj”) is expected to equal the nominal level, it does
not perform well for DGP2. The main reason is that, in order to analytically compute
the standard error, we must compute nuisance parameters such as the unconditional
densities of Y(0) and Y(1), which requires tuning parameters. We further compute the
standard errors following (6.1) with π(1 − π) and the tuning parameter hj replaced by

γ(Si) and 1�06Cf σ̂jn
−1/5
j , respectively, for some constant Cf ∈ [0�5�1�5]. Figure 1 plots

the rejection probabilities of the “s/adj” t-tests against Cf for the BCD assignment rule
with n = 200, τ = 0�5, and π = 0�5. We see that (i) the rejection probability is sensitive to
the choice of bandwidth, (ii) there is no universal optimal bandwidth across two DGPs,
and (iii) the covariate-adaptive bootstrap t-tests (“s/CA”) represented by the dotted dash
lines are quite stable across different DGPs and their rejection probabilities are close to
the nominal rate of rejection. Third, the weighted bootstrap t-test for the SQR estimator
(“s/W”) is conservative, especially for the BCD and SBR assignment rules which achieve
strong balance. Fourth, the rejection probabilities of the weighted bootstrap t-test for
the IPW estimator (“ipw/W”) are close to the nominal rate even for sample size n = 200,
which is consistent with Theorem 4.1. Last, the rejection rates for the two covariate-
adaptive bootstrap t-tests (“s/CA” and “ipw/CA”) are close to the nominal rate, which is
consistent with Theorem 5.1.
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Table 1. n= 200� τ = 0�5�π = 0�5.

H0 H1

M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA

1 SRS 4�5 4�5 4�7 4�4 4�4 3�9 18�3 18�3 19�3 44�1 20�0 42�9
WEI 1�2 4�0 1�4 4�3 3�7 3�5 11�6 29�5 13�8 44�7 29�8 43�6
BCD 0�2 5�7 0�3 4�1 4�4 3�9 7�2 47�2 9�5 45�3 43�4 44�8
SBR 0�1 5�7 0�1 4�6 4�5 4�4 8�5 48�5 9�9 46�0 45�7 44�8

2 SRS 0�4 0�4 4�7 5�2 5�2 5�3 79�7 79�7 90�4 91�6 90�2 91�3
WEI 0�6 0�6 4�5 5�8 5�2 5�7 80�2 80�7 90�7 90�9 91�3 90�6
BCD 1�0 1�0 4�5 5�1 5�0 5�3 79�6 80�4 90�2 91�1 90�8 90�6
SBR 0�8 1�1 4�8 5�3 4�6 4�7 77�1 77�4 89�7 90�1 89�9 89�9

Table 2. n= 400� τ = 0�5�π = 0�5.

H0 H1

M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA

1 SRS 4�2 4�2 5�4 4�0 4�6 4�1 21�8 21�8 23�2 50�2 23�5 50�2
WEI 1�0 4�9 0�8 4�7 4�6 4�2 14�7 35�6 16�0 50�3 35�0 50�7
BCD 0�3 4�5 0�2 4�3 3�5 4�0 8�9 52�6 11�7 50�2 49�3 49�6
SBR 0�2 4�6 0�0 3�7 3�6 3�7 8�9 55�0 10�9 51�8 52�4 51�9

2 SRS 1�2 1�2 4�3 4�8 4�6 5�0 89�7 89�7 95�6 95�6 95�7 95�7
WEI 1�4 1�6 5�7 6�0 5�5 5�7 89�2 89�2 95�4 94�8 95�1 94�8
BCD 1�3 1�3 5�5 6�1 5�1 5�2 88�7 88�9 95�2 95�4 95�7 95�6
SBR 0�6 0�6 4�0 3�9 3�8 3�8 90�0 90�2 95�4 95�4 95�8 95�7

Figure 1. Rejection probabilities across different bandwidth values.
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Table 3. n = 200� τ = 0�5�π = 0�7.

H0 H1

M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA

1 SRS 4�8 4�8 5�2 4�7 3�4 4�4 17�0 17�0 17�2 42�5 16�7 40�6
SBR 0�1 0�7 0�2 4�0 4�4 3�7 4�3 21�2 6�0 45�5 45�7 43�4

2 SRS 1�6 1�6 5�2 5�4 5�1 5�3 77�1 77�1 89�1 90�3 89�5 89�4
SBR 0�4 0�5 3�9 4�8 4�5 4�8 76�0 76�9 89�2 91�1 90�1 90�0

Turning to the rejection rates under the alternative in Tables 1 and 2, we can make
two additional observations. First, for BCD and SBR, the rejection probabilities (power)
for “ipw/W,” “s/CA,” and “ipw/CA” are close. This is because both BCD and SBR achieve
strong balance. In this case, the two estimators we propose are asymptotically first-order
equivalent. Second, for DGP1 with SRS and WEI assignment rules, “ipw/CA” is more
powerful than “s/CA.” This confirms our theoretical finding that the IPW estimator is
strictly more efficient than the SQR estimator when the treatment assignment rule does
not achieve strong balance. For DGP2 the three t-tests, that is, “ipw/W,” “s/CA,” and
“ipw/CA,” have similar power.

6.3 QTE, π = 0�7

Tables 3 and 4 show the similar results with π = 0�7. The same comments for Tables 1
and 2 still apply.

6.4 Difference between two QTEs

Last, we consider to infer q(0�25)− q(0�75) when π = 0�5:

H0 : q(0�25)− q(0�75) = the true value v.s. H1 : q(0�25)− q(0�75)= the true value +μ�

where μ = 1 and 0�75 for sample sizes 200 and 400, respectively. The two estimators
for QTEs at τ = 0�25 and 0�75 are correlated. We can compute the naive and adjusted
standard errors for the SQR estimator by taking this covariance structure into account.6

Table 4. n = 400� τ = 0�5�π = 0�7.

H0 H1

M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA

1 SRS 4�4 4�4 5�1 3�9 4�8 3�7 18�4 18�4 18�7 47�9 19�4 46�6
SBR 0�1 0�2 0 3�9 3�5 4 4�2 22 5�9 49�8 50�5 48�2

2 SRS 0�7 0�7 3�9 4�2 4�2 4�7 86�7 86�7 93�9 93�3 94�1 93�6
SBR 0�6 0�6 3�5 3�6 3�7 3�7 88�3 88�8 94�8 95�2 95�5 95�2

6The formulas for the covariances can be found in the proofs of Theorems 3.1 and 3.2.
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Table 5. n= 200� q(0�25)− q(0�75).

H0 H1

M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA

1 SRS 4�0 4�0 3�6 3�8 3�5 3�5 15�6 15�6 14�9 19�4 16�0 19�4
WEI 2�3 4�9 2�0 4�0 5�1 3�9 11�3 17�9 11�0 19�0 16�0 18�6
BCD 1�0 4�1 1�1 4�4 3�7 4�2 9�9 20�7 10�1 22�0 20�6 21�4
SBR 1�1 4�3 0�9 4�1 4�1 4�2 9�4 21�8 8�7 17�3 20�0 17�2

2 SRS 5�0 5�0 3�1 3�1 3�1 3�1 53�7 53�7 47�1 48�4 47�8 48�2
WEI 3�6 3�6 2�1 2�8 2�9 2�9 57�0 57�7 47�6 49�8 50�3 50�0
BCD 4�2 4�8 2�4 2�5 3�6 2�7 58�0 59�4 49�1 52�0 52�8 50�8
SBR 5�1 5�3 2�4 3�4 4�1 3�4 55�5 57�0 46�5 46�5 50�5 45�6

On the other hand, in addition to avoiding the tuning parameters, another advantage
of the bootstrap inference is that it does not require the knowledge of this compli-
cated covariance structure. Researchers may construct the t-statistic using the differ-
ence of two QTE estimators with the corresponding weighted and covariate-adaptive
bootstrap standard errors, which are calculated using the exact same procedure as in
Sections 4 and 5. Taking the SQR estimator as an example, we estimate q(0�25)− q(0�75)
via β̂1(0�25)− β̂1(0�75) and the corresponding covariate-adaptive bootstrap standard er-
ror is

σ̂CA = Q̂(0�975)− Q̂(0�025)
z0�975 − z0�025

�

where Q̂(α) is the αth empirical quantile of {β̂∗
1�b(0�25)− β̂∗

1�b(0�75)}Bb=1.
Based on the rejection rates reported in Tables 5 and 6, the general observations for

the previous simulation results still apply. Although under the null, the rejection rates for
“ipw/W,” “S/CA,” “ipw/CA” in DGP2 are below the nominal 5%, they gradually increase
as the sample size increases from 200 to 400.

Table 6. n= 400� q(0�25)− q(0�75).

H0 H1

M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA

1 SRS 3�8 3�8 3�9 5�1 3�7 5�0 17�2 17�2 15�9 21�5 16�8 21�2
WEI 2�0 4�2 2�4 3�3 4�4 3�5 11�8 20�2 11�5 21�4 20�2 20�7
BCD 1�4 4�4 1�4 4�3 4�4 4�1 10�5 21�8 10�2 20�7 21�5 20�6
SBR 0�8 3�8 0�8 3�9 3�7 3�8 12�1 25�0 12�6 21�8 23�7 22�3

2 SRS 5�3 5�3 3�9 4�7 4�3 4�8 63�2 63�2 55�7 57�7 56�8 57�6
WEI 5�4 5�8 3�4 3�7 4�1 3�5 63�6 64�4 55�6 58�0 58�0 58�5
BCD 4�0 4�3 2�6 2�8 3�1 3�1 62�1 63�3 54�7 55�7 57�4 56�0
SBR 5�1 5�7 4�0 4�5 4�4 4�5 61�1 62�0 52�4 51�3 56�0 53�0
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7. Guidance for practitioners

We recommend employing the t-statistic (or equivalently, the confidence interval) con-
structed using the IPW estimator and its weighted bootstrap standard error for inference
in covariate-adaptive randomization, for the following four reasons. First, its asymp-
totic size equals the nominal level. Second, the IPW estimator has a smaller asymptotic
variance than the SQR estimator when the treatment assignment rule does not achieve
strong balance and the stratification is relevant.7 Third, compared with the covariate-
adaptive bootstrap, the validity of the weighted bootstrap requires a weaker condition
that sups∈S |Dn(s)/n(s)| = op(1). Fourth, this method does not require the knowledge
of the exact treatment assignment rule, thus is suitable in settings where such infor-
mation is lacking, for example, using someone else’s RCT or subsample analysis. When
the treatment assignment rule achieves strong balance, SQR estimator can also be used.
But in this case, only the covariate-adaptive bootstrap standard error is valid. Last, the
Wald test using SQR estimator and the weighted bootstrap standard error is not recom-
mended, as it is conservative when the treatment assignment rule introduces negative
dependence (i.e., γ(s) < π(1 −π)) such as WEI, BCD, and SBR.

8. Empirical application

We illustrate our methods by estimating and inferring the average and quantile treat-
ment effects of iron efficiency on educational attainment. The dataset we use is the same
as the one analyzed by Chong, Cohen, Field, Nakasone, and Torero (2016) and Bugni,
Canay, and Shaikh (2018).

8.1 Data description

The dataset consists of 215 students from one Peruvian secondary school during the
2009 school year. About two-thirds of students were assigned to the treatment group
(A = 1 or A = 2). The other one-third of students were assigned to the control group
(A = 0). One-half of the students in the treatment group were shown a video in which a
physician encouraged iron supplements (A= 1) and the other half were shown the same
encouragement from a popular soccer player (A = 2). Those assignments were strati-
fied by the number of years of secondary school completed (S = {1� � � � �5}). The field
experiment used a stratified block randomization scheme with fractions (1/3�1/3�1/3)
for each group, which achieves strong balance (γ(s) = 0).

In the following, we focus on the observations with A = 0 and A = 1, and estimate
the treatment effect of the exposure to a video of encouraging iron supplements by a
physician only. This practice was also implemented in Bugni, Canay, and Shaikh (2018).
In this case, the target proportions of treatment is π = 1/2. As in Chong et al. (2016),
it is also possible to combine the two treatment groups, that is, A = 1 and A = 2 and
compute the treatment effects of exposure to a video of encouraging iron supplements

7In this case, for ATE, the IPW estimator also has a strictly smaller asymptotic variance than the strata
fixed effects estimator studied in Bugni, Canay, and Shaikh (2018).
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by either a physician or a popular soccer player. Last, one can use the method developed
in Bugni, Canay, and Shaikh (2019) to estimate the ATEs under multiple treatment status.
However, in this setting, the estimation of QTE and the validity of bootstrap inference
have not been investigated yet and are interesting topics for future research.

For each observation, we have three outcome variables: number of pills taken, grade
point average, and cognitive ability measured by the average score across different Nin-
tendo Wii games. For more details about the outcome variables, we refer interested read-
ers to Chong et al. (2016). In the following, we focus on the grade point average only as
the other two outcomes are discrete.

8.2 Computation

We consider three pairs of point estimates and their corresponding nonconservative
standard errors: (i) the SQR estimator with the covariate-adaptive bootstrap standard
error, (ii) the IPW estimator with the covariate-adaptive bootstrap standard error, and
(iii) the IPW estimator with the weighted bootstrap standard error. We denote them
as “s/CA,” “ipw/CA,” and “ipw/W,” respectively. For comparison, we also compute the
SQR estimator with its weighted bootstrap standard error, which is denoted as “s/W.”
The SQR estimator for the τth QTE refers to β̂1(τ) as the second element of β̂(τ) =
(β̂0(τ)� β̂1(τ)), where

β̂(τ)= arg min
b=(b0�b1)′∈�2

n∑
i=1

ρτ
(
Yi − Ȧ′

ib
)
�

Ȧi = (1�Ai)
′, and ρτ(u) = u(τ − 1{u ≤ 0}) is the standard check function. It is also just

the difference between the τth empirical quantiles of treatment and control groups. The
IPW estimator refers to q̂(τ)= q̂1(τ)− q̂0(τ), where

q̂1(τ)= arg min
q

1
n

n∑
i=1

Ai

π̂(Si)
ρτ(Yi − q)� q̂0(τ) = arg min

q

1
n

n∑
i=1

1 −Ai

1 − π̂(Si)
ρτ(Yi − q)�

π̂(·) denotes the propensity score estimator, π̂(s) = n1(s)/n(s), n1(s) = ∑n
i=1 Ai1{Si = s},

and n(s) = ∑n
i=1 1{Si = s}. The covariate-adaptive bootstrap standard error (“CA”) refers

to the standard error computed in Section 5. In particular, we can draw the covariate-
adaptive bootstrap sample (Y ∗

i �A
∗
i � S

∗
i )

n
i=1 following the procedure in Section 5. We then

recompute the SQR and IPW estimates using the bootstrap sample. We repeat the boot-
strap estimation B times, and obtain {β̂∗

b�1(τ)� q̂
∗
b(τ)}Bb=1. The standard errors for SQR

and IPW estimates are computed as

σ̂sqr(τ)= Q̂sqr(0�975)− Q̂sqr(0�025)
z0�975 − z0�025

and σ̂ipw(τ)= Q̂ipw(0�975)− Q̂ipw(0�025)
z0�975 − z0�025

�

respectively, where Q̂sqr(α) and Q̂ipw(α) are the α-th empirical quantiles of {β̂∗
b�1(τ)}Bb=1

and {q̂∗
b(τ)}Bb=1, respectively, and zα is the αth percentile of the standard normal distri-

bution, that is, z0�975 ≈ 1�96 and z0�025 ≈ −1�96. The weighted bootstrap standard error
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Table 7. Grades points average.

s/adj s/W s/CA ipw/W ipw/CA

ATE 0�35 0�35 0�35 0�37 0�37
(0�16) (0�16) (0�17) (0�16) (0�17)

QTE, 25% 0�43 0�43 0�43 0�43
(0�15) (0�15) (0�15) (0�15)

QTE, 50% 0�29 0�29 0�29 0�29
(0�22) (0�23) (0�22) (0�24)

QTE, 75% 0�35 0�35 0�36 0�36
(0�25) (0�24) (0�25) (0�25)

for the IPW estimate can be computed in the same manner with only one difference, the
covariate-adaptive bootstrap estimator {q̂∗

b(τ)}Bb=1 is replaced by the weighted bootstrap
estimator {q̂wb (τ)}Bb=1, where for the bth replication, q̂wb (τ)= q̂wb�1(τ)− q̂wb�0(τ),

q̂wb�1(τ)= arg min
q

1
n

n∑
i=1

ξbi Ai

π̂w(Si)
ρτ(Yi − q)�

q̂wb�1(τ)= arg min
q

1
n

n∑
i=1

ξbi (1 −Ai)

1 − π̂w(Si)
ρτ(Yi − q)�

{ξbi }ni=1 is a sequence of i.i.d. standard exponentially distributed random variables,
π̂w(s) = nw1 (s)/n

w(s), nw1 (s) = ∑n
i=1 ξiAi1{Si = s}, and nw(s) = ∑n

i=1 ξi1{Si = s}. Similarly,
we compute the weighted bootstrap SQR estimates {βw

b�1(τ)}Bb=1 as the second element

of {βw
b (τ)}Bb=1, where

βw
b (τ)= arg min

b=(b0�b1)′∈�2

1
n

n∑
i=1

ξbi ρτ
(
Yi − Ȧ′

ib
)
�

For the ATEs, we also compute the SQR estimator with the adjusted standard er-
ror based on the analytical formula derived by Bugni, Canay, and Shaikh (2018), that is,
“s/adj.” For QTE estimates, we consider quantile indexes {0�1�0�15� � � � �0�90}. The num-
ber of replications for the two bootstrap methods is B = 1000.

8.3 Main results

Table 7 shows the estimates with the corresponding standard errors in parentheses.
From the table, we can make several remarks. First, for both ATE and QTE, the SQR and
IPW estimates are very close to each other and so do their standard errors computed
via the analytical formula, weighted bootstrap, and covariate-adaptive bootstrap. This
is consistent with our theory that, under strong balance, the two estimators are first-
order equivalent. Second, although in theory, the weighted bootstrap standard errors
for the SQR estimators should be larger than those computed via the covariate-adaptive
bootstrap, in this application, they are very close. This is consistent with the finding in
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Figure 2. 95% Pointwise confidence interval for quantile treatment effects.

Bugni, Canay, and Shaikh (2018) that their adjusted p-value for the ATE estimate is close
to the naive one. It implies the stratification may be irrelevant for the full-sample anal-
ysis. Third, we do not compute the adjusted standard error for the QTEs as it requires
tuning parameters. Fourth, the QTEs provide us a new insight that the impact of sup-
plementation on grade promotion is only significantly positive at 25% among the three
quantiles. This may imply that the policy of reducing iron deficits is more effective for
lower-ranked students.

In order to provide more details on the QTE estimates, we plot the 95% pointwise
confidence band in Figure 2 with quantile index ranging from 0�1 to 0�9. The solid line
and the shadow area represent the point estimate and its 95% pointwise confidence in-
terval, respectively. The confidence interval is constructed by

[
β̂− 1�96σ̂(β̂)� β̂+ 1�96σ̂(β̂)

]
�

where β̂ and σ̂(β̂) are the point estimates and the corresponding standard errors de-
scribed above. As we expected, all the four findings look the same and the estimates are
only significantly positive at low quantiles (15%–30%).

8.4 Subsample results

Following Chong et al. (2016), we further split the sample into two based on whether the
student is anemic, that is, Anemi = 0 or 1. We anticipate that there is no treatment ef-
fect for the nonanemic students and positive effects for anemic ones. In this subsample
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Table 8. Grades points average for subsamples.

Anemic Nonanemic

s/W ipw/W s/W ipw/W

ATE 0�67 0�69 0�13 0�19
(0�23) (0�20) (0�23) (0�20)

QTE, 25% 0�74 0�76 0�14 0�22
(0�24) (0�22) (0�28) (0�26)

QTE, 50% 1�05 1�05 −0�14 −0�14
(0�29) (0�27) (0�29) (0�27)

QTE, 75% 0�71 0�76 0�14 0�14
(0�36) (0�32) (0�39) (0�37)

analysis, the covariate-adaptive bootstrap is infeasible, as in each subgroup, the strong-
balance condition may be lost and the treatment assignment rule is not necessarily SBR
and is generally unknown.8 However, the weighted bootstrap is still feasible as it does
not require the knowledge of the treatment assignment rule. According to Theorem 4.1,
the IPW estimator paired with the weighted bootstrap standard error is valid if

sup
s∈S

∣∣∣∣D
(1)
n (s)

n(1)(s)

∣∣∣∣ ≡ sup
s∈S

∣∣∣∣∣

n∑
i=1

(Ai −π)1{Si = s}1{Anemi = 1}
n∑

i=1

1{Si = s}1{Anemi = 1}

∣∣∣∣∣ = op(1) (8.1)

and

sup
s∈S

∣∣∣∣D
(0)
n (s)

n(0)(s)

∣∣∣∣ ≡ sup
s∈S

∣∣∣∣∣

n∑
i=1

(Ai −π)1{Si = s}1{Anemi = 0}
n∑

i=1

1{Si = s}1{Anemi = 0}

∣∣∣∣∣ = op(1)� (8.2)

We maintain this mild condition in this section. In our sample,

sup
s∈S

∣∣∣∣D
(1)
n (s)

n(1)(s)

∣∣∣∣ = 0 and sup
s∈S

∣∣∣∣D
(0)
n (s)

n(0)(s)

∣∣∣∣ = 0�071�

which indicate that (8.1) and (8.2) are plausible.
From Table 8 and Figure 3, we see that the QTE estimates are significantly positive

for the anemic students when the quantile index is between around 20%–75%, but are
insignificant for nonanemic students. The lack of significance at low and high quantiles

8As the anonymous referee pointed out, it is possible to implement the covariate-adaptive bootstrap on
the full sample and pick out the observations in the subsample to construct a bootstrap subsample. The
analysis can then be repeated on this covariate-adaptive bootstrap subsample. Establishing the validity of
this procedure is left as a topic for future research.
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Figure 3. 95% Pointwise confidence interval for anemic and nonanemic students.

for the anemic subsample may be due to a poor asymptotic normal approximation at
extreme quantiles. To extend the inference of extremal QTEs in Zhang (2018) to the con-
text of covariate-adaptive randomization is an interesting topic for future research. We
also note that for both subsamples, the weighted bootstrap standard errors for the SQR
estimators are larger than those for the IPW estimators, which is consistent with Theo-
rem 4.1. It implies, for both subgroups, the stratification is relevant.

9. Conclusion

This paper studies the estimation and bootstrap inference for QTEs under covariate-
adaptive randomization. We show that the weighted bootstrap standard error is only
valid for the IPW estimator while the covariate-adaptive bootstrap standard error is valid
for both SQR and IPW estimators. In the empirical application, we find that the QTE of
iron supplementation on grade promotion is trivial for nonanemic students, while the
impact is significantly positive for middle-ranked anemic students.
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