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This Supplemental Appendix is structured as follows. Section S.1 contains Monte
Carlo simulation results. Some tables appear in Section S.1.2. Section S.2 collects proofs.

S.1. FINITE SAMPLE PERFORMANCE

We examine empirical coverage ratios of confidence intervals and sizes and powers of
the Score and Wald tests. The main findings can be summarized as follows. (1) If there
is no serial correlation correction, confidence intervals will suffer from severe under-
coverages and the size of tests will be seriously inflated. (2) The CCM estimator deliv-
ers correct coverage ratios and sizes under widely different circumstances. (3) The bias-
correction in autocovariance estimators is important to achieve good finite-sample per-
formance.

S.1.1 Simulation setup

The simulation setup closely follows the real data example in Section 6. We use four
models to study a wide spectrum of issues. This section discusses Models 1 and 2, de-
fined below. Section S.3 of Yoon and Galvao (2019) examines Models 3 and 4. The first
model is a location-shift model (a regression with iid errors)

Model 1: v =a; +wi:B + zisy + ez,

wherei=1,...,Nand r=1,..., T and the rth quantile of ¢;; is zero. We use Model 1
to study three issues. The first is to see the effect of bias-correction in autocovariance
matrix estimation, by comparing robust confidence intervals and tests using Jr and Jr.
The second is to compare the Score and Wald tests. For Model 1, both are valid but the
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Score test is simpler to implement because it does not require conditional density esti-
mation. The third objective is to compare the performance of two point estimators; the
analytical bias corrected estimator 8¢ and the jackknife estimator @jx under various
(N, T) and at different quantile levels.

Other specifics of the model are as follows. The true values of the slope parameters
are (B, y) = (1.0, 0.0), so the effect of z;; on the rth conditional quantile of y;; is zero. To
generate z;;, we draw one year out of T years at random and one-half out of N subjects
atrandom. For the chosen subjects after the selected year, z;; = 1, otherwise, z;; = 0. This
zj; can be viewed as a randomly generated fictitious law. We draw this random year and
subjects for each simulation replication. Since the law is independent of the outcome of
interest, any 5% significance tests should reject the null hypothesis of no effect 5 times
out of 100 trials. This simulation design is taken from Bertrand, Duflo, and Mullainathan
(2004). To make sure that we have enough observations before and after the selected
year, we select a random year from the middle 80% of the total T years. Other variables
are generated by

;™ Uniform[—1, 1], S.1)
y
wir = 03a; + i, &1 =088 1+vi,  vie ~ N(0,(1—0.8?)), (S.2)
iid
eir = €ir — Qe(7), €it = PEir—1 + Vi, Vit N(0,1-p?). (8.3)

In (S.1), FE are generated from a uniform distribution. In (S.2), the individual effects and
the included regressor are correlated by design. The control variable w;; is strongly pos-
itively correlated, reflecting the real data example. In (S.3), the error term is generated
under varying degrees of serial correlation where p takes value in {0.0, 0.4, 0.9}. When
p = 0.0, there is no temporal dependence and both cluster robust and nonrobust tests
should have the correct size. When p = 0.9, there is a strongly positive serial correlation.
In (S.3), Qc(7) denote the rth quintile of €;;. The adjustment by Q.(7) makes the rth
quantile of the error term equal to zero.

We mainly consider four combinations of N and 7. The main specification is
(N, T) = (50,50), the length of time-series is comparable to the number of subjects.
This is common in many state-level panel data. To see any effects from a short panel, we
consider (N, T)) = (50, 20). This represent a case where one has a relatively shorter time
periods compared to the number of cross-sectional units. The third case is an example
of a long panel, (N, T) = (20, 100). By comparing the second and third cases, one can
examine the effect of the bias-correction in short versus long panel. To see any effects of
a large number of subjects, we consider (N, T') = (100, 20). This is the most challenging
case because it is a short panel with many nuisance parameters to estimate. The latter
can make the incidental parameter problem more serious. Yoon and Galvao (2019) also
considered (N, T') = (400, 30) and examined how the CCM estimator performed in such
case.
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The second model is a location-scale model with the multiplicative errors:
Model 2:  yi; = a; +wi B+ ziry + (1 + 0.75w;; ) ej;.

The only difference between Models 1 and 2 is that the latter has heteroskedasticity.
Other variables are generated in the same way. The autocorrelation structure remains
the same over 1 <i < N. We use Model 2 to study three issues. First, we compare the
general CCM estimator J7 to the simplified estimator fST In this multiplicative het-
eroskedastic model, both are valid, but the latter is simpler to implement. Second, the
Score test is invalid and it may affect its performance. Third, we continue to examine the
performance of two regression coefficient estimators.

S.1.2 Results

This section concentrates on results using 8gc. The result using 8k can be found in Sec-
tion S.3 in Yoon and Galvao (2019). First, let us examine empirical coverage ratios of
the 95% confidence intervals. Table S.1 shows the results for Model 1. It reports frac-

TaBLE S.1. Coverage ratio, Model 1.

=05 7=0.75
Cases CIO CIl CIZ CI; CIO CI] CIZ CI%
(N, T)=(50,50)
p=0.0 0.952 0.938 0.953 0.952 0.939 0.926 0.940 0.940
p=04 0.876 0.928 0.958 0.958 0.873 0.912 0.946 0.948
p=09 0.535 0.896 0.949 0.942 0.500 0.880 0.948 0.944
(N, T)=(50,20)
p=0.0 0.951 0.928 0.953 0.954 0.923 0.892 0.930 0.932
p=04 0.875 0.908 0.958 0.951 0.856 0.894 0.942 0.942
p=09 0.712 0.928 0.944 0.942 0.651 0.896 0.945 0.938
(N, T) = (20, 100)
p=0.0 0.960 0.954 0.960 0.960 0.949 0.936 0.943 0.948
p=04 0.872 0.937 0.954 0.952 0.858 0.919 0.940 0.948
p=0.9 0.469 0.902 0.956 0.952 0.478 0.893 0.943 0.944
(N, T)= (100, 20)
p=0.0 0.952 0.920 0.958 0.954 0.928 0.896 0.936 0.935
p=04 0.876 0.906 0.958 0.953 0.854 0.894 0.946 0.944
p=0.9 0.681 0.931 0.939 0.935 0.630 0.886 0.914 0.918

Note: Empirical coverage ratios of the 95% confidence intervals, based on 2000 simulation replications. Model 1. We use
the analytical bias correction estimator 8¢ (7) to estimate regression coefficients. Table shows four types of confidence inter-
vals corresponding to different ways of calculating standard errors; (i) Cly: the conventional standard errors in QR assuming
independent errors, (ii) CI;: cluster robust standard errors without bias-correction using J7, (iii) CI: cluster robust standard
errors with bias-correction using J7, (iv) CIj cluster robust standard errors with bias-correction using the simplified CCM

estimator j}T .
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tions of simulation runs out of 2000 replications in which confidence intervals include
the true value of the parameter y(7) = 0. Four confidence interval estimators are con-
sidered. CI is the conventional confidence interval assuming independent errors. It is
not robust to clustering. CI; uses iz r to obtain the standard errors. It is robust to clus-
tering but does not correct the bias in autocovariance estimates. CI, uses J r which
is a cluster robust confidence interval applying bias-correction in autocovariance es-
timates. Finally, CI} is an interval obtained from the simplified CCM estimator fST It
includes bias-correction by design since it uses 0(>. We present results for 7 = 0.5 and
0.75.

The nonrobust confidence interval Cly has correct coverages when p = 0. So it is
valid when errors are serially uncorrelated. But when p > 0, the coverage ratio is down to
as low as 0.535 when (N, T) = (50, 50). The size of undercoverage depends on the length
of panel. When T = 100, the coverage ratio becomes as low as 0.469, about a half of the
target rate 0.95. The conventional standard error and the resulting confidence interval
are clearly inadequate.

The cluster robust standard errors are effective to fix this undercoverage problem.
Examine CIy. When (N, T') = (50, 50) and p = 0.9, the coverage ratio improves from 0.535
to 0.896. In fact, it significantly improves the coverages ratios in all cases. But coverage
ratios are still lower than the target level 0.95, often significantly so. The remaining gap
is closed when we apply the bias-correction in autocovariance estimates. The interval
estimator CI,, compared to CI;, improves the ratio to 0.949. The size of improvement
due to bias-correction tends to be greater when T is larger and when = = 0.75. In fact,
CI, has correct empirical sizes in almost all cases. The only exception may be when
(N, T) = (100, 20) at 7 = 0.75. It is an example of a relatively short panel with many nui-
sance parameters, representing a very challenging case. Between CI, and CI}, the latter
is comparable to the former. The simplified CCM estimator has equally good perfor-
mances in every case we consider.

Table S.2 considers Model 2, a location-scale model. We continue to see undercov-
erages when using Cl. The coverage of this nonrobust estimator is correct when p =0
but it become as low as 0.473 when (N, T) = (20, 100). For cluster robust confidence in-
tervals, we see the same pattern as in Table S.1. CI; fix the undercoverages in Cly signif-
icantly, but it does not reach to the target 0.95. This gap is closed by the bias-correction.
Model 2 has multiplicative heteroskedastic errors but identical autocorrelation struc-
ture, so both CI, and CI; are all valid. Both prove to be effective to deliver correct cover-
age ratios.

Consider the Score and Wald tests. Tables S.3 and S.4 report the empirical sizes of
tests. The nominal rate is 0.05. The definitions of three Wald tests, W, W;, and W, remain
the same as in Section 6. The same naming convention applies to the Score tests. The
only difference is that the Score test uses the simplified CCM estimator.

Overall, we see similar patterns as before. The nonrobust tests have much inflated
sizes. In Table S.3, the empirical size of the 5% tests can be as high as 0.566 in Model 1.
The nonrobust tests are clearly inadequate. The cluster robust tests successfully cor-



Supplementary Material Cluster robust covariance matrix estimation 5

TaBLE S.2. Coverage ratio, Model 2.

7=0.5 7=0.75
Cases Cly CLy CI, CI§ CIy Cl, Cl, CI§
(N, T)=(50,50)
p=0.0 0.953 0.942 0.956 0.951 0.942 0.929 0.942 0.946
p=04 0.882 0.934 0.963 0.963 0.880 0.920 0.954 0.958
p=09 0.550 0.895 0.948 0.939 0.518 0.879 0.948 0.941
(N, T)=(50,20)
p=0.0 0.966 0.949 0.966 0.967 0.942 0.922 0.956 0.959
p=04 0.895 0.921 0.962 0.956 0.873 0.910 0.950 0.951
p=09 0.738 0.930 0.946 0.954 0.674 0.902 0.942 0.940
(N, T)=1(20,100)
p=0.0 0.962 0.958 0.962 0.961 0.952 0.941 0.948 0.953
p=04 0.880 0.938 0.956 0.956 0.868 0.926 0.944 0.952
p=09 0.473 0.910 0.955 0.954 0.482 0.896 0.944 0.946
(N, T) = (100, 20)
p=0.0 0.960 0.936 0.967 0.961 0.921 0.905 0.941 0.942
p=04 0.900 0.933 0.966 0.963 0.870 0.914 0.956 0.954
p=09 0.690 0.934 0.944 0.940 0.640 0.888 0.926 0.924

Note: Empirical coverage ratios of the 95% confidence intervals, based on 2000 simulation replications. Model 2. See de-
scriptions in Table S.1 for details.

rect the size problem. And the bias correction matters for good performances. Consider
Model 1 when (N, T) = (50,50) and p = 0.9 and 7 = 0.75. The W, improves the empiri-
cal size from 0.500 to 0.120, then W, improves it further to 0.052. As a matter of fact, the
size of cluster robust tests, H, and W, stay close to the nominal rate, across variations
over (N, T) combinations, values of p, different quantile levels. The robust tests have
excellent finite-sample performance.

Does this improved size hurt the power of tests? Tables S.5 and S.6 show empirical
powers of the bias-corrected robust tests, S; and W,. The data is generated under the
alternative hypothesis in which y(7) # 0. We set y(7) = ¢;, - sy where ¢, is a constant
and sy denote the standard deviation of the dependent variable when data is generated
under the null. So ¢, = 0.2 means that the size of effect under the alternative is equal
to 20% of the standard deviation of the dependent variable under the null. The power
proves to be excellent across variations over (N, 7)) combinations, values of p, different
quantile levels.

Between Score and Wald tests, we observe that the Score test S, appears to be robust
to the forms of heteroskedasticity we consider in this section. It delivers good sizes in
Model 2. Also the Score test is more optimistic than the Wald test because the size of
S, tends to be bigger than the size of ;. Overall, simulation studies show that cluster
robust standard errors and tests have excellent finite-sample properties.
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S.2. PROOFS

In this section, the quantile index = will be dropped in quantities like «;(7), 8(7) or e;;(7)
to save space, but we want to remind readers that they are quantile specific. Recall that
xi = (w),,z;,),0:=(B',Y), X :=xi — c;, and let a v b = max(a, b).

S.2.1 Proofs for Section 4

Proor oF THEOREM 4.1. It will be sufficient to show that

VNIT{T;y - T;+ B;/T)
| MTo
= {(r=1I(eir <O)) (7 = I(eiryj < 0)XuX},y; — i} +0p(1),  (S4)
VNiT ; ; !
VN2 T{T}, — T + Bj/ T
1 N T-j
= N >0 Y {(r—Itei <0))(r = I(eirsj <)FifF),,; — I} +0,(1). (S.5)
i=Nj+1 1=1
We prove (S.4) only because the same argument applies to (S.5). As a convenient inter-
mediate step, define

Ny T—j
. 1 - -
Ii= N ;:1 ;:1 (1= 1(@,i <0)) (7 — 1 (@014 < 0)) (xir — €1) (Xiryj — €)'

This quantity uses ¢; instead of ¢;. We first study the asymptotic expansion of Iv"]
Lemma S.6 in Yoon and Galvao (2019) shows that the difference between IV“] and 1/“\]-71
is negligible.

Decompose ]v“j using an identity, r — I(€;; <0) =7 —I(e;; <0) — (I(€;; <0) — I (ej; <

0)):

Ny T—j
vaj = #—]) g 2(7 —1I(eir < 0))(7' —1I(ejyj = O)):\V”itff;'tﬂ
1 Ny T—j R o
- m ; ;(T —1(ejr < O))(I(ez,it+j <0)—1I(eiyj < O))xilx;'tJrj
1 Ny T—j R o
- m ; ;(T —I(ejryj < 0))(1(62,it <0)—1I(eir < 0))xitx;'t+j
1 Ny T—j
+ m ; ;(1(?2,& <0)—1I(ei; =< 0))(1(?2,it+j <0)—1I(ej+j =< 0))$it;;'t+j

=By — By — B3+ By.
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The first term B; converges to I in probability by the law of large numbers.
Lemma S.3 in Yoon and Galvao (2019) shows that

fiOlxij) . ., 12
By=Ny 12 [1]3(4(1);} Xi1x 11+;}VTJ/T+OP(N1 T 3/4)’
i=1

Ny
-1 fz(0|xll)~ ~ I
,-; [ fio) ”ﬂ]VT’/”O( T-34).,

Lemma S.5 in Yoon and Galvao (2019) shows that

1 ftj(O 0|leale+j)~ ~ —1/2-3/4
Ba= Ny Z [ £(0)? Fi1%y. | Vil T+ Op(N, T,

This leads to the asymptotic bias expression in Theorem 4.1. O

Proor oF THEOREM 4.2. Proposition 1 in Andrews (1991) does not require differentia-
bility of the moment function and is applicable to the pseudo-estimator Jr. The plan is
to establish the asymptotic properties of Jr first, then study any difference between Jr
and J; 7. Rewrite

1 N - T-1 ] N
ZNZ.]T,[‘ WhereJT,iZ Z k(m—T>[;j
i=1 j=—T+1

Note that J; 7,; and IN}j are estimators for the long-run variance and the jth order au-
tocovariance using a single time-series. The sample splitting in I naturally leads to a
similar decomposition to J; = % Jra+ % -Jr,2 where

(. \T-li = (Tl
Tra= ' Z k(m_T) T I, and Jrp= | Z k(m—T) T Is.
Jj=—T+1 Jj=—T+1

Divide Jr accordingly J7 = N1/N - Jr,1 + N2/N - J7,, where Jr 1 and J75 uses i € I;
and I, respectively. It suffices to show that the claim for J7 ;. Consider first the bias:

T-1

~ J T —|j|
ElJr 1 — - ) - -
Ur,1—J7.1] Z {k(mT> 1} T I
j=—T+1
—jl =
+ Z ( ) E[T} r,-]—'z =1
j=—T+1 j=—T+1

The first bias term comes from that we use a kernel method. Parzen (1957) showed
that m%. times the first term in the right-hand side converges to —k,J(?. So the or-
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der of the first term is O(m;q). The second bias term is due to the bias in f]l From
Theorem 4.1, E[f;1 - Il = —B] /T + st where sy denotes remainder terms of or-
der O(N~12T=3/%). Since mj Z]_ r41k(j/mr) —> [k(x)dz and mp! Z]_ 141 kG/
mr)B; — D, two terms converge to objects of order O, (m7/T) and Op(mT/(N1/2T3/4)).
The second term is smaller than the first and can be ignored if N2 > T. For the third
term, | Z T+1 5] < |[7(@|, so itis of order O(1/T). In sum, the order of the bias is

~ 1 mr 1
E[']T,I_JT,l]—O <mT>+O <T >+0 <W>+Ol)<?>

The first term dominates the second if mT YT - 0. If, however, mT YT - v, the two
terms have the same order.

For the variance calculation, first calculate the variance of J; 7.i- Fix i € I;. For this,
Proposition 1 in Andrews (1991) is applicable. If m7 — oo and m7/T — 0,

T -
— Var(Jr,;) — 2]2/k2(z)dz.
mr

So Var(f;j) has order my/T. Next, we aim to show that

172
~ ~ m
]T,i_JT,i=0p<(—T) ) (S.6)
T
T—1il ~ ~
Dr: —‘/ (]Tt—JTz)—‘/ ) T“'(E‘j—ﬂ'j)
T+1

] o~ ~
Z ( )(1:, I+ Z (m—T)7r—E~j>

-T+1

Define

=D71+ D). (S8.7)

Consider E] E] which uses a single time-series. By the stochastic equicontinuity
argument, F,] F,j E[F,j] [F,]] + rr. Kato, Galvao, and Montes-Rojas (2012) calcu-
lated that r7 = O,(T~3/%); see the proof of their Theorems 3.2 and 5.1. By the Taylor
expansion, just as in Lemma S.5 in Yoon and Galvao (2019),

E[T}] — E[T}j] =0- (@ — ai) + 0@ — a;)* +0- (8 — 69) + Op((@ — a;)®)
with w;; as defined in Theorem 4.1. So I/“;, — IN}, = w;j(a; — a) > +rr + Op((a; — a;)?).

Consider Dr ;. Plugging the main terms,

D7, = Z ( T) (wij(@ — a)* +rr) =Er1 +Erp. (S.8)

j——T+1
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Denote @ = sup, sup jlwijl < oo by condition (A5). |Er 1] is less than or equal to

T-1 ,
L > k<i)"|wzj(ai—ai)2|
T gl T

= j
<amr-— k(= )| VT -0,(T™"
= eV mT}.ZZTJrl (’W)‘ o)

— d)\/m_T/|k(z)|dz-Op<%> =0p<\/?>.

So E7,1 = 0,(1) provided that mr/T — 0. Next, |[E7 5| is less than or equal to

T-1 .
T
- Z k<L)"|rT|
M el N
1 T-1 ] \/_
Z\/m_Tm— Z km_ “NTlrrl
i1 r

—>‘ﬁﬁ¥/Wk(zﬂdz~~ff-0p07)::OpOnyz-T‘”ﬂ 0, ((m3/T)"4.

So Er» = 0,(1) provided that mZT/T — 0. Consider Dr 5. Itis equal to

o~ 1« (j> j ~
Ty =T =vmr— 3 k(2 ) || ZHdy - T
Z ( ) j i) meT j__X: mr )| mr (L i)

-T+1

Since L 21_7”1 k(mT)|mT| — [|zlk(z)dz, compared to Dr 1, there is an additional

factor of order 7~ !. So it can be shown that Dr,= p( D)+ 0p ( ) This proves (S.6).
Finally, observe that fT,l = Z]_ T41 k(mT) T“'FJ 1 can be ertten as JT1 = 1\111 X

Zf; Rr i where Rt ; is equal to

T-1 . T—j

> k(—J > > (7= I(@2,i(7) <0)) (7 — I(@2,i14(7) < 0))(xis =€) (Xirgj — Ci) -
. mr
]:—T+1 t=1
By condition (A1) and the sample splitting, Rt 1, ..., Rt n, are independent, therefore,

N1T ~
LVar(JTJ) — 2]2/k2(z) dz.
mr

The same arguments work for T3 7,2. So conclude that -~ N r Var(f ) — 2J? / k%(z)dz.
Importantly, the order of the variance Var(J T) = O( Z.). Taking averages over i does
not change the order of the bias, but it affects the variance by factor of 1/N. O
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Proof of Proposition 4.2 is similar to Theorem 4.1 and omitted. Proof of Theorem 4.3
and Theorem 4.4 is similar to Theorem 4.2. Details can be found in Section S.1 of Yoon
and Galvao (2019).

S.2.2 Proofs for Section 5
It suffices to show that S (&, B) = S; (ay, By) + 0,(1) where

Ny T
Si(@, B)=(N,T)" "2 Z Z(T —I(yi <@; +w;,B,))Zir, and
i=1 t=1

Ny T
Si(e, Bp) = (N1 T)~1/2 Z Z(T —1(yir < @io + w},By))Zis-
i=1 t=1

It is formally stated in Lemma S.3. A similar result can be shown for S, (@, E).

LEMMA S.1. Assume conditions in Theorem 5.1, then
{S1@, B) — Si(e0, Bo)} — {E[S1(@, B)] — E[S1 (0, Bp)]} = 0p(1).

Prookr. The consistency of (&, ) under given assumptions can be found in Propo-
sition 3.1 in GK for the two bias corrected estimators. For each § > 0 and a constant
M; > 0, define B;(8) = {(a, B) : la; — ajo| <&, [|B — Boll <8, la| < My, [|Bll < My}. Define

pir(ei, B)=1(ei < (ai — aj + wj,(B— By) — I(ei <0),

and

T
IT} (@, B) = —T /2 Z i(ai, B)Zis-
=1
Note that Si(a, B) — S1 (e, By) = N1_1/2 Zf\;l] IT* («a;, B). When there is no confusion,
we will use ¢;; as a short notation for ;;(a;, B). Also without loss of generality let &g = 0,
Bo =0, then from B;(8) we may drop the subscript i and simply write it B(5).
We aim to show that for any (a, B8) € B(8), maxi<;<n, Var[Il(a;, B)] =0p(1) as T —
oo and 6 = 87 — 0 a decreasing sequence of real numbers. Since Z;; is bounded by con-
dition (A2), it suffices to show the claim without Z;;, which is what we shall establish now.
Let I1;(a;, B) be IT («;, B) without Z;;. By stationarity,

T .
Var[Ili(ai, B)] = Var[;] +2 Z(l - %) Cov(ii1, Pij+1)

j=1

T
< Var[¢;;] +2 Z|COV((/JZ'1, ‘pij+1)|- (5.9
=1
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Consider the variance term

Var[i] < E[2] = E[|¢ir]] < Fi(ei + w),B) — Fi(~a; — w/,B)
<2Cy (el + MIIBI) < Cor. (5.10)
In the above inequalities, we use the continuity of F;(-), the mean value theorem, and

(A5). The overall constant C > 0 does not depend on i. Let k7 be a sequence of increas-
ing real numbers. We divide covariance terms into two parts Z;.Zl | Cov(Wi1, Pij41)| +

k
Zf:kTH | Cov(thir, Yij1)l. For 31, | Cov(ihin, hijr1)], observe that

|Cov(iin, i) <E[1wir - i1 1] + E[lwa ] (S.11)

The first term in the right-hand side of (S.11) is smaller than

//1(—|ai+w§rﬁ| < e < |a; + wj,B)
x I (—|a; + wj,B| < ejiy1 < |ai +w,B) fij(eir, eijr1) deiy dejji
SC}//I(—WHFWM < et < |oi + wj;Bl)

x I(—|oi + wj,B| < ejjt1 < |a; +w),B|) dej1 dejjyq

<2C(leil + M|BI) < C'37.

In the first inequality we use that f; ;(e;1, e;i4+1) is bounded from above. For the second
term in the right-hand side of (S.11), by employing the same arguments we used for
variance, we have E[|;; (a;, B)|] < C87, therefore, E[|;1(a;, B)|]? < C282T. We conclude
that

kr

> [Cov(in, hij1)| < C"krd7, (S.12)
=1

where the overall constant C” is independent of i. We now show that Z,’T:kT +11Cov(¥1,
¥ij+1)| = 0p(1) uniformly over i. For this, we use a covariance inequality of mixing ran-
dom variables. Let L;; = a; + w},8 and observe that s («;, B) is an indicator function
taking I(0 <ej; < Lj)if Ly >0and —I(—L;; < ej; <0) if L;; < 0. Depending on signs of
L;1 and L;j41, we have four distinct cases. First, when L;; > 0 and L;;;1 > 0,

|Cov(ti1(ai, B), Yijs1(ai, B))]
= |E[yi1(ai, B) - ij+1(ai, B)] — E[i1 (i, B)|E[Yij1(ci, B]]
=|Pr(0 <e;; <Li1,0<ejj1 <Ljjr1) —Pr(0<ej <Lj1)Pr(0 < ejjy1 < Ljji1)|

=2B(,
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by the definition of beta-mixing coefficient (see Bradley (2005)). The second case is when
Li>0and L;j;1 <0, we see that | Cov(¢;1(a;, B), ij+1(i, B))] is equal to

|-Pr(0<ej1 <Li1,0<ej1 < Lijy1) —Pr(0 < ey <L) (—Pr(0 < ejy1 < Lijy1))|
=[Pr(0<ej <Li,0<e;jt1 <Lj1)—Pr(0<e; <Lij)Pr(0<e;i1 <Lj1)| <2B3)).

The other two cases can be analyzed similarly, so we conclude that | Cov(y;1,
¥ij+1)] < 2B(j). Invoke condition (A1) and conclude that for a constant 0 < a < 1,

T T T
> |Covigin )| <2 Y BG)<2B Y &l <2Bl-a)'a*T,  (S.13)
j=kr+1 j=kr+1 j=kr+1

where constants above are independent of i. From (S.10), (S.12), and (S.13), we have
Var[IT;(a;, B)] = 0p(87) + Op(kT87) + O, (a"T).

Take kr = 1/81T/2. Since a*T « k}l for k7 sufficiently large, Var[ll;(«;, B)] = O,(d7) +
0p(61T/ 2) + 0p(87) = 0p(1) as 87 — 0. Thus, an application of Chebyshev’s inequality
leads that for any (e, B) € B(67), uniformly for 1 <i <N,

[T (e, B) — E[IT;(ax, B)]|| = 0p (D). (S.14)

By using a chaining argument such as the one in Koenker and Zhao (1996) (see their
Lemma A.2), we can extend (S.14) to

sup  |Ii(a, B) — E[II;(, B) ]| = 0,(1), (S.15)
(a,B)eB(87)

uniformly for 1 <i < N;. Now we utilize the independence across i to obtain

(SUE) 1{S1(a, B) = Si(ao, By)} — {E[S1(a, B)] — E[Si (a0, B ]}| = 0p (D),

where the supremum is taken over {(«, B) : maxj<j<y |®;| < 87, ||Bll < 67}. Along with
the consistency of regression coefficient estimates, this proves the claim. O

LeEMMA S.2. Assume conditions in Theorem 5.1, then E[S (a, E)] =o0p(1).

Prookr. By Taylor expansion, E[S; (&, ﬁ)] is equal to

(N1T)~ 1/222E T — Fi(@; — aio) + w), (B — By)))Zit]

i=1 t=1

=—(N1T)~ 1/22215 Fi(F7H ) (@i — o) + w), (B — Bo))Zi]

i=1 t=1
Ny

— (N T)~ 1/222}3 Fi(FH ) (@1 — i) + (), (B — By)) )z

i=1 t=1
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Due to the construction of Z, the first-order terms in Taylor expansion become

Ny T T
—(Ni )"V fi(0) (E[ZE] (@ — @) +E[Zztw;t}<ﬁ—ﬁo>) =0.
=1

i=1 t=1

The second-order terms in Taylor expansion become, using assumption (A2),

Ny T
—(N1T)‘1/2Zﬁ(O)E[Z%ﬁ}(’&i — ai0)* — VN1TO,(IB — Boll?).

i=1 =1
The first term is zero. The second term is of order NiT - O,(N1T)~ 1) = 0,,(1). O
LEMMA S.3. Assume conditions in Theorem 5.1, then
51@, By) = S1(a, By) + 0p(1).
Proor. Itfollows from Lemmas S.1 and S.2 and the fact that E[S; (e, By)]1 = 0. O

Proor oF THEOREM 5.1. The claim (i) follows from Lemma S.3, and an application of
Lyapunov CLT. The Lyapunov condition can be checked following Appendix A.4 in KGM,
so we omit it. A straightforward variance calculation shows that the variance of S(ey, By)
is J5.. Given the consistency of 73 , the claim (ii) is conventional. O

Proor oF THEOREM 5.2. The consistency of A and fT follow from Kato (2012) and The-
orem 4.4, respectively. Given this, the proof Theorem 5.2 is conventional so we omit the
details. O
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