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A. Online supplement

A.1 Proofs

The notation employed here is taken from Section 2.1. Lemma A.1 is preparatory for the
proof of Theorem 1.

Lemma A.1. Let ε be a unit variance white noise. The Hilbert space Ht (ε) decomposes
into the orthogonal sum Ht (ε) = ⊕∞

j=1 Rj−1LR
t , where

Rj−1LR
t =

{+∞∑
k=0

b
(j)
k ε

(j)

t−k2j ∈ Ht (ε) : b(j)k ∈R

}

and, for any j ∈N and t ∈ Z, ε(j)t is given by equation (6).

Proof. Ht (ε) is a Hilbert subspace of L2(Ω�F�P), equipped with the inner product
〈A�B〉 = E[AB] for all A�B ∈ L2(Ω�F�P). We begin with showing that the scaling oper-
ator R is well-defined, linear, and isometric on Ht (ε).

Consider any X = ∑∞
k=0 akεt−k in Ht (ε), that is, ‖X‖2 = ∑∞

p=0 a
2
p < +∞. Then

‖RX‖2 = 1
2

+∞∑
k=0

a2
� k

2 � = 1
2

+∞∑
p=0

a2
� 2p

2 � + 1
2

+∞∑
p=0

a2
� 2p+1

2 � =
+∞∑
p=0

a2
p = ‖X‖2
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and this quantity is finite. As a result, R is a well-defined (and bounded) operator. The
linearity of R is immediate. To prove that R is isometric, take any X = ∑∞

k=0 akεt−k, Y =∑∞
h=0 bhεt−h in Ht (ε). By the white-noise properties of ε,

〈RX�RY 〉 =
+∞∑
k=0

a� k
2 �√
2

b� k
2 �√
2

= 1
2

+∞∑
p=0

a� 2p
2 �b� 2p

2 � + 1
2

+∞∑
p=0

a� 2p+1
2 �b� 2p+1

2 �

=
+∞∑
p=0

apbp = 〈X�Y 〉�

As a result, R is an isometry on Ht (ε) and the abstract Wold theorem (i.e., Theorem 1.1
in Nagy, Foias, Bercovici, and Kérchy (2010)) applies.

The abstract Wold theorem supplies the orthogonal decomposition Ht (ε) = Ĥt (ε)⊕
H̃t (ε), where

Ĥt (ε)=
+∞⋂
j=0

RjHt (ε)� H̃t (ε) =
+∞⊕
j=1

Rj−1LR
t

and LR
t = Ht (ε)� RHt (ε) is called wandering subspace.

In particular, we show that Ĥt (ε) is the null subspace. Indeed, the subspaces RjHt (ε)

are made of linear combinations of innovations εt with coefficients equal to each others
2j-by-2j :

RjHt (ε)=
{+∞∑
k=0

c
(j)
k

(2j−1∑
i=0

εt−k2j−i

)
∈ Ht (ε) : c(j)k ∈R

}
�

As a result, Ĥt (ε) can just include variables as
∑∞

h=0 cεt−h with c ∈ R. These elements
belong to Ht (ε), hence

∑∞
k=0 c

2 is finite and this is possible just in case c = 0. As a result,

Ĥt (ε) = {0} and Ht (ε)= H̃t (ε).
We now focus on the subspace H̃t (ε). As the orthogonal complement of RHt (x) is

the kernel of the adjoint operator R∗ (see, e.g., Theorem 1, Section 6.6 in Luenberger
(1968)), we determine R∗. Specifically, R∗ : Ht (ε) −→ Ht (ε) is such that

R∗ :
+∞∑
k=0

akεt−k �−→
+∞∑
k=0

a2k + a2k+1√
2

εt−k�

Indeed, R∗ is well-defined and the relation 〈RX�Y 〉 = 〈X�R∗Y 〉 holds for any X =∑∞
h=0 bhεt−h, Y = ∑∞

k=0 akεt−k in Ht (ε), due to the white noise nature of ε:

〈RX�Y 〉 =
+∞∑
h=0

+∞∑
k=0

b� h
2 �√
2
ak〈εt−h�εt−k〉 =

+∞∑
k=0

b� k
2 �

ak√
2

=
+∞∑
k=0

bk
a2k + a2k+1√

2

=
+∞∑
h=0

+∞∑
k=0

bh
a2k + a2k+1√

2
〈εt−h�εt−k〉 = 〈

X�R∗Y
〉
�
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As for the kernel of R∗, we prove that

ker
(
R∗) =

{+∞∑
k=0

d(1)k (εt−2k − εt−2k−1) ∈ Ht (ε) : d(1)k ∈R

}
�

Take any element of Ht (ε) of the kind X = ∑∞
k=0 d

(1)
k (εt−2k − εt−2k−1) for some square-

summable sequence of real numbers {d(1)k }k. Such X can be rewritten as X =∑∞
h=0 ahεt−h with a2k+1 = −a2k for all k ∈ N0, that is a2k + a2k+1 = 0. Therefore, by the

expression of R∗, we realize that R∗X = 0. Thus,{+∞∑
k=0

d(1)k (εt−2k − εt−2k−1) ∈ Ht (ε) : d(1)k ∈ R

}
⊂ ker

(
R∗)� (23)

Conversely, consider X = ∑∞
h=0 ahεt−h in ker(R∗). Since R∗X = 0 in the L2-norm,∑∞

k=0(a2k +a2k+1)
2 = 0. As a consequence, a2k+1 = −a2k for any k ∈N0 and we can write

X = ∑∞
k=0 d

(1)
k (εt−2k − εt−2k−1) with d(1)k = a2k. As a result, also the converse inclusion

in (23) holds and

LR
t = ker

(
R∗) =

{+∞∑
k=0

b(1)k ε(1)t−2k ∈ Ht (ε) : b(1)k ∈R

}
�

In addition,

RLR
t =

{+∞∑
k=0

b(2)k ε(2)t−4k ∈ Ht (ε) : b(2)k ∈R

}

and, for any j ∈N,

Rj−1LR
t =

{+∞∑
k=0

b
(j)
k ε

(j)

t−k2j ∈ Ht (ε) : b(j)k ∈R

}
�

As the case with j ∈N can be derived by induction, we focus on RLR
t and show that

RLR
t =

{+∞∑
k=0

d(2)k (εt−4k + εt−4k−1 − εt−4k−2 − εt−4k−3) ∈ Ht (ε) : d(2)k ∈R

}
� (24)

Consider any Y ∈ RLR
t . Since Y is the image of some X ∈ LR

t , there exists a square-
summable sequence of real numbers {d(1)k }k such that

X =
+∞∑
k=0

d(1)k (εt−2k − εt−2k−1)� Y =
+∞∑
k=0

d(1)k√
2
(εt−4k + εt−4k−1 − εt−4k−2 − εt−4k−3)�

As a result, RLR
t is included in the set in (24). Vice versa, take any Y = ∑∞

k=0 d
(2)
k (εt−4k +

εt−4k−1 −εt−4k−2 −εt−4k−3) for some square-summable sequence of coefficients {d(2)k }k.

Then Y belongs to RLR
t , too, because it is the image of X = ∑∞

k=0
√

2d(2)k (εt−2k−εt−2k−1),
which belongs to LR

t . Therefore, the characterization in (24) is assessed.
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Proof of Theorem 1

Proof. By applying the classical Wold decomposition to the zero-mean, weakly sta-
tionary purely nondeterministic process x, we find that xt belongs to the Hilbert space
Ht (ε), where ε is the unit variance white noise of classical Wold innovations of x. Impor-
tantly, Ht (ε) orthogonally decomposes as in Lemma A.1. By denoting g

(j)
t the orthog-

onal projections of xt on the subspaces Rj−1LR
t , we find that xt = ∑∞

j=1 g
(j)
t , where the

equality is in the L2-norm. Then, by using the characterizations of subspaces Rj−1LR
t ,

for any scale j ∈ N we find a square-summable sequence of real coefficients {β(j)
k }k such

that equation (9) holds. As a result, we are allowed to decompose the variable xt as in
equation (5).

We now show (i). As we can see in equation (6), the process ε(j) is an MA(2j − 1)
with respect to the fundamental innovations ε. In addition, the subprocess {ε(j)

t−k2j }k∈Z
is weakly stationary. Indeed, since ε is a unit variance white noise, for any k ∈ Z,

E
[(
ε
(j)

t−k2j
)2] = 1

2j
E

[(2j−1−1∑
i=0

εt−k2j−i −
2j−1−1∑
i=0

εt−k2j−2j−1−i

)2]
= 1

2j

2j−1∑
i=0

E
[
ε2
t

] = 1�

Thus, E[(ε(j)
t−k2j )

2] is finite and it does not depend on k. Moreover, E[ε(j)
t−k2j ] = 0 for any

k ∈ Z and the expectation does not depend on k. Finally, we analyze cross-moments in
the support S(j)t = {t − k2j : k ∈N0}. By taking h �= k,

E
[
ε
(j)

t−h2j ε
(j)

t−k2j
]

= 1

2j
E

[(2j−1−1∑
i=0

εt−h2j−i −
2j−1−1∑
i=0

εt−h2j−2j−1−i

)

·
(2j−1−1∑

l=0

εt−k2j−l −
2j−1−1∑
l=0

εt−k2j−2j−1−l

)]

= 1

2j

{2j−1−1∑
i=0

2j−1−1∑
l=0

E[εt−h2j−iεt−k2j−l] −
2j−1−1∑
i=0

2j−1−1∑
l=0

E[εt−h2j−iεt−k2j−2j−1−l]

−
2j−1−1∑
i=0

2j−1−1∑
l=0

E[εt−h2j−2j−1−iεt−k2j−l] +
2j−1−1∑
i=0

2j−1−1∑
l=0

E[εt−h2j−2j−1−iεt−k2j−2j−1−l]
}
�

Since h �= k, the sets of indices {h2j� � � � �h2j+2j−1} and {k2j� � � � �k2j+2j−1} are disjoint
and so the last sums are null. Therefore, E[ε(j)

t−h2j ε
(j)

t−k2j ] = 0 for all h �= k.

As a result, {ε(j)
t−k2j }k∈Z is weakly stationary on S

(j)
t and it is a unit variance white

noise.
We now turn to (ii). For any fixed scale j ∈ N, since the variables ε(j)

t−k2j are orthonor-

mal when k varies, the component g(j)t has a unique representation as in equation (8).
Thus, the coefficients β(j)

k are uniquely defined, and clearly,
∑∞

j=1
∑∞

k=0(β
(j)
k )2 is finite.
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In order to find the explicit expression of coefficients β(j)
k , we exploit the orthogonal

decompositions of Ht (ε) at different scales J ∈N:

Ht (ε) = RJHt (ε)⊕
J⊕

j=1

Rj−1LR
t �

We call π(j)
t the orthogonal projection of xt on the subspace RjHt (ε) and we proceed

inductively.
We start by the first decomposition xt = π

(1)
t + g

(1)
t coming from scale J = 1, namely

Ht (ε) = RHt (ε) ⊕ LR
t . By the definitions of elements in RHt (ε) and LR

t described in
Lemma A.1, we set

π(1)
t =

+∞∑
k=0

γ(1)
k

εt−2k + εt−(2k+1)√
2

=
+∞∑
k=0

c(1)k (εt−2k + εt−(2k+1))�

g(1)t =
+∞∑
k=0

β(1)
k ε(1)t−2k =

+∞∑
k=0

d(1)k (εt−2k − εt−2k−1)

for some sequences of coefficients {c(1)k }k and {d(1)k }k, or equivalently {γ(1)
k }k and {β(1)

k }k,

to determine in order to have xt = π(1)
t + g(1)t , where we set

√
2c(1)k = γ(1)

k and
√

2d(1)k =
β(1)
k . The expressions above may be rewritten as

xt =
+∞∑
k=0

{(
c(1)k + d(1)k

)
εt−2k + (

c(1)k − d(1)k

)
εt−2k−1

}
�

However, from the classical Wold decomposition of x,

xt =
+∞∑
k=0

{α2kεt−2k + α2k+1εt−2k−1}

with the same fundamental innovations εt . By the uniqueness of writing of the classical
Wold decomposition, the two expressions for xt must coincide. As a result, c(1)k and d

(1)
k

are the solutions of the linear system

{
c(1)k + d

(1)
k = α2k�

c(1)k − d(1)k = α2k+1�

that is,

c(1)k = α2k + α2k+1

2
� d(1)k = α2k − α2k+1

2
and, in particular, we find

γ(1)
k = α2k + α2k+1√

2
� β

(1)
k = α2k − α2k+1√

2
�
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Next, we focus on the scale J = 2. We exploit the decomposition of the space
RHt (ε) = R2Ht (ε)⊕ RLR

t that implies the relation π
(1)
t = π

(2)
t + g

(2)
t . We follow the same

track as in the previous case, by using the features of elements in R2Ht (ε) and in RLR
t

and, finally, by comparing the expression of π(2)
t + g(2)t with the (unique) writing of π(1)

t

that we found before. Since

π(2)
t =

+∞∑
k=0

γ(2)
k

εt−4k + εt−(4k+1) + εt−(4k+2) + εt−(4k+3)

2
� g(2)t =

+∞∑
k=0

β(2)
k ε(2)t−4k�

by solving a simple linear system we discover that

γ(2)
k = α4k + α4k+1 + α4k+2 + α4k+3

2
� β(2)

k = α4k + α4k+1 − α4k+2 − α4k+3

2
�

At the generic scale J = j, we retrieve the expressions of β(j)
k and γ

(j)
k of equation (7) and

(11), where π
(j)
t is defined in equation (10).

Finally, we show (iii). First, when t is fixed, E[g(j)t g(l)t ] = 0 for all j �= l because g
(j)
t

and g(l)t are, respectively, the projections of xt on the subspaces Rj−1LR
t and Rl−1LR

t that

are orthogonal by construction. Now, consider any g
(j)

t−m2j with m ∈ N0. Clearly, g(j)
t−m2j

belongs to Rj−1LR
t−m2j but, by the definition of g(j)t , we can write

g
(j)

t−m2j =
+∞∑
k=0

β
(j)
k ε

(j)

t−(m+k)2j =
+∞∑
K=0

β
(j)
K ε

(j)

t−K2j �

where β
(j)
K = 0 if K = 0� � � � �m−1 and β

(j)
K = β

(j)
k if K = m+k for some k ∈ N0. As a result,

g
(j)

t−m2j belongs to Rj−1LR
t , too. Similarly, at scale l, taken any n ∈ N0, it is easy to see that

g
(l)

t−n2l
belongs to Rl−1LR

t . Hence, the orthogonality of such subspaces guarantees that

E[g(j)
t−m2j g

(l)

t−n2l
] = 0 for all j �= l and m�n ∈N0.

As for the general requirement on E[g(j)t−pg
(l)
t−q] for any j� l ∈N and p�q� t ∈ Z,

E
[
g
(j)
t−pg

(l)
t−q

] =
+∞∑
k=0

+∞∑
h=0

β
(j)
k β(l)

h E
[
ε
(j)

t−p−k2j ε
(l)

t−q−h2l
]

= 1√
2j+l

+∞∑
k=0

+∞∑
h=0

β
(j)
k β(l)

h

2j−1−1∑
u=0

2l−1−1∑
v=0

{
E[εt−p−k2j−uεt−q−h2l−v]

−E[εt−p−k2j−uεt−q−h2l−2l−1−v] −E[εt−p−k2j−2j−1−uεt−q−h2l−v]
+E[εt−p−k2j−2j−1−uεt−q−h2l−2l−1−v]

}
and so

E
[
g
(j)
t−pg

(l)
t−q

] = 1√
2j+l

+∞∑
k=0

+∞∑
h=0

β
(j)
k β(l)

h

2j−1−1∑
u=0

2l−1−1∑
v=0

{
γ
(
p− q+ k2j + u− h2l − v

)

− γ
(
p− q+ k2j + u− h2l − 2l−1 − v

)
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− γ
(
p− q+ k2j + 2j−1 + u− h2l − v

)
+ γ

(
p− q+ k2j + 2j−1 + u− h2l − 2l−1 − v

)}
�

where coefficients β(j)
k , β(l)

h do not depend on t and γ denotes the autocovariance func-
tion of ε. After the summations over u, v and k, h, the one remaining variables are j, l,
p− q. In other words, E[g(j)t−pg

(l)
t−q] depends at most on j, l, p− q.

Proof of Theorem 2

Proof. First, we show that any process g(j) is well-defined. Indeed, by using the moving
average representation of each g

(j)
t with respect to the innovations on the support S(j)t

and the definition of detail processes ε(j), we have

g
(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j =
+∞∑
k=0

2j−1∑
i=0

β
(j)
k δ

(j)
i εt−k2j−i =

+∞∑
h=0

β
(j)

� h

2j
�δ

(j)

h−2j� h

2j
�εt−h� (25)

where h = k2j + i, k = � h
2j � and i = h − 2j� h

2j �. Condition (13) ensures the square-

summability of the coefficients and so each g(j) is well-defined.
In addition, the process x is well-defined because of Conditions (13) and (14). Ac-

cording to the latter, the components g
(j)
t are orthogonal to each others at different

scales for fixed t ∈ Z. Therefore,

E
[
x2
t

] = E

[(+∞∑
j=1

g
(j)
t

)2]
=

+∞∑
j=1

E
[(
g
(j)
t

)2] =
+∞∑
j=1

+∞∑
h=0

(
β
(j)

� h

2j
�δ

(j)

h−2j� h

2j
�
)2
�

which is finite because of (13). In consequence, the process x is well-defined.
Now we show that x is weakly stationary, with zero mean. We already observed that

E[x2
t ] is finite and not dependent on t. In addition, since the processes g(j) have zero

mean, E[xt] = 0 for any t ∈ Z. Finally, take p �= q. Then

E[xt−pxt−q] = E

[(+∞∑
j=1

g
(j)
t−p

)(+∞∑
l=1

g
(l)
t−q

)]
=

+∞∑
j=1

+∞∑
l=1

E
[
g
(j)
t−pg

(l)
t−q

]
�

As E[g(j)t−pg
(l)
t−q] are dependent at most on j, l and p−q (see, e.g., the computations in the

proof of Theorem 1), E[xt−pxt−q] depends at most on the difference p− q. As a result, x
is weakly stationary, with zero mean.

By taking the sum over scales j ∈ N in equation (25), we obtain the decomposition
of xt with respect to the process ε stated in equation (16). Clearly, x is purely non-
deterministic.

Proposition A.1. The time series

Rxt =
+∞∑
k=0

α� k
2 �√
2
εt−k and Rxxt = 1√

2
(xt + xt−1)
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have spectral density functions, respectively,

fR(λ) = 2 cos2
(
λ

2

)
fx(2λ) and fRx(λ) = 2 cos2

(
λ

2

)
fx(λ)�

where fx(λ) is the spectral density function of xt .

Proof. Define the time-invariant linear filter A(L) = ∑∞
h=0 αhLh, so that xt = A(L)εt .

Since
∑∞

h=0 |αh| < +∞ and the spectral density function of εt is fε(λ) = 1/2π,

fx(λ)= ∣∣A(
e−iλ

)∣∣2
fε(λ) =

∣∣∣∣∣
+∞∑
h=0

αhe
−ihλ

∣∣∣∣∣
2

1
2π

= 1
2π

{(+∞∑
h=0

αh cos(hλ)

)2

+
(+∞∑
h=0

αh sin(hλ)

)2}

= 1
2π

+∞∑
h=0

+∞∑
k=0

αhαk cos
(
λ(k− h)

)
�

First, consider Rxt . As
∑∞

k=0 |α� k
2 �| = 2

∑∞
h=0 |αh| < +∞, we have

fR(λ) =
∣∣∣∣∣
+∞∑
k=0

α� k
2 �√
2
e−ikλ

∣∣∣∣∣
2

1
2π

= 1
2π

+∞∑
h=0

+∞∑
k=0

α� h
2 �α� k

2 �
2

cos
(
λ(k− h)

)

= 1
2π

+∞∑
h=0

+∞∑
k=0

αhαk

{
cos

(
2λ(k− h)

) + cos
(
λ(2k− 2h+ 1)

) + cos
(
λ(2k− 2h− 1)

)
2

}

= 1
2π

+∞∑
h=0

+∞∑
k=0

αhαk cos
(
2λ(k− h)

){
1 + cos(λ)

} = 2 cos2
(
λ

2

)
fx(2λ)�

Now consider Rxxt . The spectral density function in the claim follows from

fRx(λ)=
∣∣∣∣ 1√

2

(
e0 + e−iλ

)∣∣∣∣
2
fx(λ)= 1

2
{(

1 + cos(λ)
)2 + sin2(λ)

}
fx(λ)�

A.2 Forecasting from the persistence-based decomposition

We provide the formulas for conditional expectation and variance of a process x =
{xt}t∈Z that has classical and extended Wold decompositions given by equations (4) and
(5), respectively. We consider the filtration generated by the white noise ε = {εt}t∈Z as-
suming that the innovations εt are independent.

Fix p ∈ N. The conditional expectation at time t of xt+p is characterized by an off-
set of the classical Wold coefficients, namely Et[xt+p] = ∑∞

h=0 αh+pεt−h. Notably, such
offset is inherited by the extended Wold decomposition of Et[xt+p]:

Et[xt+p] =
+∞∑
j=1

+∞∑
k=0

β
(j)
k�pε

(j)

t−k2j �
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where, for any j ∈N and k ∈ N0,

β
(j)
k�p = 1√

2j

(2j−1−1∑
i=0

αk2j+i+p −
2j−1−1∑
i=0

αk2j+2j−1+i+p

)
�

Therefore, once the extended Wold decomposition of xt is known, p-step ahead fore-
casts do not require a large additional effort because they are driven by the detail pro-
cesses ε(j), too, and coefficients β(j)

k�p are easily computed.
As to the conditional variance, the properties of the classical Wold decomposition

ensure that Vart (xt+p) = α2
0 + · · · + α2

p−1. By Theorem 2 the coefficients αh can be ob-

tained from the scale-specific β
(j)
k and so Vart (xt+p) can be derived directly from them.

For example, Vart (xt+1) = α2
0 = (

∑∞
j=1 β

(j)
0 /

√
2j)2.
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