Supplement to "Experimenting with the transition rule in dynamic games"

(Quantitative Economics, Vol. 10, No. 4, November 2019, 1825-1849)

Emanuel Vespa
Department of Economics, University of California, Santa Barbara

Alistair J. Wilson
Department of Economics, University of Pittsburgh

This file provides a number of supplementary analyses and tables to the main paper.

Table S.I. Unique MPE in an endogenous game.

Player i / j	$M_{D D}$	$M_{C D}$	$M_{D C}$	$M_{C C}$
$M_{D D}$	SPE	Player j deviates to D in low	Player j deviates to D in high	Player j deviates to D in low
$M_{C D}$	-	Either player deviates to D	Player i deviates to D in low in low	Player j deviates to D in low in high player deviates to D
$M_{D C}$	-			Either player deviates to D in high
$M_{C C}$	-	-	Either player deviates to D in high	

[^0]Table S.II. Initial cooperation rates.

State	Easy			Difficult		
	Static	Exog.	Endog.	Static	Exog.	Endog.
Initial cooperation (all supergames)						
Low	0.726	0.719	0.822	0.602	0.591	0.841
	(0.049)	(0.057)	(0.053)	(0.061)	(0.061)	(0.042)
High	0.676	0.552	0.834	0.356	0.316	0.678
	(0.060)	(0.053)	(0.54)	(0.055)	(0.053)	(0.062)
Initial cooperation (last five supergames)						
Low	0.736	0.733	0.824	0.558	0.610	0.886
	(0.062)	(0.063)	(0.057)	(0.076)	(0.069)	(0.047)
High	0.692	0.510	0.800	0.300	0.302	0.653
	(0.067)	(0.070)	(0.066)	(0.064)	(0.063)	(0.065)

Note: The initial cooperation rate captures the frequency of C choices in each state using the first choice a subjects make in that state within the supergame. In the case of the low state, only period-one choices are included.

Table S.III. Aggregate cooperation (last five supergames).

	Unweighted				State-Matched	
	Param.				Param.	
Transition	Easy	Diff.		Δ_{Ψ}		Easy
Static	0.604	0.351	-0.252		0.595	0.319
	(0.049)	(0.044)	(0.065)		(0.050)	(0.042)
Exogenous	0.561	0.383	-0.177		0.548	0.357
	(0.049)	(0.047)	(0.067)		(0.050)	(0.047)
Endogenous	0.633	0.613	-0.020	0.633	0.613	
	(0.046)	(0.035)	(0.058)	(0.046)	(0.035)	

Note: Coefficients in the first two data columns (and standard errors accounting for 252 subject clusters) are recovered from a linear probability model with six treatment-dummy regressors. Coefficients in the state-weighted column are derived from a similar model with the following set of mutually exclusive dummy variables: (i) a treatment dummies for the two Endogenous treatments, with coefficients representing $\hat{\operatorname{Pr}\left\{C \mid \Psi_{X}\right\} \text {; and (ii) treatment-state-period dummies for the exogenous treatments, }}$ with coefficients representing $\hat{\operatorname{Pr}\left\{C \mid t, \theta, \Psi_{X}\right\} \text {. Reported coefficients for the Exogenous and Static treatments reflect the weighted }}$ sum $Q\left(\Psi_{X}\right)$ across the relevant treatment-state-period coefficient to correct for differing state selection.

Table S.IV. P-values of hypothesis tests between initial cooperation rates (last five supergames).

	$S_{L}^{\text {Esy }}$	$S_{L}^{\text {Dif }}$	$S_{H}^{\text {Esy }}$	$S_{H}^{\text {Dif }}$	$E x_{L}^{\text {Esy }}$	$E x_{L}^{\text {Dif }}$	$E x_{H}^{\text {Esy }}$	$E x_{H}^{\text {Dif }}$	$E n_{L}^{\text {Esy }}$	$E n_{L}^{\text {Dif }}$	$E n_{H}^{\text {Esy }}$	$E n_{H}^{\text {Dif }}$
$S_{L}^{\text {Esy }}$	-	0.072	0.528	0.000	0.977	0.176	0.017	0.000	0.301	0.056	0.480	0.358
$S_{L}^{\text {Dif }}$	-	-	0.187	0.001	0.078	0.619	0.642	0.010	0.006	0.000	0.017	0.345
$S_{H}^{\text {Esy }}$	-	-	-	0.000	0.656	0.391	0.061	0.000	0.137	0.019	0.253	0.673
$S_{H}^{\text {Dif }}$	-	-	-	-	0.000	0.001	0.028	0.983	0.000	0.000	0.000	0.000
$E x_{L}^{E s y}$	-	-	-	-	-	0.187	0.000	0.000	0.289	0.053	0.465	0.375
$E x_{L}^{\text {Dif }}$	-	-	-	-	-	-	0.313	0.000	0.018	0.001	0.047	0.648
$E x_{H}^{\text {Esy }}$	-	-	-	-	-	-	-	0.028	0.001	0.000	0.003	0.136
$E x_{H}^{D i f}$	-	-	-	-	-	-	-	-	0.000	0.000	0.000	0.000
$E n_{L}^{\text {Esy }}$	-	-	-	-	-	-	-	-	-	0.405	0.784	0.050
$E n_{L}^{D i f}$	-	-	-	-	-	-	-	-	-	-	0.290	0.004
$E n_{H}^{\text {Esy }}$	-	-	-	-	-	-	-	-	-	-	-	0.113
$E n_{H}^{D i f}$	-	-	-	-	-	-	-	-	-	-	-	-

Abstract

Note: To compute these p-values, we first run a regression in which the unit of observation is the choice a subject makes in a period of a supergame. The sample is constrained to the last five supergames and to periods in which the subject makes the first choice in each state. The dependent variable takes value 1 if the subject decided to cooperate and 0 otherwise. The right-hand side includes a fully saturated set of dummies that account for differences in cooperation rates across three dimensions: the treatment (Easy-Endog, Easy-Exog, Easy-Static, Easy-Endog, Easy-Exog, Easy-Static), the state (Low, High). Standard errors are clustered by subject. The table reports the p-values of bilateral comparisons between coefficients for the treatment cross state dummies. The table reports the p-value of a t-test in which the null hypothesis is Row Estimate = Column Estimate. There is one row per (initial-cooperation rate) coefficient estimate and one column per (initial-cooperation rate) coefficient, where notation is as follows. $S, E x$, and En capture whether the coefficient corresponds to a static, exogenous, or endogenous treatment, respectively. The superscript (Esy, Dif) identifies if the coefficient corresponds to a easy or difficult parameterization, respectively. The subscript (L, H) identifies if the coefficient corresponds to behavior in the low or high state, respectively.

Table S.V. Common sequences of actions as percent of histories (last five supergames).

Treatment		Five or more observed supergames		
Easy-Endog	CC, CC, CC, CC, CC	DC, DD, DD, DD, DD	CC, DC, DC, DD, DC	DC, DC, DD, DD, DD
	37.1	10.5	6.7	4.8
Diff-Endog	CC, CC, CC, CC, CC	CC, DC, DD, DC, DD	CC, CC, CC, CC, DC	CC, DC, DD, DD, DD
	20.0	6.7	5.7	4.8
Easy-Exog	CC, CC, CC, CC, CC	DC, DD, DD, DD, DD	DD, DD, DD, DD, DD	
	36.2	20.0	5.7	
Diff-Exog	DC, DD, DD, DD, DD	DD, DD, DD, DD, DD	CC, CC, CC, CC, CC	DC, DC, DD, DD, DD
	22.9	18.1	18.1	4.8
Easy-Static (low)	CC, CC, CC, CC, CC	DC, DD, DD, DD, DD	DC, DC, DD, DD, DD	
	50.9	18.9	9.4	
Diff-Static (low)	CC, CC, CC, CC, CC	DC, DD, DD, DD, DD	DD, DD, DD, DD, DD	DC, DC, DD, DD, DD
	25.0	20.0	13.3	11.7
Easy-Static (high)	CC, CC, CC, CC, CC	DC, DD, DD, DD, DD	DD, DD, DD, DD, DD	
Diff-Static (high)	DD, DD, DD, DD, DD	DC, DD, DD, DD, DD	9.6	
	46.7	22.2		

Note: In endogenous and static-transition treatments, high-state action pairs are displayed in bold face.

Co-editor Rosa L. Matzkin handled this manuscript.
Manuscript received 9 March, 2016; final version accepted 29 March, 2019; available online 10 April, 2019.

[^0]: Emanuel Vespa: vespa@ucsb.edu
 Alistair J. Wilson: alistair@pitt. edu
 © 2019 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0. Available at http://qeconomics.org. https://doi.org/10.3982/QE687

